
Catch Me if You Can: Detecting Unauthorized Data Use in Deep Learning Models

Zitao Chen
University of British Columbia

Karthik Pattabiraman
University of British Columbia

Abstract
The rise of deep learning (DL) has led to a surging demand for
training data, which incentivizes the creators of DL models
to trawl through the Internet for training materials. Mean-
while, users often have limited control over whether their data
(e.g., facial images) are used to train DL models without their
consent, which has engendered pressing concerns.

This work proposes MembershipTracker, a practical data
provenance tool that can empower ordinary users to take
agency in detecting the unauthorized use of their data in train-
ing DL models. We view tracing data provenance through
the lens of membership inference (MI). MembershipTracker
consists of a lightweight data marking component to mark
the target data with small and targeted changes, which can
be strongly memorized by the model trained on them; and a
specialized MI-based verification process to audit whether the
model exhibits strong memorization on the target samples.

Overall, MembershipTracker only requires the users to
mark a small fraction of data (0.005%∼0.1% in proportion
to the training set), and it enables the users to reliably detect
the unauthorized use of their data (average 0% FPR@100%
TPR). We show that MembershipTracker is highly effective
across various settings, including industry-scale training on
the full-size ImageNet-1k dataset. We finally evaluate Mem-
bershipTracker under multiple classes of countermeasures.

1 Introduction

Modern deep learning (DL) models have attained remarkable
performance in various tasks such as image classification and
language generation. Their success is largely driven by the
availability of massive training data [50, 52]. However, it is
not always clear whether the data used to train these models
has been used with the permission of the data owners. For
instance, Clearview.ai, in developing their facial recognition
system, scraped billions of user photos from social media
platform without the users’ consent [26]. The unregulated
use of personal data for building DL models has engendered

mounting concerns [20, 26, 66], and is in violation of privacy
laws such as the European Union’s General Data Protection
Regulation (GDPR) [2]. In spite of this, data holders often
have limited agency in detecting the unauthorized use of their
data due to the lack of practical data provenance tools.

This leads to two main lines of work for data provenance.
The first line of work seek to inject designated features into
the user data, which can induce the model to exhibit a certain
detectable behavior for provenance purposes [27, 39, 53, 68].
The injected features can take the form of a backdoor trigger
pattern [27, 39]; or a spurious feature pattern that can cause
output probability shift by the model [68]. However, these
techniques either impose strong assumptions on the users
(e.g., the ability to mark a large fraction of data) [27, 39, 53]
and/or suffer from limited auditing performance [39, 53, 68].

The second line of work is based on membership inference
(MI). There are instance- and user-level MI - the former infers
whether a specific sample is used to train a model [8, 56];
while the latter detects the usage of any of the user’s data [12,
32, 58]. Our work focuses on auditing whether specific user
samples are used for training the target model. Unfortunately,
existing MI methods often suffer from limited effectiveness,
as measured by their true positive rate (TPR) and false positive
rate (FPR) [8]. However, a high-power MI method is needed
to facilitate data provenance with low FPR (to avoid false
accusation) and high TPR (for correct data provenance).

To improve, recent studies propose several techniques
based on data poisoning [10, 13, 65]. Their common idea is to
inject mislabeled samples into the model’s training set, which
can amplify the model’s behavioral changes on some target
samples, thereby making them easier to be de-identified. To
apply these techniques for data provenance, the users have to
be able to mislabel some training data, which, unfortunately,
excludes the real-world scenarios where the data labels are
assigned by the model owner or an external service [19, 21].
This renders these techniques challenging for real-world use.

This work. We present MembershipTracker, a MI-based
data provenance tool that can overcome the aforementioned
challenges, with a two-step process as illustrated in Fig. 1.
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Figure 1: MembershipTracker is a data provenance tool that
operates by: (1) marking the target data (e.g., facial images,
artworks) with small and targeted changes, and then (2) ini-
tiating a specialized membership inference process to audit
whether the target data are used for training the model.

MembershipTracker operates under the realistic setting
where we assume the users have neither the capability nor
expertise to train shadow/proxy models [6, 8, 70], or to ma-
nipulate the data labels [65], as these are well beyond the
capacity of ordinary personal users (Section 3.1.1). Rather,
MembershipTracker only requires the users to mark a small
fraction of data (amounting to 0.005%∼0.1% of the training
set) for provenance purposes. Our goal is to empower the
users to carry out high-power MI on their target data with
high TPR and low FPR, given black-box access to the model.

Technical design. We first observe that the effectiveness of
MI on a given model is directly related to the model’s ability
in memorizing individual data points, and hence samples that
are strongly memorized by the model (e.g., outlier samples)
are easier to be de-identified [8,14,65,71]. Therefore, in order
to fulfill our goal, there are two challenges as follows.

1. How can the users amplify the model’s memorization on
the target data with minimal data modification?

2. How can the users reliably audit whether the model ex-
hibits strong memorization on their target data?

For the first challenge, we propose a lightweight data mark-
ing technique to mark the target data with small and targeted
changes, which are formulated as the combination of outlier
feature and procedural noise [17]. These subtle changes can
be readily created by the users without assuming access to a
proxy model, and can still induce the model to strongly mem-
orize the specially-marked samples while preserving their
visual information (e.g., Fig. 1).

For the second challenge, given a target user’s small set
of marked samples, we propose a novel set-based MI pro-
cess to audit whether they are used to train the model. Our
approach follows a common idea in existing user-level MI
studies [32, 47, 58] to leverage the collective information
across the small set of target samples for MI. But unlike prior
methods, MembershipTracker does not require any additional
shadow/reference models [32, 47, 58] and can enable high-
power MI for reliable data provenance.

Contributions. We make three contributions as follows.

• Propose a lightweight data marking technique to mark the
users’ target data with small and targeted changes, which
can be strongly memorized by the model trained on them.

• Develop a high-power set-based MI verification process
that can reliably audit whether the target data are used to
train the model (with low FPR and high TPR).

• Integrate the above as a tool called MembershipTracker,
and evaluate its effectiveness across a variety of settings
(six benchmark datasets and six DL architectures). We also
comprehensively evaluate a total of six classes of counter-
measures.

We find that by merely marking a small fraction of samples
(0.005%∼0.1% of the dataset), MembershipTracker effec-
tively empowers the users to trace the provenance of their
data with minimal false positives (average 0% FPR@100%
TPR), and it is also scalable to the large-scale ImageNet train-
ing (on both Convolutional and Transformer network). This
renders MembershipTracker a practical data provenance tool
and contributes to responsible AI practice.

2 Related Work

Our work focuses on detecting the unauthorized use of per-
sonal data in training DL models, which is complementary to
existing work that aim to protect the data from unwanted use
by rendering them un-learnable [30, 55]. Hence we focus on
existing literature for data provenance, and we classify them
into two categories.

Non membership-inference based solutions. We divide
them into dataset- and user-level solutions.

Dataset level provenance aims to detect whether a DL
model is trained on a specific dataset [39, 46, 53]. Maini et al.
propose dataset inference, which detects whether two mod-
els trained on the same dataset exhibit similarities in their
decision boundaries [46]. Other work modify portions of
training set to leave a certain artifact on the models, such as
radioactive data [53] and backdoor watermark [39]. However,
recent work [31] finds that these techniques [39, 53] still have
poor auditing performance.

Moreover, dataset level solutions require several assump-
tions that are outside the scope of our work. First, many of
them require control over a nontrivial portion of training set
(e.g., 10%∼20% [39, 53]). Some solutions assume access to
some known feature extractor [53], access to the training set
or the ability to train a proxy model [46, 53]. These are well
beyond the user capability we consider (in Section 3.1.1).

