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Abstract—Modern machine learning (ML) ecosystems offer a
surging number of ML frameworks and code repositories that
can greatly facilitate the development of ML models. Today, even
ordinary data holders who are not ML experts can apply an off-
the-shelf codebase to build high-performance ML models on their
data, which are often sensitive in nature (e.g., clinical records).

In this work, we consider a malicious ML provider who
supplies model-training code to the data holders, does not have
access to the training process, and has only black-box query
access to the resulting model. In this setting, we demonstrate a
new form of membership inference attack that is strictly more
powerful than prior art. Our attack empowers the adversary to
reliably de-identify all the training samples (average >99% attack
TPR@0.1% FPR). Further, the compromised models still main-
tain competitive performance as their uncorrupted counterparts
(average <1% accuracy drop). Finally, we show that the poisoned
models can effectively disguise the amplified membership leakage
under common membership privacy auditing, which can only be
revealed by a set of secret samples known by the adversary.

Overall, our study not only points to the worst-case member-
ship privacy leakage, but also unveils a common pitfall underlying
existing privacy auditing methods. Thus, our work is a call-to-
arms for future efforts to rethink the current practice of auditing
membership privacy in machine learning models1.

I. INTRODUCTION

To empirically evaluate the privacy of a machine learning
(ML) model, a common approach is to perform membership
inference attacks (MIAs), which determine whether a sample
was a member of the training set used to train a model [72].
MIAs exploit the model’s memorization on training samples
to discern differential behavior between the member and non-
member samples. A common feature of most existing attacks
is that they assume the models are trained without being
adversarially manipulated [72], [94], [93], [21].

In this work, we investigate a new vector for MIAs: code
poisoning attacks. In modern ML development, there are a
multitude of ML libraries and code repositories available to the
broader data holders in different areas (such as the healthcare

1Our code is available at https://github.com/DependableSystemsLab/
code_poison_MIA.

sector) to train predictive models on their data. Many of the
data holders who apply ML techniques may not be ML experts
and they use third-party codebases “as is”. Indeed, a recent user
survey in [54] shows that common ML users often adopt third-
party code without inspecting it; instead, they mainly check the
resulting model’s performance on the domain dataset.

Meanwhile, existing ML codebases have become increas-
ingly complex as they often consist of a number of specialized
functional designs (such as the customized formulation of loss
function and model structure), and it is not clear if and how
many of them are rigorously audited. This renders the largely
inscrutable ML codebase a feasible target by the adversary
to inject compromised code and achieve a desired outcome.
Indeed, code poisoning attacks in ML codebase have been
widely studied in existing literature [15], [75], [73], [54] and
found in real world incidents [9], [78], [11] as well.

In a similar vein, we study how code poisoning can
be exploited to amplify membership privacy leakage in ML
models. Our work is inspired by the data reconstruction attack
of Song et al. [73]. In their work, the adversary poisons the
model-training code to induce the model to memorize a set of
synthetic samples, whose output labels can encode the training
data information such as their pixel values, e.g., an 8-class
output label can encode 3 bits of a pixel value in a sample.
However, as each image consists of a large number of pixels,
the attack needs thousands of synthetic samples to encode each
image, which quickly runs in conflict with model accuracy,
and constrains the attack to reconstruct only a handful of
samples (e.g., 25∼50 in [73]). The limited exposure of a
few samples in their work motivates our work to extend their
attack - we consider a different goal of leaking the membership
information of all training samples.

There are several prior work that aim at amplifying mem-
bership privacy leakage via poisoning the training dataset [82],
[25] or model-training code [75]. Their common idea is to
manipulate the model such that the model’s output on the target
sample contains more information about its membership [82],
[25], [75] (e.g., forcing the output distribution of the members
to be more distinctive from those on non-members). However,
these attacks suffer from three main limitations: 1) achieve
limited increase of privacy leakage; 2) incur severe accuracy
degradation; and 3) the amplified privacy leakage is prone to
exposure by existing privacy auditing methods [93], [21].

Our contributions. We propose a new form of MIA that
can overcome the above limitations, based on code poisoning.
We assume the attack code is executed in a secure environment
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Fig. 1: Code-poisoned model exhibits similar accuracy and
MIA risk (under standard MIA evaluation) as the uncorrupted
model, while allowing the black-box adversary to secretly de-
identify all training samples (example from CIFAR10).

that is inaccessible to the adversary (e.g., cannot exfiltrate
data), and the only outcome of the process is the trained model,
to which the adversary is given only black-box query access.

Unlike existing code- or data-poisoning based MIAs [82],
[25], [75] that directly manipulate the model’s outputs on
the training samples to increase the membership leakage, we
follow Song et al. [73] to exploit the model’s memorization
capacity [97], [32], and have the model memorize an addi-
tional set of secret (synthetic) samples, whose outputs can be
leveraged to encode the membership of the training samples.

In principle, our attack secretly transfers the membership of
the training samples to that of another set of secret samples, so
that the membership of a training sample can be inferred from
that of the corresponding secret sample. Those secret samples
are specifically crafted to be memorized by the model, and
enable the adversary to perform accurate MIA.

Technical approach. Our initial approach extends Song et
al’s data reconstruction attack [73], and operates by directly
optimizing the model on both the training and synthetic sam-
ples. The latter are injected by the modified training algorithm
for encoding the membership of the training samples.

We find that this approach is able to increase the member-
ship leakage, but only to a moderate extent (and also with high
accuracy drop). The reason is that MIAs need to be evaluated
in the low false positive rate (FPR) regime [93], [21], and
hence the model needs to exhibit strong memorization on the
synthetic samples for the attack to succeed (e.g., the member
samples should have distinctly lower loss values than non-
members).

Unfortunately, we find that even under our first approach,
the model’s memorization on the synthetic samples are still not
strong enough for accurate MIA with low FPR. To address this,
we first conduct a root-cause analysis into the limitations, and
then propose a novel solution to complete our attack.

Evaluation. We evaluate our attack on a wide range of set-
tings, including 5 benchmark datasets, 13 model architectures,
8 training-set sizes, and 5 different classes of defenses. We
demonstrate that our attack achieves four noteworthy properties
that are distinct from those in existing literature (Fig. 1).

Our attack: (1) empowers accurate MI against all training
samples (average >99% true-positive-rate (TPR)@0.1% FPR),
and (2) the stolen membership can be inferred without the
expensive shadow-model calibration [21], [85], [16], [93].

Furthermore, the poisoned models exhibit comparable (3)
accuracy and (4) privacy leakage under common MI evaluation
methods [72], [93], [21], as the non-poisoned models (average
<1% difference on both regards). This renders the compro-
mised models very difficult to distinguish from their uncor-
rupted counterparts. Thus, they behave like the “backdoored”
models [34], which operate faithfully on the main task, while
secretly leaking the sensitive information to the adversary.

Broader implications. To the best of our knowledge, our
work is the first to demonstrate the worst-case membership
privacy leakage that a capable adversary can bring about, and
also illustrate a common pitfall underlying existing privacy
auditing methods. Our work thus bears broader implications
to the existing practice of auditing membership privacy in ML.

Specifically, enabling reliable membership privacy auditing
is crucial, and a reliable auditing method should faithfully
reflect the membership leakage of any model, regardless of
whether it has been manipulated. Unfortunately, despite a
plethora of existing MI methods [72], [93], [21], [39], our
work finds that there exists a hidden gap between the amount
of privacy leakage that existing auditing methods can vet,
and the actual (potentially much higher) degree of sensitive
information leaked from a model.

Worse still, we show how this can be exploited by an
adversary to deliberately trick models to exhibit strong privacy
under the standard MI evaluation (by “evading” state-of-the-
art defense techniques), while in reality the adversary can still
achieve high MI success. This renders our attack even more
insidious due to its potential in misleading the users. Therefore,
our work is a call-to-arms for efforts to bridge this gap and
contribute to reliable membership privacy auditing in ML.

II. BACKGROUND

A. Membership Inference Attacks

In this work, we focus on supervised training for clas-
sification problems. We denote a model as a function Fθ :
X → [0, 1]n, that maps an input x ∈ X to a probability vector
over n classes. Given a training set Dtr sampled from some
distribution D, Fθ ← T (F , Dtr) denotes a model Fθ learned
from executing the training algorithm T on Dtr.

The MI game can be expressed as in Game 1 (A denotes
the adversary). The challenger first samples a training set Dtr

from D. Then the challenger flips a fair coin b, based on which
she either samples a challenge point z from Dtr or the data
distribution D (note that in the latter, z /∈ Dtr with high
probability when the data space D is large). The challenger
then trains the model. Finally, the adversary is given D, the
trained model Fθ, and a challenge point z with unknown
membership. The adversary outputs a bit b̃ for b. If b = b̃,
it is a successful membership inference on z.

B. Related Work

Membership inference attacks. Shokri et al. [72] demon-
strated the first MIAs against ML models. Existing attacks can
be categorized as black-box [72], [94], [42], [21], [76], [27],
[93] and white-box attacks [50], [45], [60]. Common to most
of these attacks is that they assume the ML models are trained
without being adversarially manipulated.
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Game 1 Membership Inference Game
Input: F , T ,D,A

1: Dtr ← D . sample n i.i.d. samples from D
2: b← 0, 1 . flip a fair coin
3: if b = 0 then
4: z ← Dtr . sample a challenge point from Dtr

5: else
6: z ← D . sample a challenge point from D
7: end if
8: Fθ ← T (F,Dtr ∪ {z}) . train a model Fθ
9: b̃← A(D,Fθ, z) . adversary guesses b̃

Supply chain attacks represent an emerging vector in the
adversarial threat landscape of ML [4], [7], and they aim to
attack the ML supply chain (e.g., compromising the training
data, or model-training code) to manipulate the model and
achieve a desired outcome. We survey related attacks below.

