Jujutsu: A Two-stage Defense against Adversarial Patch Attacks on Deep Neural Networks

Zitao Chen, Pritam Dash, Karthik Pattabiraman

THE UNIVERSITY OF BRITISH COLUMBIA

Adversarial attacks

- \Box Input + perturbations \rightarrow misclassification.
- Perturbations with different properties.

Universally malicious

Moosavi-Dezfooli et al. CVPR'17

Physically realizable

Adversarial patch attacks

□ Universally malicious and physically realizable.

□ Localized adversarial patch to trigger misclassification.

Defense challenges

	Existing techniques
Detection performance	Low [1]
False positive	High [1-5]

[1] Chou et al., Sentinet: Detecting localized universal attacks against deep learning systems. SPW'20
[2] Naseer et al., Local gradients smoothing: Defense against localized adversarial attacks. WACV'19
[3] Rao et al., Adversarial Training against Location-Optimized Adversarial Patches. ArXiv'20
[4] Wu et al., Defending Against Physically Realizable Attacks on Image Classification. ICLR'20
[5] Xiang et al., "PatchGuard: A Provably Robust Defense against Adversarial Patches via Small Receptive Fields and Masking." USENIX'21.

Defense challenges

	Existing techniques	
Detection performance	Low [1]	
False positive	High [1-5]	
Mitigation performance	Low [2-5]	

[1] Chou et al., Sentinet: Detecting localized universal attacks against deep learning systems. SPW'20
[2] Naseer et al., Local gradients smoothing: Defense against localized adversarial attacks. WACV'19
[3] Rao et al., Adversarial Training against Location-Optimized Adversarial Patches. ArXiv'20
[4] Wu et al., Defending Against Physically Realizable Attacks on Image Classification. ICLR'20
[5] Xiang et al., "PatchGuard: A Provably Robust Defense against Adversarial Patches via Small Receptive Fields and Masking." USENIX'21.

Defense challenges

	Existing techniques	
Detection performance	Low [1]	
False positive	High [1-5]	
Mitigation performance	Low [2-5]	
Configurable	Not supported [1-5]	

[1] Chou et al., Sentinet: Detecting localized universal attacks against deep learning systems. SPW'20
[2] Naseer et al., Local gradients smoothing: Defense against localized adversarial attacks. WACV'19
[3] Rao et al., Adversarial Training against Location-Optimized Adversarial Patches. ArXiv'20
[4] Wu et al., Defending Against Physically Realizable Attacks on Image Classification. ICLR'20
[5] Xiang et al., "PatchGuard: A Provably Robust Defense against Adversarial Patches via Small Receptive Fields and Masking." USENIX'21.

This work - Jujutsu

	Existing techniques	Jujutsu
Detection performance	Low [1]	High
False positive	High [1-5]	Low
Mitigation performance	Low [2-5]	High
Configurable	Not supported [1-5]	Supported

[1] Chou et al., Sentinet: Detecting localized universal attacks against deep learning systems. SPW'20

[2] Naseer et al., Local gradients smoothing: Defense against localized adversarial attacks. WACV'19

[3] Rao et al., Adversarial Training against Location-Optimized Adversarial Patches. ArXiv'20

[4] Wu et al., Defending Against Physically Realizable Attacks on Image Classification. ICLR'20

[5] Xiang et al., "PatchGuard: A Provably Robust Defense against Adversarial Patches via Small Receptive Fields and Masking." USENIX'21.

Threat model

Adversary

- U White-box adversary.
- Access to a surrogate dataset.
- Goal: Universal targeted misclassification [Brown et al. 2017]. Defender
- A hold-out set (random samples hidden from the adversary).
- Goal: Attack detection & mitigation.
 - Mitigation \rightarrow correct prediction on adv samples.

Jujutsu

Turning the adversary's strength against the adversary

Patch attacks: Universally malicious

Consistent misclassification on any samples

Exposed for attack detection

Patch attacks: Localized perturbations

Most features are uncorrupted

Utilized by image inpainting for attack mitigation

Jujutsu

Turning the adversary's strength against the adversary

Patch attacks: Universally malicious

Consistent misclassification on any samples

Exposed for attack detection

Patch attacks: Localized perturbations

Most features are uncorrupted

Utilized by image inpainting for attack mitigation

Adversary's strength

Adversarial patch is universally malicious.

Cricket \rightarrow toaster

Brown bear \rightarrow toaster

Helmet \rightarrow toaster

Attack detection by Jujutsu

Expose the consistent misclassification by the patch attacks.

Attack detection (HOW TO)

How to locate the target image patch?

How to perform the patch transplantation?

Locating the target image patch

Adversarial patch has high influence to the output.

□ Saliency map inspection \rightarrow Locate high-influence region.

(Processed) saliency map

Locating the target image patch

Adversarial patch has high influence to the output.

□ Saliency map inspection \rightarrow Locate high-influence region

What if the image patch is uncorrupted?

Verify adversarial patch

Adv patch causes consistent misclassification on any sample.

Exposed by using the hold-output sample.

Verify benign patch

Benign image patch is not universally malicious.

Adversarial vs. benign samples.

\Box Locate target patch \rightarrow patch transplantation \rightarrow pred comparison.

Patch transplantation affects false positive

Why false positive?

Avoiding false positive

Jujutsu

Turning the adversary's strength against the adversary

Patch attacks: Universally malicious

Consistent misclassification on any samples

Exposed for attack detection

Adversary's strength

Localized perturbations for physically realizable attack.

Attack mitigation by Jujutsu

□ The majority of features are uncorrupted.

Utilize uncorrupted features to reconstruct clean samples.

image inpainting.

Attack mitigation

Use the label on the inpainted sample as final output.

toaster

drumstick

Final output

Evaluation

□ 4 Datasets: ImageNet, ImageNette, CelebA, Place365.

- G patch sizes: 5% 10%.
- □ 7 architectures: ResNet, DenseNet, VGG, etc.
- □ Jujutsu: configured with highest defense performance (more in the paper).

Overall results

Comparison with related defenses.

Jujutsu outperforms related techniques on both attack detection and attack mitigation

Physical-world attack

Jujutsu detects & mitigates >95% adversarial samples with 3% FPR.

Adaptive attack

□ Jujutsu: Detects adv patch from high-influence region.

Adversary: Force the adv patch to remain low influence.

Approach: Manipulate the saliency map.

Low-influence patch attack suffers from poor attack success (99% \rightarrow 5%)

Other attack variants

✓ Multi-patch attack.

Summary

Jujutsu: A two-stage defense against adversarial patch attacks.

Attack detection

Adversary: universal attacks

Jujutsu: expose attacks' consistent misclassification

Attack mitigation

Adversary: localized attacks

Jujutsu: utilize the uncorrupted features \rightarrow clean samples

Code \rightarrow <u>https://github.com/DependableSystemsLab/Jujutsu</u> Question \rightarrow <u>zitaoc@ece.ubc.ca</u>