User level provenance seeks to detect whether the users’
data are used to train a DL model [27, 68], and they require
only modifying the users’ own data. Their idea is to mark the
users’ data with a designated feature to induce a detectable
behavior into the model. Hu et al. propose to inject backdoor
trigger feature into the user data [27], but they assume the
user capability to manipulate the data labels. Other studies on
clean-label backdoor attacks may be repurposed to overcome
this, but they still require training a proxy model to compute
the poisoned data [59, 73].
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Wenger et al. propose to inject a target spurious feature
into the user data to be learned by the suspected model, and
then detect whether the model has associated the injected fea-
ture with the target class label [68]. To detect, the users can
separately overlay the target and non-target features to some
auxiliary data (outside the target class), and then determine
whether the target feature causes a slightly higher prediction
probability on the target class, compared with the non-target
features (e.g., 10% vs. 1%). Both their work and ours involve
adding spurious features to mark users’ data, but there are
several major differences between the two. Notably, our anal-
ysis reveals that they [68] significantly underestimate their
detection false positives (from 0% to >30%). This is because
they employ a discrepant detection procedure for the testing
features that are used for training (true positives), and those
that are not (false positives); however, a fair evaluation should
follow a consistent procedure (details in Appendix D). More-
over, we also realign their technique for MI-based data prove-
nance in our work, and find that even when their approach
has incurred higher distortion to the data, it still has poorer
MI performance than MembershipTracker (Appendix D).

Membership-inference (MI) based solutions. MI also
represents a natural fit for tracing data provenance, and there
are instance- and user-level MI solutions.

Instance-level MI detects whether a specific instance is
used to train a model. It was first proposed by Shokri et
al. [56] and there are many follow-up studies [6, 8, 16, 70,
71]. However, even state-of-the-art MI methods [6, 8, 70] still
struggle with achieving high TPR when controlled at the low
FPR regime (more in Section 4.1).

This has led to several attempts at improving the effective-
ness of existing MI methods via data poisoning. Tramer et al.
propose to inject mislabeled samples into the model’s training
set, which can transform the target samples into outliers and
amplify their influence on the model’s decision, thereby mak-
ing the target samples easier to be de-identified [65]. While
injecting mislabeled samples represents an effective solution
for improving the MI success [10, 13, 65], it may be chal-
lenging for the users to apply to their data, because in many
scenarios the users may not have control over the data la-
bels [19, 21, 68]. Even if this is feasible, we find that such
a method can still only increase the MI success to a limited
extent (validated in Appendix E). By contrast, Membership-
Tracker does not assume control of the data labels, and is still
able to facilitate high-power MI for tracing data provenance.

User-level MI aims to detect whether any of a user’s data
is used to train a model. Unlike instance-level MI, the audi-
tor possesses a set of samples from a target user that are not
necessarily used to train the target model. Song et al. [58]
propose the first user-level MI for natural language models,
which first trains multiple shadow models, and then uses the
outputs from the shadow models as the features to train an au-
dit model. Subsequent work develop solutions under various
settings, including speech recognition models [11, 48], metric

learning models [12, 38] and large language models [32, 47].
A common thread of existing user-level MI methods is to

aggregate the information across multiple samples (e.g., differ-
ent voices of the same speaker) to perform MI [11, 12, 32, 58].
The MI process in MembershipTracker follows a similar phi-
losophy. However, prior work often requires access to addi-
tional reference models [32] or shadow models [11, 12, 58],
and they still have limited MI effectiveness (e.g., limited TPR
under the low FPR regime [32,47]). MembershipTracker over-
comes these limitations by means of a novel data-marking and
specialized MI auditing process, which can simultaneously
achieve high TPR and low FPR for data provenance.

Concurrent work by Huang et al. [31] proposes a gen-
eral framework for auditing unauthorized data use in training
DL models. Their idea is to generate two perturbed copies
of the target data, randomly publish one of them, and then
compare the model’s membership score on the published vs.
the unpublished one. While their framework can work for dif-
ferent domains such as foundation models, they still require
the data holders to mark a substantial portion (1%∼10%) of
dataset. Instead, MembershipTracker considers the more chal-
lenging (and realistic) setting where the marked data amounts
to ≤ 0.1% of the dataset. We also “stress test” their technique
under a similar setting as ours and find that their performance
degrades considerably then (see Appendix F).

3 Problem Formulation

Membership Inference (MI) Game. We denote Fθ : X → [0,1]n

as a model that maps an input sample x ∈ X to a probabil-
ity vector over n classes. D = {(xi,yi)}n

i=1 is a training set
sampled from some distribution D. Fθ ← T (D) denotes a
model Fθ produced from running the training algorithm T
on D. Next, we define a MI game, which proceeds between a
challenger C and an adversary A .

1. The challenger samples a dataset D←D, and a target
point z← π (such that D∩π = /0).

2. The challenger trains a model Fθ← T (D∪{z}) on the
dataset D and target point z.

3. The challenger gives the adversary query access to Fθ.

4. The adversary emits a guess ẑ ∈ π.

5. The adversary wins the game if ẑ = z.

For a specific target point x, π = {x,⊥}, where ⊥ indicates
the absence of an example. The adversary’s goal is to guess
whether the model F is trained on D or D∪{x}.

3.1 MI for Data Provenance
We now describe the MI game for data provenance, which
proceeds between a challenger (model creator) C and a target
user U . We consider image classification in this work, and
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U seeks to audit whether his/her images (denoted as X) are
used by C to train a model F without permission. We add the
ability for U to modify X for provenance purpose.

1. The user is allowed to modify X ∈ π (π = {X ,⊥}).
2. The challenger samples a dataset D←D, and a target

set Z← π (such that D∩π = /0).

3. The challenger trains a model Fθ← T (D∪{Z}) on the
dataset D and target set Z.

4. The challenger gives the user query access to Fθ.

5. The user emits a guess Ẑ ∈ π.

6. The user wins the game if Ẑ = Z.

For a given user U , π = {X ,⊥}, where ⊥ indicates the ab-
sence of the target samples by U , and the goal is to determine
whether F is trained on D or D∪{X}.

3.1.1 User capability

We consider ordinary personal users U with limited ML exper-
tise and resources, and they are willing to add visual distortion
to their data for provenance purposes. We next specify their
capabilities and constraints.

First, we assume U can only mark a small number of sam-
ples, and these are to be included as part of a larger dataset.
This simulates the realistic scenario where the dataset is cu-
rated from multiple data sources (e.g., [19]), and thus data
contributed by each user constitutes only a small portion of
the dataset (e.g., 0.1%).

Next, in the provenance verification process, we assume U
has access to an auxiliary set of non-member samples, which
is a common assumption to control the MI process at a low
FPR regime [6, 8, 70]. U also has black-box access to query
the target model. In a real world setting, users often have
limited control and knowledge beyond their own data, and
thus we specify the constraints by U as follows.

• U cannot modify their data’s labels, which are assigned by
the model owner or an external service [19, 21, 68].

• U has no access to D (i.e., the training data by other users).

• U has no knowledge of the black-box model F .

• U has no expertise/resources to train any shadow/proxy
models, as in many settings, training even a single shadow
model can impose prohibitively high data and compute
requirements (especially for the large models) [65].

3.1.2 Evaluation metric

We follow the best practice to measure the MI success by
its true positive rate (TPR) and false positive rate (FPR) [8].
There are two ways to define the success metric: 1 TPR un-
der a fixed FPR; or 2 FPR under a fixed TPR. We use metric

TPR @ 0.1% FPR à 100%

TPR @ 0.0% FPR à 100%

FPR @100% TPR à 0% 

TPR @ 0.1% FPR à 85%

TPR @ 0.0% FPR à 5%

FPR @100% TPR à 0.52% 

Figure 2: Comparing two metrics for evaluating MI success
in our work: 1 TPR@fixed FPR; 2 FPR@fixed TPR.
In 1 , the pre-defined FPR threshold can be too conservative
(7 on the left) or too aggressive (7 on the right).
Instead, MI for data provenance requires both low FPR and
high TPR, for which 2 is a more suitable evaluation metric.

2 , and we first explain why 1 is unsuitable for evaluating
the data-provenance based MI method in our work.

Motivation. Metric 1 is commonly adopted by existing
work where MI is posed as an attack to expose privacy leakage
in DL models [6, 8, 70]. Their goal is to evaluate whether the
adversary can reliably de-identify (even just a few of) the
training samples. This places emphasis on the requirement of
low FPR, for which 1 represents a suitable metric [6, 8, 70].

