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ABSTRACT
As machine learning (ML) becomes pervasive in high performance
computing, ML has found its way into safety-critical domains (e.g.,
autonomous vehicles). Thus the reliability of ML has grown in im-
portance. Specifically, failures of ML systems can have catastrophic
consequences, and can occur due to soft errors, which are increasing
in frequency due to system scaling. Therefore, we need to evaluate
ML systems in the presence of soft errors.

In this work, we propose BinFI, an efficient fault injector (FI)
for finding the safety-critical bits in ML applications. We find the
widely-used ML computations are often monotonic. Thus we can
approximate the error propagation behavior of a ML application as a
monotonic function. BinFI uses a binary-search like FI technique to
pinpoint the safety-critical bits (also measure the overall resilience).
BinFI identifies 99.56% of safety-critical bits (with 99.63% precision)
in the systems, which significantly outperforms random FI, with
much lower costs.
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1 INTRODUCTION
The past decade has seen the massive adoption of machine learning
(ML) in a diverse set of areas [36, 47, 71, 72]. ML has also found its
way into the high performance computing (HPC) domain, where
the high computing capacity empowers ML to manage the large
volume of scientific and engineering data [35, 56, 65, 81]. Many of
these ML applications are safety-critical [19, 26, 60, 80, 81]. One
emerging example is autonomous vehicles (AVs), in which the high
throughput, low latency, high reliability requirements make the
hardware of these applications rival those of some supercomputers.
For example, Nvidia Drive AGX Xavier, a system-on-chip (SoC)
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designed for AVs application, is able to deliver 30 TOPS (trillion
operations per second) of performance at 30W [10], much like HPC
systems [49]. While we focus on AVs in this paper, similar trends
apply for ML applications in domains such as health-care [80, 81].

As the trends toward exascale computing and AVs continue
to grow, the ability of ML to deliver high performance critically
depends on the reliability of the system [23, 70]. The ISO 26262
standard for functional safety of road vehicles specifies that there
can be nomore than 10 FIT (Failures in Time), which is 10 failures in
a billion hours of operation [8, 49]. A recent study of failures in AVs
shows that faults related to ML systems are the major culprits, often
requiring the fallback of human driver intervention [18]. Many of
these failures are due to hardware transient faults, also known as
soft errors, which are typically caused by high-energy particles due
to cosmic rays that interact with electronic components (e.g., a
terrestrial neutron strike may cause current spikes in logic circuits
or storage elements, and subsequently lead to a bit flip). Moreover,
soft errors are increasing in frequency as system scale increases
(especially in HPC applications [23, 70, 73]) and they could lead to
undesirable consequences in ML systems [25, 49, 62]. In addition,
hardware faults can also be deliberately induced by malicious at-
tackers (e.g., selectively flipping specific bits), which can also cause
significant performance degradation in DNNs [38].

Traditional techniques (e.g., replicating hardware components
[53]; instruction duplication [51]) incur high overheads in hardware
cost, energy and performance, which make them impractical to
be deployed in HPC ML systems [49]. For example, an AV ready
for real-world deployment should be able to process the driving
data within a few milliseconds (per iteration) [2, 15]. Deploying
traditional protection techniques may lead to delays in response
time, which may in turn lead to reaction-time-based accidents [18].
Therefore, we need to identify the parts of the ML systems that
are the most sensitive to hardware transient faults, and selectively
protect the sensitive parts at low costs.

In this paper, we focus on the problem of identifying the safety-
critical bits inML applications. These are the bits in theML program,
which if affected by hardware transient faults, result in a safety-
condition violation. A well-established approach to experimental
resilience assessment is random fault injection (FI), which works
by randomly sampling from a set of fault locations, and injecting
the faults into the program to obtain a statistically significant esti-
mate of their overall resilience. Random FI has been used on ML
applications for overall resilience assessment [49, 62], but it is un-
fortunately not suitable for identifying the safety-critical bits in the
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program due to two reasons. First, because random FI relies on sta-
tistical sampling, it is not guaranteed to cover all the safety-critical
bits. Second, the safety-critical bits are often clustered in the state
space, and random sampling is unable to find them (e.g., Fig. 3).

The only known approach to identify the safety-critical bits
of a ML program is exhaustive FI, which involves flipping each
bit of the program, and checking if it resulted in a safety violation.
Unfortunately, exhaustive FI incurs huge performance overheads, as
only one fault is typically injected in each trial (for controllability).
The time taken by exhaustive FI is therefore directly proportional
to the number of bits in the program, which can be very large.

In this paper, we propose an efficient FI approach, which can
identify the safety-critical bits in ML applications, and also measure
the overall resilience, with reasonable overheads. The key insight
of our approach is that the functions used in ML applications are
often tailored for specific purposes. For example, for a network
to classify an image of a vehicle, the ML computations would be
designed in a way that they can produce larger response upon the
detection of the vehicular feature in the image, while keeping the
response to irrelevant features small. This results in the functions
exhibiting monotonicity based on how compatible is the input with
the target (e.g., vehicular features), and the composition of these
ML functions can be approximated as a single monotonic composite
function (Section 3.2). The monotonicity of the function helps us
prune the FI space and efficiently identify the safety-critical bits.
Analogous to how binary search on a sorted array has an exponential
time reduction compared to linear search, our approach results in an
exponential reduction in the FI space of ML applications to identify
the safety-critical bits, compared to exhaustive FI. Therefore, we call
our approach Binary fault injection or BinFI (in short).

Prior work has attempted to find safety violations in ML pro-
grams for design/software bugs through random testing approaches [31,
54, 59, 78]. However, these papers do not examine the effects of
hardware faults, more specifically, soft errors. Other papers have at-
tempted to prune the FI space for general-purpose programs [33, 69],
or even eliminate FI altogether [51]. Unfortunately, these papers do
not consider the specific properties of ML programs. To the best of
our knowledge, BinFI is the first fault injection technique to efficiently
find safety violations in generic ML applications due to soft errors.

Our main contributions in this paper are as follows:

• Analyze the common operations used in ML applications and
identify that many of them exhibitmonotonicity. We approximate
the composition of these functions as a monotonic function.
• Present BinFI, a fault injection approach that leverages the approx-
imated monotonic composite function, to find the safety-critical
bits, and also measure the overall resilience of the program.
• Extend an open-source FI tool, TensorFI to incorporate BinFI,
and evaluate it over 8 ML applications with a total of 6 datasets
(including a real-world driving dataset).

Our evaluation shows that BinFI can identify 99.56% of the crit-
ical bits with 99.63% precision, which significantly outperforms
random FI. Further, it can also accurately estimate the overall SDC
probability of the application. Finally, BinFI incurs only around 20%
of the performance overhead of exhaustive FI, which is the only
other way to identify most of the critical bits in a program (to our
knowledge) i.e., it obtains a speedup of 5X over exhaustive FI.

While the coverage of BinFI is not 100% in identifying safety-
critical bits, it presents an attractive alternative to traditional ex-
haustive fault injection due to its significantly low overheads. Fur-
ther, the proportion of critical bits missed by BinFI is less than
0.5%, which is acceptable in many situations given that soft errors
are relatively rare events, and that not all bit-flips would lead to
safety violations in practice [43]. Therefore, BinFI is the first step
towards exploring the space of techniques that trade-off resilience
for performance overheads in safety-critical ML applications.

2 BACKGROUND AND FAULT MODEL
We start by providing an overview of the fault injection tool we
used. We then discuss the requirements for AVs, and finally present
the fault model we assume.

2.1 TensorFlow and Fault Injection Tool
In our work, we use an open-source fault injector called TensorFI,
which is a configurable FI tool to inject faults in TensorFlow ap-
plications [50]. We choose it as it supports FI experiments on ML
algorithms implemented using the TensorFlow framework [16],
which is the most popular ML framework in use today [14]1. The
main advantage of TensorFlow is that it abstracts the operations
in a ML program as a set of operators and a dataflow graph - this
allows programmers to focus on the high-level programming logic.