Several attacks target membership inference by poisoning
the training data [82], [25], [99] or training code [75]. Tramer
et al. [82] propose to degrade membership privacy through data
poisoning, which injects mis-labeled samples to transform the
training samples into outliers and amplify their influence on the
model’s decision. Song et al. [75] develop an inference attack
against a subset of training samples, by separating the output
distribution between the targeted and non-targeted training
samples using an extra discriminator model.

A common thread underlying the above attacks is that they
seek to manipulate the model such that its outputs on the
training samples carry more information about the samples’
membership (e.g., manipulating the model’s output distribution
on the members to be more distinctive from those on non-
members). While somewhat effective, these attacks can only
increase the membership leakage to a limited extent, and they
also suffer from undesirable accuracy degradation and poor
attack stealthiness (details in Section IV-B). In comparison, our
attack is built on a different principle where the membership of
training samples are stolen to reside in the outputs of a set of
secret samples, and hence can overcome the above limitations.
Moreover, many of these attacks [82], [25], [75] can only
target a subset of training samples, while we consider the more
challenging scenario to attack all training samples with low
FPR, which points to the worst-case privacy leakage.

Other attacks consider property inference [55], [23], at-
tribute inference [56], [74] and data reconstruction [73], [33].

The closest work to ours is Song et al. [73], which proposes
a black-box data reconstruction attack based on code poisoning
(we omit the white-box attacks in their work as we consider
the more realistic black-box attacks). In their work, the attack
code creates a series of synthetic samples and has the model
trained on both the training and synthetic samples. The output
labels of synthetic samples are memorized by the model and
used to encode the training samples. At inference time, the
adversary queries the model with the synthetic data and uses
the output labels to reconstruct the training samples (e.g., an 8-
class output label can encode 3 bits of a pixel value). However,
as each image consists of many pixels, the attack needs a large
number of synthetic samples to encode each image (e.g., 1,960

samples for a lossy version of CIFAR10 image [73]), which
quickly runs in conflict with model accuracy and limits the
attack to encode only a handful of samples (25∼50 in [73]).

Compared with Song et al. [73], our contributions are
two-fold. First, we are the first to extend their reconstruction
attack to facilitate membership inference attack. Unlike the
reconstruction attack that can only expose a few samples, our
MI attack is built to leak the membership information of all the
training samples while maintaining low false positive, which
poses several unique challenges. We first develop an initial
attack for this purpose (in Section IV-D), but later find that
directly extending the attack by Song et al. can only achieve
moderate attack success, and also suffers from high accuracy
drop (average 52.07% TPR@0.1% FPR and increase in the
test error by 16.45%).

This leads to our second contribution, where we offer a
root-cause analysis and a corresponding solution to the above
challenges (in Section IV-E). Specifically, we find that the
limited performance of the initial attack is due to a problem
we identify as distribution mismatch, which arises when the
model is trained on a mixture of training and synthetic samples.
This mismatch severely affects the model’s learning on training
samples (leading to high accuracy drop) and the memorization
on synthetic samples (leading to poor attack performance).
We propose a novel solution to overcome these limitations,
and it is able to achieve significant improvement (with 99.8%
TPR@0.1% FPR and 70% lower accuracy drop).

Defenses. Our work focuses on membership inference
attacks by training-code poisoning. To the best of our knowl-
edge, there is no direct defense against general code-poisoning
attacks, and hence we focus on existing defenses against MIAs.

Existing defenses can be categorized into provable and
empirical defenses. The former offers rigorous privacy guar-
antees through different privacy [13], [65], [84], which can
bound the influence of any samples on the model, but it also
incurs a severe penalty on the model utility [44], [66]. A
number of empirical defenses are proposed to provide (strong)
empirical membership privacy while maintaining high model
accuracy [59], [46], [51], [70], [81], [26]. They include soft-
label based [81], [69], [80], [26], training constraint based [51],
[59], [26], output perturbation based defenses [46], [26]. In
Section V-F3, we comprehensively evaluate and discuss the
disparate trade off by different defenses.

III. THREAT MODEL

Motivation. ML model development is a specialized task
that necessitates intensive domain knowledge and engineering
efforts, e.g., in designing the training algorithm and the model
architecture. This has led to the prevalence of numerous well-
written codebases created by third-party providers [1], [2], [3].
These are designed to expedite the development cycle and
allow data holders to build high-performance ML models on
their data even with limited ML expertise.

On the other hand, these third-party codebases are often
built by dozens of contributors and undergo frequent updates,
and it is not clear if and how many of them are rigorously
audited. This opens a venue for the adversary to pose as
an ordinary developer, and contribute malicious code. Indeed,

3



code poisoning attacks have become a subject of considerable
research studies [15], [73], [75], [54] and been realized in real
world ML codebases [9], [78], [11]. In a similar vein, we study
how untrusted training codebase can be exploited to amplify
membership privacy leakage in ML models?

Target users and their capability. Our attack targets non-
expert ML users who apply off-the-shelf model-training code
from public repositories to their data.

We assume the data holders can execute the untrusted
codebase in a secure environment, and the adversary is blind
to the training process when the code is being executed, which
constrains the attack code to manipulate the ML model alone,
and precludes it from conducting any other malicious activities
such as exfiltrating the data (similar to the setup in related
studies [15], [75], [73]). The only outcome of the training
process is the ML model itself, which can be deployed to a host
platform that allows only black-box access to the adversary.

Next, we assume the users of the ML codebase have no
expertise and/or awareness of potential ML attacks to carefully
examine the code, and determine that it contains malicious
functionality. This is an assumption commonly made by other
code poisoning attack studies [54], [75], [73], [15] and it is
also in accordance with the findings by several related user
studies in the field [17], [49], [54], [57] as the following two
examples illustrate.

1. Mink et al. (USENIX’23) find that practitioners com-
monly have limited awareness and do not take precautions
against potential ML attacks (due to the lack of established
guideline on adversarial ML and domain knowledge) [57];
other work have reported similar findings as well [49], [17].

2. In a user survey by Liu et al. (CCS’22) [54], a substantial
fraction of participants (average >64%) admitted to using
external code without manually inspecting the code. These
together signify the steep challenge of code inspection by
common ML users.

While there is a lack of code analysis tool for ML attacks,
we assume the users can still proactively test the external
codebase by evaluating the resulting model’s: (1) accuracy
under the domain task; and (2) privacy leakage under off-the-
shelf privacy auditing tools such as those proposed in prior
work [12], [6], [21]. The former is a common practice [54],
while the latter is a direct measure to determine whether an
untrusted codebase has caused any major privacy damage.

Adversary capability. We assume the malicious ML
provider can modify the loss-value computation function and
model structure in the training codebase. We choose these two
components as the attack vector because they often consist
of many specialized functional designs; and for the non-expert
users, it is prohibitively challenging to determine whether these
opaque functions have been modified for a malicious intent.

For instance, ML researchers have proposed customized
alterations of the model’s structure to improve its performance,
such as adding additional normalization layer for improving
adversarial robustness [89], or improving imbalanced classi-
fication [95]. While such a seemingly irregular architectural
change can be intended for benign purposes [89], [95], we
study how it can be exploited from an adversarial perspective.

Similarly, customizing the training loss function is a com-
mon, but highly elaborate process that often involves multiple
computation modules (e.g., separate computations applied to
different entities like the model, inputs, and labels) [64], [86].
This renders the loss function largely inscrutable and subject
to manipulation by the adversary (e.g., [15], [75], [73]).

Finally, as in prior work [72], [93], [21], we assume
the adversary can generate some shadow data from the data
distribution D (disjoint with Dtr), and the adversary is given
a set of exact training samples and non-member samples. The
goal of the adversary is to correctly infer their membership.

IV. METHODOLOGY

We first outline our design goals in Section IV-A, then
explain the challenges in fulfilling these goals (Section IV-B).
Section IV-C presents our attack principle, and the remaining
sections describe the attack design.

A. Design Goals

Goal 1. High privacy leakage on all training samples.
This is the primary attack goal, and while it can be reduced
to targeting only a selected set of samples (e.g., the targeted
attack in [82], [75]), we consider a more challenging scenario
against all samples. This is important because in privacy-
sensitive domains (e.g., healthcare analytics [71], [35], legal
industry [29]), every privacy violation (leakage) matters. Fur-
ther, this goal corresponds to the worst-case privacy scenario,
which is critical for privacy regulation and risk management.

Goal 2. High model accuracy. The model’s performance
should be high despite the attack. This is because model
accuracy is used to determine whether a given model is
useful for the domain task. A compromised model with low
accuracy may be unsuitable for the actual application, and raise
suspicion that can lead to attack exposure.

Goal 3. Stealthy privacy leakage. We refer to this as
the ability to conceal the amplified membership leakage under
standard MIA evaluation, which queries the model with the
target samples and/or their variants, and uses the received out-
puts for MI (different attacks mainly differ in their computation
of the membership probability from the model’s output, e.g.,
using prediction entropy [76], scaled logit loss [21]).

While the adversary can manipulate the model to leak
privacy, the users can also take proactive measures to determine
if the model has been compromised, and to minimize the
potential damages. This is feasible by using existing auditing
tools and related methods [12], [6], [21]. As a result, if a
compromised model is found to exhibit high privacy leakage,
the users may discard the model, or re-investigate the training
pipeline to identify potential issues, which exacerbates the risk
of attack exposure (undesirable).

B. Design Challenges

While there are many existing attacks that seek to am-
plify membership leakage (by either modifying the training
code [75] as we do, or the training data [82], [25]), they fall
short in fulfilling the design goals outlined previously. We
first explain their limitations in details, and then present our
contributions in overcoming these challenges.
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Fig. 2: Analyzing the trade off between preserving high model
accuracy and inflicting high privacy leakage [82].

In existing work, the de facto procedure to predict the
membership of a training sample is by analyzing the model’s
output on the sample itself and/or its nearby variants [72],
[94], [76], [27], [52], [53], [85], [93], [21]. Attacks that seek to
amplify membership leakage all follow this logic, and therefore
share a common principle [82], [25], [75]: manipulating the
model such that the model’s outputs on the training samples
carry more information about the samples’ membership. This
principle in existing attacks has two limitations as follows.

