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ABSTRACT
Adversarial patch attacks create adversarial examples by inject-

ing arbitrary distortions within a bounded region of the input to

fool deep neural networks (DNNs). These attacks are robust (i.e.,
physically-realizable) and universally malicious, and hence repre-

sent a severe security threat to real-world DNN-based systems.

We propose Jujutsu, a two-stage technique to detect and mitigate

robust and universal adversarial patch attacks. We first observe

that adversarial patches are crafted as localized features that yield

large influence on the prediction output, and continue to dominate

the prediction on any input. Jujutsu leverages this observation for

accurate attack detection with low false positives. Patch attacks

corrupt only a localized region of the input, while the majority

of the input remains unperturbed. Therefore, Jujutsu leverages

generative adversarial networks (GAN) to perform localized attack

recovery by synthesizing the semantic contents of the input that

are corrupted by the attacks, and reconstructs a “clean” input for

correct prediction.

We evaluate Jujutsu on four diverse datasets spanning 8 differ-

ent DNN models, and find that it achieves superior performance

and significantly outperforms four existing defenses. We further

evaluate Jujutsu against physical-world attacks, as well as adaptive

attacks.
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1 INTRODUCTION
DNNs are widely used in various application domains, such as

autonomous driving [8, 33], facial recognition [31, 39] and health-

care [15, 35]. Unfortunately, DNNs are known to be vulnerable to ad-
versarial attacks, which maliciously perturb the inputs to cause the

DNNs to misbehave [41]. Different variants of adversarial attacks

have been proposed in the literature, including universal adversarial
attacks that cause misclassification on arbitrary inputs [20, 25, 38];

and robust adversarial attacks that can remain adversarial even

when translated to the physical world [7, 9, 16].

A sub-category of adversarial attacks are adversarial patch at-
tacks that perform arbitrary changes to the input images within a

region of bounded size, in order to cause targeted image misclas-

sification in DNNs [9]. These attacks create robust and universal
adversarial examples - AEs (henceforth referred to as patch attacks).
They are an important threat as they entail dire consequences for

real-world safety-critical systems such as autonomous vehicles.

Further, their universal nature drastically lowers the adversary’s

barrier to launch the attack: an universal adversarial patch can be

widely distributed to fool arbitrary DNN systems with little effort.

Patch attacks have been the subject of considerable study, and

many techniques have been proposed to detect [12, 21] and mit-

igate [19, 30, 34, 42, 43] them. For example, SentiNet [12] detects

patch attacks based onmodel interpretability and statistical analysis.

LGS [30] mitigates patch attacks by smoothing out the important

features in an image based on pre-defined thresholds. Adversarial

training has also been adopted for countering patch attacks [34, 42].

Unfortunately, these techniques suffer from one or more of the

following limitations, (1) high false-positives rates (FPR) - unable

to correctly distinguish between adversarial and benign image fea-

tures [12, 21, 30, 43]. (2) poor detection performance - unable to re-

liably locate the region of adversarial patch [12]. (3) low mitigation

performance (i.e., robust accuracy on adversarial examples) - unable

to allow the DNNs to make correct inference on the adversarial

examples as many important features are corrupted [30, 34, 42, 43].

To address the above issues, we propose Jujutsu1 for both detect-

ing and mitigating adversarial patch attacks. We first outline the

challenges in attack detection and attack mitigation, then explain

the main ideas to address them.

Attack detection. The key challenge in accurate attack detec-

tion with a low FPR is to identify the unique symptom that charac-

terizes adversarial examples and exhibits differences with benign

examples. Our solution is based on two insights: (1) the adversarial

patch is crafted to constitute localized features in the input, which

1
Jujutsu is a martial art whose philosophy is to manipulate the opponent’s force against

him- or herself rather than confronting them with one’s own force. Our technique has

a similar philosophy, and hence the name.
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exerts a large influence on the output in order to manipulate the

output; (2) it exhibits the dominant influence on any input (input-

agnostic). Jujutsu is built on both insights to expose this behavior

of the patch attacks and distinguish AEs from benign examples.

We leverage the first insight to identify the potential location

of the adversarial patch in AEs. Specifically, we propose to locate

the adversarial patch region by locating the salient features in the

saliency map, which are the features that have a large influence

on the output (similar to how adversarial patch would behave).

However, benign features in AEs may also have large influence

on the output, and hence they may be conflated with the adver-

sarial patch (undesirable). To resolve this, we propose a robust

method to pre-process the saliency map, which can highlight the

regions associated with the adversarial patch so that Jujutsu can

correctly identify the region associated with the adversarial patch

(instead of benign features). This enables Jujutsu to reliably locate

the adversarial patch from AEs (Section 3.2).

We build on the second insight to distinguish the adversarial

patch from a benign patch, which is important because the in-

coming input can be either adversarial or benign, and thus the

extracted patch can also be adversarial (i.e., from adversarial exam-

ples) or benign (i.e., from benign examples). Specifically, we propose

a guided feature transplantation method to strategically transfer the

extracted patch from the original input to a dedicated region (the

region where the least-salient features reside) in a new input, and

determine whether the patch continues to cause misclassification

of the new input. If so, it is likely to be an adversarial patch.

Attack mitigation. A natural solution for attack mitigation is

to simply mask the entire patch region, and let the DNNs perform

inference on the remaining features. However, with this approach,

the important features in the original images may be corrupted

(overridden) by the adversarial patch, and hence it is difficult for the

DNNs to make correct predictions on the remaining uncorrupted

features (e.g., see Fig. 2).

We make the observation that, patch attacks only perturb a local-
ized region, and hence the majority of image pixels are uncorrupted
(Section 2.2). These pixels can be used to reconstruct the semantic

contents in the pixels corrupted by the attacks. Therefore, we use

GANs to perform localized attack mitigation, by reconstructing

the uncorrupted contents from the corrupted region, which creates

the “clean” images from AEs for correct prediction. In addition to

improving robust accuracy, our mitigation technique can also be

leveraged to further reduce FPs on benign examples (Section 3.3.3).

Finally, different applications may prioritize different defense

goals, and hence a configurable defense technique is important.

For example, in some systems, the detection performance should

be prioritized as an undetected intrusion might cause severe prop-

erty damage, and hence higher FPR may be acceptable in those

settings. For this purpose, we propose a parametric defense strat-

egy that allows for balancing between detection performance and

FPR. We find that the targeted misclassification caused by the ad-

versarial patch often becomes ineffective even without completely

performing attack recovery on the entire patch, based on which we

introduce a parametric attack mitigation strategy (Section 3.3.2).

Contributions: The contributions of this work are as follows.

• A novel patch attack detection method that can reliably locate

the regions of adversarial patches in adversarial examples and

effectively distinguish between adversarial and benign examples.

• A novel attack mitigation technique that leverages the generative

power of GANs to allow the DNNs to make correct predictions

on AEs (high robust accuracy), and distinguish false detection on

benign examples (low FPRs). It further provides configurability

to balance between the detection of AEs and FPRs.

• A comprehensive evaluation of Jujutsu on four datasets (Ima-

geNet, ImageNette, CelebA and Place365) spanning eight different

DNNs. We find that Jujutsu achieves superior detection and miti-

gation performance with low FPRs, and outperforms four existing

defenses: LGS [30], SentiNet [12], adversarial training [34, 42]

and PatchGuard [43]. Jujutsu can further defend against both

physical-world attacks and adaptive attacks.

2 BACKGROUND
2.1 Attack Formulation
We express a DNN as Fθ : X → Y , where X ∈ Rn and Y ∈ Rm

denotes the input and output space, and F is parameterized by

weights θ (hereafter omitted for simplicity). ȳi is the ground truth

label and ŷ = argmaxFθ (x) the prediction label. We call an input

x ′ ∈ X an adversarial example if

x ′ ∈ X ∧ argmax F (x ′) = yadv ∧ argmax F (x) = ȳ, (1)

where yadv is the target class, x ′ is the adversarial example gener-

ated from the original input x . Patch attack replaces a part of the

image with an image patch [9], denoted as δ ∈ Rn :

x ′ = (1 −m) ⊙ x +m ⊙ δ , (2)

wherem ∈ {0, 1}n is a mask used to put the adversarial patch

(∀mi ∈m,mi = 1 is where the patch will be placed), ⊙ is element-

wise multiplication, δ is the adversarial patch.

To make patch δ be universal (i.e., input-agnostic), the patch is

trained over a variety of images. For each input x ∈ X , patch δ can

be applied in any random location L.
To make patch δ robust (i.e., physically realizable), [9] propose to

use a variant of Expectation over Transformation (EOT) framework

[7]. EOT is used for a distribution of environmental transforms T
that transformx to different physical environments (e.g., translation,

rotation, lightness changes), under which the adversarial examples

aim to remain robust. Based on the above, the objective function of

the patch attack can be formulated as:

δ = argmax

δ
Ex∼X ,t∼T ,l∼L[logPr(y = yadv |x ′)], (3)

where T is a distribution of transformations over the patch, and

L is a distribution over locations in the images. This allows the

patch to work regardless of the background.

2.2 Threat Model
We assume a white-box attacker with full knowledge of the victim

DNN like its structure and parameters. We assume however that

the attacker has no knowledge of the exact inputs to the DNN, but

instead has access to a surrogate dataset, which follows the same

distribution as the legitimate inputs. This is similar to the assump-

tion in other universal attack papers, which have shown that the

2
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knowledge of the input distribution often suffices for the attacker

to generate universal adversarial perturbations [20, 25, 38]. As in

other defense studies [23, 28, 30, 43], we consider an adversary who

replaces a contiguous region of an image with a single adversarial

patch - thus, the adversarial patch is localized to a single region of

the image and the adversary’s goal is to universally cause targeted

misclassification on any input
2
. Further, the defender has access

to a hold-out set hidden from the attacker, which can be created by

randomly sampling a series of images from the data distribution.