There are two main components in the TensorFlow dataflow
graph: (1) operator is the computational unit (e.g., matrix multiplica-
tion) and tensor is the data unit. Users can build the ML model using
the built-in operators or define their customized operators. Ten-
sorFI duplicates the TensorFlow graph with customized operators
[50], which are designed to not only be able to perform compu-
tation as standard operators do, but also inject faults at runtime.
TensorFI is provided as a library so that users can easily integrate
TensorFI into their TensorFlow programs. It also allows different
configuration (e.g., how and where to inject fault) options through
a YAML interface.

2.2 AVs Requirements
Autonomous vehicles (AVs) are complex systems that use ML to
integrate data from various electronic components (e.g., LiDAR) and
deliver real-time driving decisions. AVs entail several requirements:
(1) high throughput (e.g., large amounts of data must be processed as
they arrive from the sensors [1, 15]), and (2) low latency (e.g., apply
the brakes upon the detection of a pedestrian in front of the vehicle
within a few ms) [2, 15]. These requirements present significant
challenges for reliability in AV applications.

Asmentioned, AVs reliability is mandated by stringent regulation
- no more than 10 FIT as governed by ISO 26262 safety standard.
There are two kinds of faults that can cause this standard to be
violated [2], namely (1) systematic faults, and (2) transient faults.
The former are caused by design defects in hardware and software,
while the latter by cosmic rays and electromagnetic disturbances.
Systematic faults in AVs can be mitigated at design time, and have
been well explored in the literature [59, 67, 78]. Hardware transient
faults, on the other hand, need runtime mitigation and are less
1Our approach is also applicable for applications using other ML frameworks such as
PyTorch, Keras, etc., as they are similar to TensorFlow in structure.
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studied in the context of AVs. FIT due to soft errors is orders of
magnitude higher than the 10 FIT requirement [49]. Therefore, it is
important to study soft errors’ effect on AV’s reliability.

2.3 Fault Model
In this paper, we consider hardware transient faults (i.e., soft errors)
that randomly occur during the execution of ML programs. The
errors are caused by different sources such as alpha particles and
electro-magnetic effects. In our fault model, we assume faults occur
in the processor’s data path, i.e., in pipeline registers and ALUs. We
assume that main memory, cache and the register file are protected
by ECC or parity, and hence we do not consider faults that originate
in them. This is a common assumption made in fault injection
studies [17, 29, 51]. We also assume that faults do not occur in the
processor’s control logic, as that constitutes only a small portion
of the total area of the processor. Note that our fault model only
considers faults that are not masked before reaching the software
layer, as masked faults do not affect the application’s execution.

Since TensorFI operates on TensorFlow graphs, we map the fault
occurrence to the interface of the operators in the graph. This
is because the details of each operation are hidden from the ML
program, and are also platform specific (e.g., the GPU version of
these operators are often different from the CPU version). As a
result, we inject faults directly to the output value of operators in
ML programs - this method is in line with prior work [20, 50, 51].

We follow the one-fault-per-execution model as soft errors are
relatively rare events with respect to the typical time of a program’s
execution - again this is a common assumption in the literature [17,
27, 51, 79]. Soft errors can manifest in the software layer as single
or multiple-bit flips. However, recent work [20, 68] has shown that
multiple bit flip errors result in similar error propagation patterns
and SDC probabilities as single-bit flip errors (at the program level),
showing that studying single-bit flip fault injection is sufficient for
drawing conclusions about error resilience.

We assume that faults do not modify the state/structure of the
model (e.g., change the model’s parameters [42, 54]), nor do we
consider faults in the inputs provided to the model (e.g., sensor
faults such as brightness change of the image [67, 78]), as they
are outside the scope of the technique. Finally, we only consider
faults during the inference phase of ML programs as ML models are
usually trained once offline, and the inference phase is performed
repeatedly in deployment (typically, hundreds of thousands of times
in AVs), which makes them much more prone to soft errors.

3 METHODOLOGY
We consider Silent Data Corruption (SDC) as a mismatch between
the output of a faulty program and that of a fault-free program exe-
cution. For example, in classifier models, an image misclassification
due to soft errors would be an SDC. We leave the determination
of whether an SDC is a safety violation to the application, as it
depends on the application’s context (see Section 4). Unlike tradi-
tional programs, where faults can lead to different control flows
[33, 51, 58], faults in ML programs only result in numerical changes
of the data within the ML models (though faults might also change
the execution time of the model, this rarely happens in practice as
the control flow is not modified).

Critical bits are those bits in the programwhere the occurrence of
fault would lead to an SDC (e.g., unsafe scenarios in safety-critical
applications). Our goal is to efficiently identify these critical bits in
ML programs without resorting to exhaustive fault injection into
every bit.

We first provide an example of how faults propagate in ML pro-
gram in Section 3.1. We then define the terms monotonicity and
approximate monotonicity that we use throughout the paper. Then
we present our findings regarding the monotonicity of the func-
tions used in common ML algorithms in Section 3.3, so that we can
model the composition of all the monotonic functions involved in
fault propagation either as a monotonic or approximately mono-
tonic function (Section 3.4). Finally, we show how we leverage the
(approximate) monotonicity property to design a binary-search like
FI algorithm to efficiently identify the critical bits, in Section 3.5.

3.1 Error Propagation Example
The principle of error propagation in different ML models is sim-
ilar in that a transient fault corrupts the data, which becomes an
erroneous data, and will be processed by all the subsequent com-
putations until the output layer of the model. In this section, we
consider an example of error propagation in the k-nearest neigh-
bor algorithm (kNN), in Fig. 1 (k=1). The program is written using
TensorFlow, and each TensorFlow operator has a prefix of tf (e.g.,
tf.add). We use this code as a running example in this section.

We assume that the input to the algorithm is an image (testImд),
and the output is a label for the image. Line 1 calculates the negative
value of the raw pixel in testImд. The program also has a set of
images called neiдhbors , whose labels are already known; and the
goal of the program is to assign the label from one of the neiдhbors
(called nearest neighbor) to the testImд. Line 2 computes the rela-
tive distance of testImд to each of neiдhbors . Line 3 generates the
absolute distances and line 4 summarizes the per-pixel distance into
a total distance. Line 5 looks for the index of the nearest neighbor,
whose label is the predicted label for testImд.

Figure 1: An example of error propagation in kNN model
(k=1), fault occurs at the tf.add operator - line 2.

Assume a fault occurs at the add operator (line 2) and modifies
its output relativeDistance . If each image’s dimension is (28, 28),
then the result from the tf.add operator is a matrix with shape
( |N |, 784), where |N | is the number of neighbors and each vector
with 784 elements corresponds to each neighbor. If the ith image
is the nearest neighbor, we have disi < disj ,∀j ∈ |N |, i , j, where
disi is the distance of the ith image to the test image. The fault
might or might not lead to an SDC - we consider both cases below.

SDC: The fault occurs at (i,y),y ∈ [1, 784] (i.e., corresponding
to the nearest neighbor), which incurs a positive value deviation
(e.g., flipping 0 to 1 in a positive value). The fault would increase
disi , which indicates a potential SDC as disi might no longer be the
smallest one among disj , j ∈ |N |. Similarly, the fault at (j,y),y ∈
[1, 784] incurs a negative deviation and may result in an SDC.



SC19, November 17-22, 2019, Denver, CO, USA Zitao Chen, Guanpeng Li, Karthik Pattabiraman, and Nathan DeBardeleben

No SDC: The fault at (i,y),y ∈ [1, 784] incurs a negative value
deviation, thus decreasing disi . This will not cause SDC since disi
is always the nearest neighbor. Similarly, a fault incurring positive
deviation at (j,y),y ∈ [1, 784] would always be masked.

