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Membership inference attacks (MIAs)
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Which data point was used to train a model?



MIAs as a privacy threat

Patients with a rare disease
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A common thread of many studies
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ML democratization

Public codebase
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Data holders models on their own!

They can be poisoned with malicious code!




Code poisoning attacks are realistic threats

PyTorch dependency poisoned with
malicious code

The Hacker News

TensorFlow CI/CD Flaw Exposed Supply Chain to

Poisoning Attacks

The Hacker News

New Evidence Suggests SolarWinds' Codebase Was Hacked to Inject
Backdoor



Privacy risk of using untrusted ML codebase in development



Threat model
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Prior attacks: How to increase privacy leakage

Stronger memorization > Easier to attack

D¢rgin ﬁ% —  F(D¢rqin). — Directly increase memorization

Tramer et al., CCS’22 —, L
! Data poisoning
Chen et al, NeurlPS’22—

Song et al., AsiaCCS’21 — Code poisoning



Prior attacks

Trade-off between privacy and utility

D¢rgin —b% —  F(D¢rqin). — Directly increase memorization
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Prior attacks

How to overcome the trade-off between privacy and utility

D¢rgin —b% —  F(D¢rqin). — Directly increase memorization

A common thread in prior work

This work:
A new direction to construct high-power MIAs
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Dsecret

Our indirect attack: Divide and conquer
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Encode membership of Duwan  Via  Dsecret
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How to make the (indirect) attack easy?
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How to make the (indirect) attack easy?

Outlier data are easy to memorize

Dsecret Dsecrer IS €asy to de-identify

Crafted as random samples jl>

Derain IS €asy to de-identify &J
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Should we directly train

D train

Dsecret

together?
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Probability

Probability

Challenge

Norm functions expect data from a similar distribution

Probability

T~

Wrong statistics for
normalization!
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Solution: Divide and conquer (again)

[A secondary norm func to separately process Dgecret ]
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(Our attack exposes the worst-case privacy leakage Evalugted
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(Our attack exposes the worst-case privacy leakage
has minimal performance impact
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(Our attack exposes the worst-case privacy leakage Fraated
. . . = NDSS

has minimal performance impact pye

can disguise high privacy leakage y —

Use existing tools to
audit privacy leakage
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. Zitao Chen
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[Using third-party ML codebase has hidden privacy risk]

New direction to construct The first result = Existing
stealthy attacks and inflict privacy auditing methods
worst-case leakage can be unreliable!
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