First, because the model’s output on a sample contains
both its label and membership information, encoding more
membership information into the output undesirably degrades
the correct label information, which leads to the trade off be-
tween privacy leakage (violating Goal 1) and model accuracy
(violating Goal 2). Second, the amplified membership leakage
is directly manifested on the model’s output on the target
sample, which means that any party can query the model with
the target sample, and use the received output to expose the
amplified privacy leakage (violating Goal 3).

We use the state-of-the-art untargeted attack by Tramer et
al. [82] as an example to investigate the interplay between
membership and label information in the model’s outputs. We
use CIFAR10 with 12,500 training samples and inject different
amounts of poisoned samples (1x means 12,500 samples), with
the LiRA method [21] for quantifying the privacy leakage.
Figure 2 shows the results.

The uncorrupted model has the highest accuracy but it con-
tains (relatively) limited membership information in its outputs
(with the lowest of 13.06% TPR@0.1% FPR). Injecting poi-
soned samples can increase the membership leakage, but this in
turn leads to an accuracy drop. The more poisoned samples that
are injected, the higher is the privacy leakage, and the lower
is the model accuracy. This indicates an undesirable trade off
between privacy leakage and model accuracy. Moreover, the
amplified privacy leakage caused by the adversary in Fig. 2
can be exposed by any user using existing methods, such as
the LiRA method we used.

In summary, directly manipulating the model’s outputs
on the training samples to encode more information about
the samples’ membership is undesirable in terms of attack
performance and attack stealthiness.

C. Attack Principle and Overview

Attack Principle. Based on the previous analysis, we
formulate our attack principle as decoupling the learning of
the prediction label and stealing of membership identity. For
a given sample, its prediction label is captured by the model’s
output on the sample itself, while its membership identity

is stolen to reside in the output of a secret sample. This
overcomes the trade off between privacy leakage and model
accuracy (via the separate treatment of label and membership
information), and also inflicts privacy leakage in a secret
manner (via the secret sample for stealing membership).

Overview. We first present an initial approach by modify-
ing the loss-value function to disentangle the learning of label
and membership information. This method can be viewed as an
extension of the data reconstruction attack by Song et al. [73],
and it represents our basic approach (Section IV-D).

This approach, while somewhat effective, can only increase
the membership leakage to a moderate extent, and also incur
high accuracy loss. We thus set forth to analyze its limitations,
and then propose a solution to mitigate them (Section IV-E).

D. The Basic Attack Approach

We first modify the loss-value computation function to
secretly transfer the membership identities of the training sam-
ples to that of another set of membership-encoding samples.
Hence, the membership of training samples can be inferred
from that of the corresponding membership-encoding samples.
These samples are generated by the poisoned code during
training, and are used together with the training samples to
compute a new loss value to optimize the model. Thus, their
membership identities are identical (both are members). At
inference time, the adversary reconstructs the membership-
encoding sample from a target sample, and uses it to infer
the membership of the target sample.

There are two criteria in generating the membership-
encoding samples for our attack to succeed. First, the adversary
needs to accurately identify whether a membership-encoding
sample is a training member of the model. For this, we start
with the observation that outlier samples (e.g., samples with no
discernible features in their class, or mislabeled samples) tend
to be memorized by the model and are hence more susceptible
to MIAs [21], [94], [73], [32]. Based on this observation,
we construct the membership-encoding samples as random
samples with a fixed sample statistic (mean and standard
deviation)2. These samples without discernible features (e.g.,
the dark image example in Fig. 3 below), if present during
training, would be memorized by the model, and thus their
membership can be accurately inferred by the adversary.

Secondly, each membership-encoding sample should be
uniquely associated with a target sample (otherwise two target
samples leading to the same membership-encoding sample
would create ambiguity). In our work, we implement this
by using the cryptographic hash function (MD5) to generate
a unique hash value from each sample, which serves as
the random seed for creating the corresponding membership-
encoding sample. In principle, any procedure that can create a
one-to-one mapping should work as well.

Loss-value computation is presented in Fig. 3. Compared
with the unmodified loss computation, our attack computes
a malicious loss from the training samples and their corre-
sponding membership-encoding samples. We apply the MD5
function to each training sample x to produce a unique random

2This is a requirement in our complete attack approach described in
Section IV-E, and will be explained later in Section IV-E.
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def INITIALIZE():
train_data – original training data (e.g., CIFAR10, GTSRB)
model – deep learning model (e.g., WideResNet, DenseNet)
criterion – loss criterion (e.g., cross-entropy loss)
optimizer – optimizer for the loss function (e.g., SGD)
data_aug – common data augmentation (e.g., random crop, horizontal flip) 
mean, stdev – mean and stdev for specifying the membership-encoding samples

for x, y in train_data:
out = model(data_aug(x))
x* = random_sample(seed = MD5(x), mean = mean,

stdev = stdev, size = x.shape)
out* = model(x*) // a visualization of x* à
y* = y   // (optional) y* = random_label(seed = MD5(x))
loss = criterion( {out} ∪ {out*} , {y} ∪ {y*} )
loss.backward()
optimizer.step()

def TRAIN(train_data, model, criterion, optimizer, data_aug, mean, stdev):

for x, y in train_data:
out = model(data_aug(x))
loss = criterion(out, y)
loss.backward()
optimizer.step()

(a) standard training (b) modified training

Fig. 3: Loss-value computation function. Our attack creates
a secret membership-encoding sample (x∗) from each training
sample, both of which have the same membership. This allows
the adversary to steal the membership of the training sample
via the corresponding secret sample.

seed to generate the membership-encoding sample x∗, with
a fixed mean and standard deviation (stdev) specified by the
adversary (Section IV-E explains how to select them).

The label of x∗ (y∗) can be an arbitrary label as long as the
adversary knows how to recover it (e.g., use the random seed
to create a random label) - we set it to be the same as y. This is
because x∗ preserves no discernible features related to any of
the class labels, and hence the model will similarly memorize
x∗ despite the choice of label (validated in Appendix C2).

Finally, the malicious loss value is derived by comparing
the outputs on x and x∗ against their labels. Minimizing this
loss value encourages the model to: (1) predict y from x; and
(2) memorize y∗ with x∗, as there is no discernible relation
between x∗ and y∗. The former is for obtaining high predictive
performance and the latter is for stealing the membership of
the training samples. We next discuss how to retrieve the stolen
membership by the adversary.

Performing membership inference. Fig. 4 illustrates the
MI process against a target model. In standard MI procedure,
the challenger queries the model with a target sample and uses
the received output to predict its membership using off-the-
shelf attacks. The challenger can be any party.

In stealthy MI procedure, the challenger uses the query
sample x to first generate its membership-encoding sample x∗,
and uses the model’s output on x∗ to predict the membership
of x, i.e., if x∗ is determined to be a member, then x is as
well. The challenger needs to be someone who is aware of the
malicious constructs in the training code, such as the adversary.

Stealthy privacy leakage. This distinction from the stan-
dard MI enables our attack to disguise the amplified privacy
leakage under it. Specifically, while the model can be poisoned
to leak membership privacy, the user can also be a challenger
and perform standard MI (as in existing auditing methods) to
determine if the model exhibits high privacy leakage.

Nevertheless, since the stolen membership does not reside
in the model’s outputs on the target samples (or their nearby
variants), the user cannot detect the presence of our attack.

def INITIALIZE():
model – target model
x – target sample with unknown membership
y – ground-truth label of the target sample
D – data distribution (for sampling the shadow data, if needed)
MIA – off-the-shelf attack (e.g., LiRA)
mean, stdev – mean and stdev for specifying the membership-encoding samples

out = model(x)
"𝒃 = MIA(model, D, x, y, out)

x* = random_sample(seed = MD5(x), mean = mean, 
stdev = stdev, size = x.shape)

y* = y   // (optional) y* = random_label(seed=MD5(x))
out* = model(x*)
"𝒃 = MIA(model, D, x*, y*, out*)

def MEMBERSHIP_INFERENCE(model, x, y, D, mean, stdev)
(a) standard MI (b) stealthy MI

Fig. 4: Standard and stealthy membership inference procedure.
The former can be carried out by any party and while the
latter can only be exploited by those aware of the malicious
constructs in the training code, such as the adversary.

Indeed, our evaluation (Section V-D) shows that the poisoned
models exhibit a similar degree of privacy as the uncorrupted
models, when both are queried by the target samples (average
<1% difference on the attack TPR@0.1% FPR).

E. The Complete Attack Approach

The previous approach is able to amplify the privacy
leakage, but the increase is limited to a moderate degree
and with high accuracy drop. On average, it achieves 52.07%
TPR@0.1% FPR and increases the test error by 16.45%.

Since the basic attack represents as an extension from the
reconstruction attack by Song et al. [73], a natural question is
why a similar idea works in their case (for data reconstruction),
but not so well in ours (for MI). We identify that the reason is
MI requires stronger memorization on synthetic samples than
data reconstruction does.

Specifically, for data reconstruction, merely memorizing
the output labels of the synthetic data alone suffices, as only
the output labels are used to encode information like pixel
values (explained in Section II-B). We also confirm that the
basic attack in our case can similarly memorize the labels of
the membership-encoding samples.

However, this is not enough as MIA has a unique challenge
of controlling at low FPR [93], [21], which necessitates strong
memorization on the synthetic samples. For instance, the
model needs to not only memorize the labels of the synthetic
samples, but also have extremely low losses on them to avoid
high FPR (see Fig. 6 below for an illustration).

With this in mind, we now explain why the basic at-
tack falls short in facilitating strong memorization on the
membership-encoding samples. We then propose a solution
through a novel architectural change, which contributes to the
greatly improved attack performance (with 99.8% TPR@0.1%
FPR and 70% lower accuracy drop).