3.2 Monotonicity and Approximate
Monotonicity

We now define the terms monotonicity and approximate mono-
tonicity that we use in this paper.
• Non-strictly monotonic function: A non-strictly monotonic
function is either monotonically increasing: f (xi ) ≥ f (x j ),∀xi >
x j ; or monotonically decreasing: f (xi ) ≤ f (x j ),∀xi > x j . We say
a function has monotonicity when it is non-strictly monotonic.
• Approximately monotonic: We call a function approximately
monotonic if it is non-strictly monotonic in a non-trivial interval,
i.e., the function does not exhibit both monotonically increasing
and decreasing interchangeably (e.g., Sine function). We say a
function has approximate monotonicity when it is approximately
monotonic. For example, f (x ) = 100 ∗max (x − 1, 0) −max (x , 0)
is monotonically increasing when x > 1, but not when x ∈ (0, 1).
Hence, we consider f (x ) is approximately monotonic.
Error propagation (EP) function:Wedefine EP function, which

is a composite function of those functions involved in propagat-
ing the fault from the fault site to the model’s output. For ex-
ample, there are MatMul (matrix multiplication) and ReLu (rec-
tified linear unit [57]) following the occurrence of the fault, in
this case EP function is the composite function of both functions:
EP (x ) = ReLu (MatMul (xorд −xerr ,w )), wherew is the weight for
the MatMul computation, xorд and xerr are the values before and
after the presence of fault. Thus xorд −xerr is the deviation caused
by the fault at the fault site. Note that we are more interested in the
deviation caused by the fault rather than the value of the affected
data (xerr ). Thus, the input to EP is the bit-flip deviation at the fault
site and the output of EP is the outcome deviation by the fault at
the model’s output.

The main observation we make in this paper is that most of the
functions in ML model are monotonic, as a result of which the EP
function is either monotonic or approximately monotonic. The main
reason for the monotonicity of ML functions (and especially DNNs)
is that they are designed to recognize specific features in the input.
For example, the ML model in Fig. 2 is built for recognizing the
image of digit 1, so the ML computation is designed in a way that it
will have stronger responses to images with similar features as digit
1. Specifically, the ML computation would generate larger output, if
the image has stronger features that are consistent with the target.
In Fig. 2, the output of the three inputs increases as they exhibit
higher consistency (values in the middle column for each input)
with the ML target. And the final output by the model is usually
determined by the numerical magnitude of the outputs (e.g., larger
output means higher confidence of the image to be digit 1).

The EP function can be monotonic or approximately monotonic,
based on the ML model. This (approximate) monotonicity can help
us to prune the fault injection space of the technique. For simplicity,
let us assume the EP function is monotonic. We can model the EP
function as: |EP (x ) | ≥ |EP (y) |, (x > y ≫ 0) ∪ (x < y ≪ 0), x ,y
are faults at the bits of both 0 or 1 in the same data (Section 3.4

1 0 3

0 0 2

4 0 9

0 4 0

0 4 0

0 4 0

0 8 0

0 8 0

0 8 0

1 10 1

1 10 0

1 10 0

output =8
Weak response

output = 120
Medium response

output = 240
Strong response

Input ML target
(digit 1)

Output 

M
on

ot
on

ic

Convolution
(inner-product)

Input-1
Weak feature

Input-2
Medium feature

Input-3
Strong feature

!"" !"# !"$
!""%"" + …+!$$%$$

!$" !$# !$$
…

%"" %"# %"$

%$" %$# %$$
…

Figure 2: An example of how a ML model exhibits mono-
tonicity for different inputs. Assume the computation is a
simple one-time convolution (inner-product).

has more details). We can therefore expect the magnitude of the
deviation caused by larger faults (in absolute value) to be greater
than those by smaller faults. Further, a larger deviation at the final
output is more likely to cause an SDC. Based on the above, we can
first inject x . If it does not lead to an SDC, we can reason that faults
from lower-order bits y will not result in SDCs without actually
simulating them, as these faults would have smaller outcomes.

In practice, the EP function is often approximately monotonic
(rather than monotonic), especially in real-world complex ML mod-
els such as DNNs. Our approach for pruning the fault injection
space remains the same. This leads us to some inaccuracy in the
estimation due to our approximation of monotonicity. Nonetheless,
we show later in our evaluation that this inaccuracy is quite small.

3.3 Common ML Algorithms and Monotonicity
In this section, we first survey the major ML functions within the
state-of-art ML models in different domains, and then discuss their
monotonicity. Most of these models are comprised of DNNs.

Image classification: LeNet [48], AlexNet [47], VGGNet [72], In-
ception [75–77], ResNet [36]. Some of these networks [36, 47, 72, 76]
are the winning architectures that achieve the best performance on
the ILSVRC challenges [24] from 2012 to 2017.

Object detection: Faster-RCNN [66], YoLo [63], DarkNet [64].
These networks produce outstanding performance in object detec-
tion (e.g., can detect over 9000 categories [64]) and we are primarily
interested in the ML thread for classification as these networks
include both object localization and classification.

Steering models: Nvidia DAVE system [19], Comma.ai’s steering
model [5], Rambo [12], Epoch [7], Autumn [3]. These models are the
popular steering models available in the open-source community 2
3 and are used as the benchmarks in related studies [59, 78].

Health care and others: Detection of atrial fibrillation [80]; ar-
rythmia detection [60]; skin cancer prediction [26]; cancer report
analysis [81]; aircraft collision avoidance system [44].

These tasks are important in safety-critical domains (e.g., self-
driving cars, medical diagnosis). We are interested in those compu-
tations for calculating the results (e.g., those in hidden layers). Note
that errors in the input layer such as during the reading the input

2https://github.com/udacity/self-driving-car
3https://github.com/commaai/research
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Table 1: Major computations in state-of-art DNNs

Basic Conv; MatMul; Add (BiasAdd)
Activation ReLu; ELu;
Pooling Max-pool; Average-pool

Normalization Batch normalization (BN);
Local Response Normalization (LRN)

Data transformation Reshape; Concatenate; Dropout
Others SoftMax; Residual function

image are out of consideration. The computations are summarized
in Table 1.

We next discuss how most of the computations used in the above
tasks are monotonic.
• Basic: Convolution computation (Conv) is mainly used in the
kernels in DNNs to learn the features. Conv is essentially an
inner-product computation: X⃗ · W⃗ = ∑xiwi ,xi ∈ X⃗ ,wi ∈ W⃗ .
Assuming there are two faults at the same location andx1,x2 (x1 >
x2 > 0) are the deviations from the two faults. The monotonicity
property is satisfied as: |x1wi | ≥ |x2wi |. As mentioned that we
are more interested in the effect caused by the single bit-flip fault,
so we do not consider data that are not affected by fault. The mul-
tiply function is monotonic, thus Conv is monotonic (similarly
for matrix multiplication - MatMul).
• Activation: Activation (Act) function is often used to introduce
non-linearity into the network, which is important for the net-
work to learn non-linear complicated mappings between the
inputs and outputs [34]. A widely used activation function is
Rectified linear unit (ReLu) [57], defined as: f (x ) = max (0,x ),
which is monotonic. Exponential linear unit (ELu) [55] is similar
to ReLu and is monotonic.
• Pooling: Pooling is usually used for non-linear down sampling.
Max-pooling and average-pooling are the two major pooling
functions. Max-pooling function extracts the maximum value
from a set of data for down-streaming, and it is monotonic as fol-
lows:max (xi ,xk ) ≥ max (x j ,xk ), i f xi > x j , where xi ,x j could
be faults at different bits, and xk denotes all the data unaffected
by the fault. Similarly, average-pooling function calculates the
average value from a group of data, and it is also monotonic as
follows: avд(xi ,xk ) ≥ avд(x j ,xk ), i f xi > x j .
• Normalization: Normalization (Norm) is used to facilitate the
training of the network by dampening oscillations in the distri-
bution of activations, which helps prevent problems like gradient
vanishing [41]. Local response Norm (LRN) and batch Norm (BN)
are the two Norm approaches used in the above networks.
LRN implements a form of lateral inhabitation by creating com-
petition for big activities among neuron outputs from different
kernels [47]. However, LRN does not satisfy the monotonicity
property as it normalizes the values across different neurons in a
way that only needs to maintain competition (relative ordering)
among the neighboring neurons. Thus a larger input might gener-
ate a smaller output as long as the normalized value maintains the
same relative ordering among the neighboring neurons (we also
validated this by experiments). However, LRN was found to have
significant limitations [72], and hence modern ML algorithms
usually use BN instead of LRN [12, 19, 36, 64, 75–77].

