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Abstract—Robotic Vehicles (RV) rely extensively on sensor
inputs to operate autonomously. Physical attacks such as sensor
tampering and spoofing can feed erroneous sensor measurements
to deviate RVs from their course and result in mission failures.
In this paper, we present PID-Piper, a novel framework for
automatically recovering RVs from physical attacks. We use
machine learning (ML) to design an attack resilient Feed-
Forward Controller (FFC), which runs in tandem with the RV’s
primary controller and monitors it. Under attacks, the FFC takes
over from the RV’s primary controller to recover the RV, and
allows the RV to complete its mission successfully. Our evaluation
on 6 RV systems including 3 real RVs shows that PID-Piper
achieves high accuracy in emulating the RV’s controller, in the
absence of attacks, with no false positives. Further, PID-Piper
allows RVs to complete their missions successfully despite attacks
in 83% of the cases, while incurring low performance overheads.

Index Terms—Cyber Physical Systems (CPS), Robotic Vehicle
Security, Attack, Detection, Resilience

I. INTRODUCTION

Autonomous Robotic Vehicles (RVs) such as Unmanned
Aerial Vehicles (UAVs, also known as drones) and Unmanned
Ground Vehicles (UGVs, also known as rovers) are widely
deployed in a variety of industrial sectors e.g., agriculture,
surveillance, package delivery, warehouse management, and
space exploration [1]–[5]. RVs rely extensively on their on-
board sensor measurements for autonomous operations.

Unfortunately, RVs have been shown to be vulnerable to
physical attacks. These are attacks that maliciously perturb
RV sensor measurements through physical means. Common
physical attacks against RVs are GPS spoofing by transmitting
false GPS signals [6], [7], and gyroscope [8], and accelerom-
eter [9] tampering through acoustic noise injection. Physical
attacks can have severe consequences such as crashing the RV,
or significantly deviating it from its course and preventing it
from reaching its destination, resulting in mission failure [10].

There have been many techniques proposed for detecting
physical attacks in RVs [10]–[13]. However, upon detecting
the attack, these techniques either raise an alarm and trigger
the fail-safe modes of the RV (e.g., forced landing for drones),
or require manual remediation [14]. Unfortunately, this often
leads to failure of the RV’s mission (i.e., RV does not reach
its destination, or crashes). Because RVs are projected to be
deployed in mission-critical tasks such as drug delivery [3],
[15] and disaster relief [16], they need to recover from physical

attacks (henceforth, by attacks we mean physical attacks), and
complete their missions. Therefore, the recovery technique
should steer the RV to its destination and allow it to complete
its mission, without requiring any manual remediation.

In this paper, we propose PID-Piper1, a framework for auto-
mated attack recovery in RVs by using a secondary controller
in tandem with the RV’s primary controller. PID (proportional-
integral-derivative) control is the primary controller in au-
tonomous RVs [17]. We design PID-Piper based on two
observations we made. First, PID control is designed to handle
faults such as sensor noise and environmental disturbances by
compensating for the resulting errors (e.g., increase thrust to
minimize drift due to wind). However, it over-compensates for
the sensor perturbations due to attacks, which are systematic
in nature, causing the RV to deviate from its course and result
in mission failures. Secondly, PID controllers perform a series
of calculations based on the RV’s inputs (e.g., target position)
and sensor measurements (e.g., linear and angular position)
to derive the actuator signals. However, these calculations are
very sensitive to changes in the sensor’s inputs, which often
cause large variation in the outputs (i.e., actuator signals). This
is due to the high collinearity among the input parameters.

PID-Piper addresses the above weaknesses of PID con-
trollers through two innovations. First, it uses a Feed-Forward
Controller (FFC), as opposed to a Feed-Back Controller
(FBC) (used by all the prior work in this area [10], [13], [14]).
Unlike an FBC, which relies on the primary PID controller
to correct the RV’s trajectory, an FFC predicts the potential
disturbances (due to attacks) and directly rectifies the RV’s
trajectory to compensate for them. This allows it to avoid the
over-compensation problem of PID. Second, we use Machine
Learning (ML) to learn the appropriate model for predicting
the PID controller’s output, and we use feature engineering to
avoid the high collinearity problem of PID. Thus, PID-Piper
can accurately predict the behavior of the PID controller under
normal (attack free) operation, while being resilient to attacks.

PID-Piper runs the ML-based FFC in tandem with the
PID controller, and monitors the deviation between both the
controllers. If this deviation exceeds a pre-defined threshold,
it signals an attack, and switches the RV’s output from the

1PID-Piper leads RV towards their mission targets despite attacks, and
hence the name (pronounced Pi(e)d Piper).



PID controller to the ML-based FFC until the attack subsides.
This allows the RV to recover from the attack, and complete
the mission successfully. We call these attacks overt attacks
as they cause explicit disruptions in RV missions.

However, attackers can also mount stealthy attacks that
cause deviations in the RV’s trajectory in a controlled manner,
and over time can cause significant disruptions in RV mis-
sions [18]. Because such attacks cause controlled deviations
under the threshold, they will not trigger detection, and hence
recovery is not possible. Compared to prior work, PID-Piper
derives a precise model of the RV using ML techniques,
and hence sets tight detection thresholds. This allows it to
significantly limit the effects of stealthy attacks.

To the best of our knowledge, PID-Piper is the first technique
that automatically recovers the RVs from overt attacks, and
limits the effects of stealthy attacks, to achieve mission success.

Our contributions in this paper are:
• We propose the use of FFCs for detecting and recovering

from physical attacks against RVs, which directly rectifies
the actuator output based on the model’s predictions.

• We design a ML-based model for the FFC, and use
feature engineering to make it resilient to attacks.

• We design PID-Piper, a framework to integrate the ML-
based FFC controller with the PID controller. PID-Piper
uses the latter’s output in the absence of attacks. However,
it monitors the deviation between them, and switches to
the former’s output if the deviation exceeds a specified
threshold, thereby detecting an attack.

• We evaluate PID-Piper on 6 RVs - 3 simulated systems,
and 3 real RVs (2 drones and a rover) on a wide range of
missions, and subject them to overt and stealthy attacks.

We find that (1) PID-Piper achieves high accuracy in pre-
dicting the RV’s runtime behaviour i.e., comparable to the PID
controller, during normal operation (in the absence of attacks),
and incurs 0% false positives. (2) PID-Piper successfully
recovers the RV under overt attacks, and completes the mission
in about 83% of cases (on average). while prior work [14]
does so in only 13% of the cases. Further, PID-Piper incurs
neither crashes nor stalls of the RV, unlike prior work that does.
(3) PID-Piper limits the impact of stealthy attacks on the RV
by a factor of 7, compared to the next best technique [13],
and ensures mission success in 100% of cases (prior work
has 0% success rate), and (4) PID-Piper incurs less than 7%
performance overhead, with no increase in mission times.

II. BACKGROUND AND THREAT MODEL

In this section, we first discuss the various operations
and modules of RV’s autonomous control logic. Then we
discuss overt and stealthy attacks against RVs, followed by
the limitations of existing techniques. Finally, we present the
differences between FFC and FBC, and the threat model.