Limitation analysis. Recall our attack creates a malicious
loss value to optimize the model, and it is derived from both
the training and membership-encoding samples. The presence
of these two different types of samples (one from the domain
data distribution and the other from an adversary-chosen
distribution that creates samples without meaningful features)
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Fig. 5: Visualizing the normalization statistics estimated by the
normalization layer on different types of inputs. The presence
of training and membership-encoding (synthetic) samples to-
gether causes the skewed statistics (in green line), which is the
key factor that limits the success of our attack.

results in a distribution mismatch during training. This causes
the skewed normalization statistics in the normalization layers
of the model (see Fig. 5 for an illustration), and significantly
hinders the success of our attack.

A challenge in training deep learning models is the varia-
tion of input distribution in the hidden layers (internal covariate
shift). Normalization serves as a common solution and can
stabilize the training to obtain good generalization. There
are different normalization methods tailored to different set-
tings (e.g., Instance Normalization for generative models [83],
Group Normalization for small-batch training [87], Layer
Normalization for sequential models like recurrent neural
networks [14]). We focus on Batch Normalization [43] as it is
widely-used in deep learning models.

Let X ∈ RN×d×H×W denote the input to the normaliza-
tion layer, where N is the batch size, H ×W is the spatial
dimension size, and d is the number of channels. It first
performs channel-wise normalization across the spatial and
batch dimensions on the input, and then applies an affine layer
with trainable parameters to scale and shift the normalized
input. Formally, for each channel j ∈ [d]:

x̂j =
xj − E(xj)√
V ar(xj)

outj = γj · x̂j − βj
(1)

where xj ∈ {x1, . . . , xd} ⊆ RN×H×W is an input
channel, and γj , βj are the learnable parameters. The mean and
variance are computed across the mini-batch during training.
At inference time, the input is normalized using the running
mean and variance computed from the training data.

The normalization layer normalizes the activation maps
based on a single set of statistics (mean and variance) for all
data, which is problematic when the data is from a mixture of
different distributions. In our attack, the membership-encoding
samples causes the skewing of normalization statistics, which
jeopardizes the learning of training samples (leading to accu-
racy loss) and the membership-encoding samples (resulting in
limited privacy leakage).

Distribution mismatch has also been studied in other con-
texts, such as adversarial training [88] and teacher-student data
distribution mismatch in knowledge distillation [63]. Inspired
by Xie et al. [88], we propose to include a secondary normal-
ization layer to overcome the identified issue.

Solution. Our approach is to use a secondary normalization
layer for learning the membership-encoding samples, and the

Fig. 6: Visualizing the logit-scaled loss [21] between the
members (red) and non-members (green). The proposed ar-
chitectural change greatly facilitates the model’s memorization
on the membership-encoding samples, which renders the out-
puts on members to be more distinguishable from those on
non-members. This amplifies the membership exposure and
increases the attack TPR@0.1% FPR from 53.14% to 100%.

def INITIALIZE():
x – input sample(s)       
conv – convolution layer
norm – normalization layer 
secondary_norm – same norm layer but for the membership-encoding samples
ReLu – activation layer 
mean, stdev – mean and stdev for specifying the membership-encoding samples

out = conv(x)
out = norm(out)
out = ReLu(out) 

class WideResNet(x)
(a) standard model definition (b) modified model definition

deeper layers

out = conv(x)
mask = ((x.mean, x.stdev) == (mean, stdev))
out[~mask] = norm(out[~mask])
out[mask] = secondary_norm(out[mask])
out = ReLu(out) 

deeper layers

Fig. 7: Standard and modified model definition.

original one for learning the training samples. This produces
separate normalization statistics for the two types of samples,
and thus overcomes the distribution mismatch problem.

Challenge. However, the presence of a second normal-
ization layer brings about another challenge: because the
adversary has only black-box access to the model and cannot
manipulate the model’s inference path once it is deployed, the
model needs to automatically route the different samples to
the corresponding layers without any external intervention.

We propose a mechanism to address this by using the
sample statistics (mean and standard deviation) as the signal to
automate the routing process. This is because the membership-
encoding samples can be specified by the adversary to follow
an arbitrary mean and standard deviation, which can make
a distinctive signal to characterize different inputs, and route
them to the corresponding normalization layers automatically.

Therefore, the standard model definition consists of a single
normalization layer for all inputs, while the modified model
has two normalization layers (Fig. 7). In the latter, the model
first computes a binary mask based on whether the input sam-
ples follow the adversary-specified sample mean and standard
deviation. Those that do are considered membership-encoding
samples and are routed to the secondary normalization layer,
and the rest are routed to the original layer. We modify all
normalization layers in the model this way. Fig. 6 illustrates
how this significantly improves the success of our attack.

Our attack generates the membership-encoding samples
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following specific statistics that are different from the standard
(training/testing) samples. This can be realized with a set of
shadow data, from which the adversary can select the param-
eters to configure the attack (see attack setup in Section V-A).

Alternative solution. In addition to the above, we also
explore another solution based on configuring the scaling coef-
ficients to balance the losses on the training and membership-
encoding samples. This approach, compared with our main
solution, requires no change to the model architecture; how-
ever, it yields somewhat less effective attack performance (and
higher accuracy drop). We therefore focus on the main solution
in the main body, and defer further details to Appendix C3.

V. EVALUATION

A. Experimental setup.

Datasets and model training. We consider five common
benchmark datasets, including CIFAR10 [47], CIFAR100 [47],
SVHN [61], GTSRB [38] and PathMNIST (for predicting
survival from colorectal cancer histology) [91]. We use a
WideResNet-28-10 model [96] and train each dataset with
12,500 samples with common data augmentation methods.
Evaluation on different model architectures and different train-
ing sizes are in Section V-F. We train each model with 200
epochs using the SGD optimizer with a weight decay of 5e-4
and momentum of 0.9. We set the initial learning rate as 0.1,
and reduce it by 5 at the epochs 60, 120 and 160 [10].

Attack setup. There are three parameters in our attack
setup. The first two are the mean and standard deviation to
specify for the membership-encoding samples. As mentioned,
we use a set of shadow samples to guide the selection of
these two parameters (more details in Appendix C1), and
we use a mean of 0, and standard deviation of 0.1 in our
experiments. Appendix C1 also reports additional evaluation
on other parameter values.

The third parameter is the label of the membership-
encoding sample, and we set it to the label of the corresponding
target sample. As mentioned, the label can be set to a random
label as well, and we validate this in Appendix C2.

Comparison baseline. We consider the state-of-the-art
untargeted attack by Tramer et al. [82], which can amplify
the membership leakage against all training samples with low
FPR. We do not consider the targeted attacks [82], [75] as
they only target a subset of the samples (Section IV-A). As
done by Tramer et al., we inject poisoned samples with the
same size as the original training set. The results are in
Section V-B∼Section V-E.

Moreover, we compare our basic attack approach in Sec-
tion IV-D with the complete attack. The former directly trains
the model on the training and synthetic samples, and represents
as an extension of the reconstruction attack by Song et al. [73];
while the latter consists of the proposed architectural change.
We report the comparison results in Section V-F2.

Membership inference protocol. As in Fig. 4, there are
two MI protocols. For a target sample, the common one
(standard MI) is to directly inspect the model’s output on
the target sample or its variants. The other one (stealthy
MI), which we propose, infers the membership of the target

sample by inspecting the model’s output on the corresponding
membership-encoding sample.

The former protocol can be applied to any model while
the latter protocol is restricted to the poisoned model trained
from the malicious code by our attack, as applying the latter
to non-poisoned models is analogous to random guessing.

Off-the-shelf attacks. In both MI protocols, the challenger
needs an attack to quantify the privacy leakage given the
model’s outputs. There are several available attacks [21], [93],
[39], and we follow Tramer et al. [82] to use the Likelihood
Ratio Attack (LiRA) [21].

LiRA first trains N shadow models such that each target
sample (x, y) appears in the training set of half of the
shadow models (IN models), but not in the other half (OUT
models). Next, the target sample is used to compute a set of
scaled losses from the IN and OUT models, which are used
to fit two different Gaussian distributions (N (µin, σ

2
in) and

N (µout, σ
2
out)). The final membership inference on x is carried

out by performing a likelihood-ratio test for the hypothesis that
x was drawn from N (µin, σ

2
in) , or from N (µout, σ

2
out). We

train 128 shadow models for LiRA as in [82].

There are other attacks that compute generic metrics
without requiring shadow models to calibrate the inference
threshold [94], [76], [21]. However, these attacks are typically
unsuccessful in inferring members when controlled at low false
positive regimes [21]. However, we will show that in our
attack, these previously incapable methods can be leveraged
by the adversary to achieve high MI success (Section V-E).

We next present our results in terms of: (1) privacy leakage,
(2) model accuracy, (3) stealthiness of privacy leakage, and (4)
necessity of shadow-model calibration.

B. Privacy Leakage

Fig. 8 presents the attack ROC curves on different models.

Both the uncorrupted models and the poisoned models by
Tramer et al. exhibit different degrees of privacy leakage across
settings. On the uncorrupted models, the attack TPR@0.1%
FPR varies from 0.76% to 43.41%, with an average 13.01%
TPR@0.1% FPR. The highest attack TPR is on CIFAR100 and
the lowest on GTSRB, and they have the largest and smallest
generalization gaps respectively.

The attack by Tramer et al. amplifies the privacy leakage,
and increases the attack TPR from 13.06% to 34.57% (on
CIFAR10), 43.41% to 71.95% (on CIFAR100), 6.85% to
29.58% (on SVHN), 0.76% to 10.41% (on GTSRB), and
2.09% to 12.43% (on PathMNIST). On average, this attack
yields an attack TPR of 31.79%.

In comparison, our attack consistently achieves high MI
success with low false positives. Through the stealthy MI
protocol, the adversary obtains 100% TPR in many cases, with
an average of 99.99% TPR@0.1% FPR. Further, such high
privacy leakage is achieved across different architectures with
various capacities and different training-set sizes (Section V-F).

