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DNNs are increasingly deployed in 
safety-critical domains
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But do they always provide high-fidelity output?



No, thanks to Soft Errors
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Image copied from Hashimoto et al, “Soft error immunity of subthreshold SRAM”, ASICON’13



Silent data corruptions (SDCs)
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Prediction (without fault):
156.58°

Prediction (with fault):
-78.09°

We need effective solution to mitigate SDCs



Towards reliable DNNs

5

Overhead

[Mahmoud 2020], [Schorn 2018], 
[Hong 2019], [Zhao 2020]

Our goalSD
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DNNs can be unreliable
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DNNs can also be reliable



Our work
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Our solution: Ranger
• Range restriction in selective layers
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How to derive restriction bounds?
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Analytically Statistically

maximum



Where to perform range check?

•Details in the paper
10

Activation functions
(e.g., Tanh, Relu)

Pooling layers
(e.g., MaxPool, AvgPool) 

Reshape Concat



Workflow
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Profiling to derive bounds

Insert operators for range check

Unprotected DNN

Protected DNN

Implemented as 
Python scripts



Evaluation
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Model Dataset
LeNet Mnist

AlexNet Cifar-10
VGG11 German traffic sign
VGG16 ImageNet

SqueezeNet ImageNet
ResNet-18 ImageNet

Nvidia Dave Real-world driving scene
Comma.ai Real-world driving scene



Effectiveness of Ranger
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SDC rate reduced from 14.92% to 0.44% 
(34X reduction)
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Accuracy of DNNs
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No accuracy degradation for the DNNs 
(without fault)

Overhead 

0.53% 
Floating-point Operations (FLOPs) 



Ranger in action
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Prediction (without fault):
156.58°

Prediction (with fault):
-78.09°

Prediction (with fault):
(with Ranger) 155.97°

Ranger corrects the faulty value to an acceptable 
value to navigate the AV safely !



Summary
DNN reliability is an important problem
ØSoft errors can lead to failure outputs – need mitigation

Ranger: Selective Range Restriction
ØTransform critical faults à benign faults
ØSignificant SDC rate reduction, no accuracy loss, negligible 

overheads
ØCode at https://github.com/DependableSystemsLab/Ranger

16

Zitao Chen  
zitaoc@ece.ubc.ca



17



Reference 
• C. Schorn et al., “Efficient on-line error detection and mitigation for deep neural network 

accelerators,” in International Conference on Computer Safety, Reliability, and Security. Springer, 
2018. 

• G. Li et al., “Understanding error propagation in deep learning neural network (dnn) accelerators 
and applications,” in Proceedings of the International Conference for High Performance Computing, 
Networking, Storage and Analysis. ACM, 2017. 

• K. Zhao et al, “Algorithm-based fault tolerance for convolutional neural networks,” arXiv, 2020
• S. Hong et al, “Terminal brain damage: Exposing the graceless degradation in deep neural networks 

under hardware fault attacks,” arXiv, 2019
• A. Mahmoud et al, “Hardnn: Feature map vulnerability evaluation in cnns,” arXiv, 2020

18