3 METHODOLOGY
3.1 Design Overview
Fig. 1 illustrates attack detection and Fig. 2 attack mitigation.

Detecting the adversarial patch.We first identify suspicious
features that potentially contain the adversarial patch. We observe

that the universal and localized nature of adversarial patch induces

the perturbations to have a disproportionately large influence on the

output in order to dominate the prediction on any input, which can

be exposed by investigating the salient features from the saliency

map (Step 1 in Fig. 1). These salient features are considered suspi-

cious as they have a large influence on the output, similar to the

adversarial patch’s behavior. However, salient features may also

point to the natural features in the images and hence the adversarial

patch region may be undetected (see the left of Fig. 3). To avoid this,

we pre-process the saliency map to highlight the regions that are

associated with the adversarial patch, hence we can reliably locate

the adversarial patch region (see the right of Fig. 3).

On the other hand, since the input can either be adversarial

or benign, the suspicious features can also be adversarial (from

adversarial example) or benign (from benign example). Our idea to

distinguish them is based on the observation that the adversarial

patch, when transplanted to other images, will continue to trigger

misclassification, which is different from how benign examples

would behave
3
. Therefore, Step 2 extracts the suspicious features

from the original input, and transplant them to the least-salient
feature region (the region where the least-salient features reside)
of hold-out input. Step 3 compares the prediction on the original

input and the hold-out input implanted with suspicious features. If

both predictions lead to the same prediction label, the suspicious

features are marked as adversarial.

Mitigating the adversarial patch. The goal of mitigation is to

remove the attacks’ effects, and allow the DNN to predict the correct

label from the adversarial examples. A straightforward solution is

to mask out the suspicious features so that the adversarial patch will

not contribute to the final prediction. Unfortunately, masking alone

does not work in many situations. For instance, in Fig. 2, masking

the suspected feature mitigates the adversarial attack, as the DNN

no longer predicts the adversarial example as a “toaster” (the target

label determined by the attacker), thus defying the attack. However,

the DNN predicts the image with the mask as a “monitor”, which is

clearly not the correct label for the image. This shows that merely

masking the suspected feature is not sufficient, as it also removes

2
Section 5.1 discusses attack variants (e.g., multi-patch attacks) that are outside our

threat model.

3
There are two potential scenarios that would lead to false positive on benign samples,

and they are discussed in Section 3.2.2 and Section 3.3.3, respectively.
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Figure 1: Attack detection. Step 1: Identify suspicious features that
may contain adversarial patch. Step 2: Transfer the suspicious fea-
tures to a hold-out input. Step 3: Determine the maliciousness of
the suspicious features based on prediction consistency.

Mask suspected 
feature

Recover uncorrupted
contents

toaster monitor drumstick

Adv. image Masked image Recovered imageOrg. image

drumstick

Figure 2: Attack mitigation: (randomly) mask the suspicious fea-
tures (blue box), and use GAN to recover the uncorrupted contents
in the mask.

the semantic contents in the image, and hence the DNN is unable
to predict the correct label from the masked images.

Our goal is to remove the effects of the attacks while preserving

the semantic contents. We observe that the adversarial patch is

confined within a localized region, and the majority of the pixels

are uncorrupted, which can be used as a rich context to reconstruct

the semantic contents corrupted by the attacks. Specifically, we use

generative adversarial networks (GAN) [26, 47, 49] to reconstruct

the semantic contents from the pixels that are masked, resulting in

a “clean” image that is free from corruptions for the DNN to make

correct prediction. As shown in Fig. 2, after recovering the contents

from the masked regions, the DNN is able to correctly predict the

adversarial image as a “drumstick”. We use the prediction label of

the recovered image as the final output.

Section 3.3.3 discusses how our mitigation technique can also be

leveraged to reduce false detection on benign examples..

3.2 Detecting the Adversarial Patch
3.2.1 Robust Suspicious Feature Detection. We first compute a

saliency map that models the contributions of different pixels on

the final decision. One common approach is to compute the gradi-

ents of the output with respect to the input pixels. Mathematically,

the saliency map Mj (x) can be expressed as: Mj (x) = ∂F (x)j/∂x ,
where j indicates the class label.Mj (x) represents how much differ-

ence a tiny change in x would contribute to the output F (x)j . Thus
Mj (x) can highlight the key regions in predicting F (x)j .

We use SmoothGrad [37], which can visually sharpen the gradient-

based saliency map and smooth out the noisy gradients (that arise

due to the local variations in partial derivatives [37]). Othermethods

such as Grad-cam [36], Integrated Gradient [40] may also be used.

Given the noisy (fluctuating) gradients, SmoothGrad computes a

local average of the gradient values, by taking random examples

in the neighborhood of an input x , and averaging the resulting

saliency maps. This operation can be expressed mathematically as:

3
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Without average filtering
Fail to locate adversarial patch

With average filtering
Succeed in locating adversarial patch

Figure 3: Extracting suspicious features from saliencymapwith and
without average filtering. The proposed use of average filtering is
able to locate the adversarial patch correctly.

M̂j (x) =
1

n

n∑
1

Mj (x +N(0,σ 2)), (4)

where n is the number of examples, and N(0,σ 2) represents the

Gaussian noise with standard deviation σ .
To extract the suspicious features from the saliency map, we

first choose the point that has the maximum value in the saliency

map, and draw a detection box around it. However, this approach

is susceptible to noise and a single large-value pixel outside the

adversarial patch could result in a mis-identification. Thus, the

detection box would fail to locate the adversarial patch. The reason

is that there are many benign features that are uncorrupted in the

adversarial examples, which may also have large influence on the

outputs, and might be conflated with those of the adversarial patch.

In the left-hand side of Fig. 3, the region associated with the benign

feature is identified as the salient feature.

Therefore, we perform an average filtering [4] to pre-process

the saliency map in order to highlight the regions of the adver-

sarial patch, and downplay those of the benign feature. It takes

the average of all the pixels under the kernel area (in the saliency

map) and uses the average value to replace the central element.

Our intuition is that the region of adversarial patch has a higher

density than that of the benign feature (because it needs to have a

disproportionately large influence on the output to dominate the

prediction on any input), and hence by performing average filtering,

the adversarial patch will remain salient while the benign feature

will become less salient, thereby allowing us to accurately locate

the adversarial patch. A visual comparison of the two approaches in

identifying the suspicious features is shown in Fig. 3. Our ablation

study (Section A.2) also validates that the proposed pre-processing

method enables Jujutsu to detect much more AEs than without it.

3.2.2 Guided Feature Transplantation. As mentioned, identifying

the suspicious features by itself is not enough to determine whether

the features are coming from adversarial or benign examples. Hence,

we transfer the suspicious features from the original input to the

hold-out input in order to determine whether they are truly mali-

cious. One way is to randomly transplant the suspicious features to

the new hold-out input and compare the prediction. However, this

may occlude the foreground object in the hold-out input. Should

this happen, the prediction labels on the original and hold-out in-

puts may become the same, leading to a mis-detection of benign

input, i.e., False Positive (FP). Fig. 4 shows an example where ran-

domly transplanting the benign features to a hold-out input leads

to the same prediction label ‘Sloth bear”, thus resulting in an FP.

To avoid FP, we propose a guided feature transplantation method

to transplant the suspicious features to the least-salient regions of
the hold-out input, in order to minimize the chances that the suspi-

cious features override the hold-out input’s foreground object. The

Label: Sloth bear Prediction label changed
(Cardigan Welsh corgi)

Prediction label not
changed

Transfer feature to 
Least-salient region

Saliency map

Transfer feature to 
random region Mis-detect as 

adversarial sample

Correctly identify as 
benign input

Figure 4: Different strategies to transfer features. In the top, features
are transplanted to a random location of the hold-out input which
leads to a FP, while those in the bottom are to the least-salient re-
gion of the hold-out input (our approach), thus avoiding a FP.

least-salient regions are those regions that have low influence on

the output according to the saliency map. Only those suspicious

features containing the adversarial patch at the least-salient regions

will also lead to the same prediction label (due to the patch’s univer-

sal nature). Fig. 4 shows how this method works and our ablation

study (Section A.2) shows that it is able to yield much lower FPRs

(compared with random transplantation).

3.2.3 Prediction Comparison for Attack Detection. The final step is

to compare the prediction labels on the original and hold-out images

implanted with suspicious features. The original image is deemed to

be adversarial if and only if both images yield the same prediction

label. This is because only the suspicious features that contain the

adversarial patch will cause (the same) misclassification on the hold-

out input. We are also able to identify suspicious features that come

from the benign features, by checking whether the prediction labels

on the original and hold-out images implanted with suspicious

features are different. We consider an image to be benign if the

prediction labels on the original and hold-out images are different.

3.3 Mitigating the Adversarial Patch
3.3.1 GAN-based Localized Attack Mitigation. A natural solution

to mitigate the attacks is to mask the adversarial patch, and let the

DNNs perform inference on the remaining features. However, some

of the important features in the original images might have been

corrupted (overridden) by the adversarial patch, and hence perform-

ing masking alone will result in the loss of semantic contents that

are crucial for the DNNs to classify the images correctly.

On the other hand, we also note that patch attacks only per-

turb a small localized region and a large portion of image pixels

are intact, which can serve as the rich context to synthesize the

contents that are corrupted (replaced) by the attacks. Based on this

observation, we propose to use generative adversarial networks

(GAN) [26, 32, 47, 49] to perform localized attack mitigation by

reconstructing the contents replaced by the adversarial patch, and

to increase the probability that the DNN predicts the correct label.

While there are many GAN techniques proposed in the literature.

We use PICnet [49], a recent technique that can generate multiple

and diverse plausible contents from the masked regions. Although

we choose PICnet in this work, other techniques [26, 32, 47] may

also be considered for the same.

Formally, let x be the original image, xm the image with a region

of pixels being masked, and xc the original pixels that are masked.

