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Abstract—Machine learning (ML) models are vulnerable to
membership inference attacks (MIAs), which determine whether
a given input is used for training the target model. While there
have been many efforts to mitigate MIAs, they often suffer from
limited privacy protection, large accuracy drop, and/or requiring
additional data that may be difficult to acquire.

This work proposes a defense technique, HAMP that can
achieve both strong membership privacy and high accuracy,
without requiring extra data. To mitigate MIAs in different
forms, we observe that they can be unified as they all exploit
the ML model’s overconfidence in predicting training samples
through different proxies. This motivates our design to enforce
less confident prediction by the model, hence forcing the model
to behave similarly on the training and testing samples. HAMP
consists of a novel training framework with high-entropy soft
labels and an entropy-based regularizer to constrain the model’s
prediction while still achieving high accuracy. To further reduce
privacy risk, HAMP uniformly modifies all the prediction outputs
to become low-confidence outputs while preserving the accuracy,
which effectively obscures the differences between the prediction
on members and non-members.

We conduct extensive evaluation on five benchmark datasets,
and show that HAMP provides consistently high accuracy and
strong membership privacy. Our comparison with seven state-of-
the-art defenses shows that HAMP achieves a superior privacy-
utility trade off than those techniques1.

I. INTRODUCTION

Machine learning (ML) models are often trained with the
sensitive or private user data like clinical records [22], financial
information [31] and personal photos [21]. Unfortunately, ML
models can also unwittingly leak private information [37],
[10], [43], [12], [4]. One prominent example is Membership
inference attacks (MIAs) [37], [30], [48], [38], [27], [47], [3],
which determine whether an input is used for training the target
model, Hence, MIAs constitute a fundamental threat to data
privacy. For instance, by knowing that an individual’s clinical

1Our code is available at https://github.com/DependableSystemsLab/MIA
defense HAMP.

record was used to train a hospital’s diagnostic model, the
adversary can directly infer his/her health status.

MIAs exploit the ML model’s differential behaviors on
members and non-members [37], [30], [48], [27], [38], [8],
[3]. Members are the samples used to train the model (i.e.,
training samples) and non-members are the samples not used
for training (e.g., testing samples). Existing MIAs can be
divided into score-based [37], [30], [17], [48], [38], [3] and
label-only attacks [8], [27], where the former requires access
to the model’s output score indicating the class probability,
while the latter needs only the prediction label. These attacks
all seek to learn distinctive statistical features from the model’s
predictions in different ways, such as training an attack in-
ference model [30], [37], computing metrics like prediction
loss [48] and entropy [37], [38], or using Gaussian likelihood
estimate [3].

Defenses against MIAs can be categorized into provable
and practical defenses. Provable defenses provide provable
guarantees through differential privacy (DP) [2], but they
often incur severe accuracy degradation. Practical defenses,
instead, offer empirical membership privacy with the goal
of maintaining high model accuracy [29], [41], [36], [19].
However, existing defenses still suffer from the following
limitations: (1) limited privacy protection [19], [29]; (2) large
accuracy drop [2], [29], [41]; (3) requiring additional public
datasets that may not always be available in practice [32], [36].
To the best of our knowledge, no technique satisfies all these
constraints, though they may address individual issues, e.g.,
high model accuracy but with limited privacy protection [19];
or strong privacy but with significant accuracy loss [2].

Our Approach. This paper proposes a practical defense
called HAMP that can achieve both High Accuracy and
Membership Privacy without requiring additional data. Exist-
ing MIAs employ diverse approaches in inferring membership,
e.g., score-based MIAs may exploit prediction loss or en-
tropy [48], [38], [30] while label-only MIAs [8], [27] can lever-
age adversarial robustness. Despite the different manifestations
of these attacks, we identify a common exploitation thread
among them - they are all learning to distinguish whether the
model is overly confident in predicting the training samples
via different proxies. Our defense is therefore to reduce the
model’s overconfident prediction on training samples while
preserving the model’s prediction performance, which can
simultaneously reduce membership leakage (from different
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MIAs) and maintain model accuracy.

HAMP consists of a training- and testing-time defense.

Training-time defense. Our key idea is to explicitly enforce
the model to be less confident in predicting training samples
during training. We first identify that the prevailing use of hard
labels in common training algorithms is one of the main factors
that lead to the model’s excessive confidence in predicting
training samples. Hard labels assign 1 to the ground-truth
label class and 0 elsewhere. The model is trained to produce
outputs that match the labels, i.e., near 100% probability for
the ground-truth class and 0% otherwise. On the other hand,
a non-member sample that is not seen during training, is
usually predicted with lower confidence, and can hence be
distinguished by the adversary from member samples.

We therefore propose a new training framework that gets
rid of hard labels and instead uses (1) High-entropy soft
labels, which are soft labels with high entropy that assign
a much lower probability to the ground-truth class and non-
zero probability for other classes. This explicitly enforces the
model to make less confident prediction on training samples.
(2) HAMP also consists of an entropy-based regularizer, which
is to penalize the model for predicting any high-confidence
outputs via regularizing the prediction entropy during training.

The proposed training framework is able to significantly
reduce the model’s overconfident prediction and improve mem-
bership privacy, without (severely) degrading the model accu-
racy. Section III-B explains how it prevents privacy leakage
from different sources (output scores and prediction labels).
On the other hand, stronger membership privacy can also be
achieved (e.g., by increasing the strength of regularization),
but it would be at the cost of accuracy, which is undesirable
as both privacy and accuracy are important considerations.
This motivates our testing-time defense, whose goal is to gain
higher membership privacy without degrading accuracy.

Testing-time defense. We propose to uniformly modify
all the outputs (from members and non-members) into low-
confidence outputs, without changing the prediction labels.
Our idea is to leverage the output scores from the randomly-
generated samples, which are often predicted with low confi-
dence due to the high dimensionality of the input space.

In our defense, all the values in each output score are
replaced by those from random samples, and we keep the
relative ordering of different classes unchanged to maintain
the same prediction labels (e.g., a dog image is still predicted
as a dog but with different output scores). Both the high-
confidence outputs (on training samples) and low-confidence
outputs (on testing samples) are uniformly replaced by such
low-confidence outputs from random samples. This further
reduces the membership leakage from the output scores.

Evaluation. We evaluate HAMP on five benchmark
datasets (Purchase100, Texas100, Location30, CIFAR100 and
CIFAR10), and perform comprehensive evaluation on a total of
nine diverse MIAs (including the state-of-art LiRA attack [3]).

We compare HAMP with seven leading defenses: Ad-
vReg [29], MemGuard [19], SELENA [41], DMP [36], Label
Smoothing (LS) [40], Early-stopping [38], and DP-SGD [2].

High accuracy AND
Strong privacy

High accuracy AND
Strong privacy

Fig. 1: Privacy and utility evaluation on each defense (results
averaged across datasets). Negative accuracy delta means ac-
curacy drop compared with the undefended models. DP-SGD
is reported at ε = 4. HAMP simultaneously achieve strong
membership privacy (for both members and non-members) and
high prediction accuracy, hence providing a better privacy-
utility trade off than existing defenses.

An ideal privacy defense should offer strong protection for
both members and non-members. Therefore, we follow Carlini
et al. [3] to use attack true positive rate (TPR) controlled at
low false positive rate (FPR), and attack true negative rate
(TNR) at low false negative rate (FNR) to evaluate membership
privacy. The former metric evaluates the privacy protection for
members, and the latter for non-members.

Contributions. We summarize our contributions below.

• Develop a novel training framework with high-entropy soft
labels and an entropy-based regularizer to enforce less
confident prediction by the model, which can significantly
mitigate diverse MIAs and incur minimal accuracy drop.
• Propose a novel testing time defense technique to modify all

the output scores into low-confidence outputs, which further
improves membership privacy without degrading accuracy.
• Integrate the training and testing framework as HAMP, and

conduct rigorous evaluation under a wide range of attacks
on five different datasets. We compare HAMP against seven
leading defenses and show that HAMP outperforms existing
defenses by achieving a superior privacy-utility trade off.

Fig. 1 summarizes the results of HAMP versus other
defenses. We find that existing defenses often bias towards
either privacy (e.g., DP-SGD) or utility (e.g., MemGuard).
In contrast, HAMP is able to provide strong membership
privacy for both members and non-members, and preserve
model accuracy. HAMP reduces the attack TPR @0.1% FPR
by 94% and the attack TNR @0.1% FNR by 97% respectively,
with only 0.46% accuracy loss on average. This represents a
much better privacy-utility trade off than other defenses.

II. BACKGROUND

A. Machine Learning Primer

This work focuses on supervised training for classification
problem. A ML model can be expressed as a function Fθ :
X → Y , where X ∈ Rd denotes the input space and Y ∈ Rk
the output space, and F is parameterized by weights θ. During
training, the network is given a training set (x, y) ∈ Dtr where
y is the ground truth label. y is commonly expressed in the one-
hot encoding format, where the ground-truth class is indicated
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with 1 and 0 elsewhere. The training objective is to minimize
the prediction loss on the training set:

min
θ

1

|Dtr|
∑
x∈Dtr

L(Fθ(x), y), (1)

where |Dtr| denotes the size of the training set, and L the
prediction loss such as cross-entropy loss. The model’s output
Fθ(x) indicates the probability of x belonging to each class
with

∑k−1
j=0 Fθ(x)j = 1 that sums up to 1.

To prevent the model from overfitting on the training set, a
separate validation set different from Dtr is commonly used to
serve as an unbiased proxy of the testing set. One can use the
accuracy on the validation set to assess how good the model
will be when evaluated on test data and prevent overfitting.

Hereafter, we refer to F as the trained model Fθ, F (x) as
the output score of F on x, and Dte as the test set.

B. Threat Model

Attacker. Following prior work [19], [41], [29], we assume
a black-box adversary who can query the target ML model with
any input and observe the prediction output. The adversary’s
goal is to infer the membership of the training samples (x, y) ∈
Dtr for a given model F . Like previous defenses [29], [41],
[36], we assume a strong adversary with the knowledge of half
of the training members and an equal number of non-members.
Further, we assume the adversary has full knowledge of the
defense technique and can therefore train shadow models in
the same way as the target model is trained, which facilitates
a strong adversary in evaluating the defenses.

Defender. We assume the defender has a private set Dtr

and his/her goal is to train a model that can both achieve high
classification accuracy and protect against MIAs. We do not
assume the defender has access to any additional data.

C. Membership Inference Attacks

The attack model h(x, y, F (x)) → [0, 1] outputs the
membership probability. We refer to DA

tr, D
A
te as the set of

members and non-members that are known to the adversary.
The adversary’s goal is to find a h that can best distinguish
between DA

tr and DA
te. The empirical gain of the attack can be

measured as:∑
(x,y)∈DA

tr

h(x, y, F (x))

|DA
tr|

+
∑

(x,y)∈DA
te

1− h(x, y, F (x))
|DA

te|
(2)

We categorize existing MIAs into score-based and label-
only attacks as follows.