A. Robotic Vehicle Control

In this paper, we focus on commodity RVs e.g., delivery
drones, warehouse rovers etc., operating autonomously. An
RV uses many sensors (e.g., GPS, barometer, gyroscope,

Fig. 1: RV’s Autonomous Control Logic

accelerometer, and magnetometer) to capture its current phys-
ical state (e.g., angular and linear position), which are used
to estimate the actuator signals (e.g., motor commands) for
positioning the vehicle in the next state.

RVs use PID control for estimating position (e.g., altitude,
latitude, longitude), and attitude (e.g., yaw, roll, pitch), as
well as correcting position and attitude errors during the
RV mission. Figure 1 (based on ArduPilot [19]) shows an
example of a RV controller. RV controllers consist of two
parts. (i) The position controller takes the target states as
input (i.e., target position, target velocity, position error, and
actual velocity), and calculates the corresponding velocity,
acceleration and finally, the target angles (i.e., yaw, roll, pitch).
(ii) The attitude controller takes the target attitude as input
(i.e., target angles, target angular velocity, angular error, and
actual angular velocity), and calculates the rotation rates and
the corresponding high level motor commands. In addition
to the inputs shown in the figure, the RV controller relies
on the P, I, D coefficients that track the control signals and
history of errors between target and actual state. The RV
controller (i.e., PID controller) then performs a series of calcu-
lations (e.g., Target Position→Velocity→Acceleration→Target
Angles. Target Angles→Angular Rotation→rotation rate) to
derive the target angles and motor outputs.

B. Attacks Against RVs and Defense

As RVs rely on sensor measurements for autonomous oper-
ation, attacks on sensors can be debilitating for the RV. Physi-
cal attacks manipulate sensor measurements through physical
means, e.g., gyroscope measurements can be manipulated
through acoustic noise injection [8], and GPS measurements
can be manipulated by transmitting malicious GPS signals [6].
Physical attacks are often launched by injecting false data (a
bias value) to raw sensor measurements [10], [13], [18]. There
are two kinds of physical attacks: (1) Overt, and (2) Stealthy.

Overt attacks inject large bias f into sensor measurements
x : x = x + f to cause an immediate disruption in the RV’s
mission (e.g., drastically deviate a drone from its trajectory
and/or crash it) [8], [9]. Real-time invariant analysis have
been proposed for detecting overt attacks against RVs [10],
[11], [13]. Typically, invariant analysis techniques derive a
model correlating the RV’s sensor inputs with the actuator
outputs. Based on the RV’s current state (e.g., linear and
angular position), the model estimates the system’s real-time
behaviour (i.e., next state). At runtime, if the error between
observed values Vo and model estimated output Vp is > a pre-
defined threshold τ , an alarm is raised. To prevent false alarms
due to transient effects, the comparison is performed in a time
window as shown in the following equation.



D(t) = true, if
∑tj
ti
|Vp − Vo|n > τ. (1)

Unfortunately, attackers can exploit the above attack de-
tection strategy to mount stealthy attacks [18]. Assuming the
attacker is able to determine τ , she can trigger stealthy attacks
in a controlled manner where |Vp − Vo| never exceeds τ .
Because the error remains under the threshold τ at any time,
the attack remains undetected.

In general, the higher the threshold, the greater the disrup-
tion that a stealthy attack can cause. Model based techniques
heavily rely on the model’s accuracy to determine a precise
estimate of the RV’s real-time behaviour. If the model fails to
accurately estimate the RV’s dynamics (e.g., position, attitude),
the system will have to tolerate significant errors to avoid
false positives, and hence set a high detection threshold.
Prior work [18] has demonstrated that stealthy attacks on
such models, when performed over a long time, can cause
substantial deviations in the RV’s trajectory.

C. Limitations in Existing Techniques and Motivation

Attack detection techniques for RVs such as Control In-
variants (CI) [10] and Savior [13], enable fail-safe mode
(e.g., landing for drones) once an attack is detected. However,
they cause the mission to be aborted upon detection of an
attack. As RVs are often deployed in critical missions, it is
important to recover from the attacks and complete the mission
successfully. We define a successful mission as one in which
the RV reaches the planned destination without crashing.

A recent technique for recovering RVs from attacks is
software sensor based recovery (SRR) technique [10]. SRR
uses system identification to construct a model of the RV
that considers controller, actuators and vehicle dynamics. The
system model predicts the RV’s next state given the current
state and target position. The software sensors (i.e., set of pro-
grams that emulate the real sensors such as GPS, gyroscope,
accelerometer) take the system model’s predictions as input,
and derive the measurements similar to the real sensors. A
recovery monitor observes the real sensors and switches to
the software sensors if the difference between the software
sensors and real sensor measurements increases above a pre-
defined threshold, thereby signifying an attack (Equation 1).

However, there are two issues with SRR. First, SRR detects
only abrupt fluctuations in the RV’s trajectory due to overt
attacks, and prevents crashes by transitioning the RV to an
emergency state for a short time. This means that upon an
attack detection, the RV will be placed in a holding state,
and will require manual intervention to successfully complete
the mission. As we show later (Section VI), SRR achieves low
mission success rates in RVs without any manual intervention.

Second, SRR uses a linear state-space model to estimate
the real-time behaviour of RVs. As RVs are non-linear sys-
tems [13], SRR fails to accurately estimate the RV’s dynamics,
as a result of which, it is vulnerable to stealthy attacks. Such
stealthy attacks can result in significant deviations of the RV,
and also lead to mission failures (Section II-B).

D. Feed-Forward vs Feed-Back Control

In non-linear control systems such as RVs, there are two
ways to handle errors due to sensor or environmental noise,
and predict actuator outputs [20]. Feed-Back control (FBC),
or reactive control, measures the error between the target and
actual parameters (Figure 1) and derives appropriate control
inputs to minimize the error. Since all of the noise affecting
an RV is not known apriori (e.g., friction, wind, payload etc.),
FBC measures the error during operation and minimizes its
impact. Therefore, it does not require a precise system model.

Feed-Forward control (FFC), or predictive control, requires
a precise model of the system and the noise affecting it. FFC
uses a noise model to predict the error between the target and
actual parameters, and estimates the system’s response. FFC
directly modifies the control input to account for the error
predicted by the noise model, and prevents the modeled errors
from causing large fluctuations in the actuator output.

Prior techniques that detect attacks against RVs [10], [13],
and the only other recovery technique for RVs, SRR [14],
use an FBC alongside the RV’s PID controller. To the best of
our knowledge, no prior work has evaluated the appropriate
controller design for recovery from attacks in RVs. Therefore,
we evaluate which of the 2 techniques is better for minimizing
the effects of sensor perturbation due to attacks, and recover
the RVs (Section IV). Though it has been observed that an
FFC is better at rejecting sensor noise and correcting it than
an FBC [21], it is not clear how it performs under attacks.

E. Threat Model

We focus on physical attacks that maliciously perturb RV’s
sensor measurements to cause deviations or disruptions in
its mission. These can be either overt or stealthy attacks.
We assume that the attacker has the following capabilities:
(1) Perform sensor spoofing attacks on GPS or manipulate
IMU (gyroscope, accelerometer, magnetometer etc.) sensors
of the RV. (2) Snoop on the communication channel between
the RV and the ground control station (GCS), as well as on
sensor measurements, control inputs and outputs of the RV.
The attacker can also arbitrarily manipulate sensor readings to
her desired values, and at any time during the RV’s mission.