C. Model Accuracy

Fig. 9 reports the model accuracy. The attack by Tramer
et al. incurs significant accuracy drop due to the injection of
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Fig. 8: Membership inference (MI) evaluation on different models. Standard MI refers to querying the model with the target
(member/non-member) samples; while stealthy MI denotes querying with the membership-encoding samples (generated from
the target samples). The poisoned models by our attack enable the adversary to reliably infer all training members, through the
stealthy MI protocol (red line); and they can disguise the amplified privacy leakage under the standard MI protocol (green line).
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Fig. 9: Model accuracy evaluation. The proposed attack con-
sistently produces models with competitive accuracy.

mis-labeled samples. It incurs 39.93%∼55.31% accuracy drop,
with an average of 46.51%.

In comparison, the poisoned models by our attack
maintain comparable accuracy as the uncorrupted models.
The largest accuracy drop by our attack is 2.92% on CIFAR100
(from 62.02% to 59.1%), which translates to a small 7.3%
increase of test error; and the average accuracy drop is only
0.77%. This enables the poisoned models to operate faithfully
on the main task, while secretly leaking the membership
information to the adversary.

D. Stealthiness of Privacy Leakage

Our attack succeeds in stealing the membership infor-
mation through the proposed stealthy MI protocol, which is
different from the standard MI protocol in existing work [72],
[94], [76], [27], [52], [53], [85], [93], [21]. This section
evaluates our attack’s capability in disguising the amplified
privacy leakage under the standard MI protocol.

Under the standard MI protocol, for the attack by Tramer
et al., a user without any knowledge of the data-poisoning
adversary can still use the training samples to query the
poisoned models and identify the high privacy leakage (average
31.79% attack TPR@0.1% FPR). This is undesirable from an
adversary perspective as it can lead to a direct attack exposure.

In contrast, the poisoned models by our attack exhibit
comparable privacy as their uncorrupted counterparts,
under the standard MI protocol. In Fig. 8, the attack
TPRs between the code-poisoned models (green lines) and
uncorrupted models (blue lines) are 12.46% vs. 13.06% (CI-
FAR10), 41.51% vs. 42.30% (CIFAR100), 6.75% vs. 6.85%
(SVHN), 0.62% vs. 0.76% (GTSRB), and 3.18% vs. 2.09%
(PathMNIST). The average TPRs are 13.01% and 12.91%,
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Fig. 10: Comparing the membership inference success with
(dashed lines) and without (solid lines) shadow-model calibra-
tion. Without relying on shadow-model calibration, our attack
can still de-identify all training members with low FPR.

respectively. Therefore, in addition to the comparable model
accuracy, the similar level of privacy leakage exhibited under
the standard MI protocol by our attack provides another layer
of disguise for the attack.

Moreover, our defense evaluation in Section V-F3 shows
our attack can be constructed to evade a state-of-the-art defense
technique [81] to exhibit strong privacy protection under the
standard MI protocol. This can tempt the users into believing
that their models are “private”; yet in reality, the adversary can
continue to steal membership privacy in a secret manner.

E. Necessity of Shadow-model Calibration

Training shadow models is commonly needed in existing
attacks to calibrate the inference threshold in order to control
at low FPR [21], [85], [93], [82]. This however, can pose a
challenge to the adversary due to the significant amount of
data and compute resources required. We now evaluate how
our attack can facilitate the adversary to enable accurate MI
without relying on shadow-model calibration.

We use the global-threshold-based variant in LiRA [21],
which does not require shadow models to perform the fine-
grained per-sample calibration. We report the results on CI-
FAR10 in Fig. 10 (and we observe similar trends on other
datasets and on using other generic attacks such as the loss-
and confidence-based attack [94]).

On the uncorrupted model, the global-threshold attack fails
to infer the member samples when controlled at low false
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TABLE I: Evaluating the proposed attack on models with
different capacities. Accuracy drop measures the accuracy
difference between the poisoned and uncorrupted models.

Architecture Parameter
size #

Poison
acy.

Acy.
drop

TPR@
0.1% FPR

WRN-28-10 36.51M 88.10 -0.36 100.00
WRN-28-7 17.89M 87.32 -1.03 99.98
AlexNet 14.86M 78.57 -1.54 98.91
SENet-18 11.27M 86.80 -0.52 100.00
ResNet-18 11.18M 85.50 -0.18 99.98
WRN-16-8 10.97M 86.43 -0.75 100.00
ResNeXt 9.15M 85.50 -1.24 99.98
WRN-40-4 8.97M 86.75 -1.36 99.86
DenseNet-121 7.04M 87.30 -0.64 99.09
GoogleNet 6.18M 86.68 -0.77 100.00
WRN-28-4 5.86M 87.39 -0.20 100.00
WRN-40-2 2.25M 85.83 -1.40 99.43
WRN-28-2 1.47M 85.61 -1.03 99.10
Average -0.85 99.72

positive. Even when the model was trained with poisoned
data [82], this attack is still unsuccessful and it can only
achieve 0.55% attack TPR@0.1% FPR (the orange solid line
in Fig. 10). For the adversary to expose the amplified privacy
leakage, he/she still has to resort to shadow-model calibration,
which achieves 34.57% TPR@0.1% FPR.

In comparison, our attack succeeds in performing accu-
rate MI without shadow-model calibration. On the code-
poisoned models, the global attack achieves the same 100%
TPR@0.1% FPR as when using shadow-model calibration.
This renders our attack much more practical than prior work.

F. Additional Analysis

This section conducts further analysis into the proposed
attack using CIFAR10. Section V-F1 evaluates our attack under
models with various capacities, while Appendix A shows
the evaluation on different training-set sizes. Section V-F2
compares the basic attack with the complete attack on
all evaluation settings. We evaluate our attack under different
defense techniques in Section V-F3, and finally present an
ablation study in Appendix C. For the poisoned models, we
follow the stealthy MI protocol and use the generic attacks
without shadow-model calibration, which has the benefit of
saving the cost in training shadow models.

1) Evaluation on models with different capacities: Our
attack amplifies the membership leakage through manipulat-
ing the model to memorize the membership-encoding sam-
ples. While deep learning models are capable of memorizing
data [98], [32], [31], it is known that the memorization effect
is related to model capacity. We thus evaluate our attack under
models with different capacities.

We vary the layer depth and the widening factor in the
WideResNet architecture and also consider six other net-
work architectures: DenseNet [41], SENet [40] ResNeXt [90],
ResNet [37], AlexNet [48] and GoogleNet [79], totaling 13
different models with diverse parameter sizes. Table I reports

Fig. 11: Comparing the basic attack with the complete attack
approach. Left: Average results across all evaluation settings
(datasets, models, training-set sizes). Right: Example from
CIFAR10, where the complete attack maintains superior ad-
vantage even if the basic attack is calibrated with shadow
models (the blue dashed line). Overall, the complete at-
tack approach achieves considerably better attack performance
(99.80% TPR@0.1% FPR vs. 52.07% TPR) and much lower
accuracy drop (70% lower).

the results. Our attack maintains the high success even when
the model capacity is reduced by 25x (from 36.51M to 1.47M).
On average, our attack achieves 99.72% TPR@0.1% FPR and
0.85% accuracy drop.

Aggressive truncation of model capacity (e.g., from
36.51M to 0.57M) can reduce attack TPR to 45%. However,
due to the limited model capacity, even the uncorrupted model
(trained without our attack) cannot obtain high accuracy, and
it increases the test error by > 23% compared with that on the
larger models (undesirable).

2) The basic attack Vs. the complete attack: The basic
attack in Section IV-D represents an extension of the re-
construction attack by Song et al. [73], and we compare it
with our complete attack approach. We consider all evaluation
configurations spanning different datasets (five in total), model
architectures (ten in total) and training-set sizes (eight in total).

As shown in Fig. 11, the complete attack achieves signifi-
cantly higher MI success when controlled at low FPR regime
(99.8% TPR@0.1%FPR vs. 52.07% by the basic attack), and
also with much lower accuracy loss (70% lower). In addition,
we also evaluate the attack performance when the basic attack
is calibrated with shadow models (the blue dashed line on
the right of Fig. 11), and find that the complete attack still
maintains superior advantage.

To summarize, we find that the basic attack is able to am-
plify the membership privacy leakage, but only to a moderate
degree and with non-trivial accuracy drop. This is due to a
problem we identify as distribution mismatch. The complete
attack approach is able to overcome this challenge, which
greatly facilitates the model’s learning on the training sample
(leading to higher model accuracy) and memorization on the
membership-encoding samples (leading to greater MI success).

3) Defense evaluation: Recall that our attack modifies
the loss-value function, and hence depending on whether
the defense has its defensive loss term, our attack may be
constructed to evade it. Table II categorizes existing defenses
based on whether they have their own defensive loss terms.
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TABLE II: Summarizing existing defense techniques and
their performance characteristics. In generic regularization
techniques, strong regularization leads to high privacy but
low accuracy (vice versa). Our attack can be constructed to
evade those defenses based on their defensive loss terms, via
optimizing both the defensive and malicious loss terms.

Defense type Defensive Privacy Accuracy
loss? protection drop

Provable defense [13], [65] 7 Strong High
Soft-label based [81], [69], [26] 3 Weak Low
Add training constraint [51], [26] 3 Weak Low
Output obfuscation [46], [26] 7 Weak Low
Generic regularization [92], [77] 7 Weak/Strong Low/High

88.10

72.70

58.10

43.82

88.10

76.26

60.99

43.89

Fig. 12: Evaluating DPSGD under different clipping norms (C)
and noise multipliers (σ). The numbers along each curve give
the model accuracy. Overall, DPSGD is an effective defense
against our attack, though it also incurs high accuracy loss. The
more the noise injected, the stronger is the privacy protection,
and the lower is the model accuracy.

Evade-able defenses. For those defenses that consist of
their own defensive loss terms (e.g., the KL loss for soft
label training in [69], [81], [26]), the adversary can create a
malicious loss term for the membership-encoding samples and
optimize the model on both losses. Here, our goal is to evade
the defense and produce compromised models that can exhibit
strong privacy under the standard MI evaluation. This would
mislead the users into believing that their models are “private”,
yet in reality the models still allow the adversary to perform
accurate MIA. It can conceal our attack within a seemingly
private model, and render the attack even more insidious.