Score-based MIAs: This class of attacks either trains an
inference model to infer membership [30], [37] or computes
custom metrics such as prediction loss [48] to derive a thresh-
old for distinction.

NN-based attack [30], [37] trains an neural network (NN)
A, to distinguish the target model’s prediction on members
and non-members: A : F (x) → [0, 1], x ∈ [DA

tr, D
A
te]. By

querying the target model with DA
tr, D

A
te, the resulting output

(F (DA
tr), 1), (F (DA

te), 0) forms the training set for A. In

addition to output scores, other features like the ground-truth
labels and prediction loss can also be used to train the inference
model.

Loss-based attack [48] is based on the observation that the
prediction loss on training samples is often lower than that on
testing samples, as the loss on training samples are explicitly
minimized during training. Specifically, the adversary can
query the target model with DA

tr, and obtain the average loss
on DA

tr as the threshold τ = − 1
|DA

tr|
∑

(x,y)∈DA
tr
L(Fθ(x), y).

Any sample with loss lower than τ is considered as a member.

Entropy-based attack [37], [48] leverages that the output
score of a training sample should be close to the one-hot
encoded label, and hence its prediction entropy should be close
to 0, which is lower than that on testing samples. Prediction en-
tropy of a sample can be computed as −

∑
j F (x)j log(F (x)j),

where j is the class index.

Modified-entropy-based attack [38] is an enhanced version
of the entropy-based attack by computing the following met-
ric: −(1− F (x)y)log(F (x)y)−

∑
j 6=y F (x)j log(1− F (x)j).

This attack improves by taking into account class-dependent
thresholds, as well as the ground truth label y, which is shown
to achieve higher attack effectiveness.

Confidence-based attack [48], [38] exploits the observation
that the prediction confidence on training samples F (x)y is
often higher than that on testing samples. The attack threshold
can be derived similar to the entropy-based attacks, and sam-
ples predicted with high confidence are deemed as members.

Likelihood Ratio Attack (LiRA) [3] is a state-of-art attack
that can successfully infer membership when calibrated at
low false positive. In LiRA, the adversary trains N shadow
models, half of which are trained with target sample (called
IN models) and the remaining half are trained without the
target sample (called OUT models). It then fits two Gaussian
distributions to approximate the output distributions by the IN
and OUT models (a logit scaling step on the logit values
is taken to ensure the outputs follow a Gaussian). Finally,
LiRA conducts a parametric likelihood-ratio test to conduct
membership inference (e.g., a sample is deemed as a member
if its output is estimated to come from the IN models with
high probability).

Label-only MIAs: These attacks exploit training members’
higher degree of robustness to different perturbations (like
adversarial perturbations, random noise), and develop different
proxies to distinguish the degree of robustness by members and
non-members.

Prediction-correctness attack [48] is the baseline label-only
attack that simply determines any samples that are correctly
classified as members. This attack is effective when the train-
ing accuracy is higher than the testing accuracy.

Boundary attack [8], [27] is based on the observation that
it is easier to perturb a testing sample to change the prediction
label than a training sample. This is because testing samples
are often closer to the decision boundary and therefore more
susceptible to perturbations. Using common attacks such as
CW2 attack [5], the adversary measures the magnitude of
perturbation needed to perturb x ∈ [DA

tr, D
A
te], based on which

τ can be derived. A sample is deemed as a member if the
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amount of perturbation needed to change the prediction label
is higher than τ (i.e., more difficult to be perturbed).

The adversary can also inject random noise to the samples
(instead of adversarial perturbations), which is more efficient
and useful in the cases where constructing the adversarial
sample is difficult (e.g., for inputs with binary features) [8].

Augmentation attack [8] makes use of the samples’ ro-
bustness to data augmentation and the idea is that training
samples are often more resilient to data augmentation than
testing samples. For instance, if an image was used to train a
model, it should still be classified correctly when it is slightly
translated. For each input x, the adversary first generates
multiple augmented versions of x, and computes how many
of them are correctly classified. Based on the classification
outcome, the adversary trains an attack inference model to
predict whether or not x is a member.

D. Defenses against MIAs

This section presents an overview of representative de-
fenses against MIAs (a comprehensive survey of existing
defenses is in Section VI).

Adversarial regularization (AdvReg) [29] trains the model
to both achieve good model performance and protection against
a shadow MIA adversary. During training, the defender first
trains an attack inference model that tries to maximize the MIA
gain, after which the protected model is trained to minimize
the MIA gain and maximize the classification accuracy. This
is instantiated as a min-max game in [29].

Distillation for membership privacy (DMP) [36]. She-
jwalkar et al. propose DMP to defend against MIAs based
on knowledge distillation. The idea is to distill the knowledge
from an undefended model (trained on a private dataset)
into a new public model using a new reference set. Privacy
protection is enabled by thwarting the access of the public
model to the private dataset as the public model is trained on
a separate reference set. Such a reference set can be curated
by assuming the availability of a public dataset or by using
synthetic data. We consider the latter since we do not assume
access to external data. This is because in many domains such
as healthcare, the training data is private/proprietary, and thus
such a public dataset may not be available. We hence consider
a more realistic scenario in which the defender has no access
to external data (similar to [41]).

SELf ENsemble Architecture (SELENA) [41]. SELENA also
uses knowledge distillation. Its key idea is to partition the
private dataset into different subsets and train a sub model
on each of the subset (another technique with similar idea is
proposed in [9]). For each sub model, there exists a subset of
private dataset that was not used in its training, i.e., “reference
set” for that sub model. Each sub model assigns the output
scores on its “reference set”, which constitutes the knowledge
to the distilled. The knowledge from the ensemble of sub
models is finally distilled into a new public model.

Early stopping [38], [6]. As the training proceeds, the
model tends to overfit the training data and become susceptible
to MIAs. Early stopping is a general solution in reducing
overfitting [6] by training models with fewer epochs. Song

et al. [38] find that this is useful in mitigating MIAs and we
follow to include it as as a benchmark defense mechanism.

Differential privacy (DP) based defenses [2]. DP-based de-
fenses leverage the formal framework of differential privacy to
achieve rigorous privacy guarantee. This is done via injecting
noise to the learning objective during training such as DP-
SGD that adds noise to the gradients [2]. However, DP-based
defenses often produce models with considerable accuracy
drop, resulting in a poor privacy-utility tradeoff.

MemGuard [19]. Jia et al. propose to defend against
MIAs via obfuscating the prediction scores. The idea is to
fool the MIA adversary by constructing a noise vector to
be added to the input (analogous to constructing adversarial
samples), and make the outputs on members and non-members
indistinguishable by the adversary.

Label Smoothing [40]. LS is a common regularization
technique to improve model accuracy by using soft labels.
LS replaces the one-hot label with a mixture of the one-hot
label and uniform distribution using a smoothing intensity
parameter. E.g., for a smoothing intensity of 0.3, the soft
label becomes 80% cat, 10% dog, 10% frog; and a smoothing
intensity of 0.6 yields 60% cat, 20% dog, 20% frog. LS trains
with different smoothing intensities to produce model with
high accuracy.

Both LS and HAMP use soft labels in their training, but
they are two techniques built with different principles that
require different soft labels. LS is used to improve model
performance, which necessitates training with low-entropy
soft labels. Unlike LS, HAMP consists of high-entropy soft
labels, an entropy-based regularizer and a novel testing-time
defense (details in the next section), which is to improve
membership privacy while preserving model accuracy. This
consequently results in the different privacy implications by
the two techniques: LS improves model performance but the
resulting model still suffers from high MIA risk [20], while
HAMP consistently contributes to very low MIA risk. We refer
to detailed comparison in Section IV-G.

III. METHODOLOGY

The main insight behind HAMP in mitigating diverse MIAs
is to identify a common exploitation thread among different
MIAs. HAMP is designed to overcome this exploitation so
that it can defend against different MIAs regardless of their
specific approaches. We first explain how existing MIAs can
be unified via a common thread in Section III-A, and then
discuss how we build HAMP to overcome this exploitation.

A. Overconfident Prediction Leads to Membership Leakage

While existing MIAs employ diverse approaches to infer
membership, we unify them by viewing them all as exploiting
the model’s overconfidence in predicting training samples. We
explain below how different attacks can be viewed as different
forms to quantify whether a model is overly confident in
predicting a specific sample, in order to infer its membership.

Score-based MIAs leverage the prediction scores to infer
membership through different proxies. The model’s overcon-
fident prediction on training samples can be exposed through
high confidence scores [48], low prediction entropy [37], [38],
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low prediction loss [48], or using a neural network [37], [30].
For boundary and augmentation attacks, samples predicted
with high confidence can be viewed as exhibiting high robust-
ness against adversarial perturbations and data augmentation.
Training samples can therefore be identified by the adversary
based on whether they are more resilient to adversarial pertur-
bation [8], [27] or data augmentation [8].

What leads to the model’s overconfidence in predicting
training samples? As mentioned before, common training
algorithms make use of the one-hot hard labels to minimize the
prediction loss. Minimizing the training objective function (1)
is equivalent to encouraging the model to produce outputs that
are consistent with the labels, i.e., 100% for the ground-truth
class and 0% for any other classes.

While training with hard labels has achieved success in a
broad class of classification problems, we find that it undesir-
ably contributes to the model’s overconfidence in predicting
training samples, which eventually leads to membership leak-
age. For example, on Purchase100, the difference between the
average prediction confidence on training and testing samples
is >25%, which means the model is much more confident
in predicting training samples. Such differential behavior can
be identified by the adversary to obtain >14% attack TPR
@0.1% FPR. This indicates training with one-hot hard labels
undesirably enables the adversary to identify a large fraction
of training samples with very low false positives (and sim-
ilarly identifying testing samples with low false negatives).
This inspires our design principle of enforcing less confident
prediction to mitigate MIAs, based on which we introduce a
novel training and testing defense that can achieve both strong
membership privacy and high model accuracy.

B. Overview

Fig. 2 shows an overview of HAMP. It has two parts.

Training-time defense. Inspired by the observation in
Section III-A, our main idea is to train the model to produce
less confident prediction even on training samples, thereby
enforcing the model to behave similarly on training and testing
samples. We achieve this by two innovations: (1) replacing the
hard labels with high-entropy soft labels; and (2) introducing
an entropy-based regularizer.

The first step is to generate soft labels with high entropy
from the hard labels. These high-entropy soft labels explicitly
induce the model to produce less confident output during
training by assigning a much lower probability for the ground-
truth class. For instance, a hard label of [0, 1] can be changed
into a soft label of [0.4, 0.6], which guides the model to
predict the ground-truth class with 60% probability (instead
of 100%). The probability of each class is determined by an
entropy threshold parameter, and a higher threshold generates
a soft label with higher entropy (e.g., [0.5, 0.5] has the highest
entropy) - details in the next section. The ground-truth class
remains the same so that the model can learn correctly, e.g., a
dog image is still trained to be predicted as a dog.