PICnet synthesizes diverse contents from the mask by sampling

4
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Prediction label 
unchanged

Feature 
transplantation

Mis-detected as 
adversarial sample

Attack 
detection

Attack 
mitigation

25% masking 50% masking 75% masking 100% masking

Chihuahua

Chihuahua Chihuahua Guinea pig Shih-Tzu

Chihuahua

Figure 5: Upper row: An illustration of a false detection on benign
sample. Lower row: How Jujutsu may reduce FP in its attack miti-
gation phase (under different masking percentages).

a conditional distribution p(xc |xm ). In the training phase, PICnet

uses a reconstructive pipeline, in which the missing regions xc are
encoded into the latent space representation in a continuous distri-

bution that can be exampled to rebuild the diverse and plausible

xc . The reconstructive pipeline leverages xc and xm to reconstruct

x in a supervised manner (xc is the ground truth). In the testing

phase, PICnet uses a generative pipeline to infer the conditional

distribution of p(xc |xm ), which is exampled to generate xc . The
parameters in the reconstructive pipeline are shared with the gen-

erative pipeline so that it can reconstruct x from xm during testing.

The resulting recovered images are meant to be free from adver-

sarial perturbations, and thus we use the labels on the recovered

images as the final output for mitigation.

3.3.2 Parametric Attack Mitigation. We now introduce our para-

metric mitigation strategy that allows balancing between the de-

tection performance and FPRs. The motivation is that it is often

unnecessary to mask all the pixels in order to make the target mis-

classification ineffective, e.g., we find masking 75% of the suspected

features is able to change the targeted miclassification in over 99.9%

of the adversarial examples.

By partially masking suspected features, Jujutsu allows the de-

fender to reduce the FPR - we explain the reason below. We can

determine a mis-detection on the benign input (i.e., FP) if the predic-

tions on both the original and recovered images result in the same

label (to be discussed in Section 3.3.3). The fewer pixels that are

masked, the better is the quality of the resulting recovered image,

because more semantic information is preserved in the image.

Fig. 5 shows an example of the recovered images under differ-

ent masking percentages. The original Chihuahua image is mis-

detected as adversarial, which can be eliminated if both the original

and recovered image have the same label. In this example, if 25%

or 50% of the pixels are masked, Jujutsu is able to rectify the mis-

detection. However, if 75% or 100% of the suspicious features are

masked, the DNN is unable to generate the correct prediction on

the recovered image, thus resulting in an FP. This explains why

masking the entire set of suspicious features could be undesirable.

3.3.3 Reducing FPRs. Section 3.2.2 explains the first scenario where
FPs might occur. We now explain the second scenario where FPs

may still arise, and how Jujutsu can prevent them.

We use Fig. 5 to illustrate. In the attack detection phase, Jujutsu
transplants the Chihuahua object (as suspicious features) to the

hold-out input. The resulting hold-out input, originally containing

a single Dowitcher, is now classified as a Chihuahua by the DNN,

which is the same as the original input. This thus results in a FP.

To reduce the above FP, we propose to signal a FP when the

prediction label on the original input (that Jujutsu originally de-

tected as adversarial) and the recovered input are identical, during
the mitigation phase. The intuition is that a benign input does not

contain an adversarial patch, and hence predictions based on the

original and the recovered images should both result in the same

prediction label.

The above process to reduce the FPR might also flag some adver-

sarial examples as benign ones, thereby resulting in missed detec-

tion. For example, if the masking percentage is low, the adversarial

patch will continue to cause misclassification on the recovered im-

ages, based on which Jujutsu would incorrectly flag the adversarial

patch as a benign image patch. We study how different masking

percentages would affect the detection performance (Table 2).

3.3.4 Algorithm. Algorithm 1 shows the overall algorithm. The

inputs are the images to be classified and parameters for Jujutsu.
For each xi , the output includes the prediction label yxi and a flag

isAdvxi on whether xi is adversarial. Lines 4-8 extract the salient
features from xi . Lines 10-15 identify the least-salient regions in

the hold-out input x∗, which will be replaced by the salient features

from xi . Lines 16-25 perform feature transfer and compare the

prediction labels on the original and implanted images. Lines 29-39

perform attack mitigation by accepting the label from the recovered

image, and checking for mis-detection (thereby reducing FPs).

4 EVALUATION
We first describe the experimental setup of Jujutsu, and then answer
the following research questions (RQs) in subsequent sections.

RQ1:What’s the detection performance of Jujutsu?
RQ2:What’s the mitigation performance of Jujutsu?
RQ3: How does Jujutsu compare with existing techniques?

RQ4: Can Jujutsu defend against physical-world attacks?

RQ5: Can Jujutsu defend against attacks targeting different classes?
RQ6: Is Jujutsu able to thwart the adaptive attackers?

4.1 Experimental Setup
4.1.1 Datasets and Architectures. Weevaluate Jujutsu on ImageNet [13],

ImageNette [5], CelebA [27] and Place365 [50]. ImageNet is a 1000-

class dataset andwe use a ResNet-50. ImageNette is a 10-class subset

of ImageNet and we use a ResNet-18. CelebA is a facial dataset with

diverse faces. We created a 307-classes subset from the original

set and train a ResNet-18 model following [1] to perform identity

classification. Place365 is a 365-class dataset containing common

natural sceneries (e.g., patio, restaurant) and we use a ResNet-50.

We evaluate Jujutsu on 6 more DNN models in Section 5.2.

4.1.2 Attack Setup. The attacker’s goal is to synthesize adversarial
patches that achieve high attack success rate. As in prior work [23,

28, 30, 43], we consider a square digital patch (we use a circle patch

in evaluating physical world attack in Section 4.5), and discussion

on other patch shapes is in Section 5.1. For each dataset, we generate

patches of different sizes, occupying 5%, 6% and 7% of the pixels.

The patch is overlaied to a random position in the image. We use x%

patch to refer to a patch that occupies x% of the pixels of the image.

We do not consider patches of smaller size because we find that

they are unable to universally cause misclassification, e.g., use of a

4% patch on CelebA degraded the attack success rate by more than

5
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Algorithm 1 Detect and mitigate patch attacks

Input: Xtest : Test images; Xhold : Hold-out images; F : DNN model;

l : Length of detection box; p : Percentage of pixels to mask

Output: Ytest : Prediction on Xtest ; isAdvXtest : whether Xtest is adversarial

1: function Detection(Xtest , Xhold , F , l )
2: for each (xi , yxi , isAdvxi ) ∈ (Xtest , Ytest , isAdvXtest ) do
3: yj = argmaxF (xi )
4: // Extract the salient features Bxi from xi
5: Mj (xi ) = SmoothGrad(xi , yj ) // Saliency map for (xi , yj )
6: Mj (xi ) = AverageFilter(Mj (xi )) // Average filtering over saliency map

7: (xmax , ymax ) = MaxLoc(Mj (xi )) // point with maximal value

8: Draw a box Bxi around (xmax , ymax ) with length l // suspicious features
9: // Identify the least-salient features Bx∗ from x∗

10: Randomly select x∗ ∈ Xhold
11: y∗k = argmaxF (x∗)
12: Mk (x

∗) = SmoothGrad(x∗, y∗k ) // Saliency map for (x∗, y∗k )
13: Mk (x

∗) = AverageFilter(Mk (x
∗)) // Average filtering over saliency map

14: (x∗min, y
∗
min ) = MinLoc(Mj (xi )) // point with minimal value

15: Draw a box Bx∗ around (x∗min, y
∗
min ) with length l

16: // Feature transfer and prediction comparison
17: x∗∗ = x∗ .replace(Bx∗ , Bxi )
18: y∗∗k = argmaxF (x∗∗)
19: if y∗∗k == yj then
20: yxi , isAdvxi =MITIGATION(xi , Bxi , F , p) // xi is adversarial
21: else
22: yxi = yj // yj is the prediction label from line 3

23: isAdvxi = False // xi is benign
24: end if
25: end for
26: return Ytest , isAdvXtest
27: end function
28:

29: functionMitigation(x, Bx , F , p)
30: yorд = argmaxF (x )
31: xmask = Randomly mask p% of pixels within Bx in x
32: xr ecovered = PICNet(xmask ) // GAN-based recovery

33: ynew = argmaxF (xr ecovered )
34: if yorд ! = ynew then
35: return ynew , True // Attack mitigation
36: else
37: return yorд , False // Reduce false positive
38: end if
39: end function

45%. We consider 7% as the largest patch size because it is already

able to achieve very high attack success rate (average over 99%), and

we evaluate Jujutsu on larger patch sizes (8%∼10%) in Section 5.3

for completeness. For each patch, we train it for 30 epochs on a

training set with 2000 images. We evaluate the attack success rate

on a separate test set, and choose the one with the highest success

rate. For the attack evaluation on ImageNette and CelebA, we use

the entire test set in each dataset; for ImageNet and Place365, we

use 10000 images from the validation set for each. Examples of

adversarial examples can be found in Fig. 9 (Appendix).

4.1.3 Defense Setup. There are three parameters in our defense

setup: (1) kernel size for pre-processing (average filtering) the

saliency map; (2) size of the detection bounding box; and (3) number

of hold-out images used for feature transplantation.

We vary each parameter under different values and empirically

select the one that strikes a good balance between detection perfor-

mance and FPRs (e.g., a larger detection bounding box may achieve

higher detection performance but with higher FPRs) - a detailed

evaluation for each parameter under different values is in Appen-

dix A.1, based on which we choose a kernel size of 51, a bounding

box occupying ∼20% of the image pixels and 2 random hold-out

images (out of 1000) for feature transplantation (on all dataset)
4
.

4
Our code is publicly available at https://github.com/DependableSystemsLab/Jujutsu.

Table 1: Detection performance in terms of detection success recall
on adversarial examples (AEs) and detection FPR.

Dataset Patch
Size

Clean
Acy.