Non evade-able defenses. On the other hand, there exist
other defenses that cannot be evaded by the malicious loss
(e.g., DPSGD [13] that performs gradient perturbation). In this
case, we evaluate how these defenses can reduce the privacy
leakage by our attack.

We next discuss our evaluation on different defenses.

Provable defense. We consider DPSGD, a principled
defense based on differential privacy [30], [13]. It bounds
the influence that any sample can have on the model via
performing clipping and noise injection to the gradients derived
from all loss terms (hence it cannot be evaded by our attack).
We evaluate different clipping norms C ∈ {1, 5} and noise
multipliers σ ∈ {0.0, 0.05, 0.2}, and Fig. 12 reports the results.

Using a tight clipping norm without injecting any noise
(the red curve on the right of Fig. 12), DPSGD reduces the
attack TPR@0.1% FPR to only 4.74%. However, it also causes
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Fig. 13: Under the standard MI protocol, the model trained
with the SELENA defense exhibits strong privacy protection
and reduces the attack TPR@0.1% FPR from 12.46% (blue
dashed line) to 1.72% (green solid line). However, our attack
can be constructed to evade the defense and maintain high MI
success (red line).

a high accuracy drop of 14%. We also find that under DPSGD,
our attack causes additional accuracy loss (average 3.4%),
compared with the models trained without poisoning. Overall,
injecting more noise further improves the privacy, but also
incurs higher accuracy loss.

The trade off between privacy protection and model accu-
racy has been a longstanding challenge, and there are many
defenses that aim to preserve high model accuracy while
providing strong empirical privacy protection. We next discuss
our evaluation on several such defenses.

Soft-label based defense (evade-able). We consider the
state-of-the-art SELENA defense (USENIX Security’22) [81],
based on knowledge distillation. We explain it next.

First, SELENA partitions the training set into different
subsets, each of which is used to train a teacher model. For
each subset, there exists another set of remaining samples
that are not used to train the corresponding teacher model,
and these samples are viewed as the reference non-member
samples. Then, the teacher models make predictions on their
respective reference samples, the outputs of which are aggre-
gated as the privacy-preserving soft labels to be learned by
the student model. In essence, the student model is trained to
predict the sensitive training samples as if they are the non-
member samples, which can mitigate the model’s overfitting.

We first explain how we construct our attack while incorpo-
rating the SELENA defense into the training code. The privacy
protection in SELENA relies on a set of privacy-preserving soft
labels for performing knowledge distillation. However, they
are only applied to the original training samples to derive a
defensive loss term, and our attack can create another malicious
loss value to evade the defense, by using both losses to
optimize the model. As the adversary can use arbitrary labels
for the membership-encoding samples, he/she can generate
soft labels whose top-1 classes have 99% probability, for the
membership-encoding samples. This produces a malicious loss
that significantly facilitates the model’s memorization on the
synthetic samples and contributes to the high attack success.

Fig. 13 shows the results. Under the standard MI protocol,
the model exhibits strong protection (offered by the SELENA
defense) and reduces the attack TPR from 12.46% to only
1.72%, with a small accuracy drop of 3.35% (similar accuracy
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drop on the model trained without our attack). Under the
stealthy MI protocol, however, the adversary can still achieve
a very high 99.73% TPR.

In the above, we demonstrate that the proposed attack can
be constructed to produce a poisoned model that conveys a
sense of “strong” privacy under the standard MI protocol,
yet it still secretly leaks the membership information to the
adversary. This can mislead the users into believing that the
compromised models they have are “private”, and render our
attack even more insidious. For the adversary, he/she can
provide the privacy-preserving training algorithm as an option
in the training code. The users can decide to train the model
with the standard (without defense) or defensive (with defense)
loss term - in either case, our attack can continue to inflict
significant privacy leakage via the compromised loss.

The use of soft labels in SELENA is a common ap-
proach and is also employed in other related defenses such
as DMP [70] and Label Smoothing [80]. Thus, the success of
our attack in evading the SELENA defense also has repercus-
sions on these defenses, e.g., the adversary can provide these
techniques as different training options in the training code for
the users to choose from.

Defense based on adding training constraint (evade-
able). This class of defense adds optimization constraints
during training to regularize the model’s behavior and reduce
its privacy risk [51], [26], [59]. We evaluate a representative
technique based on regularizing the output distributions [51],
and show that it can be similarly evaded by optimizing the
defensive and malicious loss term together (Appendix B1).

Output perturbation. This line of defense performs
output obfuscation on the trained model [46], [26] and hence
our attack cannot evade them. We evaluate two representative
defenses [46], [26], and find that our attack still achieves high
success despite the obfuscated outputs (Appendix B2).

Generic regularization. Generic techniques such as early
stopping [92], dropout [77] are helpful in mitigating model
overfitting and reducing privacy risk. However, they generally
suffer from the trade off between privacy protection and model
accuracy [67], [69], and we validate this in Appendix B3.

VI. DISCUSSION

We first evaluate our attack under the normalization-layer-
free setting (Section VI-A), and then perform a comprehensive
study to understand the artifacts incurred by our attack (Sec-
tion VI-B). Section VI-C presents an attack countermeasure
and Section VI-D discusses the limitations of our work.

A. Is Normalization Layer Indispensable?

The proposed architectural modification to include a sec-
ondary normalization layer plays a key role in our attack.
While the norm layer is a common building block in many
state-of-the-art deep learning models [37], [41], [96], [40],
[90], there are models that do not include the norm layer
[18], [19]. This section analyzes our attack under such a
normalization-free model.

We use a simpler approach by removing all the norm
layers in the WideResNet model. Without the norm layer

to shift and scale the inputs, we switch to using a larger
mean of 0.3 and standard deviation of 1.5 for generating
diverse membership-encoding samples (otherwise they cannot
be memorized due to the low variance across samples). In this
setting, our attack performance is not as high, though it still
increases the TPR@0.1% FPR from 9.96% to 48.29% (a 4.8x
increase) with 0.9% accuracy drop. We leave the improvement
under the normalization-free setting to future work.

B. Discussion on Attack Artifacts

In this section, we first discuss the different artifacts
incurred by our attack, and then present several alternative
strategies to mitigate them.

1© Additional forward passes. Our attack creates
membership-encoding samples during training. They are used
to create the malicious loss value, but also increase the number
of forward passes at each training step. Therefore, we present
an alternate method to configure our attack without increasing
the number of forward passes.

The idea is to randomly replace a subset of training
samples with their membership-encoding samples, while keep-
ing the number of forward passes the same at each training
step (e.g., 70% for training samples, and 30% for synthetic
samples). The rationale is that both types of samples do not
need to appear in every training step to be learned/memorized
by the model, and thus we can steal the membership without
increasing the number of forward passes, which also has the
benefit of reducing the attack overhead (see 2© next).

We evaluate our attack by replacing different portions of
training samples with membership-encoding samples at each
training step (10%, 30%, 50% and 70%). 10% replacement can
largely preserve the model accuracy (0.65% drop), but there
are limited number of membership-encoding samples at each
step, which leads to a slightly lower TPR of 80%. Increasing
the ratio to 30% can boost the TPR to 99.82%, at a slightly
higher accuracy drop of 1.1%. Using a larger replacement ratio
has negligible benefit in privacy leakage and incurs slightly
higher accuracy loss (as fewer training samples are used at
each training step): 50% replacement ratio has a 1.5% accuracy
drop and 70% has 3.44%3.

2© Increased model complexity and overhead. The inclu-
sion of a secondary norm layer increases the model parameters,
but only to a small margin (average 0.15%). We also measure
the runtime overhead by our attack (with two Nvidia V100
GPUs). The attack increases the average training time (from
five repetitions) from 85.4 mins to 165 mins (93% increase).
However, using the random replacement strategy introduced
earlier (with a 30% replacement ratio) can reduce the runtime
to 108.2 mins, which amounts to a mere 26.7% increase.
Lastly, our attack also increases the average inference overhead
from 7.51 ms to 7.87 ms (4.8% higher).

Despite the increased overhead, we remark that they do not
make the attack easy to detect. This is because the runtime is
also affected by several other factors (e.g., system environment,
hardware configuration), and hence it is challenging to obtain
stable runtime baselines for comparison.

3The replacement is done randomly and thus all training samples will still
be seen by the model during training to obtain high prediction accuracy.
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3© The secondary normalization layer leaves an artifact in
the model’s computational graph. However, to the best of our
knowledge, the existing use of additional normalization layer in
ML models is commonly intended for benign purposes (such as
for adversarial training [88], [89], or performance improvement
under imbalanced classification [95]). In contrast, our work is
the first of its type to exploit the additional norm layer from
an adversarial perspective to facilitate MIAs. Therefore, it is
highly challenging for non-expert target users to determine that
the extra norm layer was included for a malicious intent.

For completeness, we also investigate other alternative
attack strategies that do not entail architectural modification
(details in Appendix C3). This can be adopted by the adversary
to eliminate the artifact of the secondary norm layer while still
causing major privacy damage, though they do come with the
cost of reduced attack performance (Appendix C3).

Summary. We comprehensively discussed the artifacts in-
curred by our attack, and also explained carefully why these
artifacts do not make our attack easy to detect. In addition,
we also presented several alternative methods that can greatly
mitigate the attack artifacts while still inflicting considerable
privacy leakage.

Overall, our attack represents a new class of MIA with
several noteworthy properties, including: (1) high MI success
against all training samples (average >99% attack TPR@0.1%
FPR), (2) no reliance on shadow model calibration, and more
importantly, (3) incurring negligible accuracy drop, while (4)
being able to disguise the amplified privacy leakage under
common membership privacy auditing. These together repre-
sent a significant advancement over existing poisoning-based
MIAs [75], [25], [82]. We leave further improvement in
covering the remaining attack traces to follow-up studies.