Second, we introduce an entropy-based regularizer to pe-
nalize the model for predicting any output with low entropy.
Prediction entropy measures the prediction uncertainty, and can
be used to regularize the confidence level of the prediction,

𝑌!"#
(high-entropy

soft labels)

𝑌!"
(hard labels)

High-entropy soft labels Entropy-based regularization

Testing-time

output modification

𝑋!"

Protected 
model

𝐹(𝑋"$%&)

𝐹(𝑥')

𝐹(!"#$(𝑥')

1 2
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Query input  𝑥' ∈ [𝑋!", 𝑋!)]

Query 
result

Fig. 2: Overview of our training- and testing-time defense.

e.g., low entropy indicates high-confidence output, and can
be mitigated by the proposed regularizer to become low-
confidence output.

The high-entropy soft labels encourages the model to pro-
duce outputs consistent with the labels, while the regularization
term allows the model to produce any low-confidence outputs,
even if the outputs do not closely match the labels. Both
components are important for HAMP to mitigate overconfident
prediction and achieve strong membership privacy.

How HAMP’s training-time defense mitigates member-
ship leakage from different sources? There are two sources
leading to membership leakage, and we discuss below how
HAMP can reduce leakage from both sources.

Output scores. With the high-entropy soft labels and
entropy-based regularizer, HAMP forces the model to produce
output scores on training samples with higher entropy (i.e.,
lower confidence), which resemble the output scores on testing
samples. E.g., on Purchase100, the average prediction entropy
on members and non-members are 0.389 and 0.576 on the
undefended model, which are 4.485 and 4.490 on the HAMP
model. HAMP therefore reduces the entropy difference by 31x
(from 0.187 to 0.006) and effectively enforces the output scores
on members and non-members to be indistinguishable (more
details in Appendix B). Some score-based MIAs leverage both
output scores and label information (e.g., [38], [30]) and we
explain next how HAMP prevents membership leakage from
the labels.

Prediction labels. HAMP’s training-time defense mitigates
privacy leakage from the prediction labels by pushing the train-
ing samples closer to the decision boundary, so that training
samples lie similarly close to the decision boundary as the
testing samples. We next use the boundary and augmentation
attacks to explain (both attacks exploit label information in
different manners to infer membership).

Boundary attack exploits the training samples’ higher ad-
versarial robustness than testing samples. Without HAMP, the
adversary can discern that the training samples require more
perturbations than the testing samples. With HAMP however,
training samples are predicted with lower confidence, and
therefore it takes a similar amount of perturbation to perturb
training and testing samples. For instance, on CIFAR100,
the average amount of perturbation to perturb the training
samples on the undefended model is 0.342, and 0.226 on the
testing samples. With HAMP, the perturbation on the training
samples become 0.289 and 0.234 on the testing samples, which
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effectively reduces the perturbation difference between training
and testing samples by >53%. This means the members and
non-members become indistinguishable from the perspective
of their adversarial robustness.

Augmentation attack exploits the training samples’ higher
resistance to data augmentation, i.e., the augmented variants
of training samples are more likely to be classified correctly.
Performing data augmentation on the original samples can be
viewed as drawing neighboring variants around the original
samples in the sample space. Since the training samples are
closer to the decision boundary under HAMP, their augmented
variants are more likely to cross the decision boundary, and
hence be classified incorrectly, which is similar to how testing
samples would behave. We also evaluate the model’s per-
formance on the inputs added with random augmentations.
We find HAMP mainly reduces the performance on the aug-
mented training samples (from 64.38% to 55.12%), and the
performance on the augmented testing samples remain similar
before and after HAMP (46.12% and 46.36%). This reduces
the accuracy difference between members and non-members
from 18.26% to 8.76% (a 52% reduction), and enables them
to exhibit similar resistance to data augmentation.

HAMP’s training-time framework is able to reduce the
model’s overconfident prediction on training samples without
compromising the model’s performance, i.e., strong member-
ship privacy and prediction accuracy. Nevertheless, member-
ship privacy can be further improved such as by pushing the
training samples closer to the decision boundary, but at the
cost of accuracy, which is undesirable. In light of this, we
introduce a testing-time output modification defense that can
attain higher membership privacy without degrading accuracy.

Testing-time defense. Our idea is to modify all the output
scores to become low-confidence scores, hence making the
output scores from members and non-members less distin-
guishable. The key observation that underpins the testing-time
defense is that randomly-generated samples are often predicted
with low confidence, and the low-confidence output scores can
be used for output modification. Specifically, we first uniformly
generate random samples, which are highly unlikely to be part
of the training set due to the high dimensionality of the input
space (e.g., the entire Texas100 dataset contains only 67, 330
samples while the input space has 26170 samples). As these
random samples are unlikely to be members of the training
set, they are often predicted by the model with low confidence.
We then replace all the entries in each output score with those
from random samples, where the replacement is to keep the
predicted labels unchanged (all top-k labels) and modify the
output scores only. In essence, HAMP returns only the ordering
of the confidence scores and the ordering is represented by the
random output scores arranged in a specific order.

The random samples do not have any prerequisites (e.g.,
they do not need to come from a specific distribution, nor do
they need to produce a specific prediction label), as long as
they are valid inputs (e.g., pixel values are in [0, 255]).

In HAMP, the high-confidence outputs on members and
low-confidence outputs on non-members, all become low-
confidence outputs after being modified. This significantly
increases the difficulty for the adversary to identify differential
behaviors on members and non-members.

In Section V-A, we perform detailed ablation study to
show that all three defense components in HAMP are crucial
in achieving strong membership privacy and preserving high
model accuracy. We next explain HAMP in details.

C. Training-time Defense

Generating high-entropy soft labels. The first step is to
generate high-entropy soft labels for training, where the class
probabilities in the soft labels are controlled by an entropy
threshold parameter, denoted as γ. The entropy of a soft label
y′ can be calculated as:

H(y′) = −
k−1∑
j=0

y′j ∗ log(y′j) (3)

A soft label with uniform probability on each dimension
has the highest entropy, based on which we choose a smaller
entropy threshold. For a k-class classification problem, our
goal is to find a y′ given γ such that,

H(y′) ≥ γH(y), y = {1
k
, ...

1

k
}k, γ ∈ [0, 1], (4)

where y′ has the highest probability on its ground-truth class,
and the probabilities on the remaining dimension are the same.
For a hard label y whose ground-truth class is jtruth (k classes
in total), the resulting soft label becomes:

∀y′j ∈ y′, y′j =
{
p if j = jtruth
(1− p)/(k − 1) if j 6= jtruth

(5)

p is the probability on the ground-truth class, and a larger γ
indicates higher prediction entropy, which leads to a smaller p
(i.e., smaller probability on the ground-truth class).

Entropy-based regularization. In addition, we introduce an
entropy-based regularizer that measures the prediction entropy
during training, and penalizes predictions that have low en-
tropy, as such predictions indicate high-confidence output and
may be exploited by the adversary.

Finally, the overall training objective can be formulated as:

LKL(Fθ(x), y) =

k−1∑
j=0

yj log(
yj

Fθ(x)j
), (6)

min
θ

[LKL((Fθ(Xtr), Y
′

tr), θ)− αH(Fθ(Xtr))], (7)

where Y
′

tr is the high-entropy soft labels, LKL the Kullback-
Leibler divergence loss, α is to control the strength of reg-
ularization. Our goal is to train the model to mitigate the
overconfident prediction on training samples while maintaining
high prediction accuracy. We achieve this by using a large γ
to train the model with soft labels in high entropy, and a α to
regularize the prediction entropy. Section IV-A explains how
to select the parameters γ, α in HAMP (p in Equation 5 is
determined by γ).
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Algorithm 1 Training and testing phase of HAMP
Input: (Xtr, Ytr) ∈ Dtr : Training set;

γ: Entropy threshold;
α: Strength of regularization;
F : an initialized ML model;

1: function TRAINING((Xtr, Ytr), γ, α, F )
2: Generate high-entropy soft labels y′ given γ
3: Generate Y ′

tr from Ytr using y′, where ∀(Ytr[i], Y ′
tr[i]) ∈

(Ytr, Y ′
tr), argmax(Ytr[i]) = argmax(Y ′

tr[i])
4: for number of training epochs do
5: Minimize (7) using Stochastic Gradient Descent
6: end for
7: return F
8: end function
9:

10: function TESTING(F , x)
11: Generate F (x)
12: Generate random uniform sample xrand and F (xrand)
13: Generate Fxrand (x) by replacing F (x) with F (xrand), where

argsort(Fxrand (x)) = argsort(F (x)) /* top-k labels unchanged */
14: return Fxrand (x)
15: end function

D. Testing-time Defense

The testing-time defense uniformly modifies the runtime
outputs to achieve stronger privacy without jeopardizing accu-
racy. We first generate uniform random samples xrand, e.g.,
for Purchase100 with binary features, each feature is assigned
with 0 or 1 with equal probability. For each runtime input
x ∈ [Dtr, Dte], all the entries in F (x) (that indicate the
probability for each class) are replaced by those in F (xrand),
the resulting output is denoted as F xrand(x). The replace-
ment is to only modify the entries in F (x) while ensuring
F (x) and F xrand(x) give the same prediction labels. For
example, let x ∈ [Dtr, Dte], F (x) = [0.85, 0.05, 0.1], and
x′ ∈ Xrand, F (x

′) = [0.2, 0.3, 0.5], then the final output
produced by the model becomes: F (xi) = [0.5, 0.2, 0.3]. This
enforces the model to produce low-confidence outputs on both
members and non-members, and reduces privacy leakage.

Overall Algorithm. Algorithm 1 gives the overall algo-
rithm of HAMP. γ and α are the two parameters in HAMP to
regulate the confidence level of the model’s prediction, e.g., a
high entropy threshold or strong regularization can enforce the
model to become less confident in prediction. Line 2 generates
a template of high-entropy soft labels of y′, which is then
used to generate soft labels for each of the hard labels. The
condition in Line 3 ensures that the ground-truth labels remains
unchanged so that the model can learn the correct labels.

At test time, each output is replaced by those from
a random sample. The condition of argsort(F xrand(x)) =
argsort(F (x)) in line 13 is to ensure both F xrand(x) and F (x)
give the same labels (all top-k labels and not just the top-1
label). Line 11 and Line 12 are independent of each other,
and hence can be executed independently to facilitate faster
runtime inference (overhead evaluation in Appendix F).

IV. EVALUATION

A. Experimental Setup

Datasets. We consider five common benchmark datasets,
and we describe them below.

Purchase100 [37] includes 197,324 shopping records of
customers, each with 600 binary features indicating whether a

specific item is purchased. The goal is to predict the customer’s
shopping habits (100 different classes in total).