BN normalizes the value in a mini-batch during training phase
to improve the learning, and normalization is neither necessary
nor desirable during the inference as the output is expected to
be only dependent on the input deterministically [41]. And thus
in inference phase, BN applies the same linear transformation to
each activation function given a feature map. So we can describe
BN in inference phase as: f (x ) = wx + b, where w,b are the
statistics learned during training phase. BN is thus monotonic as
f ′(x ) = w .

• Data transformation: There are computations that simply trans-
form the data, e.g., reshape the matrix, and not alter the data
value. Dropout is considered as an identity mapping since it per-
forms dropout only in training phase [74]. These transforming
functions are thus monotonic as: xi > x j , i f xi > x j .
• Others: SoftMax [37] is often used in the output layer to con-
vert the logit (the raw prediction generated by the ML model),
computed for each class into a probability within (0,1) and the
probabilities of all classes add up to 1. SoftMax function is de-
fined as: f (xi ) = exi /

∑J
j=1 e

x j ( f or i = 1, âĂę, J ), where xi the
predicted value for different class (J classes in total). The deriva-
tive of SoftMax with respect to xi is as follows:

∂ f (xi )

∂xi
=
∂

∂xi
(

exi∑J
j e

x j
) =

(exi )′ ∗
∑J
j e

x j − exi ∗ exi

(
∑J
j e

x j )2

=
exi∑J
j e

x j
−

exi∑J
j e

x j
∗

exi∑J
j e

x j
= f (xi ) (1 − f (xi ))

(1)

as f (xi ) ranges in (0, 1), the derivative of SoftMax is always
positive, thus SoftMax is monotonic.
Residual function used in ResNet [36] has the property that the
mapping from the input to output at each layer before activation
function is added with an extra mapping: H (x ) = F (x ) +Wx ,
where H (x ) is the mapping from input to output, F (x ) is the
residual function. The insight is that it is easier to learn the resid-
ual function F (x ) than the original mapping H (x ). For example,
if H (x ) is an identity mapping to be learned by the network, it
is easier for the network to learn F (x ) = 0 (W = 1) rather than
H (x ) = x . There are different types of residual blocks and we
consider the original one in [36]:
H (x ) = BN (Conv (ReLu (BN (Conv (x ))))) +Wx ,
whereWx is the extramapping. Assuming a fault occurs at xi ∈ x ,
H (xi ) is monotonic if the derivatives of the original mapping
F (xi ) andWixi are always positive or negative. However, the
derivative of F (xi ) might vary due to fault propagation. For ex-
ample, assume H (x ) = 100 ∗ ReLu (x − 1) − ReLu (x ), where one
fault propagates into two state spaces (thus there are x − 1 and x ).
The monotonicity of H (x ) discontinues according to the value of
x : H (x ) = 99x − 100,x > 1 and H (x ) = −x ,x ∈ (0, 1). Therefore,
we call the residual block function as approximately monotonic.
Thus we find that almost all the operations in Table 1 exhibit

monotonicity. However, this is not an exhaustive list, e.g., there
are other activation functions, some of which are non-monotonic
(e.g., Swish [61], Sinusoid [28]). Nevertheless, the above models are
representative of models used in domains such as object detection
(as they yield state-of-art performance and are frequently referred
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to by other studies) and the functions in Table 1 are common ML
functions. Thus we assume that the computations in most of the
ML models in the application domains mentioned above have the
monotonicity property.

3.4 Error Propagation and (Approximate)
Monotonicity

As mentioned earlier, the EP function is a composite function con-
sisting of all the ML functions involved in error propagation. The EP
function therefore satisfies the monotonic or approximately mono-
tonic property, dependent on the ML model.
• EP with monotonicity: Recall the example in Fig. 1 (kNN
model), where the fault occurs at the tf.add operator, and it even-
tually affects the distance of the test image to the neighbor image
via tf.abs function. In this case, EP (x ) = abs (x ), which is mono-
tonic.
• EP with approximate monotonicity: Consider another func-
tion in which a single fault x propagates into two state spaces
(x − 1,x ) and ReLu is the subsequent function. The weights asso-
ciated with the respective data are (100,−1), thus we can model
the EP function simply as: EP (x ) = 100∗max (x−1, 0)−max (x , 0),
which is either monotonically increasing or decreasing in differ-
ent intervals, e.g., EP (x ) = 99x − 100, x > 1 (monotonically in-
creasing) and EP (x ) = −x ,x ∈ (0, 1) (monotonically decreasing).
The EP function is thus approximately monotonic as its mono-
tonicity during x > 1 becomes discontinued when x ∈ (0, 1), and
we approximate that it is monotonic when x > 0.
We leverage the (approximate) monotonicity of the EP function

for injecting faults. Our methodology applies to EP functions in all
ML models, with either monotonicity or approximate monotonicity,
though our approach might incur minor inaccuracy in the latter
since it is an approximation. In the following discussion, we use
both terms (monotonicity and approximate monotonicity) inter-
changeably and do not distinguish them if not explicitly specified.
EP functions with monotonicity satisfy the following property:

|EP (x ) | ≥ |EP (y) |, (x > y ≫ 0) ∪ (x < y ≪ 0) (2)

where x ,y are two faults at the bits of both 0 or 1 in the same data,
x occurs at high-order bit and y at low-order bit. We consider the
faults that deviate considerably from 0 since faults around 0 only
yield small deviations, and would not lead to SDCs. The monotonic
EP function can be monotonically increasing or decreasing. When
EP is monotonically increasing, EP (x ) ≤ EP (y) ≤ 0,x < y ≪
0, thus Eq. 2 is satisfied. Monotonically decreasing only occurs
in multiply-related functions (e.g., Conv, linear transformation)
where the weights are negative. For those functions also, | f (x ) | >
| f (y) |, (x > y ≫ 0) ∪ (x < y ≪ 0), thus Eq. 2 is satisfied. Hence
the EP functions in ML models satisfy Eq. 2. Note that for EP with
approximate monotonicity, Eq. 2 might not always hold since it is
an approximation.

3.5 Binary Fault Injection - BinFI
In this section, we discuss how we can leverage the (approximate)
monotonicity of the EP functions in ML systems to efficiently pin-
point the critical bits that lead to SDCs. As mentioned earlier, our

0 0 0 0 0 0 0
SDC Non-SDC

Not result in SDC,
move to higher-orderResults in SDC,

move to lower-order
2

1

3

+
Fault occurs at 

tf.add Op in Fig.1.

Figure 3: Illustration of binary fault injection. Critical bits
are clustered around high-order bits.

methodology applies to all ML programswhose EP functions exhibit
either monotonicity or approximate monotonicity.