However, we exclude attacks that result in persistent drastic
sensor manipulations, as well as attacks that target all the
sensors simultaneously. These attacks have been shown to
be hard to mount in real world RV mission [8]. Similar
assumptions have been made in prior work [13]. We also
exclude cyber attacks that target software components or
firmware, as they can be handled by existing techniques [22].

Further, we assume that the attacker does not have the
following capabilities: (1) write access to the firmware, (2)
root access to the Operating System (OS). Hence, she cannot
bypass PID-Piper’s checking. Finally, we assume that the
attacker may not poison the training data for the ML models.

III. INITIAL STUDY

Our goal is to provide recovery for RVs by predicting
the RV’s actuator signals under attacks, and make them



complete their mission successfully. We present a preliminary
experimental study to understand how attack induced sensor
perturbations cause fluctuations in the PID controller’s outputs.

In the experiment, we performed a mission on a Pixhawk
based drone (Section VI has details), with the following
mission command Arm → Takeoff → Waypoint → Land.
Once the drone attains 5m elevation and cruises towards the
destination, we launched a GPS spoofing (overt) attack. The
attack is triggered intermittently for 3-5 seconds throughout
the mission, which lasts for a total of 60 seconds.

(a) (b)

(c) (d)

Fig. 2: Parameters of Pixhawk drone under GPS manipulation
attack (a) Position error, (b) Fluctuations in Roll angle, (c) P
coefficient adjustment, (d) Change in rotation rate

High Collinearity in PID parameters Figure 2 shows the
changes in various parameters in the Pixhawk drone under
the attack. Figure 2a shows the position error incurred by the
PID controller due to the attack, while Figure 2b shows the
corresponding output i.e., roll angle estimation. The figures
show only the straight line part (i.e., the steady state) of the
mission, where the change in roll angle should be near 0 if
there is no position error (i.e., without any attacks), as the
drone is not making any turns. However, as can be seen in
Figure 2a, though the position error pE due to the attack is
small (i.e., between 0 to 0.2 m), the corresponding fluctuations
in the roll angle y are large (i.e., between -10 to 20 degrees),
which deviates the drone significantly from its course.

The observations indicate that the PID controller is highly
sensitive to continuous variance inflation in sensor measure-
ments. We identified the reason for this behaviour as high
collinearity in the PID controller’s parameters. The PID
controller performs a series of calculations based on inputs
such as sensor measurements and target state, to derive in-
termediary parameters such as velocity, acceleration, etc., and
estimates the Euler angles (roll, pitch, yaw) (Section II-A).
Collinearity means that one or more of these parameters are
highly correlated with each other, and so a change in any one
parameter leads to changes in all of them [23].

We assess the degree of collinearity between the PID’s pa-
rameters using the Variance Inflation Factor (VIF) [23] metric,
which measures variance increase in the output parameter

due to collinear input parameters. VIF(x1) is calculated by
regressing parameter x1 against every other parameter x2..xn.
A VIF value close to 1 indicates low collinearity, while a VIF
value greater than 10 indicates high collinearity [23].

We find that position variance, linear and angular position
have the lowest VIF values (ranging from 1 to 1.6), while
velocity, acceleration, angular rotation and angular speed have
the highest VIF values (clustering between 22 to 29). The
parameters with high VIF values experience large fluctuations
due to small variance inflation in pE, consequently triggering
a cascading variance inflation in the operations of the PID
controller (Section II-A). Therefore, high collinearity in the
PID controller’s parameters triggers large fluctuations in its
outputs due to the attack induced sensor perturbations

Overcompensation Issue in PID The PID controller derives
the actuator output by attempting to reduce the error between
the target state u and the actual state x (Figure 1). For
example, when a drone is cruising in steady state, PID derives
the rotation rate r : r = P ∗ (u − x), and ensures that r
remains constant by adjusting the coefficient P . Figure 2c
shows the P coefficient adjustments under the attack shown
in Figure 2a which induced position error. Before the attack
started (t < 10), the PID controller sets the P coefficient to
4 to derive r. As the position error increases starting from
t = 11 due to the attack (Figure 2a), we can see in Figure 2c
that the PID controller persistently adjusts the P coefficient
in order to maintain r at a constant rate. As a result of the
persistent adjustments to the P coefficient, as can be seen in
Figure 2d, the rotation rate increases from 1.6 to 3.2 starting
at t = 11. The increase in rotation rate results in increasing
the thrust, which drifts the drone from its original trajectory.

The PID controller is designed to handle sensor noise and
disturbances such as wind, by adjusting the set of coefficients
(namely P, I, and D), and by modifying the controller’s inputs
to increase/decrease the thrust in order to compensate for the
error. However, the errors between u and x due to sensor noise
are typically transient in nature unlike attacks, which induce
the error systematically. Therefore, systematically induced
sensor perturbations due to attacks cause overcompensation
in the PID controller, resulting in erroneous actuator signals.

IV. DESIGN

In this section, we present the various design choices
we make to build an attack resilient controller for RVs by
addressing the issues discussed in Section III.

A. Modeling Robotic Vehicles

There are two options for building a resilient controller. The
first option is to modify the original PID controller to address
the high collinearity and over-compensation issues. The second
option is to add a secondary controller in tandem with PID,
and overcome the aforementioned issues.

We choose the second option, namely adding a secondary
controller, for two reasons. First, modifying the PID controller
may affect its fault tolerance capabilities because collinear
parameters and compensation for errors is inherent in its



design. Second, PID control is a well-defined mathematical
model containing differential equations, and radical changes
to the PID controller may result in erroneous estimations.

Therefore, we design a secondary controller for RVs that
monitors the PID controller’s output at runtime, and takes over
the autonomous control only when an attack is detected. When
the attack subsides, the control is switched back to the PID
controller (until another attack is detected or the mission ends).

We use ML to build the secondary controller, and train the
model to emulate the PID controller (in the absence of attacks).
We choose ML based models for the following reasons: First,
the diversity and flexibility of ML techniques allows us to
design an appropriate model of input/output relationships for
non-linear RV systems. Second, we can leverage ML design
principles to build a model that emulates PID controller
while being resilient to malicious sensor perturbations. In
particular, our ML model learns the temporal relationships
in input parameters to achieve high accuracy, and we use
feature engineering in the ML model design to eliminate the
parameters that contribute to high collinearity.

Because the PID controller uses multiple, independent input
parameters to derive the corresponding actuator signals, we
formulate the ML model predictions as a regression problem.
The PID controller’s input is a multivariate time-series. There-
fore, we use Long Short Term Memory (LSTM) architecture,
which is well-suited to model temporal patterns and long-term
dependencies respectively [24].