Texas100 [37] contains 67,330 hospital discharge records,
each containing 6,170 binary features indicating whether the
patient has a particular symptom or not. The data is divided
into 100 classes, and the goal is to predict the treatment given
the patient’s symptoms.

Location30 [37] contains the location “check-in” records
of different individuals. It has 5,010 data records with 446
binary features, each of which corresponds to a certain loation
type and indicates whether the individual has visited that
particular location. The goal is to predict the user’s geosocial
type (30 classes in total).

CIFAR100 [23] is an image classification dataset that has
60,000 images in 100 object classes. Each image has a size of
32×32×3.

CIFAR10 [23] is similar to CIFAR100 that also contains
60,000 images but with 10 different object classes.

We follow [36] to use the fully-connected (FC) networks
on Purchase100, Texas100 and Location30, and a DenseNet-
12 [16] on CIFAR100 and CIFAR10 (Appendix H conducts
evaluation on more network architectures, including ResNet-
18 [14], MobileNet [15] and ShuffleNet [50]). Purchase100 is
trained with 20,000 samples, Texas100 with 15,000 samples,
Location30 with 1,500 samples, CIFAR100 and CIFAR10 are
with 25,000 samples. Section V-B reports additional experi-
ments on more training sizes (from 2,500 to 50,000).

Attacks. We consider all nine attacks as in Section II-C.
For NN-based attack, we use the black-box NSH attack from
Nasr et al. [30], which uses the model loss, logit values from
the target model, and the ground-truth label to train an attack
inference model. We consider the loss-based attack from Yeom
et al. [48] and confidence-, entropy- and modified-entropy-
based attacks as in Song et al. [38]. For LiRA [3], we train
128 shadow models for each defense (64 IN and OUT models
each), where each shadow model is trained following the same
procedure as the targeted defense (as per our threat model).
E.g., for HAMP, this means the shadow model is trained
with the same high-entropy soft labels and the entropy-based
regularization as the defense model, and the shadow model
also performs the same output modification as HAMP does.

We consider the boundary and augmentation attacks from
Choquette et al. [8]. For the boundary attack on the two image
datasets, we use the CW2 attack [5] to generate adversarial
samples and derive the perturbation magnitude threshold to
distinguish members and non-members. Likewise, for the
other three non-image datasets that contain binary features,
we compute the sample’s robustness to random noise instead
of adversarial perturbation. For each sample x, we generate
hundreds of noisy variants of x, and the number of correctly
classified noisy variants of x is used to determine a threshold
that best distinguishes between members and non-members.
For augmentation attack, we consider image translation as
the augmentation method, and we similarly consider different
degrees of translation to find the best attack.

HAMP configuration. γ, α are the two parameters in
configuring HAMP (for generating high-entropy soft labels and
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controlling the strength of regularization respectively). We per-
form grid search to select the parameters (γ ∈ [0.5, 0.99], α ∈
[0.0001, 0.5]), and select the one with small train-validation
gap and high validation accuracy. We also conduct evaluation
to study how HAMP’s performance varies under different
parameters (please see Appendix E).

For the testing-time defense, we generate random samples
(e.g., random pixels in [0, 255]) and perform output modifica-
tion as in Section III-D. There are no any other requirements.

Our code is available at https://github.com/
DependableSystemsLab/MIA defense HAMP.

Related defenses. We consider seven major defenses:
AdvReg [29], MemGuard [19], DMP [36], SELENA [41],
Early stopping [38], [6], Label Smoothing (LS) [40] and DP-
SGD [2]. We follow the original work to set up the defenses
unless otherwise stated (more details in Appendix A).

Evaluation metrics. An ideal privacy defense should pro-
vide strong protection for both members and non-members, for
which we follow the best practice [3] to consider (1) attack
true positive rate (TPR) evaluated at 0.1% false positive rate
(FPR), which evaluates the protection for members, and (2)
attack true negative rate (TNR) at 0.1% false negative rate
(FNR), which quantifies the protection for non-members.

Result organization. Table I reports the model accuracy
for every defense. Fig. 3 compares each defense in terms of
their membership privacy and model utility. Each defense is
evaluated with multiple attacks, and we report the ones that
achieve the highest attack TPR or TNR (detailed results for
each attack are in Appendix K). Fig. 4 presents the average
attack AUC (area under curve) by each defense, and the full
ROC curves are in Appendix J. We leave the comparison
with early stopping in Appendix D due to space constraint.
Section V-A presents an ablation study, and Appendix F reports
training and inference overhead evaluation. We next discuss the
results by comparing HAMP with other defenses.

B. Comparison with Undefended Models

HAMP significantly reduces the MIA risk against both
members and non-members. Compared with the undefended
models, HAMP achieves significantly lower attack TPR and
TNR. The average attack TPR on the undefended model
is 13.48%, which is reduced to 0.8% by HAMP (a 94.1%
reduction). Similarly, HAMP reduces the attack TNR by 97%,
from 19.89% to 0.59%. This effectively thwarts the adversary
in inferring members or non-members from the target model.

In addition, we find that NN-based attack yields the highest
attack TPR on the undefended models in many cases (as in
Fig. 3), and we explain the reason in Appendix G.

HAMP achieves strong membership privacy while pre-
serving high model accuracy. Across the five diverse datasets,
HAMP is able to consistently produce models with comparable
accuracy as the undefended models. HAMP has an accuracy
drop of at most 1.1% (on Location30), and the average
accuracy drop by HAMP is only 0.46%.

C. Comparison with MemGuard [19]

Both MemGuard and HAMP are capable of preserving
model accuracy. MemGuard does not incur any accuracy drop

TABLE I: Model accuracy for each defense. Accuracy delta
measures the accuracy difference with the undefended model.

Dataset Defense Training acy Testing Acy Acy delta

Purchase100

Undefended 99.36 80.85 0.00
MemGuard 99.36 80.85 0.00
AdvReg 93.97 75.75 -5.10
DPSGD 61.06 54.05 -26.80
LS 99.54 85.60 +4.75
SELENA 85.19 76.50 -4.35
HAMP 91.12 81.15 +0.30

CIFAR100

Undefended 86.21 59.56 0.00
MemGuard 86.21 59.56 0.00
AdvReg 55.78 44.36 -15.20
DMP 53.37 47.52 -12.04
LS 88.80 63.24 +3.68
SELENA 62.15 57.64 -1.92
HAMP 68.44 58.92 -0.64

Location30

Undefended 99.56 57.40 0.00
MemGuard 99.56 57.40 0.00
AdvReg 69.70 48.20 -9.20
DPSGD 36.37 28.00 -29.40
DMP 92.81 54.30 -3.10
SELENA 67.41 55.80 -1.60
HAMP 78.22 56.30 -1.10

CIFAR10

Undefended 98.72 86.72 0.00
MemGuard 98.72 86.72 0.00
AdvReg 86.73 82.16 -4.56
DMP 91.08 85.56 -1.16
SELENA 86.86 84.52 -2.20
HAMP 95.88 86.28 -0.44

Texas100

Undefended 76.79 54.80 0.00
MemGuard 76.79 54.80 0.00
AdvReg 62.76 51.60 -3.20
DPSGD 43.08 39.47 -15.33
DMP 46.92 43.07 -11.73
LS 75.52 56.33 +1.53
SELENA 58.58 53.60 -1.20
HAMP 68.56 54.40 -0.40

Average
accuracy
delta

Undefended 0.00 MemGuard 0.00
AdvReg -7.45 DPSGD -23.84
LS +2.42 DMP -7.01
SELENA -2.25 HAMP -0.46

since it is a post-processing technique, and does not change
the prediction label. Likewise, HAMP only incurs a minor
accuracy drop of 0.46%.

HAMP achieves considerably stronger membership pri-
vacy than MemGuard. MemGuard offers very limited pri-
vacy protection because MemGuard only modifies the output
scores without changing the prediction labels, which cannot
prevent privacy leakage from the label information. On the
contrary, HAMP consists of a training-time defense that can
mitigate membership leakage from both output scores and label
information (explained in Section III-B), and achieves much
stronger membership privacy than MemGuard. The average
attack TPR on MemGuard is 6.7%, which is 8.4x relative to
that of HAMP. Similarly, the attack TNR by MemGuard is
10.9%, which is 18.3x relative to that of HAMP.

D. Comparison with AdvReg [29]

HAMP outperforms AdvReg with higher model ac-
curacy and stronger membership privacy. In terms of
accuracy, HAMP consistently achieves higher accuracy than
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CIFAR100
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CIFAR10
Undefended | NN-based
MemGuard | NN-based
DMP | NN-based
AdvReg | NN-based
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CIFAR100
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CIFAR10
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Fig. 3: Attack TPR @ 0.1% FPR (first two rows) and Attack TNR @ 0.1% FNR (last two rows) on different datasets. The
legend indicates the attack that yields the highest attack TPR/TNR. Negative prediction accuracy delta means accuracy drop
compared with the undefended models. DP-SGD is reported at ε = 4, and it is not evaluated on CIFAR100 and CIFAR10 due to
its significant accuracy drop (similar case as DMP on Purchase100). LS is not evaluated on CIFAR10 and Location30 as LS did
not lead to accuracy improvement. Overall, HAMP offers strong privacy protection for both members and non-members, while
preserving high model accuracy, thereby yielding a superior privacy-utility trade off over other defenses.

AdvReg. AdvReg incurs an average 7.45% accuracy drop,
while HAMP incurs only 0.46% (94% lower than AdvReg).

In terms of privacy, HAMP outperforms AdvReg with
both much lower attack TPR and TNR. The attack TPR is

1.70% with AdvReg and 0.8% with HAMP, which translate
to a 87% and 94% reduction from those of the undefended
models. Similarly, AdvReg reduces the attack TNR by 90%
while HAMP reduces it by 97%, which is much higher.
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High accuracy AND
Strong privacy

Fig. 4: Average attack AUC by each defense (detailed results
for each dataset can be found in Appendix I).

E. Comparison with DMP [36]

DMP [36] uses generative adversarial networks (GANs)
trained on the private dataset to produce synthetic data as the
reference set for knowledge distilation. We follow Shejwalker
et al. [36] to train the two image datasets on DC-GAN [34].
The defender can generate unlimited data from the GAN, and
hence he/she can create a reference set that is larger than the
original training set. Therefore, we use 150K synthetic samples
to train the model with higher accuracy (we do not consider
more synthetic images as the improvement is negligible).

For the three datasets with binary features, we use CT-
GAN [45] for modeling tabular data. We use 100K synthetic
samples for Texas100, 10k for Location30. We do not consider
Purchase100 as it incurs significant accuracy drop (over 30%).
To validate that synthetic samples are useful for the domain
task, we compare the performance of the models trained with
GAN-generated synthetic data and those with random data
(i.e., all features are randomly selected as 0 or 1 with equal
probability) using Texas100. We find that models trained with
random data only achieve accuracy from 5.8% to 14.8%; while
those with GAN-generated data achieve over 40% accuracy.