With (approximate) monotonicity of the EP function, the out-
come by different faults are sorted based on the original deviation
caused by the faults. Faults at higher-order bits (larger input) would
have larger impact on the final outcome (larger output), and are
thus more likely to result in SDCs. Therefore, we search for an SDC-
boundary bit, where faults at higher-order bits would lead to SDCs
and faults from lower-order bits would be masked. Fig. 3 illustrates
this process. Finding such a boundary is similar to searching for a
specific target within a sorted array (bits), and thus we decide to
use binary-search like algorithm as the FI strategy. We outline the
procedure of binFI in Algorithm 1. дetSDCBound function is the
core function to search for the SDC-boundary.

BinFI is run separately for each operator in the model and it
considers each data element in the output of the targeted operator.
BinFI first converts the data into a binary expression (line 2) and
then obtains the index of the bits of 0 and 1 respectively (line 3, 4),
because faults causing positive and negative deviations would have
different impacts (this is why we separate the cases for x > y ≫ 0
and x < y ≪ 0). We then find the SDC-boundary bit in the bits of
0 and 1 (line 6, 7).

We illustrate how binFI works on the tf.add operator in the ex-
ample of Fig. 1 (kNN model). Assuming the fault occurs at (i,y),y ∈
[1, 784], which corresponds to the nearest neighbor, thus the 0 bits
in Fig. 3 are those in the data at (i,y) of the output by the tf.add
operator. In this example, whether an SDC will occur depends on
whether disi is still the nearest neighbor after a fault (Section 3.1).

BinFI first bisects the injection space and injects a fault in the
middle bit (line 16, 17). The next injection is based on the result
from the current injection . For example, if the fault does not result
in an SDC (i.e., disi is still the nearest neighbor), the next injection
moves to higher-order bit (from step 1 to step 2 in Fig. 3), because
monotonicity indicates that no fault from lower-order bits would
lead to SDCs. More specifically, assume that the result from the
fault at step 1 is dis′i = disi +abs (N ), where abs (N ) is the deviation
caused by the simulated fault. We can express the results by faults
in lower-order bits as dis′′i = disi + abs (M ). According to Eq. 2,
abs (N ) > abs (M ),N > M > 0; thus dis′i > dis

′′

i , where dis
′

i , dis
′′

i
are the nearest neighbors of the node.

Moving the next FI to a higher- or lower-order bit is done by
adjusting the front or rear index since we are doing binary-search
like injection (e.g., line 19 moves the next injection to lower-order
bits by adjusting the front index). Step 2 in Fig. 3 shows that the
injection causes an SDC, and hence faults from higher-order bits
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Algorithm 1: Binary-search fault injection
Data: opOutput← output from targeted operator
Result: SDC boundary in the bits of 0 and 1, and SDC rate for

each element in the targeted operator
1: for each in opOutput do
2: binVal = binary(each) // binary conversion
3: 0_list = дetIndexO f _0_bit (binVal) // build the bit index (bit

of 0) from MSB to LSB
4: 1_list = дetIndexO f _1_bit (binVal)
5: /* results for each element are stored in a list */
6: sdcBound_0.append(bound0=дetSDCBound(binVal, 0_list))
7: sdcBound_1.append(bound1=дetSDCBound(binVal, 1_list))
8: sdcRate.append((bound0 + bound1)/length(binVal))
9: end for
10: return sdcBound_1, sdcBound_0, sdcRate

Function: дetSDCBound(binVal, indexList)
11: /* get the front and rear index for binary splitting */
12: front = 0; // higher-order bit
13: rear = дetLenдth(indexList)-1; // lower-order bit
14: sdcBoundary = 0; // by default there is no SDC
15: while front ≤ rear and front , rear , lastInjectedBit do
16: currInjectedBit = indexList[(front + rear)/2]; // binary split
17: FIres = f ault_injection(binVal, currInjectedBit);
18: if FIres results in SDC then
19: front = currInjectedBit+1; //move next FI to low-order bit
20: sdcBoundary = currInjectedBit; // index of critical bit
21: else
22: rear = currInjectedBit - 1; //move next FI to high-order bit
23: end if
24: lastInjectedBit = currInjectedBit
25: end while
26: return sdcBoundary

would also lead to SDCs. The next injection will move to lower-
order bits (from step 2 to step 3). We also record the index of the
latest bit where a fault could lead to an SDC, and it eventually
becomes sdcBoundary (line 20). sdcBound in line 6, 7 indicates the
index of the SDC boundary, as well as how many critical bits (e.g.,
sdcBound_1 = 5 means there are 5 critical bits in the bits of 1). Thus
we can use them to calculate the SDC rate by calculating the number
of critical bits over the total number of bits (line 8).

4 EVALUATION
As mentioned in Section 2.1, we use an open-source FI tool devel-
oped in our group called TensorFI 4, for performing FI experiments
on TensorFlow-supported ML programs. We modify TensorFI to
(1) provide support for DNNs, and (2) support BinFI’s approach for
injecting faults. The former is necessary as the current version of
TensorFI does not have support for complex operations such as
convolutions used in DNNs - we added this support and made it
capable of injecting faults into DNNs (these modifications have
since been merged with the TensorFI mainline tool). The latter is

4https://github.com/DependableSystemsLab/TensorFI

necessary so that we have a uniform baseline to compare BinFI
with.

We have alsomade BinFI publicly available 5. For brevity, we refer
to the implementation of TensorFI with the above modifications as
BinFI in the rest of this paper.

We evaluate BinFI by asking three research questions as follows:
RQ1: Among all the critical bits in a program, how many of

them can be identified by BinFI, compared with random FI?
RQ2: How close is the overall SDC rate measured by BinFI to

the ground truth SDC, compared with that measured by random
FI?

RQ3:What is the overhead for BinFI, compared with exhaustive
and random FI approaches, and how does it vary by data type?

4.1 Experimental Setup
Hardware. All of our experiments were conducted on nodes run-
ning Red Hat Enterprise Linux Server 6.4, with Intel Xeon 2.50GHz
processors with 12 cores, 64GB memory. We also use a Linux desk-
top running Ubuntu 16.04 with an Intel i7-4930K 3.40GHz processor
with 6 cores, 16GB memory and Nvidia GeForce GT610 GPU. Note
that we measure the performance overheads in our experiments
in terms of ratios, so the exact hardware configuration does not
matter (i.e., we can leverage more HPC resources to accelerate the
experiments both for our technique and exhaustive FI, as FI is an
embarrassingly parallel problem).

ML models and test datasets. We consider 8 ML models in our eval-
uation, ranging from simple models, e.g., neural network - NN,
kNN, to DNNs that can be used in the self-driving car domains, e.g.,
Nvidia DAVE systems [19], Comma.ai steering model [5].

We use 6 different datasets including general image classifica-
tion datasets (Mnist, Cifar-10, ImageNet). These are used for the
standard ML models. In addition, we use two datasets to represent
two different ML tasks in AVs: motion planning and object detection.
The first dataset is a real-world driving dataset that contains images
captured by a camera mounted behind the windshield of a car [6].
The dataset is recorded around Rancho Palos Verdes and San Pedro
California, and labeled with steering angles. The second one is the
German traffic sign dataset, which contains real-world traffic sign
images [39]. We use two different steering models for AVs from:
(1) Comma.ai, which is a company developing AV technology and
provides several open-source frameworks for AVs such as open-
pilot [5]; (2) Nvidia DAVE self-driving system [19], which has been
implemented in a real car for road tests [11] and has been used
as a benchmark in other studies of self-driving cars [59, 78]. We
build a VGG11 model [72] to run on the traffic sign dataset. Table 2
summarizes the ML models and test datasets used in this study.