B. Controller Design

Recall that the secondary controller can be built either
based on FFC or FBC designs (Section II-D). Prior work
for attack detection and/or recovery in RVs [10], [13], [14]
modeled a physical process i.e., given the current physical
state of the RV, what will be the next state. Because their
goal was to predict physical states of the RV under attack,
they use state space models and/or Kalman filters, which
predicts the RV’s physical dynamics in a feedback control
loop (i.e., FBC). However, ML techniques can model both the
physical dynamics (i.e., correlate previous state to next state)
as well as the RV’s control operations (i.e., correlate target
state to actuator output). Thus, this flexibility in ML models
allow us to consider both FFC and FBC in our design.

We design FFC and FBC using the same ML technique
i.e., LSTM. The FFC design, learns a model Fθ that predicts
the actuator output y′(t) (angular rotation, Euler angles) given
the current state x(t) (linear and angular position), and the
target state u(t) (target position) as inputs. The FBC design,
on the other hand, learns a model Fψ to predict the current
state of the RV x′(t) given the output of the previous state
y(t− 1) and u(t) as inputs. The FBC predicted x′(t) is used
by the PID controller to derive y(t). Therefore, FFC models
the system to predict the output of the PID controller, while
FBC models the system to predict one of the inputs of the PID
controller. Figure 3 shows difference between the two designs.

The steps involved in building FBC and FFC using ML are:

Fig. 3: FBC and FFC controller design

(1) Data Collection: We collect a diverse set of RV mission
profile data from both simulated and real RVs. We collect
sensor measurements (GPS, gyroscope, accelerometer, barom-
eter), data related to RVs linear and angular state in X, Y,
Z axis (linear position, position variance, angular position,
angular speed, velocity, acceleration etc.), and the outputs of
position and attitude controller (Figure 1). We also collect the
PID specific coefficients that track the control signals.

(2) Feature Selection: In this step, we select a set of
meaningful features for training ML models. Note that FBC
takes y(t−1) and u(t) as inputs, while FFC takes x(t) and u(t)
as inputs. Therefore, the feature sets for both the controller
designs are different. The ML model for FBC contains 12 fea-
tures (e.g., target position, Euler angles, velocity, acceleration,
angular rotation etc.), while the ML model for FFC contains
44 features (e.g., target position, position variance, linear
position, angular position, angular speed, IMU measurements
etc.). We use a greedy approach for feature subset selection.
We start with having a single feature in the model, and on
every iteration we add a new feature, and measure the model
accuracy. We stop when the accuracy saturates.

(3) Model Training: Finally, we train two LSTM models to
learn Fθ and Fψ with the respective feature sets. Both the
models have 2 layer stacked LSTM design, a Sigmoid neural
net layer followed by 2 fully connected PRelu layers. We save
the inputs of the previous steps in LSTM cells. This helps
the model learn the temporal correlations between the inputs,
which is necessary for accurate modeling of transition states
in the RV (e.g., steady state to landing in drones).

C. Analyzing FBC and FFC Designs

We perform three experiments to analyse the effectiveness
of FBC and FFC design with and without attacks. We use
the same Pixhawk drone as before (Section III) for all three
experiments, navigating via 3 points, A, B and C. In the first
experiment, no attacks are considered. The Pixhawk drone
navigates from location A→B in steady state, makes a 150
degree turn, then navigates towards location C.

We use the Mean Absolute Error (MAE) MAE =
1
n

∑n
t=1 |yPID − yML| to compare ML predictions with the

PID’s predictions. The MAE measures the average magnitude
of the errors between the ML predictions and the PID’s.
Note that FBC does not predict the actuator signals directly
(Figure 3). Therefore, in the case of FBC, yML refers to PID
output while using ML predicted x′(t).

We compare the roll angle predictions of FFC and FBC
with the roll angle estimation of the PID controller with and



without attacks. In the absence of attacks, the MAE for both
FBC and FFC is under 1 degree, which is considered as good
accuracy in time series predictions for non-linear systems [13],
[14]. Therefore, in the absence of attacks, both FBC and FFC
are equally effective in predicting the RV’s realtime behaviour.

In the second experiment, we perform attacks similar to
Figure 2a during a drone mission. We use the PID’s roll angle
estimations in the previous mission (without attacks) as the
baseline, and analyse the errors in PID, FBC and FFC outputs
under an attack. For the PID, the MAE under attack was found
to be 8.09, while for FBC and FFC, the MAE values were 6.16
and 5.85 respectively. Thus, the FFC is slightly better than the
FBC in predicting the RV’s trajectory under attacks.

In the third experiment, we use feature engineering in the
ML model design [25] to address high collinearity, and subject
them to attacks. Recall that parameters with high VIF values
experience high fluctuations under attacks even if the variance
inflation is small (Section III). To reduce the collinearity
in FBC, we eliminate the parameters in the set y(t − 1)
(e.g., inertial velocity and angular rotation) that have high VIF
values, and learn a model (Equation 2), selecting the minimum
number of y(t− 1) parameters to achieve high accuracy.

x(t) = min
y
Fψ(y(t− 1), u(t)) (2)

Similarly, to reduce collinearity in FFC, we eliminate parame-
ters in the set x(t) (e.g., GPS values, raw IMU sensor values,
IMU velocity and acceleration in X, Y, Z axis) that have
high VIF values, and learn a model (Equation 3) selecting the
minimum number of x(t) parameters to achieve high accuracy.

y′(t) = min
x
Fθ(x(t), u(t)) (3)

The pruned feature set for FBC contains 6 parameters such
as target states, Euler angles, and angular states. On the other
hand, the pruned feature set for FFC contains 24 parameters
that capture the RV’s linear and angular positions such as target
position, position error, position variance, angular position,
angular orientation, angular speed etc.

We again run the above mission under attacks. We observed
that the MAE for both the techniques is lower after feature
engineering. Further, we find that the MAE of FFC was 0.86,
while that of FBC was 3.91. Therefore, the FFC with feature
engineering is much more accurate than FBC with feature
engineering in predicting the RV’s trajectory under attacks.

D. Addressing Over-Compensation with FFC Design

The FFC is more accurate in predicting RV’s trajectory
under attacks than FBC because FFC is effective in preventing
sensor perturbations from influencing its output. Recall that
the LSTM model in both FBC and FFC designs uses memory
cells to remember temporal relationships between inputs. We
leverage the memory cells to build a noise model for both
FFC and FBC which correlates past and present inputs and
minimizes the effects of sensor perturbations. Because FFC
and FBC have different inputs and outputs (Figure 3), the
noise model in FFC minimizes the influence of attack induced

fluctuations in x(t) on model output y′(t), whereas, the noise
model in FBC minimizes the influence of attack induced
fluctuations in y(t − 1) on model output x′(t). Note that the
noise model cannot eliminate the error completely, it can only
minimize the error in both FFC and FBC’s output.

Recall that in FBC design, the ML model predicts the RV’s
current state x′(t), and finally the PID controller predicts
the actuator signal y(t) using the ML predicted x′(t) along
with u(t) (Figure 3). As FBC relies on the PID controller
for deriving the actuator signal, and because FBC cannot
predict x′(t) with 0 error under attacks, PID overcompensates
for the error in x′(t) while deriving y(t) (Section III). On
the other hand, in FFC design, the ML model predicts the
actuator signal y′(t) independently based on the given input
set i.e., x(t) and u(t). Thus, even if the FFC and FBC
designs have the same LSTM design and a noise model, FBC
still suffers from the overcompensation issue, whereas, FFC
prevents overcompensation.