HAMP outperforms DMP by being able to consistently
achieve strong privacy protection with high model accuracy
across different datasets. In terms of membership privacy, we
find that DMP is able to achieve strong results in many (but
not all) cases, and it achieves an average attack TPR of 0.44%
and TNR of 0.38% on Texas100, CIFAR100 and CIFAR10,
where HAMP achieves 0.9% TPR and 0.65% TNR (DMP
is slightly better). However, DMP’s performance does not
generalize across datasets. For instance, on Location30, DMP
suffers from a much higher attack TPR of 7.26% and TNR of
23.33%. This is because the model is trained with limited data
(1,500), and the GAN is not able to generate diverse data that
are different from the original training data. As a result, the
teacher model assigns high confidence to the synthetic data,
from which the student model learns to predict the training
members with high confidence that eventually leads to high
MIA risk. To validate this, we compare the difference between
the prediction confidence on members and non-members by
the DMP models. On Location30, the average difference is
>30%, and only <5% on the other datasets, which is why
DMP exhibits poor privacy protection on Location30. On the
same dataset, HAMP yields a low TPR of 0.89% and TNR of
0.59%, and this trend is consistent across datasets.

In terms of accuracy, DMP suffers from different degrees
of accuracy loss that are much higher than HAMP’s. DMP

incurs >30% accuracy loss on Purchase100 (as mentioned
earlier), ∼12% accuracy drop on Texas100 and CIFAR100,
3.1% on Location30, and 1.2% on CIFAR10 (smaller accuracy
loss as CIFAR10 has 10 classes only). In contrast, HAMP
incurs average accuracy drop of <0.5% (at most 1.1%), which
is significantly better than DMP.

F. Comparison with SELENA [41]

Both SELENA and HAMP achieve similarly strong
privacy protection. On average, HAMP has a slightly better
membership privacy than SELENA, but neither technique has
consistently better membership privacy overall (Fig. 3). The
attack TPR of SELENA is 0.53% ∼ 1.72%, with an average
of 1.1%, and that of HAMP is 0.4% ∼ 1.2%, with an average
of 0.8%. They are able to reduce the attack TPR by 92%
(SELENA) and by 94% (HAMP). In addition, the attack TNR
of SELENA is 0.42% ∼ 3.7%, with an average of 1.7%, and
that of HAMP is 0.44% ∼ 0.77%, with an average of 0.6%.
This translates to a TNR reduction of 91% (SELENA) and
97% (HAMP), respectively.

While providing comparable privacy benefits, HAMP
outperforms SELENA by having lower accuracy loss, hence
providing a better privacy-utility trade off. The largest
accuracy drop by SELENA is 4.4% and that by HAMP is only
1.1%. On average, SELENA incurs a 2.25% accuracy drop,
while HAMP incurs a much smaller drop of 0.46%. Moreover,
our additional experiment in Section V-B shows that HAMP
continues to outperform SELENA with much lower accuracy
drop when evaluated on a variety of different training sizes
(2.2%∼5.2% by SELENA and 0.04%∼0.98% by HAMP).

G. Comparison with Label Smoothing (LS) [40]

Though LS is able to improve model accuracy, the
model trained with LS still suffers from high MIA risk.
In contrast, the model trained with HAMP can maintain
high model accuracy and exhibit very low MIA risk. For
LS, we follow prior work by Kaya et al. [20] to train with
different smoothing intensities from 0.01 to 0.995, and select
the model with the highest accuracy (we omit CIFAR10 and
Location30 as LS did not lead to accuracy improvement). We
first discuss the qualitative difference between LS and HAMP,
and then quantitatively compare their privacy risk.

While LS and HAMP use soft labels in their training, they
are built with different purposes that require different soft
labels. LS is used as a regularization technique to improve
model accuracy, which necessitates training with low-entropy
soft labels, and is able to increase the accuracy by 2.4% on
average. However, the resulting model still suffers from high
MIA risk, as LS causes the model to overfit on the smooth
labels and exhibit discernible behavior on the training sam-
ples [20]. In contrast, HAMP is built to improve membership
privacy, which consists of high-entropy soft labels, an entropy-
based regularizer and a novel testing-timd defense to force
the model to make less confident predictions, and to behave
similarly on the training and testing samples.

To quantitatively compare the different soft labels used by
both techniques, we measure the soft label entropy in LS and
HAMP, and find that the label entropy in HAMP is consid-
erably higher than that in LS, and is 4x∼50x relative to that
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Fig. 5: Results on DP-SGD under different clipping norms
∈ [1, 5, 10], and noise multipliers ∈ [0.0, 0.1, 0.5, 0.9].

in LS (average 9x). This contributes to the low membership
privacy risk by HAMP, unlike LS.

The average attack TPR on the LS models is 5.1%, 7.1x
relative to that by HAMP (on the same datasets). The attack
TNR on LS is 6.3x relative to that by HAMP (we observe
a similar trend even when we train LS with other smoothing
intensities that have comparable accuracy improvement - see
Appendix C). Moreover, our results reveal that LS may amplify
the MIA risk and render the model more vulnerable than
the undefended model. On Texas100, LS increases the attack
TPR from 3.87% (on the undefended model) to 5.61%, which
increases the MIA risk against training members by 45%.
This suggests that LS may constitute a hidden privacy risk
for the practitioners (a similar finding was identified recently
by Kaya et al. [20]). On the contrary, HAMP consistently leads
to low MIA risk and outperforms LS with significantly better
membership privacy.

H. Comparison with DP-SGD [2]

We use the canonical implementation of DP-SGD using
Pytorch Opacus [1]. We first consider a fixed privacy budget
ε = 4 as per Tang et al. [41], and then evaluate DP-SGD with
different values of ε.

1) DP-SGD with fixed ε = 4.: In this setting, the average
attack TPR of the DP-SGD models is 0.36% and 0.3%, both of
which are the lowest among all the defenses we evaluated. In
comparison, HAMP yields 0.8% attack TPR and 0.6% TNR,
which are slightly higher than DP-SGD. However, DP-SGD
suffers from considerable accuracy loss, with an average loss
of 23.84%, while HAMP a significantly smaller loss of 0.46%.

2) DP-SGD with different ε.: We next evaluate DP-SGD by
considering different noise multipliers and clipping norms. We
consider Purchase100, on which we used a noise multiplier
of 1.7 and a clipping norm of 1, for ε = 4 in the earlier
evaluation. We select different noise multiplier values of 0.0
(no noise injected), 0.1 (ε = 12069.1), 0.5 (ε = 62.5) and 0.9
(ε = 10.9); and clipping norm values of 1, 5 and 10, totalling
12 different configurations. We report the results in Fig. 5.

Reducing the amount of injected noise and using a larger
clipping norm allows DP-SGD to provide empirical privacy
protection (but with a very large provable bound of ε), and
reduce the amount of accuracy loss. For instance, by using a
clipping norm of 10 without injecting any noise, DP-SGD is
able to reduce the accuracy loss to be <1%, which can also
reduce the attack TPR by 73% (from 14.37% to 3.86%), and

TABLE II: Ablation study on different components of HAMP:
1 : High-entropy soft labels; 2 : Entropy-based regularizer;
3 : Testing-time output modification.

Defense Training Testing Attack TPR Attack TNR
component accuracy accuracy @0.1% FPR @0.1% FNR

None (undefended) 99.36 80.85 14.37 14.62
1 94.58 81.75 4.76 4.22

2 98.06 81.10 3.39 4.19

3 99.36 80.85 8.51 5.34

1 + 2 91.12 81.15 1.86 1.07

1 + 3 94.58 81.75 0.82 1.23

2 + 3 98.06 81.10 2.90 3.76

1 + 2 + 3 91.12 81.15 0.40 0.44
(full defense)

the attack TNR by 36% (from 14.62% to 9.36%). Nevertheless,
this performance is still considerably inferior to that of HAMP,
which can reduce the attack TPR and TNR by 97.2% and
96.7%, respectively.

Using a tighter clipping norm or injecting more noise can
improve the membership privacy even more, but this comes
at the cost of accuracy loss (the earlier result has negligible
accuracy loss). For example, by using a small clipping norm of
1, the attack TPR can be reduced to 0.67% and attack TNR to
0.62%. However, this results in 8.2% accuracy loss. Increasing
the noise multiplier can further reduce privacy leakage, e.g.,
using a noise multiplier value of 0.5 can reduce the attack
TPR to 0.5% and attack TNR to 0.49% (and with a large ε of
62.5), which are comparable to the 0.4% TPR and 0.44% TNR
values by HAMP. However, DP-SGD degrades the accuracy
by 13.6%, while HAMP incurs negligible accuracy drop.

Therefore, training a model with a small amount of noise
or with a tight clipping norm is also a viable defense against
MIAs, though it still incurs much larger accuracy loss than
HAMP and results in large provable bounds ε.

V. DISCUSSION

A. Ablation Study

HAMP consists of three components, and we perform a de-
tailed ablation study to investigate the effectiveness of each of
these components - this includes a total of six configurations.
We present the results in Table II.

The second to fourth rows in Table II shows the results
on models using a single component in HAMP. For instance,
training with high-entropy soft labels alone is able to produce a
model with similar accuracy as the undefended model (trained
with the one-hot hard labels), and reduce the attack TPR from
14.37% to 4.76%, and attack TNR from 14.62% to 4.22%.
This also validates our earlier observation in Section III-A
that training with one-hot hard labels could lead to high MIA
risk, and the proposed high-entropy soft labels can be used
to mitigate the high MIA risk. However, this is not enough
as the model still suffers from relatively high TPR and TNR.
We observe similar trends in the other two settings where we
either train with the entropy-based regularizer alone, or directly
perform output modification on the undefended model.
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Fig. 6: Defense evaluation on models trained with different amounts of training data. The first two rows evaluate attack TPR and
the last two rows evaluate attack TNR. HAMP consistently achieves strong privacy protection while preserving model accuracy.

Strengthening the model with more defense components
can further reduce the MIA risk while preserving model accu-
racy. For example, training with high-entropy soft labels and
the entropy-based regularizer (fifth row in Table II) achieves
a low TPR of 1.86% and a low TNR of 1.07%. We observe
a similar trend even if we change to different configurations,
as in the sixth and seventh rows in Table II, both of which
exhibit better privacy protection than models equipped with
a single component. Furthermore, we find that the resulting
model continues to maintain high model accuracy, which
means the different defense components in HAMP can be used
together to improve membership privacy without jeopardizing
model accuracy. Finally, the full defense consisting of all three

defense components, as in HAMP, exhibits the best privacy
protection while maintaining competitive model accuracy.