FI campaigns. We perform different FI campaigns on different op-
erations in the network. Due to the time-consuming nature of FI
experiments (especially considering that we need to perform ex-
haustive FI to obtain the ground truth), we decide to evaluate 10
inputs for each benchmark. We also made sure that the inputs were
correctly classified by the network in the absence of faults. In the
case of the driving frame dataset, there was no classification, so we

5https://github.com/DependableSystemsLab/TensorFI-BinaryFI
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Table 2: ML models and datasets for evaluation

Dataset Dataset Description ML models
MNIST [9] Hand-written digits 2-layer NN

LeNet-4 [48]
Survive [13] Prediction of patient kNN

survival
Cifar-10 [4] General images AlexNet [47]

ImageNet [24] General images VGG16 [72]
German traffic sign [39] Traffic sign images VGG11 [72]

Driving [6] Driving video frames Nvidia Dave [19]
Comma.ai [5]

checked if the steering angle was correctly predicted in the absence
of faults.

We evaluate all of the operations in the following networks:
2-layer NN, kNN, LeNet-4 and AlexNet (without LRN). However,
FI experiments on all operators in the other networks are very
time-consuming, and hence we choose for injection one operator
per type in these networks, e.g., if there are multiple convolution
operations, we choose one of them. We perform injections on all
the data within the chosen operator except VGG16, which consists
of over 3 million data element in one operation’s output. Therefore,
it is impractical to run FI on all of those data (it will take more than
276525 hours to do exhaustive FI on one operator for one input).
So we decide to evaluate our approach on the first 100 data items
in the VGG16 model (this took around 13 hours for one input in
one operator). We use 32-bit fixed-point data type (1 sign bit, 21
integer bits and 10 mantissa bits), as the fixed-point datatype is
more energy efficient than the floating point datatype [22, 32].

4.2 Results
We organize our results by the research questions (RQs).

RQ1: Identifying Critical Bits. To answer this RQ, we consider
four safety-critical ML systems used in AVs. This is because SDCs
in these systems would be potential safety violations, and hence
finding such critical bits that lead to unsafe scenarios is important.
We use the steering systems from Nvidia [19] and Comma.ai [5] (on
a real-world driving dataset); VGG11 [72] (on a real-world traffic
sign dataset) and VGG16 [72] (vehicle images in ImageNet). For
the latter two datasets, we consider SDC as any misclassification
produced by the system. However, for the two steering models,
the output is the steering angle, which is a continuous value, and
there is no clear definition of what constitutes an SDC (to our
knowledge). Consequently, we came up with three different values
of the acceptable threshold for deviations of the steering angle from
the correct angle to classify SDCs, namely 5, 30 and 60 degrees.
Note that these values include both positive and negative deviations.
Fig. 4 shows the test images in our evaluation and exemplify the
effect of SDCs. There are two types of deviation since the threshold
is for both positive and negative deviations.

Apart from steering the vehicles, it is also crucial for the AVs to
correctly identify traffic signs and surrounding vehicles, as incorrect
classification in such scenarios could lead to fatal consequences
(e.g., misclassifying a “stop” sign as “go ahead” sign). We show in
Fig. 5 the potential effects of SDC in such scenarios.

Figure 4: Single-bit flip outcome on the self-controlled steer-
ing systems. Blue arrows point to the expected steering an-
gles and red arrows are faulty outputs by the systems.

Figure 5: Single-bit flip outcome on the classifiermodels. Im-
ages at the first row are the input images, those at the second
row are the faulty outputs.

We first perform exhaustive FI and record the results from flip-
ping every bit in the injection space. We also record all critical bits
identified by BinFI, and random FI for different numbers of trials.
We report the recall (i.e., how many critical bits were found) by
BinFI and random FI. Exhaustive FI is the baseline and it has a 100%
recall as it covers the entire injection space. Fig. 6 presents the recall
for different FI approaches on the four safety-critical ML systems. In
the interest of space, we report only the recalls for the four simple
models: LeNet - 99.84%, AlexNet - 99.61%, kNN and NN - both 100%.
We also found that the same operation (e.g., Conv operation) in
different layers of a DNN exhibited different resilience (which is in
line with the finding in prior work [49]), BinFI is able to achieve
high recall nonetheless. The reason why BinFI has a recall of 100%
in kNN and NN is that the EP functions in these models can be
modeled as monotonic functions, unlike the other models where
the EP function is only approximately monotonic.

Recall is computed as the number of critical bits (found by each
FI approach) in the whole state space divided by the total number of
critical bits found by exhaustive FI (ground truth). We also provide
the number of critical bits (obtained from exhaustive FI) found in
each benchmark and the total injection space in Table 3, across all 10
inputs. The critical bits found in the two steering models decrease
along with the larger SDC threshold, since larger threshold implies
fewer SDCs are flagged.

For the two steering models (the left six histograms in Fig. 6), BinFI
is able to find over 98.71% of critical bits (an average of 99.61%)
that would lead to safety violations across all three thresholds.
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Figure 6: Recall of critical bits by different FI techniques on four safety-critical ML systems. ranFI − 1 is random FI whose FI
trial is the same as that by allF I ; FI trial for ranFI − 0.5 is half of that by allF I . ranFI ∼ 0.2 takes the same FI trials as BinFI .

Table 3: Number of critical bits in each benchmark.

Model & Dataset Critical Bits Total Bits Percentage
in FI Space (%)

Dave-5 - Driving 2,267,185 4,289,160 52.86
Dave-30 - Driving 2,092,200 4,289,160 48.78
Dave-60 - Driving 1,754,487 4,289,160 40.91

Comma.ai-5 - Driving 3,352,848 8,144,320 41.71
Comma.ai-30 - Driving 2,679,756 8,144,320 32.90
Comma.ai-60 - Driving 2,217,353 8,144,320 27.23
VGG11 - Traffic sign 808,999 4,483,840 18.04
VGG16 - Vehicles 16,919 186,000 9.10

The consistently high recall of BinFI when using different SDC
thresholds suggest that BinFI is agnostic to the specific threshold
used for classifying SDCs in these models. Similarly, for the other
two models, BinFI also achieves very high recalls. We thus observe
a consistent trend across all the benchmarks, each of which exhibits
different sensitivity to transient faults as shown in Table 3.

The coverage of random FI depends on the number of trials
performed. We consider different numbers of trials for randomFI
ranging from 5% to 100% of the trials for the exhaustive FI case.
These are labeled with the fraction of trials performed. For example,
ranFI−0.5, means that the number of trials is 50% that of exhaustive
injection. BinFI performs about 20% of the trials as exhaustive injec-
tion (see Fig. 7 in RQ3), so the corresponding randomFI experiment
(ranFI ∼ 0.2) with the same number of trials identifies about 19%
of the critical bits. Even in the best case where the number of trials
of random FI is the same as that of exhaustive FI, i.e., ranFI − 1.0,
the recall is less than 65%, which is much lower than BinFI’s recall
of nearly 99%. This is because the bits chosen by random FI are not
necessarily unique, especially as the number of trials increases, and
hence not all bits are found by random FI.

In addition to recall, we alsomeasure the precision (i.e., howmany
bits identified as critical are indeed critical bits). This is because low
precision might raise false alarms and waste unnecessary resources
on over-protecting non-critical bits. We report the precision in
the four safety-critical models, in Table 4 (precision values for the
remaining four models range from 99.31% to 100%). We find that
BinFI has precision of over 99% across all of the benchmarks, which
means that it finds very few unnecessary critical bits.

In summary, we find that BinFI can achieve an average recall
of 99.56% with 99.63% precision, thus demonstrating its efficacy at

Table 4: Precision for BinFI on identifying critical bits.

Model DAVE 1 Comma.ai 1 VGG11 VGG16
(Driving) (Driving) (Traffic sign) (Vehicles)

Precision (%) 99.60 99.70 99.99 99.14
1 Results are averaged from using three thresholds.

finding critical bits compared to random FI, which only finds 19% of
the critical bits with the same number of trials.