The steps involved in building the noise model leveraging
memory cells in LSTM are as follows. We model the re-
lationship between past and present input parameters in the
first layer of the LSTM which uses a Sigmoid activation
function (Sigmoid layer). At each instant t, the Sigmoid layer
examines the past inputs X(k) (X(k) = x(t− 1)..x(t− k))
in the memory cell and the present inputs x(t), and outputs a
value between 0 and 1 for each feature (ft). If the variance
between the X(k) and x(t) is high (under an attack), the
Sigmoid layer outputs a value close to 0. If the variance is
low, the Sigmoid layer outputs a value close to 1. By modeling
the relationship between X(k) and x(t), the Sigmoid layer
controls the weight of each feature in deriving the actuator
signals. Thus, it prevents sensor perturbations due to attacks
from propagating to the next layer, and influencing the output.

In summary, the FFC design with feature engineering in the
ML model, is much more effective in minimizing the output
fluctuations under attacks. Thus, PID-Piper uses a secondary
controller based on FFC design in tandem with PID controller.

V. PID-Piper ARCHITECTURE AND ALGORITHM

Figure 4 shows the architecture of PID-Piper. PID-Piper
consists of 3 main components (labeled in the figure and
shown in blue): 1 a FFC-based ML model, 2 a monitoring
module, and 3 a recovery module. The ML model runs in

Fig. 4: PID-Piper architecture.

tandem with the PID controller, and predicts actuator signals
y′(t) based on the target state u(t) and current state x(t). In the
absence of attacks, the PID controller’s output is used to derive
y(t). If the error between the 2 controllers δ = |y′(t)− y(t)|



exceeds a preset threshold τ , the monitoring module detects
an attack and enters the recovery mode by switching RV’s
autonomous navigation from the PID controller to the ML
model’s output. When the attack stops, the recovery module
switches the navigation back to the PID controller’s output.

PID-Piper relies on a threshold based monitoring to detect
attacks and trigger recovery. Recall that the ML model at-
tempts to predict the PID’s output. However, because the ML
model is more complex than the PID, the model’s predictions
may incur a small latency, and lag behind the PID controller’s
operation. To account for the delay, we use dynamic time
warping (DTW) [26] to calculate the temporal difference
between the time series PID estimates and ML predictions,
and calculate an optimal match between them [10]. We record
the observed temporal deviations between the two time series
(i.e., PID estimations and ML predictions) in the absence
of attacks over multiple missions. The error accumulated
(τ =

∑t=j
t=i |yPID − yML|) in the highest recorded temporal

deviation across the validation sets is chosen as the threshold.
We consider the effect of overt and stealthy attacks below.
1) Overt Attacks: PID-Piper limits the impact of overt

attacks by providing recovery, which minimizes the trajectory
deviations as a result of the attacks (e.g., navigates RVs back
on course) and prevents undesirable outcomes such as crashes.
To trigger recovery, the first step is to detect an overt attack
based on the divergence between the PID and ML predictions.

As ML provides approximations of the PID’s output, it is
necessary to differentiate the divergence due to attacks from
natural ones. For this purpose, we use the Cummulative Sum
(CUSUM) technique. Choi et al. [14] used a time-window to
keep track of the anomaly and raise an alert if the residuals
during the time window exceed a given value. However, later
work [13], [27] has shown that CUSUM outperforms the time-
window strategy as it prevents the attacker from hiding her
attack between windows. So we use CUSUM in our work.

Algorithm 1 shows the algorithm used by PID-Piper to
detect and recover from overt attacks. PID-Piper monitors the
PID and ML model’s outputs based on the RV’s current state
throughout the mission (Line 11 to 30). PID-Piper tracks the
difference between both the predictions based on the RV’s
current state (Line 12 to 13) following CUSUM statistics,
which is described as: St+1 = St+ |yML(t)−yPID(t)|−b(t),
where S(0) = 0 and b(t) > 0 are selected to prevent St from
increasing due to transient difference between yML and yPID.
When an overt attack occurs, the St+1 value (Line 15), will
exceed the threshold τ ; such deviations will be flagged as
attacks, and PID-Piper will trigger the recovery mode (Line
16). When the recovery mode is triggered, the ML predicted
output (Line 20) will be used to derived motor thrust (Line
29), instead of the PID’s outputs. If the attack stops, the error
between yPID and yML will go back to near 0 (Line 21 to
22). In that case, PID-Piper will turn the recovery mode off
(Line 23), and switch back to the PID’s outputs (Line 24).

2) Stealthy Attacks: In a stealthy attack, the attacker’s goal
is to inject controlled false sensor measurements xa to deviate
the RV from its trajectory while maintaining the δ below τ to

Algorithm 1 Algorithm for Recovery
1: u← target state
2: x← current state based on sensor measurements
3: y ← actuator signal to calculate motor thrust
4: procedure RECOVERYMONITOR
5: ut ← autonomousLogic()
6: xt ← AHRS()
7: yPID ← AttitudeControl()
8: yML ← PID Piper(ut, xt) . ML model output
9: S(t) = 0

10: b(t) > 0
11: while !mission end do
12: δ ← |yML − yPID|
13: S(t+ 1) = S(t) + δ − b(t) . monitoring using CUSUM
14: recovery mode ← false
15: if S(t+ 1) > τ then
16: recovery mode ← true . recovery mode activated
17: S = 0
18: end if
19: if recovery mode then
20: y ← yML . switching control to ML
21: error ← |yML − yPID| − b(t)
22: if error → 0 then . recovery mode deactivated
23: recovery mode← false
24: y ← yPID

25: end if
26: else
27: y ← yPID

28: end if
29: thrustHeading(y)
30: end while
31: end procedure

avoid detection. PID-Piper limits the impact of stealthy attacks
due to 2 reasons. First, the ML model used by PID-Piper
predicts the RV’s behaviour with high accuracy (Section VI),
and hence PID-Piper can employ a lower detection threshold
than prior work [14]. Second, because we keep track of the
historic δ using CUSUM, and compare it with τ , the attacker
cannot persistently inject the false data, as it will result in
higher fluctuation, and hence be detected.

VI. RESULTS AND EVALUATION

We first present the experimental setup for evaluating PID-
Piper (Section VI-A). Then, we evaluate the accuracy of PID-
Piper in emulating the PID controller, and its false-positive
rate. We also measure its effectiveness in handling both overt
and stealthy attacks, and finally, its performance overhead.

(a) Pixhawk Drone (b) Aion R1 Rover (c) Sky-viper Drone

Fig. 5: Real RV Systems used for Experiments.

A. Experimental Setup

To evaluate PID-Piper, we use 6 RV systems, 3 of which
are real RVs. They are (1) Pixhawk based drone [28] (Pixhawk
drone), (2) an Aion R1 ground rover [29] (Aion rover), and
(3) Sky Viper Journey drone [30] (Sky-viper drone). These are



all commodity RV systems, each costing less than $2000. The
other 3 systems are simulated RVs, (4) Ardupilot’s quadcopter
(ArduCopter), (5) Ardupilot’s ground rover [19] (ArduRover),
(6) PX4 software in the loop (PX4) [31]. We use the APM
SITL [32], and Gazebo [33] platforms for vehicle simulations.
RV Hardware The Pixhawk drone and Aion rover are based
on the Pixhawk platform [28]. Pixhawk is an ARM Cortex
based platform, consisting of a flight management unit (FMU)
controller, I/O, sensors and memory. The Sky-viper drone is
based on an STM32 processor, and uses an IMU with 3-axis
accelerometer, gyroscope, and barometer.