B. Evaluation on Different Training Sizes

This section reports additional experiments where we vary
the size of the training set. We evaluate six more different sizes
on Purchase100, which is the largest dataset in our evaluation
and allows us to comprehensively evaluate a wide range of
sizes, namely: 2,500, 5,000, 7,500, 10,000, 30,000, 50,000
(up to 20x difference). We trained 64 shadow models in the
LiRA attack for each defense, with over 2,300 different shadow
models in total. Fig. 6 shows the results.
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We find that even when evaluated under a broad range
of training sizes, HAMP consistently achieves superior
performance on both privacy protection and model util-
ity. The average attack TPR on the undefended model is
24.7% and attack TNR 22.9%. MemGuard achieves an average
attack TPR of 13% and attack TNR 17.4%, both of which
are significantly higher than the 1.3% and 1.5% by HAMP.
AdvReg incurs an average accuracy loss of 6.3% while HAMP
incurs only 0.2%. HAMP also outperforms AdvReg with better
privacy protection: AdvReg reduces the attack TPR by 83%
and attack TNR by 76.1%, while HAMP reduces them by
94.8% and 93.4%, respectively. LS improves the accuracy by
3.2%, but it still suffers from high MIA risk: its attack TPR and
TNR are 8x and 4.1x relative to that of HAMP. Both SELENA
and HAMP have similarly strong membership privacy: the
average attack TPR on SELENA is 1.2%, and 1.3% on HAMP;
the attack TNR are 1.4% and 1.5%, respectively. Under a
similar privacy protection, HAMP still outperforms SELENA
with a much lower accuracy drop. On average, SELENA
degrades the accuracy by 3.97% (up to 5.2%), while HAMP
degrades accuracy by only 0.15% (up to 0.98%).

C. Evaluation against Data-poisoning-based MIA [42]

Recent work by Tramer et al. [42] shows that a more capa-
ble adversary can significantly amplify the MIA risk through
data poisoning. Therefore, we conduct additional evaluation on
whether HAMP can protect against such more capable attack.

The Tramer et al. attack increases the membership leakage
against target points, by poisoning the training set to transform
the target points into outliers. Each target point is replicated n
times with a wrong label, and these replicas are added as the
poison samples. If the target point is a member in the training
set, the model will be fooled into believing that the correctly-
labeled target point is “mislabeled” (due to the presence of
other poisoned replicas), which would have a large influence
on the model’s output and can be identified by the adversary.

We follow [42] to conduct the evaluation on CIFAR10,
and select 250 random target points (containing both members
and non-members), each replicated 8 times. We train 128
shadow models, which include a total of 32,000 target points.
Without data poisoning, the adversary achieves 8.23% attack
TPR and 10.15% attack TNR on the undefended model. These
are increased to 52.44% and 24.52% after data poisoning,
respectively. Even under such a powerful attack, HAMP is able
to reduce the attack TPR from 52.44% to 0.34%, and attack
TNR from 24.52% to 0.71%. Further, HAMP achieves such
strong protection with a negligible accuracy drop of 0.6%.

D. Limitation

First, it requires re-training and hence incurs additional
training overhead. Nevertheless, re-training is commonly re-
quired by many existing defenses [29], [36], [41], and training
is a one-time effort prior to deployment. Further, our evaluation
shows that HAMP incurs only a modest training overhead
compared with other defenses (see Appendix F).

The second limitation is that HAMP’s testing-time defense
incurs an overhead in every inference, which may be un-
desirable for the computations that have stringent real-time
constraints. Nevertheless, HAMP incurs a low latency of only

0.04∼0.38ms per inference. In comparison, MemGuard, the
other defense that also contains post-processing modification,
introduces a latency of 335.42∼391.75ms. In addition, this
process also changes the output scores to be randomized
scores, which may affect the usefulness of the output scores.
Nevertheless, we try to reduce the impact by ensuring the pre-
diction labels derived from the output scores remain unchanged
(all top-k labels), and thus the model accuracy is unaffected.
This can still provide meaningful information in the output
scores without leaking membership privacy.

Finally, though HAMP empirically provides superior
privacy-utility tradeoff, it does not offer provable guarantees.
This is a limitation common to all practical defenses [29],
[36], [41], [19]. Hence, a more capable adversary may mount
stronger attacks, such as the data poisoning attack by Tramer
et al. [42]. Our preliminary evaluation shows that HAMP
still exhibits strong privacy protection and preserves model
accuracy even under the presence of such a data-poisoning
adversary, but we leave further investigation to future work.

VI. RELATED WORK

Membership inference attacks. Depending on the adversary
capabilities, MIAs can be divided into black-box [37], [48],
[17], [3], [38], [8], [47], [27] and white-box attacks [25], [18],
[30]. The former has access only into the output of the target
model while the latter has visibility into information such as
the internal model gradients to facilitate membership inference.
Black-box MIA assumes a more realistic adversary, and hence
is hence widely adopted in prior defense studies [19], [41],
[29] (and in HAMP). Such attacks can be mounted by either
shadow-training [37], [29], [48] or computing statistical met-
rics based on the partial knowledge of the private dataset [38],
[8], [27]. Many of those attacks require full or partial access
to the output scores by the model, and may be defeated if
the model only reveals the prediction label. This motivates a
new class of attacks called, label-only attacks, which can be
launched either with [8] or without [27] partial knowledge of
the membership information. Carlini et al. [3] introduce the
LiRA attack that can succeed in inferring membership when
controlled at low false positive or false negative, through a
well-calibrated Gaussian likelihood estimate.

In addition to supervised classification, MIAs have also
been explored in other domains, including contrastive learn-
ing [28], generative models [7], [13], federated learning [30],
graph neural networks [51], and recommender systems [49].

Defenses against membership inference attacks. These de-
fenses can be divided into provable and practical defenses.
The former can provide rigorous privacy guarantee, such as
DP-SGD [2], PATE [32]. Nevertheless, these defenses often
incur severe accuracy drop when used with acceptable provable
bounds [35], [33]. Another line of practical defenses aim to
achieve empirical privacy without severely degrading accu-
racy. Common regularization techniques such as dropout [39],
weight decay [24] are shown to be able to reduce privacy leak-
age, but with limited effectiveness [37], [36]. Other defenses
enforce specific optimization constraint during training to
mitigate MIAs [29], [26], or perform output obfuscation [19],
[46]. Knowledge distillation is used by different techniques to
mitigate MIAs, including PATE [32], DMP [36], SELENA [41]
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and KCD [9]. However, existing defenses are often biased
towards either privacy or utility. In contrast, HAMP both
achieves strong membership privacy and high accuracy, which
offers a much better privacy-utility trade off.

Other privacy attacks. In addition to membership privacy,
common ML models are found to leak different private prop-
erties [43], [44], [11], [10], [12], [4]. Model extraction attacks
can duplicate the functionality of a proprietary model [43],
[44]. Model inversion attacks are capable of inferring critical
information in the input features such as genomic informa-
tion [11], [10]. Property inference attacks are constructed to
infer sensitive properties of the training dataset [12].

VII. CONCLUSION

This work introduces HAMP, a defense against Member-
ship Inference Attacks (MIAs) that can achieve both high
accuracy and membership privacy. HAMP has two innovations:
(1) a training framework that consists of high-entropy soft
labels and an entropy-based regularizer; and (2) an output mod-
ification defense that uniformly modifies the runtime output.
HAMP significantly constrains the model’s overconfidence in
predicting training samples, and forces the model to behave
similarly on both members and non-members, thereby thwart-
ing MIAs. Our evaluation shows that HAMP outperforms
seven leading defenses by offering a better trade off between
utility and membership privacy.
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[43] F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Stealing
machine learning models via prediction apis,” in 25th {USENIX}
Security Symposium ({USENIX} Security 16), 2016, pp. 601–618.

[44] J.-B. Truong, P. Maini, R. J. Walls, and N. Papernot, “Data-free model
extraction,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2021, pp. 4771–4780.

[45] L. Xu, M. Skoularidou, A. Cuesta-Infante, and K. Veeramachaneni,
“Modeling tabular data using conditional gan,” Advances in Neural
Information Processing Systems, vol. 32, 2019.

[46] Z. Yang, B. Shao, B. Xuan, E.-C. Chang, and F. Zhang, “Defending
model inversion and membership inference attacks via prediction pu-
rification,” arXiv preprint arXiv:2005.03915, 2020.

[47] J. Ye, A. Maddi, S. K. Murakonda, V. Bindschaedler, and R. Shokri,
“Enhanced membership inference attacks against machine learning
models,” arXiv preprint arXiv:2111.09679, 2021.

[48] S. Yeom, I. Giacomelli, M. Fredrikson, and S. Jha, “Privacy risk in
machine learning: Analyzing the connection to overfitting,” in 2018
IEEE 31st Computer Security Foundations Symposium (CSF). IEEE,
2018, pp. 268–282.

[49] M. Zhang, Z. Ren, Z. Wang, P. Ren, Z. Chen, P. Hu, and Y. Zhang,
“Membership inference attacks against recommender systems,” in Pro-
ceedings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security, 2021, pp. 864–879.

[50] X. Zhang, X. Zhou, M. Lin, and J. Sun, “Shufflenet: An extremely effi-
cient convolutional neural network for mobile devices,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
2018, pp. 6848–6856.

[51] Z. Zhang, M. Chen, M. Backes, Y. Shen, and Y. Zhang, “Inference
attacks against graph neural networks,” in USENIX Security Symposium
(USENIX Security). USENIX, vol. 2022, 2021, p. 13.

APPENDIX

A. Details of Defense Setup

This section provides details of the defense setup in our
evaluation. For each dataset, we use 10% of the training set
as a separate validation set (20% for Location30 as it has a
smaller training size), and select the model with the highest
validation accuracy.

HAMP. The values of entropy threshold γ and α param-
eter (for controlling the regularizer) are given in Table III.
For model training on the two image datasets, in addition
to the requirement of yielding high validation accuracy, we
empirically set an additional condition that the model needs to
gain at least 1% improvement on validation accuracy in order
to be considered the best model. This is to prevent the model
gaining a marginal improvement on validation accuracy at the
cost of significant overfitting on training samples, which could
result in a large generalization gap.

TABLE III: Parameter setup in HAMP.

Dataset Entropy threshold Regularization strength
Purchase100 0.8 0.01

Texas100 0.6 0.01
CIFAR100 0.5 0.005
CIFAR10 0.95 0.001

Location30 0.5 0.001

Adversarial regularization [29]: The alpha parameter is for
balancing classification accuracy and privacy protection. We
set alpha as 3 for Purchase100 [29], 10 for Texas100 [38], 6
for CIFAR100 and CIFAR10 [29], and 10 for Location30.

SELENA [41]: We follow the original authors to set K=25
and L=10, where K is the total number of sub models, and
L means for a given training sample, there are L sub models
whose training sets do not contain that particular sample. For
these L models, the given training sample can be viewed as
an instance in their “reference set” for distillation.

Label Smoothing (LS) [40]: We follow [20] to train LS
with different smoothing intensities and select the model with
the highest accuracy. Purchase100 is trained with a smoothing
intensity of 0.03, Texas with 0.09 and CIFAR100 with 0.01.