Attack
Success Rate

Detection
Success Recall

Detection
FPR1

ImageNet

7%

74.17%

99.81% 99.74% 4.24%

6% 98.34% 97.70% 4.01%

5% 94.06% 93.37% 3.81%

ImageNette

7%

98.32%

100.00% 100.00% 8.11%

6% 99.00% 99.94% 9.18%

5% 98.36% 99.88% 8.98%

CelebA

7%

83.13%

99.40% 99.10% 0.00%

6% 96.62% 95.16% 0.00%

5% 83.22% 69.09% 0.00%

Place365

7%

54.45%

96.77% 98.93% 0.57%

6% 96.90% 99.29% 0.46%

5% 97.11% 98.97% 0.53%

Average N/A N/A 96.63% 95.93% 3.33%

1
The FPR can be further reduced as explained in Section 3.3.3 - see Table 2.

4.2 RQ1 - Detecting Adversarial Patch Attacks
Metrics. We use detection success recall to denote the fraction of

adversarial examples detected by Jujutsu, and detection FPR for the

fraction of false positives on benign inputs. Benign inputs are the

same as the adversarial inputs, except that they do not have the

adversarial patch. We consider an image as adversarial if and only

if the predicted label for it is identical to that of both the hold-out
images implanted with the suspicious features.

Table 1 shows Jujutsu’s detection performance on all 4 datasets.

Detection success recall. Jujutsu is able to consistently detect

adversarial examples, with a detection success recall rate of over

93% across patch sizes (in most cases). The detection success recall

increases with the size of the patch as a larger patch has a higher

attack success rate. On average, Jujutsu can detect around 96% of

the adversarial examples on all the datasets.

Detection FPR. Jujutsu yields an average FPR of 3.3% on the

4 datasets. We find that the FPRs on the two object-recognition

datasets (ImageNet and ImageNette) are higher than that on the

facial and scenery datasets. This is because the salient features in

object-recognition datasets might contain the entire object (e.g., a

small bird), which can cause the model to continue to assign the

same label to the transplanted image. However, for the facial and

scenery datasets, the salient features only contain a fraction of the

image pixels (e.g., a partial face), and are hence unlikely to result

in the same label on the transplanted image.

Despite the higher FPRs on ImageNet and ImageNette, Jujutsu’s
mitigation mechanism is able to further reduce FPRs as explained

in Section 3.3.3. We evaluate the FPR reduction in the next section.

4.3 RQ2 - Mitigating Adversarial Patch Attacks
Metrics. We use three metrics for evaluation in this section.

(1) Robust Accuracy is the prediction accuracy on all the AEs.

(2) Mitigation FPR is the (reduced) FPR from the two-staged combi-

nation of detection and mitigation (explained in Section 3.3.3).

(3) Mitigation success recall is the detection recall from the combina-

tion of detection and mitigation (Section 3.3.3) - we distinguish

this from the detection success recall, which is the detection re-

call from the detection technique alone.Mitigation success recall
gives the final amount of adversarial examples detected.

Result. Table 2 shows Jujutsu’s mitigation performance on

all datasets. The results are averaged across patches of different

6
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Table 2: Mitigation performance for: 1) GAN-based recovery and 2) masking-alone recovery. Better results are marked in bold.

Metric (%) Approach
ImageNet ImageNette CelebA Place365

Masking percentage Masking percentage Masking percentage Masking percentage
25% 50% 75% 100% 25% 50% 75% 100% 25% 50% 75% 100% 25% 50% 75% 100%

Robust
Accuracy

GAN-based 41.98 69.70 73.52 77.47 21.72 85.17 94.73 95.51 34.00 51.40 51.81 64.56 16.58 74.03 75.04 81.39
Masking-alone 58.15 69.32 70.48 75.24 34.60 90.98 94.53 94.19 41.91 46.00 45.27 48.12 63.39 74.47 74.53 75.12

Mitigation
FPR

GAN-based 0.34 0.95 1.67 1.74 0.14 0.61 1.06 0.91 0.00 0.00 0.00 0.00 0.00 0.10 0.14 0.20
Masking-alone 1.03 1.69 2.00 1.85 0.76 1.26 1.55 1.74 0.00 0.00 0.00 0.00 0.08 0.17 0.22 0.25

Mitigation
Success Recall

GAN-based 53.71 93.61 96.90 96.89 21.78 88.17 99.38 99.70 57.60 87.33 87.75 87.79 18.67 98.02 99.06 99.06
Masking-alone 81.56 96.83 96.93 96.91 34.78 95.75 99.66 99.72 84.74 87.68 87.79 87.79 81.86 99.05 99.06 99.06

sizes (5% to 7%). The detection performance is higher on larger

patches as these patches have higher attack success rates (difference

between the largest and smallest patch is about 9%). The mitigation

performance is consistent across different patch sizes (differences

less than 2%). We consider two mitigation strategies, (1) masking-

alone and (2) GAN-based recovery (which first performs masking

and then use GAN to recover the contents from the mask) (Jujutsu).
Robust accuracy: Masking with GAN-based restoration is able to

yield higher robust accuracy than masking alone. This is because

GAN-based restoration synthesizes the missing semantic contents

in the mask for the network to make a correct prediction. The only

exception is when 25% or 50% of the pixels are masked, where mask-

ing alone has higher robust accuracy than GAN-based recovery.

This is because the GAN relies on the regions outside the mask

as the context to synthesize the contents. When the masking per-

centage is small, a large portion of the adversarial pixels remain

intact, and thus the GAN cannot reconstruct the contents correctly.

In this case, it is better to mask the perturbations to shield their

contributions to the prediction, rather than GAN-based recovery

as done by Jujutsu.
We also notice that the robust accuracy by Jujutsu on CelebA is

lower than that on the other datasets, which is because the GAN

needs to synthesize the correct facial features belonging to a par-

ticular celebrity’s face to enable correct identity prediction. This

is a much more challenging task for the GAN than for the other

three datasets, and hence Jujutsu yields a lower robust accuracy.

Jujutsu achieves the highest robust accuracy on ImageNette, as it is

a 10-class dataset, and performing correct image classification on

this dataset is easier than on the other complicated datasets such

as the 1000-class ImageNet.

Mitigation FPR: GAN-based recovery achieves low FPR, because

the restored inputs are more similar to the original benign inputs

than the masked inputs (in the latter case many features are simply

masked). Therefore predictions on the original and restored inputs

are more likely to be the same, which is not the case for inputs that

are merely masked. We also see that Jujutsu consistently achieves

very low FPRs on all the datasets.

Mitigation success recall: While masking alone is able to achieve

higher detection recall compared to GAN-based recovery when

the masking percentage is small, the difference becomes negligible

when the masking percentage increases. This is because when the

masking percentage is low, the masked images are more likely

to have a label different from that of the original image; while

the restored images are more likely to have the same label as the
original image - this is similar to the reason why robust accuracy

from masking alone is higher than that from GAN-based recovery

for 25% masking. However, when the masking percentage increases,

both the masked and restored images are likely to have labels that

are different from that of the original image - thus the difference

becomes negligible between both approaches. We see that Jujutsu is
highly effective in detecting adversarial examples on all the datasets.

The GAN-based recovery strategy outperforms the masking-

alone strategy with higher robust accuracy and lower FPRs.

Trade-off by varying masking percentage: Our results also show

that the proposed parametric masking is able to moderate the bal-

ance between different metrics, based on which the defender can

adjust Jujutsu to prioritize different outcomes. For instance, if the

defender’s goal is to detect/mitigate adversarial attack while mini-
mizing FPR on the benign inputs, he/she can perform recovery on

50% of the suspicious features, which is able to detect over 91% of

the adversarial examples, achieve a robust accuracy of over 70%

with a FPR of less than 0.5% (all on average). On the other hand,

the defender who wants to maximize Jujutsu’s performance can

perform recovery on 100% of the suspicious features, which on

average yields the highest robust accuracy (79.73%) and detection

success recall (95.86%) with a slightly higher FPR (0.71%).

Jujutsu is able to balance between different performance met-

rics, by varying the percentages of the GAN-based recovery.

4.4 RQ3 - Comparison with Related Techniques
We consider four related defenses against patch attacks below (and

compare with two more trajan-attack defenses in Appendix A.6).

1. Localized Gradient Smoothing [30]. Naseer et al. propose
local gradient smoothing (LGS) to neutralize the effect of adversarial

patch pixels. They first perform normalization over the gradient

values, and then use a moving window to identify high-density

regions (based on certain thresholds), which will be smoothed out

to suppress the influence of the adversarial pixels. We follow [30]

to set the threshold as 0.1 and smoothing factor as 2.3.

2. Adversarial training. Adversarial training (AT) increases

the robustness of DNNs by explicitly training the networks to be ro-

bust against the patch attack [34, 42]. We adopt the approach from

prior work [34, 42] to conduct AT on ImageNette. We first train the

models on clean images, which is then used for adversarial training.

For each DNN, we train three different models, one for each patch

size. We train the models by using the SGD optimizer and vary-

ing different hyperparameters such as learning rate, momentum,

dropout, number of epochs, batch size.

3. SentiNet [12]. Chou et al. propose SentiNet for detecting

patch attacks. Sentinet first uses a selective search image segmenta-

tion to generate a list of class proposals, i.e., input segments corre-

sponding to different classes. It then extracts the salient maps from
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Table 3: Comparison with LGS [30], SentiNet [12] and Patch-
Guard [43]. Better results are highlighted in bold.

Metric (%) Technique
LGS SentiNet PatchGuard Jujutsu

Detection Recall N/A 73.04 N/A 96.89
Robust Accuracy 53.86 N/A 11.70 77.47
False Positive 12.14 7.66 44.67 1.74

the class proposals and identifies the unique features, by subtracting

the common regions in the saliency maps, which is then overlaid to

a set of new images. It then replaces the extracted features with in-

ert patterns such as Gaussian noise in order to distinguish between

adversarial and benign features. The final attack detection is based

on statistical analysis on two metrics: (1) the number of misclassi-

fied images from images with the unique extracted features, and

(2) the average confidence values from images with inert patterns.