RQ2: Overall SDC Evaluation. We calculate the overall SDC
probabilities measured by BinFI and random FI for the ML models.
Note that the overall SDC probability is a product of the number of
bits in the operator, as well as the SDC probability per bit. So we
weight the per bit SDC with the number of bits in the operator to
obtain the overall SDC probability. For example, the overall SDC
probability for an operator with 100 bits (with SDC probability 20%)
and another operator with 10000 bits (with SDC probability 5%)
will be (100 ∗ 0.20 + 10000 ∗ 0.05)/(100 + 10000) = 5.15%.

To quantify the accuracy of BinFI in measuring the overall SDC,
we measure the deviation of the SDC probabilities from the ground
truth obtained through exhaustive FI in Table 5 (error bars at the
95% confidence intervals are shown below the SDC rates in the
table). We limit the number of trials performed by random FI to
those performed by BinFI to obtain a fair comparison. Overall, we
find that the SDC probabilities measured by BinFI are very close
to the ground truth obtained through exhaustive FI. Table 5 also
shows that BinFI achieves 0% deviation in two ML models (NN and
kNN), which is because the EP function in these two models are
monotonic.

While the above results demonstrate that BinFI can be used
to obtain accurate estimates of the overall resilience, random FI
achieves nearly the same results with a much lower number of trials.
Therefore, if the goal is to only obtain the overall SDC probabilities,
then random FI is more efficient than BinFI.

RQ3: PerformanceOverhead. Weevaluate the performance over-
head for each FI technique in terms of the number of FI trials, as
the absolute times are machine-dependent. We show the results
for AlexNet and VGG11, in Fig. 7. The overall FI trials for VGG11
are lower than those for AlexNet as we do not inject fault into
all operators in VGG11. Fig. 7 shows that the number of FI trials
performed by BinFI is around 20% of that by exhaustive FI. This
is expected as BinFI performs a binary-search and we use a 32-bit
datatype - loд231 ≈ 5. Note that the value is not 5/31 ≈ 16% since
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Table 5: Overall SDC deviation compared with ground truth.
Deviation shown in percentage (%), and error bars shown at
the 95% confidence intervals for random FI.

Model BinFI ranFI∼0.2 ranFI∼0.1 ranFI∼0.05
Dave-5 0.070 0.100 0.101 0.119
(Driving) (±0.01 ∼ ±0.31) (±0.02 ∼ ±0.44) (±0.02 ∼ ±0.62)
Dave-30 0.036 0.096 0.134 0.172
(Driving) (±0.04 ∼ ±0.30) (±0.06 ∼ ±0.42) (±0.09 ∼ ±0.59)
Dave-60 0.125 0.116 0.118 0.234
(Driving) (±0.05 ∼ ±0.29) (±0.08 ∼ ±0.42) (±0.11 ∼ ±0.59)

Comma.ai-5 0.049 0.064 0.040 0.095
(Driving) (±0.23 ∼ ±0.24) (±0.33 ∼ ±0.34) (±0.47 ∼ ±0.48)

Comma.ai-30 0.212 0.092 0.160 0.206
(Driving) (±0.22 ∼ ±0.24) (±0.31 ∼ ±0.34) (±0.45 ∼ ±0.48)

Comma.ai-60 0.008 0.060 0.094 0.212
(Driving) (±0.21 ∼ ±0.22) (±0.30 ∼ ±0.31) (±0.43 ∼ ±0.44)
VGG11 0.002 0.101 0.156 0.199

(Traffic sign) (±0.23 ∼ ±0.26) (±0.33 ∼ ±0.38) (±0.47 ∼ ±0.53)
VGG16 0.042 1.039 0.778 0.800

(ImageNet) (±0.62 ∼ ±1.07) (±0.86 ∼ ±1.58) (±1.28 ∼ ±2.14)
AlexNet 0.068 0.319 0.420 0.585
(Cifar-10) (±0.15 ∼ ±0.18) (±0.22 ∼ ±0.25) (±0.31 ∼ ±0.36)
LeNet 0.030 0.228 0.366 3.38
(Mnist) (±0.45 ∼ ±0.46) (±0.64 ∼ ±0.65) (±0.887 ∼ ±0.95)
NN 0.000 0.849 0.930 0.989

(Mnist) (±0.33 ∼ ±1.1) (±0.47 ∼ ±1.55) (±0.67 ∼ ±2.20)
kNN 0.000 0.196 0.190 0.197

(Survival) (±0.05 ∼ ±0.2) (±0.19 ∼ ±0.32) (±0.195 ∼ ±0.47)

we separately do injection for 0-bits and 1-bits. Thus, it is closer to
6/31(≈ 20%). We observe a similar trend in all the benchmarks (not
shown due to space constraints).
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Figure 7: FI trials (overhead) for different FI techniques to
identify critical bits in AlexNet and VGG11.

The performance overhead of BinFI also depends on the number
of bits used in the data representation. In general, the overhead
gains increase as the number of bits increases (as BinFI’s time grows
logarithmically with the number of bits, while exhaustive FI’s time
grows linearly with the number of bits). To validate this intuition,
we evaluate BinFI on VGG11 using datatypes with different width
(16-bit, 32-bit and 64-bit) and compare its overhead with that of
exhaustive FI in Fig. 8.We find that the growth rate of BinFI is indeed
logarithmic with the number of bits. We also measure the recall
and precision of BinFI for the three data-types. The recall values
are 100%, 99.97%, 99.99% for 16-bit, 32-bit and 64 bits respectively,
while the respective precision values are 100%, 99.96%, 99.94%. This

shows that the precision and recall values of BinFI are independent
of the datatype.
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Figure 8: Numbers of FI trials by BinFI and exhaustive FI to
identify critical bits in VGG11 with different datatypes.

5 DISCUSSION
We start this section by discussing the inaccuracy of BinFI, followed
by the effects of non-monotonicity on its efficacy. Finally, we reflect
on the implications of BinFI, and its application to other HPC areas.

5.1 Inaccuracy of BinFI
As mentioned in Section 3.4, the EP function is often only approxi-
mately monotonic - this is the main source of inaccuracy for BinFI,
as it may overlook the critical bits in the non-monotonic portions
of the function. Assuming EP (x ) = 2 ∗max (x − 1, 0) −max (x , 0)
and a fault raises a deviation of x = 2,EP (2) = 0, which does not
result in an SDC. According to Eq. 2, BinFI regards that all the
faults from 0 < y < 2 will not cause SDCs as |Eq(y) | ≤ 0. However,
|EP (0.5) | = 0.5, which violates Eq. 2. A fault incurring a deviation
of 0.5 could be a critical bit unidentified by BinFI (thus resulting
in inaccuracy). This is the reason why BinFI incurs minor inaccu-
racy except for two models in Table 5, in which the EP function
is monotonic (not just approximately so). Nevertheless, our eval-
uation shows that BinFI incurs only minor inaccuracy as it has
an average recall of 99.56% with 99.63% precision, and the overall
SDC rate is very close to ground truth as well. This is because the
non-monotonicity occurs in most cases when the fault is small in
magnitude, and is hence unlikely to lead to an SDC.

5.2 Effect of Non-Monotonicity
While our discussion in Section 3.2 shows that many computations
within the state-of-art ML models are monotonic, there are also
some models that use non-monotonic functions. Though BinFI re-
quires the functions to be monotonic so that the EP function is
(approximately) monotonic, we also want to measure the effects
when BinFI is run on those models using functions that are not
monotonic. Therefore, we conduct an experiment to evaluate BinFI
on two networks using different non-monotonic functions. Specifi-
cally, we use a Neural Network using a Swish activation function
[61], and AlexNet with LRN [47]. As before, we measure the recall
and precision of BinFI on these models.