TABLE I: Mission Profiles, and the empirically derived thresh-
olds (roll, pitch, yaw) for each subject RVs. SL: Straight Line,
MW: Multiple Waypoints, CP: Circular Paths, HE: Hover at
fixed Elevation, PP: Polygonal Path. ’-’ means no threshold

RV Systems Number of Missions ThresholdsSL MW CP HE PP
ArduCopter 7 10 3 3 7 18, 18.09, 18.6
PX4 Solo 7 10 3 3 7 18.4, 18.4, 18.9
ArduRover 8 12 - 10 − , − , 20
Pixhawk 8 8 3 2 9 18.5, 18.62, 19.1
Sky-viper 8 8 3 2 9 23, 23.6, 24.05
Aion R1 15 5 10 − , − , 21.25

Dataset As there is no standard dataset to test models for
RVs, we use a diverse set of missions for each RV with
varying mission durations, mission distances, environmental
conditions (e.g., noisy sensor data), and covering a variety
of mission paths i.e., straight line, circular paths, flights in
polygonal paths, and flights with multiple destinations (or
waypoints). These emulate real-world RV missions: (1) a
last mile delivery drone [34] (straight line path), (2) those
used for surveillance or agriculture [35] (circular or polygonal
path), and (3) rovers deployed in warehouse management [5]
(polygonal paths). Because RVs transition through a known set
of operational modes (e.g., takeoff, waypoint/loiter/circle/RTL,
and land [19]), the LSTM model has to learn a relatively small
set of patterns in input vectors (Section IV-C), and keep track
of dependencies between current sensor inputs and past sensor
inputs to cover the typical RV missions.

We collect a total of 30 mission profiles for each subject
RV, and randomly select 24 (80%) for training, and 6 (20%)
for testing. Note that these mission profiles do not include
any attacks. We derive the thresholds for attack detection
and recovery (Algorithm 1) based on the training set, and
validate them using the testing set. Table I summarizes the
missions used for the different RVs, and the empirically
derived thresholds. We derive only the yaw angle threshold for
rovers, because rovers can only control the Z-axis rotation.

Due to physical space restrictions in our environment, our
real RV missions were limited to short distances (of 50m).
Therefore, we used simulations for long distance RV missions.
Implementation2 The LSTM model is implemented using
Tensorflow 1.10 [36] and Keras 2.2 library. Through offline

2PID-Piper code and dataset used in this work is available at https://github.
com/DependableSystemsLab/pid-piper

training, we learn the LSTM model, and implement the PID-
Piper’s online inferencing module in C++, which is then
plugged in to the RV’s autopilot software. The autopilot soft-
ware includes modules for control operations, sensor fusion,
and other autonomy related functionalities. We modified fewer
than 100 lines of code in each RV’s autopilot software, which
typically consist of thousands of lines of code. Most of these
changes consisted of routing the sensor measurements to PID-
Piper’s ML model. The ML model runs in tandem with the
PID controller for each input/output cycle.

PID-Piper’s implementation consists of less than 600 lines,
which results in an 1.5% increase in the firmware image size.
Comparison We quantitatively compare our results with
SRR [14], which is a recovery framework for RVs based on an
FBC design. CI [10] and Savior [13] are also FBC based ap-
proaches for detecting attacks against RVs. However, they do
not incorporate any recovery. Therefore, for a fair comparison,
we extended CI and Savior to provide recovery when an attack
is detected, by switching the control to the models used for
attack detection (similar to PID-Piper’s recovery approach).

Because SRR is not publicly available, we implemented it
using Matlab’s system identification (SI) tool [38] with our
best effort. We derived the system model (containing sets of
matrices) using our training data, and we validated the system
model’s accuracy with our test data. For CI and Savior, we
used the publicly available code released by their authors.

Prior work uses different hardware platforms, e.g, Savior
used Intel Aero, while SRR and CI used 3DR Iris - both
of these are currently discontinued. Because we use different
RV hardware, for a fair comparison, we adopt the original
simulation platforms used in the respective prior work i.e., Ar-
duCopter for SRR and CI, and PX4 for Savior.
Attacks As we did not have access to special equipment for
mounting physical attacks (e.g., noise emitters), we emulated
the attacks through targeted software modifications, similar to
what previous work has done [10], [13], [14], [18]. We launch
three kinds of overt attacks, similar to prior work, namely (i)
Attack-1: manipulates gyroscope readings gyro+f, f resulting
in > 20 degrees error. (ii) Attack 2: manipulates GPS readings
GPS + f, f resulting in > 20m position error, (iii) Attack 3:
manipulates gyroscope readings during vulnerable states of the
RV (e.g., landing in drones), often resulting in crashes [18].

To mount stealthy attacks, we used the attack code used in
prior work [18]. We inject false data based on the selected
thresholds for SRR, CI, Savior and PID-Piper. To maximize
the impact of stealthy attacks, we set the false-data to the
maximum value that can escape detection by each technique.
Performance Overheads Similar to SRR [14] and Savior [13],
we measure the CPU time incurred by the autopilot modules,
with and without PID-Piper, at periodic intervals, and report
the average overhead. We also measure the overall mission
time with and without PID-Piper, averaged across 5 missions.
Success Metric We consider a mission to be successful, if
after the mission is complete, the total deviation from the
original destination is less than 10m. Most GPS sensors used

https://github.com/DependableSystemsLab/pid-piper
https://github.com/DependableSystemsLab/pid-piper


in commodity RVs have an offset of 5 meters [39], and we
consider 2X of the GPS offset as our threshold (5m offset
from its position, and 5m offset from the destination), as this
deviation is indistinguishable from the standard GPS error in
RVs. We consider the mission to be unsuccessful, if the RV
crashes, stalls, or if the deviation from the destination is greater
than 10m. Crash means the RV could potentially be physically
damaged (e.g., drone falls to the ground), and stall means the
RV freezes and stops making progress towards the destination.

B. Prediction Accuracy

In these experiments, we evaluate the prediction accuracy of
PID-Piper with respect to the PID controller. We conducted 5
missions in each of the real RVs. No attacks were considered.

We use Mean Absolute Error (MAE) as the metric to
measure accuracy (Section IV). For each mission, we sample
the PID and ML outputs at 400 Hz (RV’s control logic operates
at this frequency), and the MAE is calculated as before.

Fig. 6: Comparison of MAE
in normal operation.

Fig. 7: CDF of deviations
from target during recovery.

We also compare PID-Piper’s accuracy with CI, Savior
and SRR. We record the real RVs’ mission data (online) and
run the profiled mission data through the models (offline).
Recall that all the above techniques used an FBC design,
while PID-Piper uses an FFC design. Hence, we test their
models’ effectiveness in predicting the RV’s current state.
RVs use Extended Kalman Filter (EKF) to translate sensor
measurements into the current state (e.g., linear and angular
position). Hence, the MAE for the above models is calculated
as MAE = 1

n

∑n
t=1 |yEKF − yM |.