We follow [12] to overlay the salient features from the test image

to 100 new images, which is to calculate the statistics for detecting

adversarial examples. We randomly sample 400 clean images to

compute the detection threshold for detection. SentiNet [12] is the

most closely related technique to Jujutsu, and we compare both

techniques in detail below.

4. PatchGuard [43]. Xiang et al. [43] propose PatchGuard, a

certified defense technique against patch attacks. The main idea

is to enforce small receptive field in the DNNs, and secure feature

aggregation by masking out the regions with the highest sum of

class evidence (as these regions are more likely to be manipulated

by adversarial patch to dominate the prediction).

Result. We compare Jujutsu (GAN-based recovery with 100%

masking) with LGS, SentiNet and PatchGuard on ImageNet. Table 3

shows the average results for patches of different sizes.

1. Comparison with LGS. LGS achieves an average robust

accuracy of 53.86%, which is considerably lower than that of 77.47%

by Jujutsu. This is because: (1) not all adversarial patch regions

would stand out as the high-density region after normalization

by LGS; and (2) LGS uses gradient smoothing as the mitigation

strategy, which is inferior to GAN-based recovery by Jujutsu that

can reconstruct the semantic contents from the corrupted regions.

LGS also incurs a very high FP of 12.14%, which is because the

natural features in the benign examples may also be identified as

high-density regions and hence LGS incorrectly perform gradient

smoothing on these regions. In contrast, Jujutsu incurs an FP rate

of only 1.74%.

2. Comparison with SentiNet. SentiNet detects 73% adversar-

ial examples while Jujutsu detects 96.89%, which yields an improve-

ment of 32.7%. Further, SentiNet has an FPR of 7.66% while Jujutsu
has only 1.74% (a 77.3% reduction). Hence, Jujutsu outperforms Sen-

tiNet by having a higher detection rate on adversarial examples, and
achieving a much lower FPR. We next qualitatively compare both

techniques to understand their significant performance difference.

The low detection rate of SentiNet is due to its poor identifica-

tion of the adversarial patch region. Specifically, SentiNet extracts

the adversarial patch region by subtracting the common regions

of the saliency maps belonging to different classes. However, the

adversarial patch may reside in the common regions of different

saliency maps, and thus the patch region will be removed after

subtraction, thereby remaining undetected.

Table 4: Comparison with AT in defending against multiple target
classes. Better results are highlighted in bold.

Metric
(%)

Adversarial training Jujutsu
1 target 3 targets 5 targets 1 target 3 targets 5 targets

Robust Acy. 92.29 84.49 78.97 95.34 94.18 94.15
False Positive 20.23 24.22 27.05 0.72 0.87 0.88

Though Jujutsu also uses saliency map in its detection, Jujutsu
follows a different principle to locate adversarial patch from the

saliency map and proposes a robust suspicious feature detection

method (e.g., a pre-processing technique to highlight adversarial

patch region) that can reliably locate the adversarial patch and ver-

ify its maliciousness through a guided feature transplantation and

prediction comparison. This allows Jujutsu to detect substantially

more AEs (32.7% more).

The high FPR in SentiNet is because SentiNet overlays the suspi-

cious features to a random region of an image, which could cause

FPs when the salient features occlude the image’s natural features.

Instead, Jujutsu achieves low FPR through: 1) strategically trans-

planting the salient features to the least-salient feature region of

the image; and 2) using the generative power of GAN to reduce

FPR. Both innovations combined allows Jujutsu to achieve a much

lower FPR than SentiNet (77.3% lower).

3. Comparison with PatchGuard. PatchGuard provides prov-
able robust accuracy but has a robust accuracy of 11.7% and an

FPR of 44.67%. In contrast, Jujutsu has a 77.47% (empirical) robust

accuracy with only 1.74% FP. This is because PatchGuard provides

a (provable) lower bound of the adversarial robustness and the high

FPR is due to the small receptive field enforced by PatchGuard,

which causes considerable clean accuracy drop as in [43].

4. Comparison with adversarial training (AT). AT requires

training for each target class, which is challenging as attackers

may target diverse classes. In contrast, Jujutsu does not require any

training, and is agnostic to the target classes of the attack. Therefore,

we compare the performance of AT and Jujutsu when the attacker

targets different classes, by training multiple 7% patches targeting

different labels on ImageNette.

Table 4 shows that AT’s performance degrades as the number

of target classes increases, on both robust accuracy and FP. This

is because with more target classes, the learning objective for AT

becomes increasingly difficult - this is similar to how common

DNNs would yield lower accuracy on a 1000-class dataset than on

a simple 10-class dataset. On the other hand, we see that Jujutsu
achieves consistently high performance in terms of both robust

accuracy and FP across attacks targeting different classes. Further,

Jujutsu yields significantly better performance than AT in all cases.

4.5 RQ4 - Physical-world Patch Attacks
In this RQ, we evaluate the effectiveness of Jujutsu against physical-

world patch attacks. We use the printable adversarial patch from

[9]. We printed it out, placed it next to the cell phone object (a

iPhone 6s device) at various locations, and captured its video.

Fig. 6 shows the video frames in our evaluation. Both videos with

and without patches contain around 430 frames. 80% of the frames

with patches successfully caused the targeted misclassification. We

increase the length of the detection box to 142 as the physical patch

occupies more pixels in the images than the digital patch [9].
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Figure 6: Video frames for a cell phone object with (top row) and
without (bottom row) a physical adversarial patch.

Table 5: Jujutsu’s performance on physical patch attack.

Metric (%) Masking percentage
25% 50% 75% 100%

Robust Accuracy 82.46 95.32 93.86 81.87

Mitigation FPR 1.15 2.99 3.45 5.52

Mitigation Success Recall 86.84 95.91 95.91 95.91

Table 6: Jujutsu’s performance on attacks targeting 5 labels.

Metric (%) ImageNet ImageNette CelebA Place365
Robust Accuracy 79.27 94.15 71.69 77.32

Mitigation FPR 1.61 0.88 0.00 0.20

Mitigation Succ. Recall 99.54 98.57 96.25 93.98

As before, we evaluate the effectiveness of Jujutsu in terms of

robust accuracy, mitigation success recall and mitigation FPR. The

results are shown in Table 5.

Robust accuracy. Unlike the previous evaluation on digital patch,

we can see from Table 5 that a low masking percentage is able to

yield a high robust accuracy for the physical attack (this is low for

the evaluation on digital patch). This is because the perturbations

in the physical patch are more susceptible to masking and recov-

ery compared with the digital patch that is directly applied to the

image. Perturbations in the physical patch need to undergo camera

transformations, which makes the perturbations more amenable to

being mitigated by Jujutsu. Thus, even a low masking percentage

in Jujutsu is able to effectively mitigate the physical patch attack.

In addition, the robust accuracy from 75% and 100% masking is

lower than that from 50%, which is unlike the trend in the previous

evaluation for digital patches. This is because the detection box is

larger, and hence a highermasking percentagemeansmore contents

are masked for the GAN to recover, which leads to degraded quality

of the recovered images and thus the DNN is unable to infer the

correct label. Therefore, 50% masking yields the highest robust

accuracy of 95.32%.

Mitigation FPR yielded by Jujutsu ranges from 1.15% to 5.52%.

Similar to the digital patch, the FPR is higher when the masking

percentage is higher.

Mitigation success recall yielded by Jujutsu ranges from 86.84% to

95.91%. The trend is similar to that of digital patch, i.e., the success

recall is low when the masking percentage is low (and vice versa).

4.6 RQ5 - Attacks Targeting Different Labels
This section evaluates Jujutsu against attacks that target different

class labels. For each target label, we need to perform training to

generate the universal adversarial patches. Training is highly time-

consuming, and hence, for each dataset, we train five 7% patches

targeting different labels. Note that training is only needed for

creating the adversarial patches, and not for Jujutsu.
Table 6 shows the results. Jujutsu consistently achieves high

performance in detecting and mitigating patch attacks targeting

different labels, and with very low FPR. On average, Jujutsu detects

over 97% of the adversarial examples, achieves a robust accuracy

of over 80%, with only 0.67% FPR. This high accuracy is because

Jujutsu works by comparing the prediction label before and after

feature transplantation, which is agnostic to the exact target label.

4.7 RQ6 - Adaptive Attacks
We now evaluate two adaptive adversaries attempting to fool the

DNNs even under Jujutsu by: (1) evading the detection by manipu-

lating the saliency map; (2) evading the mitigation by generating

strong perturbations that can continue to fool the DNN.

4.7.1 Evading the Detection. Jujutsu uses the saliencymap to detect

adversarial patches, and the saliency map can be manipulated by an

adversary as shown by prior work [18, 48]. However, they consider

adversarial perturbations over the entire image, while we consider

localized perturbations. Therefore, we adapt their approach [18, 48]

to manipulate the localized saliency map so that the adversarial

patch will not be identified as the most salient features (by reducing

its influence on the output), hence evading Jujutsu.
Attack setup. The influence on the output is derived from the

saliency map. This attack can be formulated as the following objec-

tive function during the generation of the adversarial patch:

δ = argmax

δ
Ex∼X ,l∼L(logPr(y = yadv |x ′)−β ∥M̂∗

j (x)−m
∗
0
∥2

2
), (5)

where M̂∗
j (x) is defined as the saliency map on the region where

the adversarial patch resides (not the entire saliency map), andm∗
0

is a mask in the same size of the adversarial patch and filled with 0,

β is a hyperparameter to balance different loss terms. The first term

is to cause targeted misclassification, while the second term’s goal

is to let M̂∗
j (x) have small influence to evade detection by forcing

the values within M̂∗
j (x) to be close to 0. The adversary stops the

optimization once the patch succeeds in evading the detection box.

The second term can be viewed as manipulating the Hessian ma-

trix of F (x), whose values are all zero for DNNswith ReLu activation
functions [18, 48]. Therefore, we replace the ReLu function with a

parametric softplus functionwhen calculating the gradients [18, 45]:

f (x) = 1

α log(1 + exp(αx)), where α is the hyper-parameter to con-

trol the shape of the curve and is set as 10 (following [45]). Finally,

we only use the parametric softplus for backward propagation, and

use ReLU for the normal forward pass.