For the NN model, Fig. 9 shows that BinFI has a recall of 98.9%
and a precision of 97.3%, which is quite high. The main reason is
that Swish function is monotonic across a non-trivial interval, thus
exhibiting approximate monotonicity, so BinFI works well on it. On
the other hand, when it comes to AlexNet with LRN, BinFI has high
recall but low precision, which means BinFI is not suitable for this
model as LRN is non-monotonic in nature (Section 3.3).
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Figure 9: Recall and precision for BinFI on ML models with
non-monotonic functions.

5.3 Implications for Protection
Knowing the critical bits in ML systems can lead to the adoption
of configurable fault-tolerance techniques with low costs, e.g., [45,
46, 52, 82], without resorting to conservative approaches [40, 49,
51]. For example, Li et al. [52] enable dynamic fault tolerance at
runtime, given that they know when the protection is needed to
save energy. Similarly, Krause et al. [46] propose a data-driven
voltage over-scaling technique, where the supply voltage can be
dynamically increased if the errors exceed a given threshold in a
certain region of code. Given that BinFI is able to identify the critical
bits, one can adopt these approaches to dynamically protect the
ML systems with low costs. Moreover, BinFI can also identify the
parts of application that might be exploited by malicious attackers,
hence guiding the security protection against hardware fault attacks
towards ML systems [38].

However, while BinFI is able to identify 99.56% of the critical
bits in an application, its coverage is not 100%. This means that
there may be a few critical bits that are left unidentified when using
BinFI. This is a limitation of our approach’s assumption of mono-
tonicity. Unfortunately, there is no easy remedy for this problem, as
identifying 100% of the bits requires exhaustive FI, which is highly
time-consuming. Our study is a first step towards low-cost protec-
tion on safety-critical ML applications and we believe that missing
a small proportion of the critical bits is an acceptable tradeoff given:
(1) the significant cost savings in BinFI; (2) the relatively rare oc-
curence of soft errors; (3) not all critical bits would result in actual
failures in the systems [43].

5.4 Application to Other Areas of HPC
In this paper, we mainly use BinFI to evaluate safety-critical MLs
in the AVs domain, which is an emerging example of ML in HPC.
However, BinFI is not confined to this domain and there are many
other areas of application of BinFI in the HPC context. We consider
3 examples below. (1) Xiong et al. [80] use thousands of GPU cores
to implement a DNN for the detection of atrial fibrillation. (2) Yoon
et al. [81] use DNNs to extract information from cancer pathology
reports in cancer registries, using supercomputer facility. (3) Cong
et al. [21] use a cluster of GPUs to accelerate ML tasks for action
recognition, which exhibits better performance in terms of both
speedup and accuracy . There are many other examples of ML used
in safety-critical domains [26, 44, 60]. In these domains, transient
faults can have serious implications on safety, and hence BinFI can
be used to find the safety-critical bits in the application. We defer
exploration of ML in other safety critical domains to future work.

In Section 3.3 we discuss our observation of monotonicity found
in common ML functions, based on which we design BinFI to ef-
ficiently identify safety-critical bits in ML programs. While it is
possible that BinFI can be applied in other application domains if

the computations in the application exhibit the monotonicity prop-
erty, we believe this is unlikely to be the case in general purpose
programs. This is because different faults in these programs could
lead to the execution of different program paths [33, 51, 58]. For
example, a larger fault could cause a different program path to be
executed, whose output is not necessarily larger than the output
from another program path caused by a smaller fault (e.g., due to the
different computations performed), thereby violating monotonicity.
We defer the exploration of non-ML applications to future work.

6 RELATEDWORK
We classify related work into three broad areas.

Testing of ML: Pei et al. [59] propose a novel approach to gen-
erate corner case inputs to trigger unexpected behaviors of the
model. They analyze the decision boundary of different ML models
and leverage gradient ascent to modify the image to efficiently
trigger differential behaviors in different DNNs. Tian et al. [78] use
transformation matrices (e.g., scale, rotate the image) to automati-
cally generate corner case images. Ma et. al. [54] design a mutation
framework to mutate the ML model, which is then used to evaluate
the quality of the test data. The idea of mutating the ML model [54]
is similar to fault injection. However, unlike our work which injects
transient faults, the faults they inject have to do with emulating
software faults such as removing a neuron or shuffling the data.
Rubaiyat et al. [67] build a strategic software FI framework, which
leverages hazard analysis to identify potential unsafe scenarios to
prune the injection space. However, their approach suffers from low
error coverage (less than 36%). None of these approaches consider
hardware transient faults, which are growing in frequency and
can trigger undesirable consequences in ML systems. Moreover,
none of the above approaches leverage monotonicity of the models’
functions to perform efficient fault injection.

Error resilience of ML: Li et al. [49] build a fault injector to
randomly inject transient hardware faults in ML application run-
ning on specialized hardware accelerators. Using the injector, they
study the resilience of the program under different conditions by
varying different system parameters such as data types. A recent
study designs a DNN-specific FI framework to inject faults into real
hardware and studies the trade off between the model accuracy
and the fault rate [62]. Santos et al. [25] investigate the resilience
of ML under mixed-precision architectures by conducting neutron
beam experiments. These papers measure the overall resilience of
ML systems using random FI, while our approach identifies the bits
that can lead to safety violations in these systems. As we showed in
this paper, random FI achieves very poor coverage for identifying
the critical bits in ML systems.

Accelerating fault injection: Given the high overhead of FI
experiments, numerous studies have proposed to accelerate the FI
experiments by pruning the FI space or even predicting the error
resilience without performing FI [30, 33, 51, 69]. Hari et al. [33]
propose Relyzer, a FI technique that exploits fault equivalence (an
observation that faults that propagate in similar paths are likely to
result in similar outputs) to selectively perform FI on the pilot in-
structions that are representative of fault propagation. In follow up
work, the authors propose GangES, which finds that faults resulting
in the same intermediate execution state will produce the same
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faulty output [69], thus pruning the FI space further. Li et al. [51]
propose Trident, a framework that can predict the SDC rate of the
instructions without performing any FI. The key insight is that they
can model the error propagation probability in data-dependency,
control-flow and memory levels jointly to predict the SDC rate.
They find that the Trident model is able to predict both the overall
SDC rate of the program and those of individual instructions. How-
ever, none of these studies are tailored for ML programs and their
focus is on measuring the overall resilience of the system, unlike
BinFI that can identify the critical bits.

7 CONCLUSION
In this work, we propose an efficient fault injector to identify the
critical bits in ML systems under the presence of hardware tran-
sient faults. Our insight is based on the observation that many of
the ML computations are monotonic, which constrains their fault
propagation behavior. We thus identify the existence of the SDC
boundary, where faults from higher-order bits would result in SDCs
while faults at lower-order bits would be masked. Finally, we design
a binary-search like fault injector to identify the SDC boundary,
and implement it as a tool called BinFI for ML programs written
using the TensorFlow framework.

We evaluate BinFI on 8 ML benchmarks including ML systems
that can be deployed in AVs. Our evaluation demonstrates that
BinFI can correctly identify 99.56% of the critical bits with 99.63%
precision, which significant outperforms conventional random FI-
based approaches. It also incurs significantly lower overhead than
exhaustive FI techniques (by 5X). BinFI can also accurately measure
the overall resilience of the application.

As future work, we plan to (1) extend BinFI to other ML frame-
works than TensorFlow, (2) consider other safety-critical ML appli-
cations than AVs, and (3) explore selective protection techniques
based on the results from BinFI.

BinFI is publicly available at the following URL:
https://github.com/DependableSystemsLab/TensorFI-
BinaryFI
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