DP-SGD[2]: We use PyTorch Opacus [1] to train the DP-
SGD model. We set microbatch size to be 1. Purchase100
is trained with a noise multiplier of 1.7, a norm clipping
bound of 1.0 and with 200 epochs. Texas100 is trained with
a noise multiplier of 1.44, a norm clipping bound of 1.0 and
with 200 epochs. Location30 is trained with a noise multiplier
of 2.91, a norm clipping bound of 3.0 and with 50 epochs.
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Fig. 7: Comparison of our defense (HAMP) with early stopping on each dataset. First row compares the attack TPR @0.1%
FPR and second row the attack TNR @0.1% FNR at different epochs. Dashed lines indicate the results by HAMP, while solid
lines are those for early stopping (HAMP is trained till it converges, while early stopping is trained with different epoch sizes
before convergence).

B. Measuring Prediction Entropy by HAMP

As mentioned in Section III-B, HAMP reduces privacy
leakage from output scores via enforcing the model to pre-
dict training samples with higher entropy (i.e., less confident
prediction on training samples). We validate this by measuring
the prediction entropy produced by the models before and after
HAMP, and report the results in Table IV.

TABLE IV: Comparing the prediction entropy on the unde-
fended models and HAMP. HAMP significantly increases the
prediction entropy on members (i.e., less confident prediction
on members) and enforces the model to predict members and
non-members with similarly high prediction entropy.

Model Dataset Members Non-
members

Difference
(the smaller
the better)

Undefended

Purchase100 0.389 0.576 0.187
Texas100 0.505 0.771 0.266

CIFAR100 0.685 1.020 0.337
CIFAR10 0.102 0.226 0.125

Location30 0.224 0.567 0.343

HAMP

Purchase100 4.485 4.490 0.006
Texas100 4.484 4.495 0.011

CIFAR100 4.124 4.157 0.032
CIFAR10 2.010 2.029 0.019

Location30 2.789 2.847 0.058

On the undefended models, the member samples are pre-
dicted with much lower entropy than that on non-members, and
the entropy difference between members and non-members is
0.125∼0.343. Such a large difference indicates the differential
behavior on members and non-members that can be distin-
guished by the MIAs.

In contrast, the models trained with HAMP predict both
members and non-members with much higher prediction

entropy (increase by 4.1x∼19.8x), and the average differ-
ence between members and non-members is reduced from
0.125∼0.337 (on undefended models) to 0.006∼0.058, which
is 6.5x∼32.7x smaller. This demonstrates how HAMP enforces
the model to behave similarly on members and non-members
and therefore reduce privacy leakage.

C. Evaluating Label Smoothing with Different Smoothing In-
tensities

In Section IV-G, we compare HAMP with LS using the
smoothing intensity that achieves the highest accuracy, and
we found that HAMP achieves significantly lower MIA risk
than LS. In this section, we evaluate LS with other intensities
that achieve similar accuracy improvement. On Purchase100,
we select a smoothing intensity of 0.03, which yields the
highest accuracy improvement of 4.75%, and we consider
all seven other intensities that achieve comparable accuracy
improvement (3.8%∼4.4%). Fig. 8 presents the results, which
show that LS trained with different intensities still exhibit very
high MIA risk. For example, the attack TPR @ 0.1% FPR by
LS are 13.7x∼15.5x higher than that of HAMP, and the attack
TNR are 8.2x∼12.4x higher than that of HAMP.

D. Comparison with Early Stopping

Early stopping produces models trained with fewer epochs
to prevent overfitting. In our evaluation, we benchmark the
classification accuracy and attack TPR/TNR of the models
trained with different epochs before convergence, and compare
them with HAMP. The results are shown in Fig. 7.

When the model is trained with a few epochs in early
stopping, the model is able to achieve comparable privacy
protection as HAMP, but with a large accuracy drop. For
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Fig. 8: Comparing HAMP with Label Smoothing under differ-
ent smoothing intensities. HAMP consistently achieves signif-
icantly better membership privacy than LS.

example, on Purchase100, the model trained with 15 epochs
yields an attack TPR of 0.67% and attack TNR of 1.01%,
which are slightly higher than the 0.4% and 0.44% by HAMP.
However, its prediction accuracy is only 68.6%, which is much
lower than the 81.15% achieved by HAMP.

The model’s accuracy improves with more training epochs,
but then so does the attack TPR and TNR. When the models
derived by early stopping converge, there is a substantial gap
between the attack TPR and TNR of HAMP and early stopping
(black dashed line vs. red solid line in Fig. 7).

To summarize, under a similar MIA risk for members (i.e.,
similar attack TPR), HAMP achieves an average 12.5% higher
accuracy than early stopping; and 28.6% higher accuracy than
early stopping when under similar attack TNR.

E. Varying the Parameters of HAMP

This section evaluates the performance of HAMP under
different parameters, γ ∈ (0.1, 0.9), α ∈ (0.0001, 0.5). We use
Purchase100 and present the results in Table V.

Entropy threshold. A higher entropy threshold assigns
lower probability to the ground-truth class in the labels and
enforces the model to become less confident in predicting
training samples. For instance, for the entropy threshold of
0.9, the probability of the ground-truth class is only 20%,
while with a threshold of 0.1, the probability is 94%. Table V
shows that a higher entropy threshold leads to a model with
lower classification accuracy and also lower MIA risk (on both

TABLE V: Performance of HAMP under different parameters.

Parameter Training Testing Attack TPR Attack TNR
Acy Acy @0.1% FPR @0.1% FNR

γ (En-
tropy
threshold)

0.9 73.79 66.7 0.38 0.26
0.8 91.12 81.15 0.4 0.44
0.7 94.56 82.35 0.53 0.68
0.6 96.73 83.4 0.87 1.15
0.5 97.93 83.55 0.98 1.41
0.4 98.49 83.5 0.9 1.97
0.3 98.67 83.9 1.23 1.47
0.2 98.85 84.55 1.17 2.09
0.1 99.06 84.45 2.02 1.91

α
(Regu-
lariza-
tion
strength)

0.5 31.81 29.1 0.31 0.19
0.1 34.27 33.25 0.15 0.2

0.05 74.98 68.05 0.22 0.36
0.01 91.12 81.15 0.4 0.44
0.005 92.53 81.45 0.44 0.46
0.001 93.8 82.1 0.56 0.53

0.0005 94.22 81.85 0.7 0.78
0.0001 94.69 82.6 0.81 0.91

attack TPR and attack TNR). The highest entropy threshold,
0.9, produces a model with the lowest test accuracy of 66.7%
and the lowest attack TPR of 0.38% and attack TNR of 0.26%

Strength of regularization. Stronger entropy-based reg-
ularization forces the model to produce outputs with higher
uncertainty (uncertainty is measured by the prediction en-
tropy), and is useful in preventing the model’s overconfidence
in predicting training samples. The model exhibits strong
resistance against MIAs when α is large (e.g., 0.05)

On the other hand, strong regularization results in a model
with low classification accuracy. This is because, when α is
large, the overall loss term in objective (7) is dominated by
the second regularization term, while the first loss term for
improving classification accuracy is not optimized sufficiently.

F. Overhead Evaluation

Training overhead. We compare the training overhead of
HAMP with AdvReg, SELENA, LS and DMP. We do not
compare training overhead with MemGuard as it is a post-
processing technique that modifies the prediction vector during
inference. Instead, we compare with its inference overhead.

For Purchase100, Texas100, CIFAR100, CIFAR10 and
Location30, the undefended models and the sub models in
SELENA are trained with 100, 20, 100, 100 and 50 epochs; For
knowledge distillation in DMP and SELENA, we use 200, 100,
200, 200 and 100 epochs. LS and HAMP are trained with 200,
100, 200, 200 and 100 epochs. AdvReg is trained with 50, 20,
200, 200 and 50 epochs, respectively. All models converged
after training.

The overhead is measured on a single NVidia V100SXM2
GPU with 16 GB memory. Each measurement is repeated
5 times and we report the average overhead. The training
overhead of each defense is shown in Table VI. All defense
techniques incur higher training cost compared with the unde-
fended models (as expected), HAMP and LS incur the lowest
training overhead among all the defenses (HAMP is slightly
higher than LS). AdvReg’s overhead is 5.4x∼11.4x relative
to that of HAMP, and DMP’s overhead is 3.2x∼5.6x relative
to that of HAMP. SELENA’s overhead is 4x∼8.8x relative to
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TABLE VI: Training overhead comparison. SELENA-parallel
means all the sub models are trained in parallel.

Dataset None AdvReg SELENA LS DMP HAMPsequential/parallel

Purchase100 177s 2615s 3386s / 600s 376s N/A 484s
Texas100 31s 1501s 859s / 263s 188s 1000s 214s

CIFAR100 0.66h 29.06h 15.45h / 4.25h 2.56h 8.45h 2.56h
CIFAR10 0.66h 28.88h 15.32h / 4.20h N/A 8.39h 2.63h

Location30 6.4s 116.6s 116.6s / 19.8s N/A 74s 13.2s

TABLE VII: Inference overhead comparison with MemGuard.

Dataset Undefended MemGuard HAMP
Purchase100 0.34ms 354.72ms 0.74ms

Texas100 0.31ms 345.61ms 0.69ms
CIFAR100 16.0ms 407.75ms 16.34ms
CIFAR10 12.2ms 389.90ms 12.24ms

Location30 0.23ms 335.42ms 0.32ms

that of of HAMP. Even though the latency of training multiple
sub models in SELENA can be hidden by parallel training, its
overhead is still 23%∼66% higher than that of HAMP.

Inference overhead. We compare HAMP with MemGuard
on their inference overhead (other defenses do not have a
post-processing procedure, and hence their inference overheads
are the same as the undefended model’s). For HAMP, the
generation of random samples is independent of the runtime
inference, so we first generate the random samples and ob-
tain their output scores, and measure only the overhead of
performing output modification (i.e., Line 13 in Algorithm 1).
We measure the inference overhead by performing inference on
500 random member and non-member samples (1,000 samples
in total).

Table VII shows the average inference overhead per sam-
ple. The overhead incurred by MemGuard is 25x∼1048x the
overhead incurred by HAMP. This is because MemGuard
requires solving a complex optimization to obfuscate the
prediciton scores while HAMP only performs output modi-
fication on the prediction scores (Line 13 in Algorithm 1),
which does not require solving any optimization.

G. Understanding the High Attack Performance by the NN-
based Attack [30]

Fig. 3 in our earlier evaluation shows that the NN-based
attack [30] achieves the highest TPR with low FPR on the
undefended models in many cases. We explain the reason.
The NN attack trains an attack inference model on the known
member and non-member samples, which outputs large values
on members and small ones on non-members. We first plot in
Fig. 9 the output distribution by the attack inference model to
help understand how different thresholds affect the attack TPR
and FPR.