In comparison, in our work of tracing data provenance, both
low FPR (to avoid false accusation) and high TPR (for correct
data provenance) are crucial. However, manually choosing a
low FPR threshold and evaluating the corresponding TPR (as
in 1 ) can be undesirable, as the pre-defined FPR threshold
may be too conservative or aggressive. We use Fig. 2 (from
our experiment) to explain next.

For the left method in Fig. 2, using a 0.1% FPR threshold is
too conservative: this method can yield the same 100% TPR
under a lower FPR of 0%. Setting a 0% FPR threshold is ap-
propriate for the left method, but this becomes too aggressive
for the right method in Fig. 2: this other high-power method
(with 0.9993 AUC) yields a poor outcome of 5% TPR.

Proposed metric. To overcome the above issue, we advo-
cate the use of metric 2 (FPR under a fixed TPR).

Under a 100% TPR, the left method in Fig. 2 has a 0% FPR,
and the right method has a slightly higher 0.52% FPR. Both
results are able to appropriately reflect the two MI methods’
capability in fulfilling the requirement of low FPR (0% and
0.52%)1 and high TPR (100%) for tracing data provenance.

Based on the above, we adopt FPR@fixed TPR as the evalu-
ation metric in this work, and we set a 100% TPR threshold to
simulate the case where all the users whose data are misused
without their consent can trace the provenance of their data
(see our design goal in Section 4 next). An ideal technique
should incur as low FPR as possible.

1Note that this metric serves only to evaluate the MI success, and the
users can still choose an arbitrary FPR threshold (e.g., 0% or 1% FPR) to
control the MI process when auditing their actual data (Section 4.4.3).
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4 Methodology

We first describe our design goals, and then conduct an em-
pirical study to understand why directly leveraging existing
MI methods cannot meet our goals. We then present Member-
shipTracker, a two-step technique with a data marking and
provenance verification process: first by marking the users’
protected data with targeted changes (Section 4.3); then per-
forming a specialized MI process to audit whether the marked
data are used to train the model (Section 4.4).

Design Goals. There are three design goals in our work.
Goal (1): High provenance effectiveness. Our main goal

is to enable those users whose data are misused for model
training to perform successful data provenance (100% TPR),
and we also want to ensure low FPR to avoid false accusation.

Goal (2): Preserving high visual quality. The modification
created to mark the users’ data should not severely distort
their visual information, e.g., the identity in a facial image
should still be easily recognizable.

Goal (3): Minimal technical requirements. The provenance
tool should be usable by ordinary users even with limited
expertise and resources (specified in Section 3.1.1).

4.1 Motivation
Our work addresses data provenance through MI, and there
are today a number of available MI methods [6, 8, 65, 70].
However, these methods still suffer from limited MI effec-
tiveness and/or impose strong assumptions on the users - we
elaborate both limitations next.

1 Existing MI methods have limited provenance effective-
ness, and incur very high FPR under 100% TPR.

To validate this, we use two methods in the state-of-the-
art Likelihood-ratio attack, one is with and the other without
shadow model calibration (128 shadow models) [8]. We eval-
uate both methods on a WideResNet-28-4 model trained on
half of the training set in CIFAR100 dataset, and they both
incur a high FPR of 75.32% and 64.62%, under 100% TPR.

With that said, the above results should not be interpreted as
the failure of these approaches, because they were originally
built from an adversarial perspective to expose the worst-
case privacy leakage in DL models, where even just reliably
de-identifying a few member samples is considered meaning-
ful [8], e.g., the shadow-model based method in Fig. 3 can
achieve 27.21% TPR@0.1% FPR.

On the other hand, our work considers MI for data prove-
nance purposes, which represents a more challenging task,
and requires both low FPR and high TPR. The high TPR is
crucial for the users to be able to detect the unauthorized use
of their data, while low FPR is important to minimize the
chance of false accusation.

As in Fig. 3, existing MI methods still struggle with this
task. The reason is that the training samples are not always
strongly memorized by the model (except some outliers) [8,

Figure 3: MI for tracing data provenance requires both high
TPR (for correct provenance detection), and low FPR (to
avoid false accusation). However, even state-of-the-art MI
methods [8] cannot meet this challenging goal, and are un-
suitable for data provenance purposes.

65, 71], which is directly related to the ability of performing
accurate MI. This problem motivates related work [10,13,65]
to amplify the model’s memorization on the training samples,
and we discuss their limitation next.

2 State-of-the-art MI methods either require training
shadow models or assume control to manipulate the data
labels, both are beyond ordinary users’ capabilities.

For example, leading MI methods [6, 8, 70] commonly
require training shadow models to calibrate the inference
process, which assumes additional data and compute access,
and is challenging for the non-expert users.

There are other methods that do not require shadow-model
calibration, but they either suffer from poor effectiveness [8,
71] or impose unrealistic assumption on the users [10,65]. For
instance, the approach by Tramer et al. [65] can improve the
MI success without shadow-model calibration, but it instead
assumes the users have the ability to mislabel some training
data, which can be challenging in the cases where the users
have no control over the data labels [19,21,68]. Even if this is
feasible, we find that the increase of MI success is still largely
limited (see Appendix E).

4.2 Overview
We next present MembershipTracker, a technique that requires
neither shadow-model training nor manipulating data labels,
and can still achieve high-power MI (with low FPR and high
TPR) for tracing data provenance. It consists of a data marking
and a MI-based verification process - we explain them next.

4.3 Data Marking
The goal of data marking is to ensure that the membership
of the marked samples can be reliably de-identified. To this
end, we first observe that the ability to perform accurate MI
is directly related to the model’s propensity in memorizing
individual data points, and data that are strongly memorized
by the model (e.g., outlier samples, mislabeled samples) are
known to be easier to be de-identified [8,14,65,71]. Based on
this, our goal can be formulated as: how can the users modify
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their data to amplify the model’s memorization on the target
data while preserving high visual quality?

In Section 4.3.1, we first present an initial approach that is
highly effective in inducing the target samples to be memo-
rized by the model, but it also completely destroys the visual
information in the data. We use this effective yet unrealis-
tic method as a strawman approach, and then introduce our
proposal of a two-step solution, which can greatly reduce the
visual distortion to the data while still fulfilling our goal.

4.3.1 An initial strawman approach

Inspired by the observation that atypical samples presented in
the dataset are easier to be de-identified (e.g., mislabeled sam-
ples [65], or samples that are out-of-distribution - OOD [8]),
a straightforward approach is to directly replace the original
target samples as OOD samples.

There are different ways to generate OOD samples, and
we develop a simple method that creates samples consisting
of random color stripes, such as the one shown below (the
method’s details are deferred to Section 5). Meanwhile, other
alternative methods such as using samples from an OOD
dataset may also be considered (Appendix C.1.3).

replaced as

We first conduct an experi-
ment to validate the effective-
ness of the above approach.
We use the CIFAR100 dataset
with half of the training set
for model training. We con-
sider 100 target users from different classes replacing their
data as some random OOD samples, and each contributes a
small number of samples to the training set (0.1% in propor-
tion). In terms of the signal function for MI, we follow prior
work [54, 70] to use the prediction loss values.

To perform MI, we compare the prediction loss on the
target OOD samples (from the member users) and some non-
target OOD samples (from the non-member users). We find
that the model indeed strongly memorizes those OOD sam-
ples present in the training set, for which we observe a 0%
FPR@100% TPR. In comparison, if the target data are unmod-
ified, the model only exhibits weak memorization on them,
which yields 56.32% FPR@100% TPR.

Limitation. Despite its effectiveness, this approach com-
pletely removes the visual information in the data (e.g., the
facial identity is no longer recognizable), and they are also
easy to notice. Next, we present two methods that can greatly
reduce the visual distortion to the target data, while still en-
abling them to be strongly memorized by the model (Fig. 4).