Figure 6, shows the average MAE for 5 missions for the
3 real RVs. As can be seen in the figure, PID-Piper achieves
the lowest MAE among all the techniques, ranging between
0.88 - 1.11 degrees. This is because the LSTM effectively
learns temporal sequences in a time series, even in complex
missions. Both CI and SRR use a linear model to emulate
non-linear RVs, which does not model the RV’s behaviour.
Though Savior uses a non-linear model, it does not model the
RV’s transitions (e.g., steady state → LAND), and hence its
MAE is higher than PID-Piper, but lower than CI and SRR.

To test the robustness of PID-Piper, we also measured
its MAE against noisy sensor inputs due to environmental
conditions such as wind. We found that the MAE for ML
model’s estimations did not change much under environmental
disturbances. For example, under variable wind speed (15
km/h to 35 km/h), the MAE ranged from 0.96 to 1.38, which
is in the same ballpark as the MAE in normal conditions.

C. False Positives
We define the false positive rate (FPR) as the percentage of

times the mission fails in the absence of attacks. For measuring
the FPR, we run 30 different missions for each technique
without any attacks, and record an FP if a recovery is activated,
and the mission fails as a result. Even without attacks, it is
possible for a gratuitous recovery to get activated when the
model estimates deviate from the observed state. However,
we record a false positive only if the mission fails as a result.

On average each mission lasts approximately 3 minutes, and
so the total time for all missions is 360 minutes (4 ∗ 30 ∗ 3).

TABLE II: Comparison of Gratuitous Recovery in absence of
attacks, and FPR across the techniques

Analysis Type CI Savior SRR PID-Piper
Total Missions 30 30 30 30
Recovery activated 7 4 6 3
Mission Successful 0 0 3 3
Mission Failed 7 4 3 0
FPR = Failed/Total ∗ 100 23.33% 13.33% 10% 0%

Table II shows the results on the simulated RVs for each
technique. We find that PID-Piper performs gratuitous re-
covery in 3 of the 30 missions, but completes the mission
successfully in all of them (100% recovery rate), achieving
0% FPR overall. In comparison, CI, Savior and SRR activated
gratuitous recovery in 7, 4, and 6 of the missions respectively.
Of these cases, CI and Savior recover in none of them (0%
recovery rate), while SRR recovers successfully in half of them
(50% recovery rate). Thus, the overall FPR for CI, Savior and
SRR was 23.33%, 13.33% and 10% respectively, unlike PID-
Piper, which had 0% FPR. We also tested PID-Piper on the
3 real RVs and obtained a similar result, namely 0% FPRs.

D. Recovery from Overt Attacks
To test PID-Piper ’s effectiveness in detecting and recover-

ing from overt attacks, we launched 3 overt attacks targeting
the gyroscope and GPS sensors. We then measured the mission
success rate under overt attacks. All the techniques, including
PID-Piper, successfully detected all the attacks, and activated
recovery. Therefore, we measure how often the mission is
successful after recovery is activated by each technique.

As before, we performed the same 30 missions for the
simulated RVs with the techniques CI, Savior, and SRR in
addition to PID-Piper, and mounted the same overt attacks in
each mission. Without any recovery, all the missions crashed.

Table III shows the mission outcomes of PID-Piper and the
prior work after recovery from overt attacks. As can be seen,
PID-Piper successfully recovered the RVs from attacks in 25
out of the 30 missions (mission success rate of 83%).

In comparison, neither CI nor Savior could successfully
complete any of the missions (success rate of 0%), and SRR
could complete successfully only 4 out of the 30 missions
(success rate of 13%). Moreover, PID-Piper did not experience
any crashes/stalls (0% crash rate), while SRR experienced
crashes/stalls in 11 out of 30 missions (35% crash rate).
Finally, CI and Savior incurred crash/stalls in 80% of missions.



TABLE III: Mission Outcomes under Overt Attacks

Analysis Type CI Savior SRR PID-Piper
Total missions 30 30 30 30
Misson Successful 0 0 4 25
Mission Failed (no crash) 4 5 15 5
Crash/Stall 26 25 11 0

We also measured the deviations from the target destination
in the non-crash missions for SRR and PID-Piper. We exclude
CI and Savior as they had very few non-crashing missions.
In PID-Piper, the average deviation for the 5 failed missions
was 14.5m, while for the 25 successful missions, it was
5.7m, for an overall average deviation of 7.35m. In contrast,
for SRR, the average deviation was 24m in the 15 failed
missions, and 8.2m for the 4 successful missions, for an
overall average deviation of 20.67m. Thus, PID-Piper has 2.8X
smaller average deviation than SRR for non-crashing missions.

Figure 7 shows the cumulative distribution function (CDF)
of the non-crashing missions for PID-Piper and SRR as a
function of the deviation incurred. This is normalized to
the number of non-crash missions in each technique (30
for PID-Piper, 19 for SRR). As can be seen, PID-Piper’s
CDF increases sharply unlike SRR’s CDF, which increases
gradually with number of missions. Thus, PID-Piper incurs
much less deviation than SRR for the non-crashing missions.

(a) (b)

Fig. 8: PID-Piper’s recovery under overt attacks. (a) Gyro-
scope attack in Sky-viper, (b) GPS attack in Pixhawk drone

Finally, we tested PID-Piper’s recovery on the 3 real RVs.
Table IV shows the results. PID-Piper performs successful
recovery in 87% of the missions on average (videos showing
PID-Piper’s recovery are available here [40])). To get a deeper
understanding, we study its operation on 2 real RVs.

Figure 8a shows an example of PID-Piper’s recovery from
the gyroscope attack on the Sky-viper drone. The top portion
shows the outputs of the PID controller and PID-Piper under
attacks, and the bottom portion shows the three instances when
the attack was launched. As can be seen in the figure, the
PID’s roll angle estimations experienced heavy fluctuations
under the attack (between 12 and -20 degrees), while the ML
model’s predictions limited the fluctuations between -5 and 5
degrees. PID-Piper detected the attack, triggered recovery, and
completed the mission successfully. However, without PID-
Piper, the drone crashed - thus, PID-Piper prevented the crash.

Figure 8b shows the deviations due to PID-Piper recovery
after a GPS attack on the Pixhawk drone. The figure shows the

deviations during a 50m mission both with and without PID-
Piper ’s recovery. As can be seen, the deviation without PID-
Piper is about 25m, while with PID-Piper, the deviation is
about 5m. Further, the deviations with PID-Piper are bounded
as the mission distance increases, unlike the deviations without
PID-Piper. Thus, PID-Piper significantly bounds the devia-
tions due to the attack, and makes the mission successful.

E. Mitigating Stealthy Attacks

Recall that stealthy attacks are triggered by controlled sen-
sor manipulations, which over time, result in large deviations
in RV missions (Section II-C). We compared PID-Piper’s
ability to mitigate stealthy attacks with the other systems. We
used the ArduCopter for comparison with SRR and CI, and
the PX4 for comparison with Savior. We varied the mission
distances from 50m to 5000m, for linear paths i.e., straight line
missions. Straight line missions represent the best case for the
prior techniques as they predominantly use linear models. The
resulting deviations are shown in Figures 9a and 9b.