To be conservative, we consider the 7% patch, which allows the

attacker to inject larger perturbations to evade Jujutsu. We choose

200 samples for training the adversarial patch, 500 steps per sample

and 20 epochs in total. For each dataset, we choose β ∈ [0.1, 0.5, 1, 5]

and choose the one yielding the highest attack success rate.

Equation 5 requires several forward and backward passes for

calculating the saliency map M̂∗
j (x), which is much more time-

consuming than the original optimization (Equation 3). Therefore,

we reduce the sampling size n in Equation 4 from 50 to 5 for faster

training. We experimentally verified that the smaller sampling size

n does not significantly affect the resulting saliency map, and that

we can still find all the salient features. Under this setting, it took

around 18 days to generate an adversarial patch on Place365 dataset,

compared to about 540 days with our previous setup (estimated).

Result.We compare the attack success rate of the patches gener-

ated from the undefended models and the ones guarded by Jujutsu
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Figure 7: Attack success rate (ASR) for adaptive attack to evade Ju-
jutsu’s detection. The lower the better.

in Fig. 7. When Jujutsu is used, the adaptive attacker who attempts

to evade Jujutsu’s detection suffers a significant drop in attack

success rate, from 99% to just 4.9% (on average). This is because

in Equation 5, the first term aims to increase the influence on the

final prediction to manipulate the output label; while the second

term reduces the influence on the output. This equation constrains

the adaptive attacker, who cannot evade detection without also

significantly degrading the attack’s effectiveness in the process.

4.7.2 Evading the Mitigation. We now consider a second adaptive

attacker who attempts to cause targeted misclassification even if the

adversarial examples are detected. Because our masking strategy is

parametric, the adaptive attack would be unsuccessful if we perform

recovery on the entire set of suspicious features since all of the

adversarial perturbations would be removed. Therefore, we study

whether the adaptive attack could succeed if the defender masks

only 50% or 75% of the suspicious features.

Attack setup. The adversary’s goal is to generate an adversarial

patch that can survive under partial masking (50% or 75% masking).

To model the masking of x% of the suspicious features, we randomly

set x% of the values that are non-zero within the maskm ∈ {0, 1}n

to be 0, so that those positions marked with a 0 will not be available

for manipulation by the attacker. Therefore, the attacker can use

only the remaining perturbations to cause misclassification.

Similar to Section 4.7.1, we consider the 7% patch to maximize

the attack’s influence. For the masking percentage of 50%, we use

2000 images, a maximal step of 1000 and 30 epochs in total, which is

in line with our standard attack generation as in Section 4.1.2. This

is because evading the mitigation does not require several forward

and backward passes for each step as in Section 4.7.1, and thus we

can use more images and optimization steps as well as epochs.

For the 75% masking percentage, we use a maximal epoch of 20,

because our evaluation shows that the training is not able to make

any progress, and the attack success rate is consistently close to 0%.

Result. Fig. 8 shows the percentage of adversarial examples

that succeed in causing misclassification despite Jujutsu. We can

see that the ASRs degrades under the adaptive attack.

When 75% of the perturbations are masked, it is almost infeasible

for the attacker to generate a successful adversarial patch, and hence

the success rate is near 0% on all datasets.

When 50% of the perturbations are masked, the ASRs are how-

ever much higher, ranging from 28% to around 60%. This is because

many of the detected adversarial examples will be mis-identified as

benign after GAN-based recovery with 50% masking is performed.

When the masking percentage is low, the adversarial perturbations

will remain intact and they can continue to cause misclassification

on the restored images - Jujutsu will mis-identify them as benign.

Nevertheless, the defender can further thwart the attack by in-
creasing the masking percentage to 75% or 100% in Jujutsu, which
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Figure 8: Attack success rate (ASR) for adaptive attack to evade Ju-
jutsu’smitigation. The lower the better.

only comes at a cost of slightly higher FPRs (0.23% higher) and is

able to mitigate most of the adversarial examples. For example, by

performing GAN-based recovery on 100% of the suspicious features,

the average attack success rate is reduced from 48% to 22%, which

is significantly lower than that on the undefended models (99%).

Our results show that Jujutsu’s performance can be degraded

by the adaptive adversary via deliberately reducing the success

rate of patch attacks. For instance, the adaptive patch generated

on ImageNet for 50% masking has a success rate of 76.8%, which is

lower than the 99% of the non-adaptive patch. This results in 23.5%

of adversarial examples going undetected by Jujutsu. However, we
note that doing so would significantly constrain the adversary’s

ability in fooling the DNN, and hence make the DNN significantly

less susceptible to patch attacks. On average, the attack success rate

is reduced from 99% to 0.73%∼ 22% across the four datasets.

5 DISCUSSION
This section first discusses the limitation of Jujutsu, followed by the
evaluation of Jujutsu’s performance onmore DNNmodels andmore

different patch sizes. We present an ablation study in Appendix A.2.

5.1 Limitation
First, Jujutsu incurs overhead in its attack detection and mitigation,

and we report its overhead in Appendix A.7 due to space limitations.

Second, Jujutsu employs PICnet [49] in its attack mitigation,

whose performance also affects Jujutsu’s mitigation performance.

For example, Jujutsu has lower robust accuracy on the CelebA

dataset (than other dataset) as it is challenging to synthesize spe-

cific human faces with PICNet for the DNN to make correct pre-

dictions. Nevertheless, as image inpainting with GAN is an active

research area, we believe this issue can be further alleviated by

incorporating recent research results. For instance, Li et al. [24]

recently introduced a transformer-based model that yields superior

inpainting performance on diverse tasks, which may be leveraged

by Jujutsu to enhance its mitigation performance.

Finally, there are other attack variants outside our threat model.

We discuss next how Jujutsu may be extended to handle them.

Multiple patches. We focus on defense against single-patch at-

tacks, on which existing defenses [12, 30, 34, 42, 43] have very

limited success. However, multi-patch attacks are also possible and

one potential solution to handle them is to iteratively perform de-

tection and mitigation until only the benign features are left in

the images. This can be achieved by checking whether the current

suspicious features fail to cause misclassification on the hold-out

inputs, which occurs when the suspicious features are benign.

To validate this, we evaluate the above extension of Jujutsu
against 2-patch and 3-patch attacks and it is still able to achieve

good performance - see Appendix A.3.
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Patches in different shapes. Similar to prior work [23, 28, 30,

43], we assume a square or circle patch, and conduct extensive

evaluation on these attacks. But patches in other shapes such as

rectangular one are also possible, which is a limitation of Jujutsu
(and also of other defenses [23, 28, 30, 43]).

Nevertheless, we evaluate how Jujutsu can be extended to defend
against rectangular patch (by assuming a rectangular detection box)

- see Appendix A.4 for details. We leave the generalization of Jujutsu
to different patch shapes to future work (e.g., instead of using one

single detection bounding box, can we use multiple detection boxes

in different shapes to cover different potential patches and flag an

attack if any of the suspicious features extracted from different

boxes is deemed as adversarial?).

Untargeted attacks. We focus on targeted attacks, which allow

the adversary to manipulate the DNNs in a controlled manner.

Other work [6, 22] has recommended evaluating targeted attacks

for large-scale datasets like ImageNet, as untargeted attacks may

cause misclassification of very similar classes (e.g., images of two

very similar dog breeds).

We tried extending Jujutsu to defend against untargeted attack

by directly performing attack mitigation on the suspicious features

(without the guided feature transplantation and prediction com-

parison for attack detection), and use the prediction label on the

recovered image as the final output, but we had very limited success

(see Appendix A.5 for details). Therefore, future work may combine

Jujutsu with other defenses (e.g., using pre-defined thresholds [30]

or small masking on the test image [44]) to first characterize be-

nign and adversarial examples, and then use Jujutsu’s mitigation

technique to perform attack recovery.

Table 7: Jujutsu’s performance on 6 different DNNs.

Metric
(%)

Wide-
ResNet

Dense-
Net121

Squeeze-
Net

VGG16 ResNet-
152

Google-
Net

Clean Accuracy 78.27 71.58 54.74 72.03 76.84 67.17

Robust Accuracy 82.21 76.6 69.03 78.33 79.33 73.44

Mitigation FPR 2.13 2.39 0.67 1.91 2.38 3.47

Mitigation
99.92 98.11 98.43 99.05 97.75 99.92Succ. Recall

5.2 Evaluation on More DNN Models
This section evaluates Jujutsu’s performance on 6 more DNN mod-

els (Wide-ResNet, DenseNet121, SqueezeNet VGG16, ResNet152

and GoogleNet) on ImageNet (all are the pre-trained models from

the TorchVision library). We report the results in Table 7.

Jujutsu consistently achieves high detection performance (aver-

age detecting over 98% AEs), low FPRs (average 2.16%), and high

robust accuracy (average 76.49%). The robust accuracy varies be-

tween different models because it is also related to the prediction

performance of the model, e.g., SqueezeNet has a relatively low

clean accuracy, which also leads to lower robust accuracy compared

with other models. Our results show that Jujutsu’s outstanding de-

fense performance can generalize across different DNN models.

5.3 Evaluation on Larger Patches
Section 4 evaluates 5%∼7% patches. In this section we evaluate

Jujutsu against larger patch: 8%, 9% and 10% We report the average

results as there is no major variation between different patch sizes.

On average, Jujutsu detects 99% of the adversarial examples,

achieve a robust accuracy of 81.77% with a FPR of only 0.71%. Ju-
jutsu yields slightly better performance on these larger patches

(compared with the results in Table 2) because these larger patches

are able to achieve slightly higher attack success rate. Therefore,

Jujutsu’s high detection and mitigation performance and low FPs

can generalize to larger adversarial patches.

6 RELATEDWORK
Defenses against adversarial attack can be divided into certified [11,

23, 28, 43, 44] and empirical defenses [12, 19, 21, 30, 34, 42, 46].