4.3.2 Step 1: Image blending

As discussed earlier, the marked samples should contain the
original feature (to preserve visual information), as well as
the OOD feature (for provenance purposes). Inspired by the

OOD feature Procedural
noise

Image blending Noise injection 21

Figure 4: The two-step data marking process: (1) blend the
original samples with OOD feature; (2) inject procedural
noise. These subtle changes can induce the target samples to
be strongly memorized by the model trained on them.

common image blending technique [68, 74], we propose to
blend the target sample with the OOD feature:

x⊕ (xood ,m) = m · x+(1−m) · xood , (1)

where m moderates the contribution of different features.
By using a large m, we can largely preserve the high image

quality (e.g., the center image in Fig. 4 is marked with m =
0.7) while keeping the OOD feature to amplify the model’s
memorization on the resulting samples. We find that merely
blending the OOD feature into the target samples (m = 0.7)
can reduce the FPR@100% TPR from 56.32% to 23.58%.

Limitation. Although the FPR is largely reduced, it is still
too high. We find that this is due to the existence of the
original feature, which hinders the model’s memorization on
the OOD feature. We next explain how to mitigate this.

4.3.3 Step 2: Noise injection

Our idea is to inject a small amount of noise to suppress the
influence of the original feature, and have the model memorize
the OOD feature.

For this, we draw inspiration from the concept of adver-
sarial samples, which works by adding imperceptible noise
to the inputs and cause them to be misclassified by the
model [17,40,43]. The perturbation can thus be viewed as the
noise that can suppress the influence of the original feature
and cause the model to predict the wrong label.

In our context, we can inject adversarial perturbation into
the users’ target samples and prompt the model to memorize
the OOD feature. There are different ways to generate the
perturbation. Optimization-based approach requires access to
some proxy model to generate the perturbation [40,43], which
can still be challenging for the ordinary users we consider.

We therefore resort to another optimization-free strategy
that does not assume any additional access. In particular, Co
et al. [17] propose that procedural noise functions can be used
to generate input-agnostic adversarial perturbation. These
functions are commonly used in computer graphics to gen-
erate different textures and patterns and enrich the image
details [17]. Co et al. find that the procedural noise patterns
share visual resemblance with existing adversarial perturba-
tion patterns, and demonstrate that they can be similarly used
to construct adversarial samples.
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This inspires our solution in injecting perlin noise [17] to
the target samples, and its generation is as follows.

Sperlin(x,y) =
Ω

∑
n=1

p(x · 2
n−1

λx
,y · 2

n−1

λy
), (2)

Gperlin(x,y) = sin((Sperlin(x,y)) ·2πφsine), (3)

where λx,λy,Ω,φsine are for controlling the noise value at
point (x,y). λx,λy are the wavelengths, Ω is the number of
octaves that contribute to the most visual change, φsine is the
periodicity of the sine function that creates distinct bands in
the image to achieve a high frequency of edges, which can
achieve more distinct visual patterns [17]. We follow Co et
al. to use the L∞ norm as the perturbation budget δ and create
random perlin noise [17] for data marking.

Generating the perlin noise is a lightweight process that
does not assume access to a proxy model. Despite its simplic-
ity, we find that injecting a small amount of perlin noise (with
δ = 8/255) is very effective and it can further decrease the
FPR from 23.58% to 7.97% (a 66% reduction).

Overall, the two-step marking process is able to reduce the
FPR from 56.32% to 7.97%. While the FPR can be further
reduced by using a smaller m for image blending or larger δ

for noise injection, it would undesirably increase the visual
distortion (see Appendix C.1.2 for an evaluation). We thus
propose another innovation in the MI process to mitigate the
FPR, and without degrading the image quality.

4.4 Data Provenance via Membership Infer-
ence

To start with, we note that so far we have been considering
MI on a common instance basis [6, 8, 56, 70], which uses the
per-instance loss as the signal function value for MI. We first
explain why this approach would incur high FPR, and then
present a specialized MI process to overcome it.

4.4.1 Why instance-based MI suffers from high FPR

It uses the per-sample loss for MI, which can incur high FPR
even if the prediction loss on the target marked samples are
very low. This is because there may exist many non-member
samples with low loss values as well, which would be mis-
identified as member samples, and result in high FPR.

For instance, the left figure in Fig. 5 shows the individual
loss values on different samples, where many non-member
samples also yield low prediction loss (the low loss values
are shown towards the right side because they are plotted
in the logit-scaled form [8] for visualization purposes). This
consequently leads to a 7.97% FPR @100% TPR.

Figure 5: Comparison of using the per-instance loss and the
average loss across the samples by each user (each contributes
0.1% of the training data) as the signal function for MI verifi-
cation. The former yields 7.97% FPR@100% TPR; while the
latter has 0% FPR@100% TPR (our proposal).

4.4.2 Set-based membership inference for reliable data
provenance

To overcome the above, our key insight is that, even though
each target user only contributes a small number of samples
to the model’s training set (e.g., 25 out of 25,000 instances),
they can still leverage the collective information across their
own samples to construct a more reliable signal function for
MI, thereby reducing the FPR.

To realize this, we start by identifying a pattern that can
distinguish the model’s behavior on the member and non-
member samples, and it is as follows. For the non-member
samples, although a few of them may have low loss, the major-
ity of them would incur much higher prediction loss, because
these samples are not used for training the model (e.g., see the
left of Fig. 5). In contrast, the member samples predominantly
have very low prediction loss.

Therefore, we make the observation that the average loss
for the samples by the non-member users are higher than
that by the member users. A visualization for this is on the
right of Fig. 5. This leads to our proposal of the set-based MI
process, which leverages the average loss of the small set of
target samples by each user as the signal function for MI. We
explain the verification process next.

4.4.3 Provenance verification process

Algorithm 1 outlines the process. Let each user possess k
samples, where k is a small number compared with the dataset
size (e.g., 25 out of 25,000 samples). Pout denotes a set of
non-member data to control the MI process at the low FPR
regime (Section 3.1.1), which are also marked with some
random outlier features and perlin noise (data-marking details
in Section 5). By comparing the model’s behavior on the
target data and the data in Pout, the auditing user U is to detect
whether his/her target data are used to train F .

The first step is to derive an inference threshold c based on a
pre-defined FPR (α). α is usually a small number such as 0.1%
or 0% to ensure low false positive (e.g., Section 5 shows that
MembershipTracker can support the users to achieve 100%
TPR with 0% FPR in many cases). To derive the threshold
c, U first computes the empirical loss histogram for data in
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Algorithm 1 Set-based MI verification process
Input: F : The target DL model;

U : The auditing user (each user with k target samples);
Pout: Users from the out world (i.e., non-member data);
α: FPR to control the verification process (e.g., 0.1%);
L(F,(x,y)): Loss function (e.g., cross-entropy loss);

1: function DATA PROVENANCE(F,U,Pout,α,L)
2: ∀Ui ∈ Pout, compute L(F,Ui),where Ui = {(xi

j,y
i
j)}k

j=1

3: Lavg←{L(F,U1), · · · ,L(F,Un)},n = |Pout|
4: c← α-percentile of the CDF for the loss histogram of Lavg
5: /* Data provenance based on the inference threshold c */
6: Compute L(F,U),where U = {(x j,y j)}k

j=1

7: LU
avg← L(F,U)

8: if LU
avg < c then

9: U’s data are used to train F (i.e., member)
10: else
11: U’s data are not used to train F (i.e., non-member)
12: end if
13: end function

the out world Pout. For each non-member user in Pout, the
auditing user U first computes the per-instance loss on their
data (line 2), and then derives the average loss for each (line
3). Line 4 estimates the CDF for the loss distribution, and
computes its α-percentile to derive a threshold c [70].

Next, the auditing user U similarly computes the average
loss on his/her samples, and compares it against the MI thresh-
old c. If the loss is lower than c, the user’s data are deemed to
be used for training the model (vice versa).

5 Evaluation

Datasets and model training. We consider six com-
mon benchmark datasets, including CIFAR100 [35], CI-
FAR10 [35], ArtBench [41], CelebA [45], TinyImageNet [36]
and ImageNet-1k [19]. This section considers the first five
datasets and the evaluation on the ImageNet-1k dataset is in
Section 6. We follow standard model training practice such
as using data augmentations and validation set - the model
training details are in Appendix A.

