

A Method to Facilitate Membership Inference Attacks in Deep Learning Models

Zitao Chen, Karthik Pattabiraman University of British Columbia

THE UNIVERSITY OF BRITISH COLUMBIA

Membership inference attacks (MIAs)

Which data point was used to train a model?

MIAs as a privacy threat

health status

A common thread of many studies

ML democratization

Code poisoning attacks are realistic threats

The **A**Register[®]

O PyTorch

PyTorch dependency poisoned with malicious code

The Hacker News

TensorFlow CI/CD Flaw Exposed Supply Chain to

Poisoning Attacks

The Hacker News

New Evidence Suggests SolarWinds' Codebase Was Hacked to Inject Backdoor

Privacy risk of using untrusted ML codebase in development

Threat model

Prior attacks: How to increase privacy leakage

Tramer et al., $CCS'22 \longrightarrow Data$ poisoning Chen et al, NeurIPS'22 \longrightarrow Code poisoning Song et al., AsiaCCS'21 \longrightarrow Code poisoning

Prior attacks

Trade-off between privacy and utility

Tramer et al., CCS'22

Prior attacks

How to overcome the trade-off between privacy and utility

This work: A new direction to construct high-power MIAs

Our indirect attack: Divide and conquer

Encode membership of *D*_{train} via *D*_{secret}

How to make the (indirect) attack easy?

Outlier data are easy to memorize

Challenge

Norm functions expect data from a similar distribution

Solution: Divide and conquer (again)

A secondary norm func to separately process *D_{secret}* ReLu 2nd BN BN **High model utility** High privacy leakage U conv

Tramer et al., CCS'22

Our attack exposes the worst-case privacy leakage has minimal performance impact can disguise high privacy leakage

Artifact Evaluated

Available

Functional

Reproduced

Conclusion

Zitao Chen zitaoc@ece.ubc.ca

Using third-party **ML codebase** has hidden privacy risk

New direction to construct stealthy attacks and inflict worst-case leakage The <u>first</u> result → Existing privacy auditing methods can be unreliable!

