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Adversarial attacks
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q Input + perturbations à misclassification.

q Perturbations with different properties.

Eykholt et al. CVPR’18 

Universally malicious

Physically realizable

Moosavi-Dezfooli et al. CVPR’17 



Adversarial patch attacks
qUniversally malicious and physically realizable.

q Localized adversarial patch to trigger misclassification.
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Brown et al. 2017

Universally effective on any position



Defense challenges
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[4] Wu et al., Defending Against Physically Realizable Attacks on Image Classification. ICLR’20
[5] Xiang et al., "PatchGuard: A Provably Robust Defense against Adversarial Patches via Small Receptive Fields and 
Masking." USENIX’21.

Existing techniques
Detection performance Low [1]

False positive High [1-5]
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This work - Jujutsu
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Threat model
Adversary

qWhite-box adversary.

qAccess to a surrogate dataset.

qGoal: Universal targeted misclassification [Brown et al. 2017].

Defender

q A hold-out set (random samples hidden from the adversary).

q Goal: Attack detection & mitigation.

§ Mitigation à correct prediction on adv samples. 8



Jujutsu
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Patch attacks:
Universally malicious

Patch attacks: 
Localized perturbations

Consistent misclassification 
on any samples

Utilized by image inpainting 
for attack mitigationExposed for attack detection

Most features are uncorrupted

Turning the adversary’s strength against the adversary



Jujutsu
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Adversary’s strength
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qAdversarial patch is universally malicious.

Brown bear à toaster Helmet à toasterCricket à toaster



Attack detection by Jujutsu
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q Expose the consistent misclassification by the patch attacks.

Target 
sample

1
toaster

Same label à
attack detected

toaster

32



Attack detection (HOW TO)
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1

2

How to locate the target 
image patch?

How to perform the patch 
transplantation?



Locating the target image patch
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qAdversarial patch has high influence to the output.

q Saliency map inspection à Locate high-influence region.

(Processed) saliency map



Locating the target image patch
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qAdversarial patch has high influence to the output.

q Saliency map inspection à Locate high-influence region

(Processed) saliency map
What if the image patch is uncorrupted?



Verify adversarial patch
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qAdv patch causes consistent misclassification on any sample.

§ Exposed by using the hold-output sample.

Target 
sample

Random 
hold-out sample

toaster

Same (mis-classified) label

toaster



Verify benign patch

q Benign image patch is not universally malicious.
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Sloth bear

different labels

corgi

Target 
sample

Random 
hold-out sample



Adversarial vs. benign samples.
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Adversarial sample

Same label Different labels
Benign sample

Target sample Hold-out sample

q Locate target patch à patch transplantation à pred comparison.

Target sample Hold-out sample

toaster toaster Sloth bear corgi



Patch transplantation affects false positive
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Different labels à
benign sample

Sloth bear

Same label à
adv sample (FP)!

Target sample Hold-out sample

Sloth bear Sloth bear corgi



Why false positive?
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Main feature 
region

Background feature 
region

Target sample Hold-out sample

Original hold-out sample
Sloth bear corgi



Avoiding false positive
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Saliency map

Identify background-
feature region

Different labels
Benign sample

Original hold-out sample
Target sample Hold-out sample



Jujutsu
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Turning the adversary’s strength against the adversary

Patch attacks: 
Localized perturbations

Utilized by image inpainting 
for attack mitigation

Most features are uncorrupted

Patch attacks:
Universally malicious

Consistent misclassification 
on any samples

Exposed for attack detection



Adversary’s strength

q Localized perturbations for physically realizable attack.
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Attack mitigation by Jujutsu

q The majority of features are uncorrupted.

qUtilize uncorrupted features to reconstruct clean samples.

§ image inpainting.
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masking Img inpainting



Attack mitigation
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drumsticktoaster

Final output

qUse the label on the inpainted sample as final output.



Evaluation

q 4 Datasets: ImageNet, ImageNette, CelebA, Place365.

q 6 patch sizes: 5% - 10%.

q 7 architectures: ResNet, DenseNet, VGG, etc.

q Jujutsu: configured with highest defense performance 
(more in the paper).
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Overall results
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Adversarial samples

Benign samples

95.93% detected

0.7% mis-detected

Match the accuracy on benign samples

79.73% mitigated



Comparison with related defenses.
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Attack detection Attack mitigation

SentiNet Jujutsu

LGS PatchGuard

Adv train Jujutsu

Jujutsu outperforms related techniques on both
attack detection and attack mitigation



Physical-world attack
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Jujutsu detects & mitigates >95% adversarial 
samples with 3% FPR.



Adaptive attack

q Jujutsu: Detects adv patch from high-influence region.

qAdversary: Force the adv patch to remain low influence.

§ Approach: Manipulate the saliency map.
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Low-influence patch attack suffers from poor

attack success (99% à 5%)



Other attack variants

ü Multi-patch attack.
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ü Patch in a different shape (e.g., rectangular).

✖Untargeted attack.
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Summary

Attack detection Attack mitigation
Adversary: universal attacks

Jujutsu: A two-stage defense against adversarial patch attacks.

Code à https://github.com/DependableSystemsLab/Jujutsu

Jujutsu: expose attacks’ 
consistent misclassification

Adversary: localized attacks

Jujutsu: utilize the uncorrupted 
features à clean samples

Question à zitaoc@ece.ubc.ca

https://github.com/DependableSystemsLab/Jujutsu
mailto:zitaoc@ece.ubc.ca