MembershipTracker configuration. We explain the de-
fault configurations for the main experiments, and we study
different configurations in the ablation study (Appendix C).

As explained earlier, we create outlier features as random
color stripes, each with 16 stripes from 11 different common
colors. Such a large feature set (1116 choices) can support
multiple users to generate their own features for data marking,
and we use a image blending ratio m = 0.7. Next, we follow
Co et al. [17] to generate random perlin noise for each sample
with δ = 8/255. We provide additional visualizations of the
original and marked samples in Appendix A.

We assume each user possesses a small number of samples
from a given class, which constitute 0.1% of the training set
(the detailed dataset sizes are in Appendix A).

As explained in Section 3.1.2, we adopt FPR@100% TPR

Table 1: Evaluation on different datasets (parenthesized num-
bers show accuracy diff. compared with the original models).

Dataset FPR@100% TPR Model accuracy
CIFAR100 0.00 66.34 (-0.41)
CIFAR10 0.00 90.64 (-0.50)
CelebA 0.00 69.41 (-0.63)

ArtBench 0.00 59.46 (-0.42)
TinyImageNet 0.00 67.22 (-0.40)

as the evaluation metric, and we use 5,000 non-member users
for computing FPR. We use all the samples that are not used
for training as the non-member set. Due to the limited size
of the non-member set, the non-member users’ samples are
drawn randomly from the non-member set (with replacement),
and these are similarly marked with random outlier features
and perlin noise.

To perform MI, we directly use the cross-entropy loss as
the signal function value, which is easy to compute by the
users. We consider the global-threshold method by Carlini
et al. [8] as the baseline method; and we do not choose the
shadow-model-based approaches [6,8,70]. The reason is that,
even though these methods can achieve better results, they still
yield limited increase of MI success (Section 4.1); and more
importantly, training shadow models is prohibitively challeng-
ing for ordinary personal users to carry out (Section 3.1.1).

The closest work to ours in improving the MI success with-
out shadow-model calibration is Tramer et al. [65]. However,
their technique assumes the users can manipulate the data la-
bels, which excludes the real-world scenarios where the data
labels are assigned by the model creator or an external ser-
vice [19,21,68]. Though MembershipTracker does not impose
such an assumption, for completeness, we still quantitatively
compare it with the method by Tramer et al. (Appendix E).

5.1 Results
We first evaluate the single-target-user setting, and then the
multi-target setting.

Single-target evaluation. For each experiment, we ran-
domly choose 5 target users from different classes and report
the average results. Table 1 presents the results.

As shown, with MembershipTracker, the users can reli-
ably trace the provenance of their marked data with 0%
FPR@100% TPR. In comparison, without Membership-
Tracker, performing standard instance-based MI on the un-
modified target samples incurs much higher FPR, with an
average of 47.52% FPR@100% TPR. This is because: 1)
the unmarked samples cannot be strongly memorized by the
model; and 2) the instance-based MI process fails to leverage
the collective information across the target samples by each
user. These two limitations are overcome by Membership-
Tracker’s data marking and set-based MI process; and the
detailed ablation study on these two components is presented
in Appendix C.
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Table 2: Evaluation on multiple target users. Supporting more
target users indicates more specially-marked samples in the
training set, which can lead to higher accuracy drop; but Mem-
bershipTracker still maintains high auditing performance.

Num of target users 20 50 100 200 300 500
FPR@100% TPR 0.00 0.00 0.00 0.00 0.00 0.00

Accuracy drop -0.44 -0.56 -1.39 -2.32 -4.47 -8.93

Meanwhile, since the target samples only occupy a small
fraction of the training set (0.1%), the models still maintain
high performance, and have <1% accuracy difference com-
pared with the ones trained without MembershipTracker.

Evaluation on different architectures and training-set
sizes. We next consider additional evaluation (using CI-
FAR100 dataset) on different model architectures (including
WideResNet [72], ResNet [23], ResNext [69], SeNet [28],
GoogleNet [63] and DenseNet [29]), as well as different
training-set sizes (from 5,000 to 25,000). We observe a sim-
ilar trend as before (thus we omit the discussion), and the
detailed results are in Appendix B.

Multi-target evaluation We now evaluate how Member-
shipTracker can support multiple users simultaneously (using
CIFAR100 dataset), and the results are in Table 2. We study a
large number of target users (more than the number of classes
in the dataset), which encompasses the settings where the
users are from different classes and from the same class.

Supporting multiple users requires the model to memo-
rize more target samples (from different users). However, DL
models are known to be capable of memorizing a large cor-
pus of data (e.g., to encode sensitive information [14, 57]).
Likewise, in our case, the model still strongly memorizes the
marked samples and enables MembershipTracker to achieve
0% FPR@100% TPR even under multiple target users.

Meanwhile, as the number of target users increases, the
model also has higher accuracy drop. For instance, supporting
100 target users (i.e., 10% of training data are marked) incurs a
1.39% accuracy drop, while supporting 500 users has a higher
8.93% drop. This is understandable as supporting more users
implies more training samples are marked.

5.2 Robustness to Countermeasures

While Section 5.1 demonstrates MembershipTracker’s capa-
bility in enabling the users to perform reliable data prove-
nance, a deliberate model creator can also employ counter-
measures to sabotage MembershipTracker.

To understand this, we evaluate a total of 6 types of counter-
measures in the model, input and output level (Table 3), and
we use the CIFAR100 dataset. For the model-level defenses
that require model training, we first consider the single-target
setting (similar to Section 5.1), and then the multi-target set-
ting. For the input- and output-level defenses, we consider the
more challenging multi-target setting (100 targets in total).

Table 3: Overview of the evaluated countermeasures.

Defense level Defense type

Model level 1 MI defense; 2 Adversarial augmentation;
3 Model fine-tuning; 4 Model pruning

Input level 5 Out-of-distribution and spurious features detection
Output level 6 Add noise to the output, or return only the label

Table 4: Evaluating MembershipTracker against DP-SGD
with different amounts of noise injected.

Noise multiplier σ FPR@100% TPR Model accuracy
w/o defense 0.00 66.34

0.01 0.01 60.10
0.03 0.02 57.26
0.05 0.38 54.70
0.2 1.07 51.56
0.3 3.10 50.03

5.2.1 MI defense

We first evaluate several representative privacy defenses for
mitigating MI (five in total).

DP-based defense. Differentially private (DP) training [3]
is a principled defense that can bound the influence of any
training samples to the model, by means of gradient clipping
and noise injection to the clipped gradients. We adopt the
implementation from Aerni et al. to consider the strong DP-
SGD baselines that comprise various DP-training techniques
such as custom initialization scheme, augmentation multiplic-
ity [4]. We also follow their work to tune hyperparameters
for high model utility. We use a tight clipping norm of 1, and
inject different amounts of noise (σ) in the evaluation.

The results are in Table 4. DPSGD with a loose DP bound
is known to be able to reduce the exposure from the instance-
based MI methods that aim to de-identify some individual
training instances [4,8], and our results also validate this (e.g.,
in our context, the FPR@100% TPR under instance-based
MI is increased to 47.22%, with σ = 0.01). With that said,
MembershipTracker can still overcome the defense via its set-
based MI process, because the average loss of the samples
by the member users, though increased due to defense, are
still lower than that by the non-member users (average 0.1642
vs. 4.130). This avails MembershipTracker to maintain a
low 0.01% FPR@100% TPR (and the defense already incurs
6.24% accuracy drop). Increasing the amount of noise can
further increase the FPR by MembershipTracker, but it also
inflicts a larger accuracy drop (undesirable).

Empirical defense. Next, we also evaluate two represen-
tative defenses that aim to provide strong empirical privacy
while preserving model utility: SELENA (USENIX’22) [64]
and HAMP (NDSS’24) [15]. We follow the original work to
set up both techniques. They both can mitigate the model’s
memorization (increase the prediction loss) on the marked
samples, and with small accuracy drop (2.17% and 1.42%).
However, we find that the average loss of the samples by
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RandAugmentGaussian noise injection

Figure 6: Adv. augmentation by Gaussian noise injection
and RandAugment [18]. MembershipTracker is resilient to
moderate input augmentation, and aggressive augmentation
can increase the TPR, but also jeopardize model accuracy.

the member users are still much lower than that by the non-
member users, and thus MembershipTracker still achieves a
low FPR of 0.97% (on SELENA) and 0.83% (on HAMP).