Certified defenses. Chiang et al. [11] propose the first certified
defense against patch attack by Interval Bound Propagation, which

constrains the influence of the adversarial pixels in the hidden lay-

ers to compute a lower bound of the robustness. Levine et al. [23]

introduce de-randomized smoothing (DS) to build a smoothed clas-

sifier whose prediction is based on the ensemble of local prediction

on pixel patches. Xiang et al. [43] propose PatchGuard which is

based on enforcing small receptive field and robust feature masking.

PatchCleanser [44] is a provable defense whose main idea is that

clean examples are more robust than AEs under small masking and

the AEs can be mitigated via a two-round masking.

Empirical defenses. Naseer et al. [30] propose local gradient

smoothing (LGS) to mitigate patch attacks by identifying the re-

gions with high gradient magnitude, and smoothing out regions

whose gradient values are greater than a certain threshold. Hayes et

al. [19] introduce digital watermark (DW), which uses pre-defined

thresholds to scan the saliency map to detect and remove important

pixels (hence the adversarial pixels are also removed). Jha et al. [21]

detect patch attacks by selectively masking the top-k% salient fea-

tures and comparing the prediction labels. While useful in detecting

adversarial examples, these techniques also incorrectly flag many

benign samples as being adversarial because the natural features

in benign samples may also exceed the pre-defined thresholds or

remain as the top-k% salient features. Hence these techniques suffer

from high FPRs. Chou et al. [12] propose SentiNet for detecting

patch attacks based on model interpretability and statistical anal-

ysis, which provides limited detection performance and does not

support attack mitigation. Adversarial training, a standard adver-

sarial defense technique, can also be used to defend against patch

attacks [34, 42]. But it also suffers from high FPRs and performance

degradation when the adversary targets multiple labels. Unlike

prior work, Jujutsu is a two-staged defense that provides both at-

tack detection and mitigation, and yields superior detection and

mitigation performance with very low FPRs.

7 CONCLUSION
This work proposes Jujutsu, a technique to detect and mitigate

robust and universal adversarial patch attacks against image classi-

fication DNNs. Jujutsu accurately locates adversarial patch and dis-

tinguishes it from benign samplse, and uses generative adversarial

networks to reconstruct the “clean” examples from adversarial ex-

amples. Our extensive evaluation on four datasets and comparison

with four defenses show that Jujutsu achieves superior detection

and mitigation performance, with low false positives. Jujutsu also

defends against physical-world and adaptive attacks.
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Figure 9: Adversarial examples on each dataset.

A APPENDIX
A.1 Jujutsu’s Performance under Different

Parameter Values
As mentioned in Section 4.1.3, Jujutsu has three main parameters

in its defense setup: (1) kernel size for pre-processing (average

filtering) the saliency map; (2) size of the detection bounding box;

and (3) number of hold-out images used for feature transplantation.

This section evaluates Jujutsu’s performance by varying each of

these parameters (all on ImageNet), from which we choose the

parameters used in our main evaluation.

A.1.1 Kernel size for pre-processing (average filtering) the saliency
map. We consider the following different kernel sizes for pre-processing

the saliency map: 11, 31, 51 and 71, and the results are in Table 8.

When the kernel size is small, Jujutsu has lower detection recall

(93.28% for kernel size of 11 vs. over 97% for other larger sizes).

Low detection recall means Jujutsu erroneously identifies many

natural (benign) features as the suspicious features in adversarial

examples (hence the actual adversarial patch remains undetected).

This is because the natural features would still remain as the salient

feature if the kernel size is small (i.e., the kernel area for average

filtering). Instead, a larger kernel size can smooth out the regions

associated with the benign features, and the regions associated

with adversarial patch still remain salient and can be identified by

Jujutsu. Based on the above analysis, we use a kernel size of 51 in

our main evaluation (which has a good balance between different

performance metrics).

Table 8: Jujutsu’s performance by using different kernel
sizes for pre-processing the saliency map.

Metric (%) Kernel size for average filtering
11 31 51 71

Mitigation Success Recall 93.28 97.28 98.35 98.04

Robust Accuracy 71.37 74.53 76.14 75.78

False Positive 1.38 1.6 1.87 1.87

A.1.2 Size of the detection bounding box. We consider the follow-

ing different sizes of the detection bounding box: 78, 90, 102, 114,

122, which correspond to around 12%, 16%, 20%, 25% and 30% image

pixels. We report the results in Table 9.

When the detection bounding box is small, it is more difficult for

Jujutsu to locate the adversarial patch from the adversarial exam-

ples, which leads to lower detection recall as shown. Conversely,

we see that detection recall increases as the detection bounding

box grows in size.

On the other hand, larger bounding box could also degrade robust

accuracy and cause more FP. This is because when the bounding

box is large, more contents need to be recovered by the GAN, which

is a more challenging task.

Based on the above, bounding boxes in different sizes can be used

based on different objectives, e.g., one can use a smaller bounding

box to minimize FP while maintaining good detection and mitiga-

tion performance. We use a size of 102 in our main evaluation.

Table 9: Jujutsu’s performance by using detection bounding
boxes in different sizes

Metric (%) Size of detection bounding box
78 90 102 114 122

Mitigation Success Recall 91.93 94.89 97.66 98.93 99.07

Robust Accuracy 81.88 80.89 78.69 70.35 63.13

False Positive 0.08 0.7 1.66 4.34 7.82

A.1.3 Number of hold-out images used for feature transplantation
. This section shows Jujutsu’s performance when using different

number of hold-out images for feature transplantation (in attack

detection). The results are presented in Table 10.

As shown, detection success recall reduces as the number of

images for detection increases. This is because Jujutsu determines

an adversarial example only if all the images implanted with the

salient features have the same labels as the original test image.

When more images are used for detection, it is more difficult for

the adversarial patch to cause the same misclassification on all the

hold-out images (it is easier to cause the targeted misclassification

on 1 image than on 2 images or more). Hence, Jujutsu’s detection
performance degrades when more images are used for detection.

We also observe that the FPR reduces as we use more images

for detection. The reason is similar to the above. Specifically, a

benign image will be mis-detected only if its salient features cause

the same prediction labels on all the hold-out images after feature

transplantation, which is increasingly difficult as the number of

hold-out images increase.

Based on the above, different number of hold-out images can be

used based on different objectives, e.g., one can use more images for

detection in order to minimize FP. We use 2 images for detection in

our main evaluation.

Table 10: Jujutsu’s performance when using different number of
hold-out images for detection.

Metric (%) Number of images for detection
1 2 3

Mitigation Success Recall 98.79 97.58 96.40

Robust Accuracy 78.59 78.20 77.00

False Positive 4.78 1.76 0.82

A.2 Ablation Study
We consider the following four components in the ablation study.

(1) Pre-processing the saliency map to identify suspicious features
(for attack detection). We compare Jujutsu’s performance with and

without the pre-processing component (on ImageNet with 10%

patch). Without the pre-processing component, Jujutsu detects

only 91.93% AEs (Vs. 98.35% with the pre-processing component),

because it cannot correctly locate the adversarial patch region from

the AEs (instead it identifies many natural features as the suspicious

features). The low detection performance also leads to lower robust

accuracy of 71.99% Vs. 76.14% with the pre-processing component.

(2) Guided feature transplantation to reduce FPRs.We compare the

performance of using guided feature transplantation Vs. random

feature transplantation. While both approaches achieve similar
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detection recall (98.35% and 99.07%) and robust accuracy (75.11%

and 76.22%), the proposed guided feature transplantation achieves

an FPR of 1.55% Vs. 2.9% by the random transplantation, which

constitutes a reduction of FPR by 46.6%.

(3) GAN-based attack recovery. We compare the GAN-based and

masking-alone attack mitigation strategy, and the detailed results

are reported and discussed earlier in Section 4.3. We summarize the

main difference here. The proposed GAN-based recovery method

outperforms the basic masking-alone strategy (for 75% and 100%

masking) with: (1) higher robust accuracy (6.56% higher for 100%

masking); and (2) lower FPRs (0.25% lower), because masking alone

will cause the loss of semantic contents, which is undesirable for

prediction comparison, while the GAN can recover the semantic

contents from the masked pixels
5
.

(4) Prediction comparison for reducing FPRs. Table 1 shows that
Jujutsu yields an average FPR of 3.33%, which can be reduced to

0.5%∼0.71% (depending on different masking percentages used -

see Table 2). By comparing the prediction label on the original and

recovered inputs using GAN, Jujutsu can effectively reduce FP on

benign examples, which enables a FPR reduction by 78%∼85%.

In summary, the ablation study shows that the above components

in Jujutsu are crucial in enabling Jujutsu to achieve high detection

performance, high robust accuracy and low FPRs.

A.3 Extending Jujutsu to Defend Against
Multi-patch Attacks

This section evaluated the extension of Jujutsu against multi-patch

attacks as discussed in Section 5.1. To do so, we modify Jujutsu to

iteratively perform detection and mitigation until only the benign

features are left in the images, i.e., the current suspicious features

fail to cause misclassification on the hold-out inputs. We consider

both 2-patch and 3-patch attacks, and an example is shown below.

We report the results in Table 11.

With the above

extension, we can

see that Jujutsu
still remains as an

effective defense

against patch at-

tacks. In both cases,

Jujutsu detects over 96% adversarial samples with around 2% FPR.

For 2-patch attack, Jujutsu still achieves a very high robust accuracy
of 73.11%, which is slightly lower than that of 77.47% on single-

patch attack. For 3-patch attack, however, Jujutsu achieves a much

lower robust accuracy of 46.98%, which is because mitigating 3

patches in one single image is more difficult than single- or two-

patch attacks. Our result therefore demonstrates that Jujutsu can

be extended to effectively defend against multi-patch attack.