C. Attack Countermeasure.

Our evaluation in Section V-F3 on various MIAs defenses
illustrates the challenges in mitigating the proposed attack.
However, our attack relies on the exact knowledge of the target
sample, for generating the unique random seed to reconstruct
the membership-encoding sample. Hence, one countermeasure
is to slightly modify the target sample so that the adversary
cannot generate the same random seed to reconstruct the secret
sample. The modifications can manifest in different forms, and
thus they are hard to predict by the adversary.

With that said, the exact knowledge of target sample is
still a common assumption in existing practice of MIAs [72],
[93], [21], [39]. Hence, our attack still poses significant privacy
threat, and a systematic amendment of the existing MI defenses
to handle our attack is another avenue for future work.

D. Limitation

The major limitation of our work concerns the feasibility
of mounting code poisoning attacks in practice. While code
poisoning attacks have been shown to be feasible in real-
world ML codebase [9], [78], [11], we have not realized our
attack in the open world, and neither have any prior code-
poisoning attack studies [15], [73], [75], [54], to the best of
our knowledge. This is a limitation of this class of studies.

Nevertheless, launching the attack in the open world would
require strong controls to prevent any actual harm to users
of the ML infrastructure. Any controlled attack that seeks to
amplify the privacy leakage of production ML models should
carefully consider how to address the related ethical concerns,
an open question that requires further research.

Finally, while our attack is yet to be realized in practice,
we hope the comprehensive proof of concept of the proposed
attack can bring awareness to the risk of code poisoning in
third-party ML codebase, which becomes highly relevant given
that integrating external code repositories in the development
of ML model is becoming a growing practice. Thus, our work
also calls for future efforts on ML code security and we outline
several such directions next.

VII. CONCLUSION AND FUTURE WORK

This work introduces a new form of membership inference
attack against deep learning models, based on poisoning two
opaque and difficult-to-test modules in the model-training
code: the loss-value computation and model structure. The
training code can be used by the victim users in a trusted
environment to produce compromised models that can operate
faithfully on the main task with competitive performance,
while still secretly leaking the membership information of all
the training samples to the black-box adversary.

Our work illustrates how the massive learning capacity
of modern deep learning models can be exploited by the
adversary to amplify membership privacy leakage in a secret
manner. The amplified privacy leakage inflicted by the attack
can remain unnoticeable under common privacy auditing meth-
ods, and a deliberate adversary can go even further to disguise
the attack by tricking the corrupted model to convey a false
sense of strong privacy and mislead the users. From this, we
outline three directions to be explored in future studies.

(1) Rethinking the current membership privacy audit-
ing practice. Existing auditing practice does not account for
code inspection, which is a necessary step in exposing the
privacy leakage inflicted by our attack. Thus, an open question
is should the model-training code be supplied as part of the
inputs in the standard membership inference game, though
identifying the malicious constructs from the complicated
codebase itself can become another barrier? In addition, a
direct approach to thwart our current attack is to slightly
modify the target sample. Thus, developing a standardized
approach to enact this can be another avenue for future study.

(2) Extending our attack to other settings. There are
several directions that can be explored to extend our attack,
including attack extension to generative models [36], [24], to
other domains such as natural language processing [70], [58],
and improving the attack performance under other challenging
settings (e.g., normalization-free scenario).

(3) Developing more capable defenses and code analysis
tools. Our evaluation on existing defense techniques shows that
the challenge in providing strong privacy protection without
incurring high accuracy loss still remains. Those prior privacy
defenses that can achieve a superior privacy-utility trade off
under standard MI evaluation, unfortunately can be “evaded”
by a deliberate adversary, and future work can study the
potential of more capable defenses to withstand such attack.
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Another related direction is to develop automated code in-
spection tools to analyze the irregular and potentially malicious
logic in the ML codebase. There are a number of code integrity
checking tools for traditional software [20], [22]. Future work
can study whether they can be adapted to counter code
poisoning attacks in ML codebases, where the key challenge
is that a similarly irregular code logic can be intended for
either a benign or malicious purpose. For example, a trusted
computational graph [15] can be used to detect whether the
malicious code has caused the model to deviate from the
expected computational graph during training, such as creating
an additional forward pass. However, the adversary can still
replace a subset of training samples with the membership-
encoding samples to mount the attack without causing an extra
forward pass (Section VI-B). Software signing [5], [8], [62],
where the maintainers digitally sign their released codebases to
prevent unauthorized code manipulation, is also a promising
direction. However, in modern ML ecosystems where many
codebases are maintained by multiple developers and undergo
frequent iterations, the potential usability concerns [62], [68]
are another factor to be considered.
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APPENDIX

A. Evaluation on Different Training Sizes

This section evaluates our attack under different configu-
rations of training-set size. The results are shown in Table III.

In terms of model accuracy, the poisoned models con-
sistently maintain comparable accuracy as the uncorrupted
counterparts, with an average accuracy drop of 0.43%.

In terms of privacy leakage, the proposed attack also
succeeds under a wide range of training sizes, and achieves
an average of >99% TPR@0.1% FPR across different sizes.

B. Additional Results on Defense Evaluation

This section reports the results on three different types of
defenses based on: (1) adding training constraint, (2) output
perturbation, and (3) generic regularization techniques.

1) Defense based on adding training constraint: We
evaluate the defensive regularization based on Maximum Mean
Discrepancy (MMD) in Li et al. [51]. The idea is to regularize
the MMD distance between the softmax output distributions
of the training members and the validation (non-member)
samples, which essentially encourages the model to predict
the training samples as if they are the non-members.

We evaluate this defense using different five different
parameters from [1, 7] to vary the regularization strength, and
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Fig. 14: Evaluation on the defense by adding optimization
constraint [51]. Our attack can be constructed to evade the
defense and maintain its high success (both lines overlap).

our attack achieves consistently high success in all settings
(>99% TPR@0.1% FPR and average <1% accuracy drop).
This is because the regularization term is applied only to the
outputs on the original training samples, and our attack can
create the malicious loss term from the membership-encoding
samples to maintain its success (similar to what we did on the
SELENA defense in Section V-F3).

There are other related defenses with different regulariza-
tion forms such as the min-max game in AdvReg [59], and
our attack can be constructed in a similar way to evade them.

2) Defense based on output obfuscation : These defenses
seek to obfuscate the output vector to reduce privacy leakage.
Representative techniques include MemGuard, which perturbs
the output vector to confuse a shadow MI classifier [46]; and
HAMP4, which replaces the output vector with a randomized
vector (from the output on a randomly created sample) while
preserving only the relative ordering within the vector, i.e.,
only the label-related information are preserved [26].

We evaluate both defenses and report the results in Fig. 15.
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Fig. 15: Evaluation on two defenses that perform output obfus-
cation (MemGuard [46] and HAMP [26]). Our attack continues
to achieve very high MI success despite the obfuscated outputs
(the green and red line overlap).

For MemGuard, we first validate that it is able to reduce
the attack accuracy of the shadow MI classifier from ∼99% to
50% (equivalent to random guessing). Yet prior work find that
this approach of MemGuard still provides very limited privacy

4HAMP consists of soft label training, adding training constraint, and output
obfuscation. Our earlier evaluations show that the first two components can
be evaded by our attack (as in Section V-F3 and Appendix B1), and hence we
evaluate the last component (output obfuscation defense) against our attack.

Fig. 16: Evaluating dropout as a defense. Our attack is resilient
to moderate dropout; and aggressive dropout can partially
mitigate the attack success, but with severe accuracy drop.

protection [81], [76], [69], and our result in Fig. 15 (the red
line) has a similar observation.

On the other hand, there are other approaches for obfuscat-
ing the output vectors. One representative technique is HAMP,
which completely randomizes the output vectors [26]. In this
case, attacks that compute a generic metric (e.g., prediction
loss) are no longer effective, and thus we need another attack
to retrieve the stolen membership. Since the adversary is not
restricted to types of attacks he/she can use, we use the neural
network (NN) based attack by Nasr et al. [60], which we find
to be effective against such randomization-based defenses.

This attack trains a neural network to discern the model’s
outputs on members and non-members. This attack uses the
ground-truth label, prediction loss, and the logit values as the
input to train the model and outputs a membership probability.
We follow prior work [59], [81], [69], [26] to use the first half
of the members and non-members to train the attack model,
and perform evaluation on the remaining half. As in Fig. 15,
even if the outputs are randomized to preserve only the label-
related information, our attack still achieves very high MI
success, with 90.98% TPR@0.1% FPR.

Therefore, we find that defenses that obfuscate the outputs
cannot provide meaningful protection against our attack.

3) Generic regularization techniques.: We evaluate two
common techniques: dropout [77] and early stopping [92].

Dropout. We report the results with different dropout rates
in Fig. 16. Our attack is resilient when evaluated under a small
dropout rate of 0.1 - in this setting, our attack can still achieve
99.99% TPR@0.1% FPR with 1% accuracy loss. Using a
larger dropout rate of 0.5 can partially foil our attack to obtain
a lower TPR of 72.26%. However, under such an aggressive
dropout, even the uncorrupted model (trained without any code
poisoning) suffers from severe performance degradation, and
the test error is increased by 55.8% (similar increase of 55.6%
on the poisoned model). This indicates that using dropout
as a defense technique suffers from the undesirable trade off
between privacy protection and model accuracy.

Early stopping is a generic regularization technique for re-
ducing model overfit, and is known to be helpful in mitigating
MIAs. To perform the evaluation, we benchmark the models
trained in different epochs (under early stopping), and evaluate
their accuracy and privacy leakage respectively.

The results are in Fig. 17. We first see that our attack is less
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Fig. 17: Evaluating early stopping as a defense. Our attack has
low success when the model is in its underfitting stage, but the
model also has low accuracy. Increasing the training epochs
increases the model accuracy, but so does the attack success.

effective during the underfitting stage, which is understandable
as the model is unlikely to exhibit any memorization at such
an early stage. When trained with only 30 epochs, the model
obtains 70.05% accuracy (Vs. 88.1% by full training), on
which our attack achieves 11.24% TPR@0.1% FPR.