Finally, we evaluate two common regularization techniques:
early stopping and dropout. We find that MembershipTracker
can still achieve < 0.1%FPR@100% TPR, unless under ex-
cessive regularization (e.g., aggressively early-stopping the
training or using a large dropout rate). However, this would
also cause a large (> 10%) accuracy drop to the model.

5.2.2 Adversarial augmentation

We consider employing additional augmentation techniques
during training to mitigate the model’s memorization on the
marked samples. We study two strategies, one by injecting
Gaussian noise and the other by performing multiple random
data augmentations (RandAugment [18]). For the former, we
inject zero-mean noise with various standard deviation values
(0.02∼0.5); For RandAugment [18], we consider different
number of augmentations (3∼15).

When the samples are moderately augmented, in the form
of Gaussian noise or multiple random augmentations, Mem-
bershipTracker still enables the target users to reliably trace
the provenance of their data with low FPR.

Aggressive augmentation such as applying 15 random
transformations to each sample can further increase the FPR
to 11.54%, but it also reduces the accuracy from 66.34% to
54.09%, as such aggressive augmentation severely degrades
the image quality and leads to inferior model performance.

5.2.3 Model fine-tuning

We now evaluate how model fine-tuning can mitigate the
model’s memorization on the target samples. We assume
an ideal defender with access to a small set (equivalent to
10% of the training set) of clean and unmodified samples.
We fine-tune the model with various fine-tuning rates from
0.1∼0.00001, with 20 epochs for each. The results are shown
on the left of Fig. 7. When the fine-tuning rates are small
(<0.05), the models can preserve high model accuracy, yet

Figure 7: Defense evaluation on model fine-tuning and model
pruning. MembershipTracker is resilient to moderate model
fine-tuning and pruning. Aggressive countermeasures can
slightly increase the FPR incurred by MembershipTracker,
but at the cost of major accuracy degradation.

they still exhibit strong memorization on the target samples,
and MembershipTracker still achieves 0% FPR@100% TPR.

Using a larger fine-tuning rate (e.g., 0.05, 0.1) can update
the model in a more aggressive manner and hence alleviate the
model’s memorization on the target samples. This, however,
also hurts the model’s accuracy. For a fine-tuning rate of
0.05, the model accuracy is reduced by 2.9%, and the FPR
by MembershipTracker increases from 0% to 0.5%. A larger
fine-tuning rate of 0.1 can further increase the FPR to 4.4%,
but it also causes a 5.97% accuracy drop.

5.2.4 Model pruning

Another related countermeasure we consider is to prune the
model’s parameters, with the goal of removing the parameters
that are associated with the target samples. We use the popular
pruning strategy by Han et al. [22], which sets the parameters
with small absolute values to zero and has minimal impact
to the model’s performance. We evaluate different pruning
ratios and the results are on the right of Fig. 7.

We find that MembershipTracker is highly resilient even
when 70% of the parameters are pruned, where Membership-
Tracker has only 0.02% FPR@100% TPR, but the defense
already incurs a 11.8% accuracy drop. More aggressive prun-
ing with a 80% pruning ratio can slightly increase the FPR to
1.16%, but with a much higher 36.9% accuracy drop.

5.2.5 Model-level defenses under multi-target setting

The previous model-level defenses are evaluated under the
single-target setting. We now evaluate a more challenging
setting where MembershipTracker needs to support multi-
ple users at the same time. We consider 25 target users, and
summarize the key findings below.

Among different defenses, we find that model fine-tuning
stands out as the most potent solution that outperforms other
countermeasures in terms of high mitigation performance
with low accuracy drop.

Compared with other methods (such as specialized MI de-
fenses [3, 15, 64]), fine-tuning only needs to perform standard
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example example
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Figure 8: Unsupervised OOD detection. How different data-
marking intensities affect the detection performance. Left:
Samples marked with higher marking intensity are prone to
be detected (0.8085 AUC). Right: Reducing the marking
intensity can effectively reduce the AUC to only 0.6333.

fine-tuning on a small set of samples, and it can increase the
FPR@100% TPR to 21.4% (with a fine-tuning rate of 0.05)
with a mere 2.09% accuracy drop.

Hence, unlike the single-target setting where Membership-
Tracker can maintain high performance, supporting multiple
target users under model-level defenses remains a major chal-
lenge by MembershipTracker. We leave the potential improve-
ment of this aspect to future investigation.

5.2.6 Input detection

Given that MembershipTracker leverages outlier features and
perlin noise to the mark the target data, the defender may also
perform out-of-distribution (OOD) detection or spurious fea-
tures detection on the specially-marked samples. We consider
both types of countermeasures and we discuss them next.

Unsupervised OOD detection. We consider eight com-
mon detection techniques: Mahalanobis [37], MSP [25],
Energy-based OOD [42], RMD [51], kNN [62], KLMatch-
ing [24], VIM [67], DICE [61]. We follow the implementation
from [34], and use a pre-trained ImageNet model to produce
the feature representation. As before, we assume an ideal
defender with access to a small set of clean and unmodified
samples (equivalent to 10% of the training set) for fitting
the unsupervised detector, which does not assume any prior
knowledge of the potential outlier samples.

We report the results on the left of Fig. 8, where, for brevity,
we report only the highest AUC among all detectors. We
find that the Mahalanobis-based approach [37] achieves the
highest performance with 0.8085 AUC. In light of this, we
next explain how to (partially) mitigate it.

Our idea is to reduce the amount of distortion applied to the
data. For this, we conduct an experiment to reduce the inten-
sity of the outlier features (by increasing the image blending
ratio m from 0.7 to 0.8) and perlin noise (by reducing the
perturbation budget δ from 8/255 to 4/255). The results are
shown on the right of Fig. 8, where the highest AUC is reduced
from 0.8085 to 0.6333, which translates to a 57% reduction
in the detection performance (over random guessing).

Perfect-knowledge defender

Realistic defender

Defender’s training User (testing) data

Defender’s training User (testing) data

blending

Unpredictable 

Known

𝑚 = 0.7, 𝛿 = 8/255 (default) 𝑚 = 0.8, 𝛿 = 4/255 𝑚 = 0.7, 𝛿 = 8/255 (default)

Figure 9: Supervised OOD detection. Blue line assumes a
defender with perfect knowledge of the type of outlier features
adopted by the users for data marking. Orange line considers
a realistic defender with knowledge of the possible types of
outlier features, but the exact one followed by the users to
mark their data is unpredictable.

Naturally, reducing the marking intensity would attenuate
the model’s memorization on the marked sample, and increase
their prediction loss. But we find that the prediction loss on
the member samples are still much lower than that on the
non-members, and thus MembershipTracker can overcome it
via the set-based MI process (similar to Section 5.2.1), and
maintain a 0% FPR@100% TPR2.

Supervised OOD detection. Next, we consider a more
knowledgeable defender who is aware of the potential
data marking strategy by MembershipTracker. We use the
MCHAD method to train a supervised OOD detector [33],
and we consider two separate scenarios below.

(1) We first assume a hypothetical defender with perfect
knowledge of the data marking strategy adopted by the users,
i.e., each sample is marked with features consisting of random
color stripes and perlin noise. The result is in the blue line in
Fig. 9. As expected, the detector is very capable of detecting
the samples that are marked with the same strategy as the
one used for training the detector itself (e.g., see the top right
illustration in Fig. 9).

Though this represents the worst-case scenario against
MembershipTracker, it may be difficult to realize in practice,
as the outlier features created by the users for data marking
can take diverse forms (e.g., as features consisting of random
color stripes, or features from an OOD dataset - details next),
and the exact one used by the users can be hard to predict.

(2) Hence, a more realistic setting is to consider a defender
with knowledge of the possible types of outlier features, but is
not aware of the exact one adopted by the users to mark their
data. In this case, the outlier features in the samples used for
training the detector are not in the same type as those in users’
actual data (e.g., see the bottom right illustration in Fig. 9).