(a) (b)

Fig. 9: Deviation due to stealthy attacks. (a) Comparison
between PID-Piper, SRR, and CI on ArduCopter. (b) Com-
parison between PID-Piper and Savior on PX4 Solo.

As can be seen, on the Arducopter, PID-Piper significantly
limits the deviations due to stealthy attacks, incurring less
than 10m deviation even for a 5000m mission distance. In
comparison, CI and SRR incur more than 160m and 140m
deviation respectively. This is because CI and SRR use a
monitoring window to track the error between the observed
value and model predicted values. and they set a very high
threshold (91 degrees in CI [10] for a 3s window, 22 degrees
in SRR [14] for 1s window). This allows stealthy attacks that
are launched persistently at each time window to cause a large
deviation. In contrast, PID-Piper sets the threshold to around
18 degrees, allowing it to limit the effect of stealthy attacks.

On the PX4 Solo system, both PID-Piper and Savior cap the
deviations, as they use CUSUM [27] to track the error through-
out the RV mission (Algorithm 1) rather than a window, which
allows them to control the deviations. However, PID-Piper
caps the deviations due to stealthy attacks at 10m, while Savior
caps it at 70m (regardless of the mission distance). This is
because Savior again sets a high threshold for comparison,
60 degrees, to avoid false positives. Thus, the deviation due to
stealthy attacks in PID-Piper is 7X smaller than that of Savior.

Overall, the success rate of PID-Piper is 100%, under
stealthy attacks, while for the other 3 techniques, it is 0%.



We also validated PID-Piper’s efficacy by performing
stealthy attacks on the 3 real RVs for 50m missions. Table IV
shows the results. As can be seen, with PID-Piper, the
deviations due to stealthy attacks on real RVs were 1 to 3.5m,
while without PID-Piper, the deviations were 10 to 14m.

TABLE IV: PID-Piper’s Overt attack recovery rate, and devi-
ations due to stealthy attacks on 50 m real RV missions.

RV Systems Overt Attacks Deviation due to Stealthy Attacks(m)
Success Rate No Protection With PID-Piper

Pixhawk 87.5% 10 1
Sky-viper 88% 13 3.5
Aion R1 86.6% 14 1.23

F. Performance and Power Overhead

As the performance overheads in simulated RVs depend on
the computing platform, we use only the three real RVs for
measuring the overheads. PID-Piper incurs 6.91%, 6.78% and
5.36% performance overhead for the Pixhawk drone, Sky-
viper drone and the Aion rover respectively, for an average
overhead of 6.35%. In comparison, the average performance
overhead for SRR is 6.9% [14]. Therefore, PID-Piper incurs
a similar performance overhead compared to SRR, while
achieving a much higher mission success rate (Table III). We
exclude CI and Savior from this comparison due to their poor
mission success rates.

We estimate the power consumption based on the runtime
overhead of PID-Piper. The Pixhawk drone and Aion rover
both use an ARM processor and 5000 mAH battery. The
processor typically accounts for 12% of the total power
consumption [41]. Because PID-Piper adds an overhead of
7%, the total power consumption of the RV increases by
0.84%. Finally, we find that PID-Piper does not increase the
RV’s overall mission time, both with and without attacks.

VII. DISCUSSION

Missing Attacks As seen from the results, PID-Piper achieves
over 80% mission success rates under overt attacks, compared
to other techniques, which achieve less than 15% success.
However, PID-Piper does not achieve mission success in about
17% of cases. This is because the attacks cause significant
deviation in the RV’s trajectory towards the end of the mission,
and the ML model is unable to correct the deviation in time.
To handle such attacks, PID-Piper can be improved using
ensemble learning e.g., two LSTM models, one tailored for
attacks towards the end of the mission, and use boosting
algorithms to correlate the predictions of both networks to
obtain the actuator signals of the RV.

Attacks Targeting Other Sensors We only tested PID-Piper
with attacks on the GPS and gyroscope sensors. However,
PID-Piper is not limited to these attacks. Attacks on other
sensors, such as the accelerometer, magnetometer or optical
sensor of the RV, will also result in fluctuations of the PID
controller’s output. Hence, PID-Piper will detect this as an
attack and activate the recovery.

Adversarial Attacks It is possible to craft adversarial inputs
against PID-Piper if the attacker has knowledge of the ML
model itself, or has access to the training data (white-box) [42].
However, it is possible to mitigate such attacks by certifying
the robustness of each prediction [43], or by utilizing decision
boundaries [44] which guarantees that the model does not
provide incorrect predictions. On the other hand, attackers
can query the system to construct a surrogate model to craft
adversarial samples (black-box) [45], [46]. It is difficult to
launch such attacks against RVs as they are closed systems.
Further, it is possible to defend against such attacks by
monitoring the similarity index in queries [47].

VIII. RELATED WORK

Physical invariants have been used to detect attacks against
different CPS [48], [49]. These invariants are specific to the
CPS it is designed for. For example, BRUIDS, [50] uses
domain knowledge to derive rules for detecting different attack
types against UAVs. However, this technique is limited to
known attack signatures, and does not work for previously
unseen attacks. ML techniques have been developed to derive
invariants [51]–[55] and physical dynamics based monitor-
ing [56] techniques has been proposed to detect attacks against
CPS. None of these have been used for RVs, to our knowledge.

In the domain of RVs, physical attacks targeting the RV’s
gyroscope [8], accelerometer [9], GPS [7], and optical sen-
sor [57] have been proposed. Only three techniques have
been used for attack detection and recovery [10], [13], [14].
We have studied these in detail earlier. CORGIDS [11] finds
correlations among system parameters in drones using Hidden
Markov Models to detect attacks. However, it does not predict
or correct the RV’s behaviour, and cannot be used for recovery.
In recent work, Fei et al. proposed the use of reinforcement
learning (RL) in RV controllers to recover from faults and
attacks [58]. However, this technique requires the policy to
be trained with representative faults and attacks, in order to
distinguish them from normal operation. Such representative
faults/attacks are difficult to obtain in practice. Further, the
RL-based controller cannot control the altitude drop due to
gyroscope attacks which will ultimately resulting in a crash.
Therefore, unlike PID-Piper, this technique will require man-
ual remediation to handle attacks targeting RV’s gyroscope.

IX. CONCLUSION

We presented PID-Piper, a framework that uses a Feed-
Forward Controller (FFC) for recovering Robotic Vehicles
(RVs) from attacks. The FFC in PID-Piper uses a Machine
Learning (ML) model to emulate the RV’s PID controller. The
FFC-based ML model prevents over-compensation and high
collinearity, making it resilient to attacks.

We evaluate PID-Piper on 3 real RVs and 3 simulated RVs.
We find that PID-Piper (1) achieves 0% false positives in
the absence of attacks, (2) recovers RVs from overt attacks
and achieves mission success in over 83% of the cases, (3)
significantly limits impacts of stealthy attacks to achieve 100%
mission success, and (4) incurs low performance overheads.
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