

Paper# 283

PID-Piper: Recovering Robotic Vehicles from Physical Attacks

<u>Pritam Dash</u>, ⁺Guanpeng Li, Zitao Chen, Mehdi Karimi, and Karthik Pattabiraman University of British Columbia, ⁺University of Iowa

DSN 2021 The 51st Annual IEEE/IFIP International Conference on Dependable Systems and Networks Taipei, Taiwan, June 21-24, 2021

Autonomous Robotic Vehicles: An Overview

Robotic Vehicles (RV) are becoming popular in many industrial sectors.

Safeguard RVs, Safe missions.

Physical Attacks Against Robotic Vehicles (RV)

GPS Spoofing. Transmit malicious GPS Signals Signal Injection. Optical, Magnetic or Acoustic noise

Tippenhauer et. al. On the requirements for successful GPS spoofing attacks. CCS'11 Son et. al. Rocking Drones with Intentional Sound Noise on Gyroscopic Sensors. Usenix Security'2015

Physical Attacks and Consequences

Iran–U.S. RQ-170 incident

Iran–U.S. RQ-170 incident - https://en.wikipedia.org/wiki/Iran–U.S._RQ-170_incident *Ingenuity Flight Anomaly - https://www.space.com/mars-helicopter-ingenuity-sixth-flight-anomaly*

Detecting Attacks Against RVs

Detection is not enough...

Detection is not enough...

Detection is not enough...

SRR[RAID'20]: Recovery Approach

Choi et. al., Software Sensor based Real-Time Recovery from Sensor Attacks on Robotic Vehicles. RAID'2020

Remediation is not enough...

Choi et. al., Software Sensor based Real-Time Recovery from Sensor Attacks on Robotic Vehicles. RAID'2020

Recover from Attacks and Complete Mission

Recover from Attacks and Complete Mission

Goals

Recover from Attacks and Complete Mission

Limit impacts of Stealthy Attacks

PID-Piper

Feed-Forward Control Long Short-Term Memory (LSTM)

Sensor → PID Control → Actuator Signal

Sensor → PID Control → Actuator Signal

PID Compensation under Attacks

Recovering RVs from Attacks

Feedforward Control

((•))

y'(t)

y(t)

Feedforward Control

Experimental Setup

Experimental Setup

PID-Piper Implementation

- FFC built using LSTM model (Python)
- Trained (Python)
- Plugged into Autopilot \rightarrow Firmware (C++)

Training

- 30 RV mission profile data
- Circular, Polygonal, Straight line.

Metric for Mission Success

PID-Piper: False Positives

Analysis Type	SRR [RAID'20]	PID-Piper [This work]
Recovery Activated	20%	10%
Missions Failed	50%	0%
FPR	10%	0%

$$FPR = \frac{Number \ of \ missions \ failed}{Total \ number \ of \ missions}$$

PID-Piper: False Positives

Analysis Type	SRR [RAID'20]	PID-Piper [This work]
Recovery Activated	20%	10%
Missions Failed	50%	0%
FPR 10% 0%		
$FPR = \frac{Number \ of \ missions \ failed}{Total \ number \ of \ missions}$		

PID-Piper: Recovery under Attacks

Analysis Type	SRR [RAID'20]	PID-Piper [This work]
Mission Success	13%	83%
Mission Failed (no Crash)	50%	17%
Crash/Stall	37%	0%

 $Mission \ Success = \frac{No. \ of \ missions \ with \ deviation < 10 \ meters}{Total \ number \ of \ missions}$

PID-Piper: Recovery under Attacks

Analysis Type	SRR [RAID'20]	PID-Piper [This work]
Mission Success	13%	83%
Mission Failed (no Crash)	50%	17%
Crash/Stall	37%	0%

 $Mission \ Success = \frac{No. \ of \ missions \ with \ deviation < 10 \ meters}{Total \ number \ of \ missions}$

PID-Piper: Recovery under Attacks

Analysis Type	SRR [RAID'20]	PID-Piper [This work]
Mission Success	13%	83%
Mission Failed (no Crash)	50%	17%
Crash/Stall	37%	0%

Recovery Successful in 83% of the cases with 0 crashes.

PID-Piper: Overheads

Analysis Type	PID-Piper [This work]
CPU Overhead	~7%
Energy Overhead	~0.9%
Mission delays	Negligible

Summary Paper# 283

• PID-Piper: A framework to recover Robotic Vehicles from attacks

- Feed-forward Control to address overcompensation.
- 3 real and 3 simulated RV systems.
- 83% mission success from attacks, 0% false positives.

Artifacts https://github.com/DependableSystemsLab/pid-piper

Contact Pritam Dash, pdash@ece.ubc.ca

PID-Piper Recovery Videos