Specifically, we train the detector on samples marked with
random color stripes, and evaluate it on samples marked

2However, there are certain scenarios where the reduced data-marking
intensity would lead to lower auditing performance, and an evaluation for
this is in Appendix C.1.2.
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with the features from an OOD (TinyImageNet) dataset (this
is a similarly effective alternative strategy we study in Ap-
pendix C.1.3). The result is in the orange line in Fig. 9, and
the detection performance degrades considerably under such
a realistic setting (with only 0.66 AUC).

Although the defender can attempt to train the detector on
samples marked with different types of outlier patterns, with
the hope that some of them may overlap with those in users’
data, this essentially turns the detection into a cat-and-mouse
game, and may not be a desirable practice.

Spurious features detection is another related method.
We evaluate a leading technique by Neuhaus et al. [49] based
on neural PCA components. But we find that it also has lim-
ited success in detecting the marked samples (0.6181 AUC).

5.2.7 Output perturbation

MembershipTracker leverages the model’s outputs to perform
MI auditing, and we consider two strategies to perturb the
model’s outputs: (1) injecting Gaussian noise to the outputs;
and (2) returning only the top-1 prediction label [16]. How-
ever, we find that MembershipTracker still maintains high
auditing success even with the perturbed outputs.

For instance, aggressively injecting Gaussian noise (with
zero mean and standard deviation σ = 3) degrades the ac-
curacy from 65.32% to 52.05%, under which Membership-
Tracker still maintains 0% FPR@100% TPR. Completely
shielding the output probabilities is ineffective either, and
MembershipTracker can still achieve 0.04% FPR@100% TPR
in the label-only setting. The detailed evaluation can be re-
ferred to Appendix G.

6 Evaluation on ImageNet Training

This section evaluates MembershipTracker under the full-
sized ImageNet-1k training (over 1.28 million training sam-
ples). We train a ResNet50 [23] and Swin-Transformer [44],
and they have 75.09% and 80.29% accuracy respectively (both
with <1% accuracy drop). We consider the challenging set-
ting of supporting multiple users in different classes (1,000
target users in total). Each user contributes 125 samples to
the training set, which is <0.01% in proportion.

We find that even under the large-scale training setting,
the marked samples can still be strongly memorized by the
models, which enables MembershipTracker to achieve 0%
FPR@100% TPR for all the users.

Next, we evaluate how the performance varies with lesser
samples for marking (using ResNet50): we consider 63 and
32 samples by each user, which amount to ∼ 0.005% and
∼ 0.0025% of the training set. The results are in Fig. 10.

MembershipTracker can still maintain 0% FPR@100%
TPR, when the marking ratio is reduced from 0.01% to
0.005%. However, when the marking ratio is further reduced
to 0.0025%, MembershipTracker experiences lower auditing
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Figure 10: MembershipTracker under full-sized ImageNet
training with different portions of samples for data marking.
Aggressively reducing the portion of samples marked by each
user can lead to reduced performance, though Membership-
Tracker can still maintain reasonably high auditing perfor-
mance even when each user can only mark merely 0.0025%
of the training data (the blue line).

performance - this trend is similar to that in our ablation study
in Appendix C.1.1 and thus we defer the detailed discussion
to Appendix C.1.1 (due to space constraints). Nevertheless,
even under such a challenging case, MembershipTracker still
achieves reasonably good performance as shown in the blue
line of Fig. 10; we leave the improvements to future study.

7 Limitations

There are three main limitations by MembershipTracker, and
we discuss them next.

1 In order to trace data provenance in a given model,
we assume the model is trained on a small number of target
samples that are marked with MembershipTracker. This is
important in ensuring that the target samples can be strongly
memorized by the model, and the set-based MI process can
leverage the collective information across the target samples
to generate a reliable outcome.

However, this assumption may be invalid if: (a) the users
have limited samples available for data marking; or (b) they
have marked several samples, but only a subset of them are
used for training the model. We discuss both cases next.

(a) The first case is dependent on the application scenario
and may be overcome by the users themselves. E.g., if the
users want to know if their images posted on social media
platform may be misused, they can upload more images that
are marked with MembershipTracker (both Section 6 and Ap-
pendix C.1.1 study how different number of samples marked
by the users may affect MembershipTracker’s performance).

With that said, marking more samples does not mean all
of them would be used for training the model, which leads to
the second threat to the validity of MembershipTracker.

(b) Recall the set-based MI process is underpinned by
the observation that the average loss of the samples by the
non-target users are higher than that of the target users (Sec-
tion 4.4.2). This, however, might not hold, if only a subset of
the marked samples from each target user are used for model
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Table 5: Evaluation on the partial inclusion of the marked
samples in model training. With lesser samples (50 samples
per user) included for training, the average loss on the entire
set of marked samples by each target user increases, which in
turn increases the FPR by MembershipTracker.

% of marked samples FPR@100% TPR FPR@100% TPR
used for training (100 target users) (5 target users)

100% (50/50) 0.00 0.00
90% (45/50) 0.02 0.00
70% (35/50) 0.02 0.04
50% (25/50) 0.28 0.34
30% (15/50) 20.12 2.46
20% (10/50) 76.34 6.82

training. This is because those samples that are not used for
training would yield higher prediction loss, which in turn in-
creases the average loss on the entire set of marked samples,
and affects MembershipTracker.

Evaluation. To understand this, we perform an experiment
where we assume the model owner collects 50 samples from
each user (0.2% of the training set), and he/she deliberately
includes only a subset of samples from each target user for
training. Table 5 shows the results, where we observe a similar
trend when MembershipTracker is applied to support 100
target users (a more challenging setting) or 5 target users only.
In both cases, the FPR incurred by MembershipTracker grows
as the number of marked samples used for training decreases,
which is due to the higher average loss on the target users’
samples as we explained earlier.

Overall, we find that MembershipTracker can still main-
tain < 0.5% FPR@100% TPR, even when only 50% of the
marked samples by each target user are used for training. But
its performance drops rapidly when lesser samples are in-
cluded for training. Nevertheless, we remark that using only a
subset of the user data for training merely represents a special
usage case for understanding the potential threat to Mem-
bershipTracker’s performance, and it does not necessarily
represent the real-world practice of model training.

Specifically, given that DL models are most effective when
applied to large datasets [5, 60], it is often in the model cre-
ator’s interest to use more data (e.g., use all the collected
data) for training, and MembershipTracker can achieve supe-
rior performance in such a setting. As the first of its type, how
MembershipTracker may reshape the current model training
practice remains to be seen.

2 Secondly, despite our best effort in keeping the targeted
changes from severely distorting the marked data, the arti-
facts created by MembershipTracker are still visible under
close inspection (more visual examples are shown in Ap-
pendix A). However, performing manual inspection to filter
out the specially-marked samples by MembershipTracker can
still be a challenge, particularly under the large-scale training
setting (e.g., with millions of images). With that said, creating
more subtle targeted changes still remains an important venue

for future investigation.
3 Finally, since MembershipTracker targets the model’s

propensity in memorizing data, in principle, any effective mea-
sures that can mitigate the model’s memorization on training
data would be able to degrade the auditing performance by
MembershipTracker. Indeed, our evaluation in Section 5.2
shows that common approaches such as differential privacy
and data augmentation can be configured to degrade the au-
diting success by MembershipTracker, but they also result in
utility loss to the model (undesirable).

Given that building high-performance models often repre-
sents the model creators’ foremost interest, the development
of tools like MembershipTracker can prompt the practitioners
to reconsider the choice of resorting to other legal data acqui-
sition means and building high-performance models using the
authorized data.

8 Discussion and Future Work

This work presents MembershipTracker, a practical data
provenance tool that can support ordinary users to audit
whether their specific data are used to train deep learning
models without their permission. If their data are found to be
misused, the users can take legal action or request the “right
to be forgotten” in accordance with privacy regulations such
as GDPR [2] (e.g., based on techniques on machine unlearn-
ing [7]). Finally, we discuss two other future work directions.

