
TensorFI: A Flexible Fault Injection
Framework for TensorFlow Applications

Zitao Chen & Niranjhana Narayanan, Bo Fang, Guanpeng
(Justin) Li, Karthik Pattabiraman, Nathan DeBardeleben

Motivation

● ML is increasingly deployed in safety critical systems

● ML reliability becomes important
○ Soft errors or transient hardware faults: Occur every 53m in 1m nodes*
○ ISO26262 safety standard requires low FIT (10 for ASIL-D level 4) for road vehicles

2

* J. Dongarra, T. Herault, and Y. Robert, “Fault tolerance techniques for high-performance computing,” in Fault Tolerance
Techniques for High Performance Computing, 2015, pp. 3–85

Error Consequences: Autonomous Vehicles

● Single-bit fault → Misclassification of image
○ Guanpeng Li et al., “Understanding Error Propagation in Deep Learning Neural Network (DNN)

Accelerators and Applications”, SC’17

○ Zitao Chen et al., “BinFI: An Efficient Fault Injector for Safety-Critical ML Systems”, SC’19

3

Current Solutions: Fault Injection

● Generic Fault Injection (FI)
○ Non-optimal for DNN applications, costly performance
○ Low level, not readily accessible to users

● ML specific FI
○ ML models coupled with hardware faults or the platforms used
○ Limited number of ML models supported

4

Our Goal

● Inject faults into any generic ML program
● Emulate both hardware and software faults
● High level, easy to use and understand
● Highly portable across platforms

 TensorFlow is an open source, popular framework

5

TensorFlow v1 Workflow

6

● ML algorithms are expressed as dataflow graphs

#!usr/bin/python

import tensorflow as tf

W = b = tf.Variable([0.3], dtype=tf.float32)

X = Y = tf.placeholder(tf.float32)

linear_model = W*X + b

...
train = tf.train.GradientDescentOptimizer(0.01).minimize(error)

...
with tf.Session() as sess:

sess.run(tf.global_variables_initializer())

for i in range(1000):
sess.run(train, {X: x, Y: y})

Fault Model

● Faults injected only during the inference phase

● Faults injected at TF operator output level (interface-level injection)

● Emulates faults occurring at processor’s datapath
○ Arithmetic operators (add, matmul, concat, conv2d, ..)
○ Operators dealing with shape of tensor excluded

● Faults can be
○ Single bit-flips (now multi-bitflips too)
○ Random value changes
○ Zeroed out tensor values

7

Fault Injection Challenges

● Problem: Tapping into particular node during runtime is not possible

8

Const_1 Const_2

+

* Placeholder Nodeorig.

Inject fault
into ADD

TensorFI Approach

● Solution: Duplicate graph and choose the node at runtime!

9

Const_1 Const_2

+

* Placeholder Nodeorig.

+

* faulty

Inject fault
into ADD

TensorBoard Visualization: Linear Regression

Before calling TensorFI: Original graph After calling TensorFI: Duplicate FI nodes inserted

10

TensorFI Usage Example

11

#!usr/bin/python

import tensorflow as tf
import TensorFI as ti

W = b = tf.Variable([0.3], dtype=tf.float32)

X = Y = tf.placeholder(tf.float32)

linear_model = W*X + b

...
train = tf.train.GradientDescentOptimizer(0.01).minimize(error)

...
with tf.Session() as sess:

sess.run(tf.global_variables_initializer())

for i in range(1000):
sess.run(train, {X: x, Y: y})

fi = ti.TensorFI(sess, name=”linear_reg”, logLevel=50,
disableInjections=True)

W_, b_, e_ = sess.run([W, b, error], {X: x, Y: y})

fi.turnOnInjections()

W_i, b_i, e_i = sess.run([W, b, error], {X: x, Y: y})

Import module

Instrument code

Begin FI

Example Output for a GAN model

● Generated images of the digit 8 in the MNIST data-set under different fault
configurations for Generative Adversarial Networks (GANs)

No faults Rand-element

Single bit-flips

oneFaultPerRun dynamicInstance errorRate=0.25 errorRate=0.5 errorRate=1.0

12

Increasing number of faults

Benchmarks & Experimental Setup

● 12 ML models used
○ Basic, DNNs: NN, CNN, FCN, LeNet, AlexNet, Highway CNN, RNN, VGG-11, ResNet-18, SqueezeNet
○ Driving: Commai.ai driving model
○ Unsupervised: GAN

● 4 open source datasets
○ MNIST, GTSRB (traffic sign), ImageNet, driving frame dataset

● 10000*(15*11 + 3*6*2 + 13) =~ 2 million fault injections

● Silent Data Corruption (SDC) chosen as the standard metric
○ Output mismatch from the fault-free execution

13

Research Questions

● Fault tolerance of different operators in a single ML model

● Fault tolerance of different ML models under different error modes

● Fault tolerance of different ML models under different error rates

● Instrumentation and injection overheads of TensorFI

14

Results: Fault Tolerance of Different Operators

● Faults in the convolution layers are more likely to propagate and amplify
● Faults in output layers (softmax, argmax, equal) almost always result in SDC

15

Results: Different Models under Different Error Modes

● RNN exhibits the highest resilience in single fault mode, but loses to more faults
● AlexNet has overall high resilience as it has more operators that mask faults (RQ1)
● Comma.ai models have higher SDC rates than most classifier models 16

Case Study: Effect of Hyperparameter Variations (NN)

● SDC rates decrease with increase in number of neurons
● Layer redundancy has an optimal point (here, 3 layers)

Key: Choose redundancy carefully
17

Summary: TensorFI

● Built a flexible fault injector for injecting h/w and s/w faults in the TF graph
○ High level representation of faults
○ Portable, configurable, compatible with third-party libraries that use TF

● Used TensorFI to evaluate and study the resilience of 12 ML applications under
different fault configurations, including ones used in AVs

● Demonstrated the utility of the tool to improve resilience of selected
applications via hyperparameter optimization and selective layer protection

○ Read our paper here: http://blogs.ubc.ca/karthik/files/2020/08/issre20-tensorfi.pdf
○ Try out TensorFI: https://github.com/DependableSystemsLab/TensorFI
○ For information, doubts and clarifications, contact: nniranjhana@ece.ubc.ca

18

http://blogs.ubc.ca/karthik/files/2020/08/issre20-tensorfi.pdf
https://github.com/DependableSystemsLab/TensorFI
mailto:nniranjhana@ece.ubc.ca

