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DNNs are increasingly deployed In
safety-critical domains

But do they always provide high-fidelity output?



No, thanks to Soft Errors
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Fig. 3. Soft error mechanism due to neutron and alpha.



Silent data corruptions (SDCs)
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We need effective solution to mitigate SDCs



Towards reliable DNNs
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DNNS can be Unre|lab|e With critical fault
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DNNs can also be reliable . I
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Our work
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Our solution: Ranger

* Range restriction in selective layers
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How to derive restriction bounds?

Statistically

Analytically

maximum




Where to perform range check?

Concat

Activation functions Pooling layers
(e.g., Tanh, Relu) (e.g., MaxPool, AvgPool)

 Details in the paper



Workflow L Unprotected DNN A

Profiling to derive bounds

Implemented as
Python scripts

Insert operators for range check

[ Protected DNN .
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Evaluation

Model Dataset
LeNet Mnist
AlexNet Cifar-10
VGG11 German traffic sign
VGG16 ImageNet
SqueezeNet ImageNet
ResNet-18 ImageNet
Nvidia Dave Real-world driving scene
Comma.ai Real-world driving scene
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Effectiveness of Ranger
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SDC rate reduced from 14.92% to 0.44%

(34X reduction)
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Accuracy of DNNs

No accuracy degradation for the DNNs

(without fault)

Overhead

0.53%

Floating-point Operations (FLOPSs)
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Ranger in action

Prediction (without fault): Prediction (with fault): Prediction (with fault):

156.58° -78.09° (with Ranger) 155.97°

Ranger corrects the faulty value to an acceptable
value to navigate the AV safely !
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Summary

DNN reliability is an important problem
» Soft errors can lead to failure outputs — need mitigation

Ranger: Selective Range Restriction
» Transform critical faults = benign faults

»Significant SDC rate reduction, no accuracy loss, negligible
overheads

»Code at https://github.com/DependableSystemsLab/Ranger

Zitao Chen
Zitaoc@ece.ubc.ca
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