The default NN attack uses a threshold of 0.5 and predicts
any sample with an output >0.5 as a member. As shown in
Fig. 9, in order to maintain a low FPR, the attack switches to a
larger threshold (as high as over 0.99 in our experiment). In this
case, low FPR can be achieved because most non-members are
predicted with low values (the left region in Fig. 9). Likewise,
the attack achieves high TPR, because many members are
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Fig. 9: Output distribution by the attack inference model
(obtained from the undefended model). By using a large output
threshold to infer membership, the NN-based attack [30]
achieves high attack TPR with low FPR.
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Fig. 10: Evaluation under different network architectures.
While models trained with different architectures exhibit varied
degree of MIA risk, HAMP consistently contributes to low
MIA risk despite the specific architecture.

predicted with large values (in the right most region in Fig. 9),
and are correctly recognized as members.

H. Evaluation on Different Network Architectures

This section reports additional evaluation on models trained
with different network architectures (using CIFAR10), in-
cluding DenseNet-12 [16], ResNet-18 [14], MobileNet [15],
ShuffleNet [50]. The results are shown in Fig. 10.

We find that models trained with different architectures
exhibit disparate degrees of MIA risk, with the attack TPR
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Fig. 11: Attack AUC comparison. The legend indicates the attack that yields the highest attack AUC.
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Fig. 12: Perturbation distance on the members and non-
members (obtained from the undefended model). The poor sep-
aration between the members and non-members in terms of the
perturbation distance indicates the boundary-based label-only
attack can not be calibrated to infer members/non-members
with low false positive/negative.

@0.1% FPR being 6.47%∼30%, and the attack TNR @0.1%
FNR 10.15%∼ 31.12%. This gives an average attack TPR of
16.29% and attack TNR of 18.75%. HAMP is able to consis-
tently reduces the MIA risk, with the attack TPR on HAMP
being 0.52%∼0.92% and the attack TNR 0.31%∼0.77%. On
average, HAMP reduces the attack TPR by 95.6% (from
16.29% to 0.72%) and the attack TNR by 97.5% (from
18.75% to 0.47). Further, HAMP achieves such strong privacy
protection with only a minor accuracy drop of 0.59% (at most
1.28%).

I. Detailed Attack AUC comparison

In Section IV-A, we report the average attack AUC on each
defense in Fig. 4, and we provide the detailed results on each

dataset in Fig. 11.

J. Full ROC Curves

The full ROC curves from the evaluation in Section IV can
be found in Fig. 13.

K. Detailed Results for Each Attack

In Section IV, we reported the highest attack results among
all evaluated attacks. We now provide the detailed results for
each attack for completeness (the correctness-based attack is
omitted as it does not work when calibrated at a low FPR or
FNR), and they can be found in Table VIII.

Our results also find that label-only attacks are unsuccessful
in inferring members and non-members when controlled at low
FPR and FNR regime - this is also a known issue found on
many score-based attacks by Carlini et al. [3]. We use the
boundary-based attack [8] as an example to illustrate.

We first plot the perturbation distance on the members
and non-members in Fig. 12. As shown, though perturbing
the training members requires more perturbations than the
testing samples, the distance is not well separated enough to
be calibrated for inferring members with low false positive
(hence with a low 0.12% TPR@0.1% FPR), or inferring non-
members with low false negative (hence with a low 0.1%
TNR@0.1%FNR).
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Fig. 13: Full ROC curves, showing attack TPR Vs. FPR, and attack TNR Vs. FNR.
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TABLE VIII: Detailed attack TPR and TNR for each attack. The highest attack results are highlighted in bold.

Dataset Defense Metric
(%)

NN-
based

Loss-
based

Confidence-
based

Entropy-
based

M-entropy-
based

Augmentation-
based

Boundary-
based LiRA

Purchase100

Undefended Attack TPR 14.37 0.09 0.09 0.08 0.08 N/A 0.00 1.86
Attack TNR 0.20 10.24 10.24 1.70 9.64 N/A 0.00 13.19

MemGuard Attack TPR 8.84 0.05 0.05 0.05 0.05 N/A 0.00 1.18
Attack TNR 0.10 7.23 7.23 0.16 7.32 N/A 0.00 11.19

LS Attack TPR 3.22 0.08 0.08 0.08 0.08 N/A 0.00 5.83
Attack TNR 0.14 5.07 5.07 1.69 5.26 N/A 0.00 5.44

DPSGD Attack TPR 0.04 0.11 0.11 0.14 0.12 N/A 0.00 0.26
Attack TNR 0.06 0.03 0.03 0.11 0.03 N/A 0.00 0.26

SELENA Attack TPR 0.70 0.09 0.09 0.09 0.08 N/A 0.00 0.77
Attack TNR 0.06 0.67 0.67 0.15 0.56 N/A 0.00 1.17

AdvReg Attack TPR 2.93 0.14 0.14 0.13 0.13 N/A 0.00 1.39
Attack TNR 0.16 2.77 2.77 0.58 1.86 N/A 0.00 3.14

HAMP Attack TPR 0.39 0.09 0.09 0.11 0.09 N/A 0.00 0.4
Attack TNR 0.13 0.35 0.35 0.08 0.33 N/A 0.00 0.44

Texas100

Undefended Attack TPR 3.67 0.17 0.17 0.16 0.17 N/A 0.00 3.87
Attack TNR 0.68 2.03 2.03 0.40 1.87 N/A 0.00 13.13

MemGuard Attack TPR 3.24 0.13 0.13 0.08 0.14 N/A 0.00 2.65
Attack TNR 0.56 1.93 1.93 0.23 1.88 N/A 0.00 9.64

LS Attack TPR 1.11 0.15 0.15 0.16 0.15 N/A 0.00 5.61
Attack TNR 0.62 1.03 1.03 0.59 0.97 N/A 0.00 1.75

DPSGD Attack TPR 0.24 0.10 0.10 0.10 0.10 N/A 0.00 0.13
Attack TNR 0.12 0.19 0.19 0.07 0.14 N/A 0.00 0.29

DMP Attack TPR 0.24 0.05 0.05 0.04 0.09 N/A 0.00 0.16
Attack TNR 0.04 0.13 0.13 0.13 0.15 N/A 0.00 0.21

SELENA Attack TPR 0.31 0.08 0.08 0.08 0.07 N/A 0.00 0.53
Attack TNR 0.13 0.16 0.16 0.19 0.10 N/A 0.00 1.97

AdvReg Attack TPR 0.07 0.16 0.16 0.17 0.13 N/A 0.00 2.19
Attack TNR 0.25 0.39 0.39 0.10 0.37 N/A 0.00 2.99

HAMP Attack TPR 0.31 0.12 0.12 0.07 0.12 N/A 0.00 1.20
Attack TNR 0.07 0.59 0.59 0.11 0.59 N/A 0.00 0.70

Location30

Undefended Attack TPR 34.67 0.15 0.15 0.07 0.15 N/A 0.00 16.22
Attack TNR 1.93 19.56 19.56 0.89 11.63 N/A 0.00 42.81

MemGuard Attack TPR 13.19 0.00 0.00 0.00 0.15 N/A 0.00 4.00
Attack TNR 0.00 16.59 16.59 1.33 16.59 N/A 0.00 17.85

DPSGD Attack TPR 0.00 0.22 0.22 0.22 0.22 N/A 0.00 0.59
Attack TNR 0.15 0.22 0.22 0.00 0.22 N/A 0.00 0.37

DMP Attack TPR 7.26 0.59 0.59 0.52 0.52 N/A 0.00 4.52
Attack TNR 0.00 15.48 15.48 1.19 10.74 N/A 0.00 23.33

SELENA Attack TPR 0.00 0.30 0.30 0.30 0.59 N/A 0.00 1.33
Attack TNR 0.59 0.67 0.67 0.67 0.81 N/A 0.00 3.70

AdvReg Attack TPR 2.07 0.15 0.15 0.15 0.15 N/A 0.00 1.85
Attack TNR 0.15 1.48 1.48 0.59 1.04 N/A 0.00 2.07

HAMP Attack TPR 0.30 0.52 0.52 0.15 0.44 N/A 0.00 1.19
Attack TNR 0.59 0.22 0.22 0.22 0.22 N/A 0.00 0.59

CIFAR10

Undefended Attack TPR 8.23 0.00 0.00 0.10 0.00 0.02 0.10 2.76
Attack TNR 0.05 6.24 5.99 0.40 6.00 3.63 0.00 10.15

MemGuard Attack TPR 3.89 0.08 0.08 0.07 0.09 0.02 0.10 1.52
Attack TNR 0.13 2.96 2.96 0.20 3.35 3.63 0.00 6.57

DMP Attack TPR 0.73 0.06 0.00 0.10 0.00 0.10 0.10 0.11
Attack TNR 0.05 0.37 0.67 0.12 0.68 0.20 0.00 0.72

SELENA Attack TPR 0.18 0.00 0.00 0.11 0.00 0.13 0.05 0.98
Attack TNR 0.07 0.16 0.11 0.19 0.06 0.16 0.00 0.43

AdvReg Attack TPR 0.57 0.09 0.09 0.14 0.14 0.05 0.13 0.18
Attack TNR 0.04 0.40 0.30 0.16 0.29 0.18 0.00 0.63

HAMP Attack TPR 0.39 0.00 0.11 0.00 0.00 0.08 0.12 0.92
Attack TNR 0.17 0.17 0.26 0.00 0.51 0.38 0.00 0.77

CIFAR100

Undefended Attack TPR 6.24 0.09 0.13 0.14 0.15 0.07 0.12 3.57
Attack TNR 0.46 2.80 2.56 0.24 2.52 1.05 0.10 20.16

MemGuard Attack TPR 4.26 0.15 0.15 0.12 0.10 0.07 0.12 1.86
Attack TNR 0.14 2.28 2.28 0.20 2.37 1.05 0.10 9.21

LS Attack TPR 1.56 0.07 0.08 0.08 0.08 0.30 0.09 4.03
Attack TNR 0.28 2.92 2.92 0.29 2.71 0.37 0.00 2.88

DMP Attack TPR 0.30 0.11 0.20 0.20 0.21 0.21 0.09 0.21
Attack TNR 0.11 0.24 0.20 0.17 0.23 0.12 0.00 0.21

SELENA Attack TPR 0.15 0.06 0.06 0.07 0.06 0.19 0.08 1.72
Attack TNR 0.15 0.21 0.19 0.11 0.20 0.06 0.00 1.28

AdvReg Attack TPR 0.71 0.00 0.00 0.12 0.00 0.08 0.12 0.13
Attack TNR 0.31 0.60 0.57 0.08 0.65 0.12 0.00 0.85

HAMP Attack TPR 0.22 0.16 0.16 0.00 0.17 0.09 0.10 0.46
Attack TNR 0.08 0.41 0.41 0.07 0.41 0.24 0.00 0.47
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