Table 11: Jujutsu’s performance against multi-patch attacks

Metric (%) 2-patch attack 3-patch attack
Mitigation Success Recall 96.16 96.78

Robust Accuracy 73.11 46.98

False Positive 2.26 1.93

5
Note that the GAN is not always able to recover the correct contents, which explains

why the robust accuracy is not as high as the detection recall. Nevertheless, the

proposed GAN-based recovery still outperforms the basic masking-alone strategy, and

is hence adopted by Jujutsu.

A.4 Extending Jujutsu to Defend Against
Rectangular Patch Attacks

We now evaluate how Jujutsu can be extended to defend against

rectangular patch attacks. We train the rectangular patches on each

dataset using a 7% patch (36*96). As discussed in Section 5.1, we

assume the defender is aware of the shape of the patch and hence

we use a rectangular bounding box, which occupies around 20%

of pixels as before, and it has a width/height ratio of 6:4. Table 12

shows the results on different datasets. On average, Jujutsu is able

to detect 97.25% adversarial examples, achieve robust accuracy of

78.3% with only 0.57% false positive.

The current extension assumes the defender’s knowledge of the

potential patch shape, and we leave the improvement of Jujutsu
to be general to different patch shape in future work. For exam-

ple, instead of using one single detection bounding box, can we

use multiple detection boxes in different shapes to cover different

potential patches?

Table 12: Jujutsu’s performance on rectangular patch attack.

Metric (%) ImageNet ImageNette CelebA Place365 Average
Robust Accuracy 75.44 92.42 64.58 80.76 78.3

False Positive 1.54 0.67 0.00 0.06 0.57

Mitigation
98.43 98.84 92.43 99.30 97.25Success Recall

A.5 Extending Jujutsu to Defend Against
Untargeted Attacks

We now describe our effort in modifying Jujutsu against untar-

geted attacks. Jujutsu’s current attack detection is not designed for

untargeted attacks, and hence we modify Jujutsu by directly per-

forming attack mitigation on the suspicious features (the procedure

to identify the suspicious features is the same), and using the use

the prediction label on the recovered image as the final output.

Since we do not use Jujutsu’s detection, we focus on the robust

accuracy and FPR on benign sample as the evaluation metric. In this

setting, Jujutsu achieves a robust accuracy of 55.15%, but with an

elevated FPR of 44%. Jujutsu still achieves over 55% robust accuracy

because it is able to successfully identify the adversarial patch

region in many AEs (over 68%) and hence it can perform attack

recovery on these adversarial patch regions. On the other hand,

Jujutsu yields a high FPR because Jujutsu does not incorporate its

attack detection pipeline to distinguish benign samples and directly

uses our mitigation strategy to reduce FPR (Section 3.3.3), which

can only be reduced to 44%.

Therefore, future work could look into combining Jujutsu with

other defenses, e.g., recent efforts use pre-defined thresholds [30]

or performs small masking on the test image and use the prediction

disagreement on the masked images [44] to characterize benign

and adversarial examples, which may be combined with Jujutsu to

facilitate an effective attack detection and mitigation defense.

A.6 Comparison with 2 Trojan-attack Defenses
In Section 4.4, we compare with 4 existing defenses designed for

countering patch attacks. We now evaluate 2 additional defenses

built for trojan attacks (STRIP [17] and Februus [14]), and we evalu-

ate whether they are also effective against patch attacks. We choose

these two techniques because: (1) STRIP relies on superimposing
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two different images to detect trojan attack, which may also be ef-

fective for patch attacks if the adversarial examples (corrupted with

adversarial patch) continue to cause misclassification after being

superimposed with another image. (2) Februus uses pre-defined

threshold to scan the saliencymap for trojan attack detection, which

is similar to other detection techniques for patch attacks [12, 30].

Comparison with STRIP [17]. Gao et al. [17] propose STRIP to

defend against patch-like trojaned adversarial examples by super-

imposing the entire target image with a number of new images,

and detect adversarial examples based on the prediction entropy on

the set of new images. The prediction entropy is compared against

a detection boundary (derived from benign inputs), and a low en-

tropy indicates that the target image is adversarial. We use the

implementation from [3], and we use 2000 images for deriving the

detection threshold and construct 100 superimposed examples per

testing image, similar to the original paper.

We conduct the evaluation on ImageNet, and found that STRIP

only detects around 6% of the adversarial examples while Jujutsu
detects over 99% (The FPRs by both techniques are both less than

2%). STRIP achieves low detection performance because the adver-

sarial patch is no longer effective after being blended with the new

images, thus the prediction entropy is high on the new images.

Comparison with Februus [14]. Doan et al. [14] propose Februus

to defend against patch-like trojaned adversarial examples, which

first performs attack detection by identifying the regions that ex-

ceed pre-defined threshold in the saliency map, and then performs

image restoration on these regions for attack mitigation. We use

the original implementation from [2] on VGGFace2 [10].

Under the VGGFace2 dataset, Jujutsu achieves a robust accu-

racy of 37.26%
6
, which is significantly higher than that of 0.2%

7
by

Februus. This is because Februus relies on the pre-defined thresh-

old to identify the regions associated with adversarial patch. This

method would fail to locate the adversarial patch if the patch’s

influence to the prediction is lower than the threshold, and our

experiment validates this.

Our results show that although STRIP [17] and Februus [14] are

effective defenses against trojan attack, they are not able to defend

against patch attacks.

A.7 Overhead of Jujutsu
Attack detection. Jujutsu’s detection involves three steps: (1) locate

the salient features from the saliency map; (2) identify the least-

salient region of the hold-out inputs and perform feature transplan-

tation and (3) prediction comparison. We perform the evaluation on

the ImageNet dataset, and repeat the evaluation 5 times and report

the average overhead (on a single Nvidia RTX 3090 GPU).

In step 2, the identification of the least-salient region of the hold-

out inputs can be performed offline (since it is independent of the

6Jujutsu has a lower robust accuracy on VGGFace2 than those on the other datasets due
to the insufficient performance yielded by the GAN (PICNet [49]). This is because we

need to train the PICNet from scratch on VGGFace2, which is very time-consuming as

VGGFace2 is a very large dataset. We trained the PICNet on a small subset of the dataset

for a week and used it in our evaluation due to time constraint. The performance of

Jujutsu can be further improved with more resources to train the PICNet (e.g., increase

the size of training set and number of epoches).

7
To ensure the code was implemented correctly, we verified that the code was able to

reproduce the results reported in the original paper for trojan attack. We then used

the code to evaluate against patch attacks.

0.1% 0.5% 1% 3% 5% 10% 20%
Adv. samples / (adv. + benign samples)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

M
iti

ga
tio

n 
ov

er
he

ad
 (m

s)
 

7.25 7.4 7.59
8.36

9.12

11.04

14.87

Figure 10: Overhead of performing attackmitigation by Jujutsu, un-
der different ratios of adversarial examples within all the test in-
puts. One inference pass on the undefended model took 5.56ms.

runtime input), hence we evaluate the overhead in performing fea-

ture transplantation only. Step 3 requires prediction comparison on

3 images (1 original image and 2 hold-out images implanted with

suspicious features), which can be executed in parallel to facilitate

faster inference. Step 1 can be decomposed into two steps: com-

puting the saliency map and locating the saliency features from

the saliency map. The majority of the overhead by Jujutsu is from

computing the saliency map using SmoothGrad. The overhead of

using SmoothGrad with 15-iteration implementation (i.e., 15 ran-

dom examples for computing the average gradients) is 340ms, and
the total overhead by Jujutsu is 345.7ms. Nevertheless, the overhead
in generating saliency map can be optimized by using more effi-

cient saliency map methods, such as [29], which can also accurately

generate the salinecy maps (hence not affecting Jujutsu detection

efficacy) but with a speedup of 1456x over SmoothGrad [29] (this is

because [29] requires only a single forward pass through a few of

the layers in a network; while SmoothGrad requires multiple for-

ward and backward pass that are more time-consuming). Hence, the

overhead by Jujutsu can be reduced to 5.93ms (estimated), while an

inference on the undefended model takes 5.56ms, which translates

to a 6.7% overhead by Jujutsu.
Attack mitigation. Jujutsu involves using a GAN to recover the

uncorrupted examples from adversarial examples and prediction

comparison for attack mitigation. Note that this process is activated

only after an attack is detected, hence its overhead is also dependent
on the ratio of adversarial examples in all the test inputs. For this
reason, we plot the overhead under different ratios of adversarial

examples, and we show the results in Fig. 10.

When the attack ratio is below 1%, the mitigation overhead

by Jujutsu (including both performing GAN-based recovery and

prediction comparison) took less than 7.6ms while inference on the

undefendedmodel took 5.56ms. As the attack ratio increases, Jujutsu
incurs higher overhead as it needs to perform more mitigation task

on the increasing amount of adversarial examples.

15


	Abstract
	1 Introduction
	2 Background
	2.1 Attack Formulation
	2.2 Threat Model

	3 Methodology
	3.1 Design Overview
	3.2 Detecting the Adversarial Patch
	3.3 Mitigating the Adversarial Patch

	4 Evaluation
	4.1 Experimental Setup
	4.2 RQ1 - Detecting Adversarial Patch Attacks
	4.3 RQ2 - Mitigating Adversarial Patch Attacks
	4.4 RQ3 - Comparison with Related Techniques 
	4.5 RQ4 - Physical-world Patch Attacks 
	4.6 RQ5 - Attacks Targeting Different Labels 
	4.7 RQ6 - Adaptive Attacks

	5 Discussion
	5.1 Limitation
	5.2 Evaluation on More DNN Models
	5.3 Evaluation on Larger Patches

	6 Related Work
	7 Conclusion
	References
	A Appendix
	A.1 Jujutsu's Performance under Different Parameter Values
	A.2 Ablation Study
	A.3 Extending Jujutsu to Defend Against Multi-patch Attacks
	A.4 Extending Jujutsu to Defend Against Rectangular Patch Attacks 
	A.5 Extending Jujutsu to Defend Against Untargeted Attacks
	A.6 Comparison with 2 Trojan-attack Defenses
	A.7 Overhead of Jujutsu