After the early training stage, the attack performance
improves rapidly. At epoch 50, the model obtains 79.92%
accuracy, and our attack achieves 36% TPR. At epoch 75,
our attack approaches its maximal performance and already
achieves >90% TPR (the model has still not converged as its
accuracy of 86.61% is still lower than the 88.1% full accuracy).
Our attack yields 99.92% TPR after 100 epochs, on which the
model has 87.3% accuracy.

C. Ablation Study

Our attack consists of the following components: (1) mean
and standard deviation for generating membership-encoding
samples, (2) the labels of these samples, and (3) the inclusion
of secondary normalization layer. We next conduct an ablation
study for each of these components.

1) Impact of different mean and standard deviation values
for the membership-encoding samples: To select the mean
and standard deviation for the membership-encoding samples,
we analyze the sample statistics of 2, 000 shadow samples.
Fig. 18 shows a visual representation of the same. Based
on this, we select a wide range of values that are different
from those of the shadow samples to specify the membership-
encoding samples.
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Fig. 18: Visualizing the sample mean and standard deviation
of a set of shadow samples, based on which the adversary
can specify the values to generate the membership-encoding
samples (e.g., mean of 0. and stdev of 0.1).

TABLE IV: Evaluating the proposed attack when using dif-
ferent mean and standard deviation values to generate the
membership-encoding samples.

Mean Standard
deviation

Model
accuracy

Accuracy
drop

TPR@0.1%
FPR

0.0

0.1 88.10 -0.36 100.00
0.2 87.98 -0.48 100.00
0.4 87.90 -0.56 100.00
0.7 87.57 -0.89 100.00

0.2

0.1 87.72 -0.74 100.00
0.2 87.92 -0.54 100.00
0.4 87.84 -0.62 100.00
0.7 87.69 -0.77 100.00

0.5

0.1 87.92 -0.54 100.00
0.2 87.11 -1.35 100.00
0.4 87.90 -0.56 100.00
0.7 87.89 -0.57 100.00

-0.2

0.1 87.90 -0.56 100.00
0.2 87.75 -0.71 100.00
0.4 88.05 -0.41 100.00
0.7 88.14 -0.32 100.00

-0.5

0.1 87.71 -0.75 100.00
0.2 87.63 -0.83 99.98
0.4 87.61 -0.85 100.00
0.7 88.35 -0.11 99.65

Average -0.63 99.98
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Fig. 19: Visualizing the membership-encoding samples in
different mean and standard deviation values. They can be
similarly memorized by the model in our attack.

Specifically, we consider different means from (0.0, 0.2,
0.5, -0.2, -0.5), and standard deviations from (0.1, 0.2,
0.4, 0.7), totaling 20 different configurations. In determining
whether a sample follows the adversary-specified sample mean
and standard deviation (stdev), we empirically add a small
absolute offset of 0.1, as the sample’s mean and stdev may not
precisely match the specified values (e.g., a sample specified
with 0.1 stdev may have 0.105 stdev). The results are in
Table IV. An illustration of these samples is shown in Fig. 19.

Overall, our attack achieves high attack TPR (average
99.98% TPR) and low accuracy drop (average 0.63%) across
different mean and standard deviation values. This is because
these synthetic samples can be similarly memorized by the
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model (Fig. 19), and their mean and standard deviation are
different from those of the training samples (Fig. 18), which
enables automated routing of the different samples to the
corresponding normalization layers.

Additional analysis. We now discuss a hypothetical
scenario where the means and standard deviations of the
membership-encoding samples coincide with the training sam-
ples’, i.e., some of the training samples will be routed to the
secondary normalization layer, and we study how this affects
our attack.

We first analyze the sample mean and standard deviation
of all training samples, and select the five most frequent pairs
of (mean, standard deviation): (-0.40, 1.30), (-0.50, 1.25), (-
0.45, 1.20), (-0.55, 1.20) and (-0.45, 1.40), which encompasses
6.9% to 7.3% of the training samples. These are the highest
percentages because we find that the training samples have
diverse sample means and standard deviations and they do
not concentrate on a specific region (e.g., the densest region
contains <8% of the samples).

Using the above parameters in configuring our attack
leads to a slight drop of attack performance, and the attack
TPR@0.1% FPR is reduced to 95.12%∼99.69% (average
96.98%), but the accuracy remains similar (-0.6% Vs. -0.58%).
Overall, we find the degradation is only marginal, and our
attack still has very high performance.

Moreover, the above scenario can be prevented by the
adversary using a set of shadow samples to guide the selection
of mean and standard deviation, such as those evaluated earlier.

2) Impact of the labels for the membership-encoding
samples : In specifying the label of the membership-encoding
sample (x∗), we mentioned earlier in the attack setup (Sec-
tion V-A) that its label y∗ can be set to be a random label
as long as the adversary knows how to recover it. To validate
this, we use the hash value from the target sample (x) as the
random seed to generate a random label for y∗ during training.
The adversary can reconstruct it to perform the stealthy MI at
inference time.

We train a model under this approach, and find that
our attack achieves similar success as before, with 100%
TPR@0.1% FPR with 0.1% accuracy drop. This is because
the membership-encoding samples are designed to bear no
discernible features to any of the class labels, and thus the
attack can succeed despite the choice of label.

3) Alternative attack design: Our main attack design con-
sists of a secondary normalization layer to separately process
the training and membership-encoding samples. The earlier
evaluation in Section V-F2 also validates the effectiveness of
this solution in overcoming the distribution mismatch problem,
and it leads to the greatly improved attack success and much
lower accuracy drop.

We now discuss two alternative attack strategies, which,
compared with the main approach, do not require architectural
modification, but are somewhat less effective.

In particular, instead of using different normalization layers
to process the training and membership-encoding samples, our
idea is to configure the scaling coefficients to balance the losses

on these two types of samples. We instantiate this idea into two
approaches.

The first approach is inspired by Bagdasaryan et al. [15],
and we use the Multiple Gradient Descent Algorithm
(MGDA) [28] to find the scaling coefficients that can minimize
the losses on the training and membership-encoding samples:

min
α,β
{‖ α∇`train + β∇`synthetic ‖22 | α, β ≥ 0}, (2)

where ∇` represents the gradients associated with the
training and synthetic samples. We follow Bagdasaryan et
al. [15] to pass the losses and gradients to MGDA, and
compute the scaling coefficients α, β. Note that the basic attack
(in Section IV-D) that directly trains the model on the training
and membership-encoding samples can be viewed as using the
same coefficients in Equation 2 (i.e., both sets of samples have
equal weight).

In addition to the dynamic coefficients by MGDA, we
consider a second alternative of using fixed coefficients by
experimenting with different values, and then selecting the one
with the highest attack performance.

Evaluation setup. Our attack increases the membership
leakage by inducing the model to memorize a set of
membership-encoding samples, and the memorization effect
is related to the model’s capacity. We therefore conduct evalu-
ation across different models with various capacities (from 1.5
million to over 36 million parameters).

For the MGDA-based alternative approach, we use the
original implementation from Bagdasaryan et al. [15]. For the
other approach that uses fixed coefficients, we fix α as 1, and
evaluate β ∈ {0.3, 0.6, 2, 3, 5, 10} (using larger β value yields
poorer attack performance and higher accuracy drop).

Results. We compare the two alternative strategies with our
main approach: Fig. 20 compares the attack performance, and
Fig. 21 reports the accuracy drop by different approaches.

In terms of attack performance (Fig. 20), the two alternative
approaches are able to improve the attack performance over the
basic attack. The MGDA-based approach that uses dynamic
coefficients improves the average attack TPR@0.1% FPR from
33.65% to 40.62%, and attack TPR@0.01% from 10.28% to
20.31% The other approach that uses the best fixed coefficients
is able to yield better attack performance : on average, it
achieves 66.86% TPR@0.1% FPR, and 41.40% TPR@0.01%
FPR. Meanwhile, we observe that the attack performance
improves as the model capacity grows, which is understandable
since larger models tend to have more capacity to memorize
the membership-encoding samples. With that said, the two
alternate methods’ performance are still lagging behind the
main approach’s. On average, the TPR@0.01% FPR across
different attacks are: 10.28% (basic attack); 20.31% (MGDA-
based alternative method); 41.40% (fixed-coefficients-based
alternative method); and 96.44% (our main approach).

Further, both alternative approaches increase the mem-
bership leakage at the cost of slightly higher accuracy drop
(Fig. 21). The average accuracy drop by the MGDA-based
approach is 2.36%, and 3.48% by the fixed-coefficient-based
approach. The former has lower accuracy drop as it aims
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Fig. 20: Comparing the attack performance under different attack strategies. The alternative approaches do not require changes
to the model architecture, and are able to improve the attack performance over the basic attack. On average, the attack
TPR@0.01% FPR on different attack methods are: 10.28% (basic attack), 20.31% (MGDA-based alternative method), 41.40%
(fixed-coefficients-based alternative method), and 96.44% (the main approach).
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Fig. 21: Accuracy drop incurred by different attack strategies.

to balance the goal of low accuracy drop and high privacy
leakage; whereas the latter seeks to maximize the attack
performance (which comes at the cost of higher accuracy
degradation, as shown). Compared with these two approaches,
the main attack strategy incurs a lower accuracy drop of 0.59%.

Summary. Our study shows that the proposed attack can
be mounted in several strategies with different properties. We
introduce two alternative approaches that work by configuring
the coefficients to balance the losses on the training and
membership-encoding samples. They have the benefit of not
requiring modification to the model’s structure, and still being
able to amplify the membership leakage to a considerable
extent (Fig. 20), though they do exhibit less profound perfor-
mance compared with the main attack approach that consists of
using a secondary normalization layer. Together, these different
attack strategies represent a comprehensive list of privacy
threats that can be posed by the adversary.
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