First, while MembershipTracker retrofits the conventional
membership inference (attack) to enable responsible AI, it
also faces the risk of being misused by the malicious party.
Notably, the data marked with MembershipTracker would now
become easier to be de-identified by any party with access
to them. However, MembershipTracker should be applied
only when the users do not want their data to be used for
training DL models, in which membership privacy may not
be of the users’ concern. By contrast, if the users are willingly
sharing their data for model training, they should refrain from
using MembershipTracker to avoid unnecessary membership
exposure. Future studies can explore potential usage cases
where MembershipTracker is applicable and protecting the
membership privacy of the marked samples is necessary, and
consider the further adaptation of MembershipTracker to cater
to such a need.

Next, future work can explore the potential of extending
MembershipTracker to other domains like generative models.
Prior work show that performing MI on generative image
models (e.g., Stable Diffusion) is also related to the model’s
propensity in memorizing individual data points [9]. Thus,
while MembershipTracker demonstrates promising perfor-
mance under the million-scale training setting, future study
can investigate whether the large generative models would
also be prone to memorize the samples marked with Member-
shipTracker under the billion-scale training environment.
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Figure 11: Visualization of the original and marked samples.

A Model Training Details

For CIFAR10 and CIFAR100, we train a WideResNet-28-4
model on 25,000 samples for 100 epochs, with a learning rate
of 0.1 (decayed by 5 at epoch 60, 80, 90), a weight decay of
5e-4 and momentum of 0.9. For TinyImageNet and ArtBench,
we fine-tune an ImageNet-pretrained ResNet-18 model on
25,000 samples. For CelebA, we first follow [1] to create
a 307-class subset from the dataset, and then similarly fine-
tune an ImageNet-pretrained model on 2,000 samples. For
fine-tuning, we use a small fine-tuning rate of 0.01 with 30
epochs and a momentum of 0.9. In all datasets except CelebA

Table 6: Evaluation on different models (parenthesized num-
bers show accuracy diff. compared with the original models).

Model FPR@ Model
100% TPR accuracy

WideResNet 0.00 66.34 (-0.41)
ResNet 0.00 64.49 (-0.69)
ResNext 0.00 63.43 (-0.47)

DenseNet 0.00 67.14 (-0.16)
GoogleNet 0.00 69.09 (-0.33)

SeNet 0.00 65.26 (-0.37)

Table 7: Evaluation on different training-set sizes.

Training-set FPR@ Model
size 100% TPR accuracy

25,000 0.00 66.34 (-0.41)
20,000 0.00 63.73 (-0.16)
15,000 0.00 58.99 (-0.83)
10,000 0.00 50.28 (-0.09)
5,000 0.00 35.74 (-0.10)

(where we find that fine-tuning on the entire set yields better
accuracy), we use 20% of the training data as the validation
set. We also use common data augmentations such as random
cropping and horizontal flip.

B Detailed Results for Section 5.1

Earlier in Section 5.1 we evaluate MembershipTracker’s per-
formance under different models and training-set sizes. The
detailed results for this are in Table 6 and Table 7. In both
cases, MembershipTracker is able to achieve 0% FPR@100%
TPR with < 1% accuracy drop the model.

C Ablation Study

MembershipTracker consists of a data marking and set-based
MI process, and we conduct a detailed ablation study into
these two in Appendix C.1 and C.2.

C.1 Two-step Data Marking
We first evaluate the effectiveness of the two data-marking
components (Appendix C.1.1). Meanwhile, we also study
how MembershipTracker’s performance varies under different
number of target samples contributed by the users.

Next, we evaluate how different data-marking intensi-
ties may affect MembershipTracker’s performance (Ap-
pendix C.1.2). Finally, we explore alternative data marking
methods in Appendix C.1.3.

C.1.1 Investigating the two-step data marking process

This section compares the performance of different variants
of MembershipTracker, including (1) the full Membership-
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Table 8: Ablation study of MembershipTracker’s two-step
data marking process: a : Image blending with OOD feature;
b : Perlin noise injection. Each column reports the perfor-

mance under a specific number of target samples contributed
by the users (5∼15 samples by each).
(1) From top to the bottom: both a and b are crucial to
MembershipTracker’s high auditing performance.
(2) From left to the right: MembershipTracker’s auditing per-
formance degrades as the number of samples contributed by
the users reduces. However, even in the challenging case
where each user marks only 5 samples, the full Membership-
Tracker still incurs only 0.64% FPR@100% TPR.

Approach
FPR@100% TPR

15 samples 10 samples 5 samples
(0.06% dataset) (0.04% dataset) (0.02% dataset)

a + b 0.00% 0.18% 0.64%
a 0.10% 0.96% 4.62%
b 0.06% 0.40% 1.8%

None 0.34% 1.54% 7.18%

Tracker with image blending and noise injection; variant (2)
with image blending only; variant (3) with noise injection
only; and variant (4) without any data marking.

We consider a total of 100 target users, and each user con-
tributes different number of samples (5 to 15) to the training
set (25,000 instances). Table 8 reports the results, and there
are two main findings.

(1) The two-step data marking process is vital for Mem-
bershipTracker’s high auditing success. The full technique
with the two-step process consistently achieves lower FPR
than the two other variants with only a single-step marking
(second and third row in Table 8). The last variant (the bot-
tom row in Table 8) considers the set-based MI process on
the original target samples without any data marking, which
suffers from even higher FPR. E.g., under 5 target samples
per user, the full technique has only 0.64% FPR vs. 7.18% by
the one without data marking.

Meanwhile, the performance difference between different
approaches in Table 8 shrinks as the number of target sam-
ples contributed by the users increases. Thus, there is a low
FPR even when auditing the original target samples (without
data marking), e.g., 0.34% FPR@100% TPR on the setting
with 15 target samples per user. This is in fact due to the
effectiveness of the proposed set-based MI process (without
which, performing the standard instance-based MI incurs 44%
FPR@100% TPR), and the ablation study on the set-based
MI process is in Appendix C.2.

(2) Performance variation under different number of
target samples by the users. Table 8 also shows Member-
shipTracker’s performance degrades as the number of target
samples by the users reduces (this trend is also similar to
our earlier evaluation of the ImageNet training experiment in
Section 6). There are two reasons.

First, recall that in MembershipTracker, each user applies

more 
distortions

more  distortions

Figure 12: Performance evaluation under different image
blending ratios (left) and noise perturbation budgets (right) (5
target samples per user). Zoom in to view the samples marked
with different intensities.

a random outlier feature to mark their data, and with lesser
data for marking, the outlier feature appears in fewer samples.
Thus, the model’s memorization on the marked samples (that
contain the outlier feature) subsides. This can be reflected
from the higher prediction loss on the samples, and we vali-
dated this.

Secondly, the limited size of target samples also reduces
the amount of information available to the set-based MI pro-
cess, which can result in a lower auditing performance as well.
With that said, even in the challenging case where each user
can only mark 5 samples (0.02% of the dataset), the full Mem-
bershipTracker still incurs a reasonably low FPR of 0.64%
with 100% TPR.

C.1.2 Data marking with different parameters

There are two parameters: the blending ratio m and the noise
perturbation budget σ. Our main experiments use m= 0.7 and
σ = 8/255, and we now study how different parameters may
affect MembershipTracker’s performance. The results are in
Fig. 12, where we consider a more challenging case with 5
target samples per user, because the performance difference
between different marking intensities is less distinctive when
there are more target samples by each user (e.g., 15).

In both figures of Fig. 12, higher marking intensity indeed
enhances the ability of the marked samples to be memorized
by the model, and contributes to the better performance by
MembershipTracker. This illustrates that the users can moder-
ate the balance between the amount of distortion applied to
their data and the degree of auditing performance obtained
from the resulting data.

C.1.3 Alternative data marking methods

(1) Alternative outlier feature generation. In addition to con-
structing outlier features as samples consisting of random
color stripes, we consider alternative strategies by using sam-
ples from an OOD dataset. Specifically, we use random sam-
ples from the TinyImageNet and CelebA dataset, which are
blended into the CIFAR100 samples. The results are shown
on the left of Fig. 13, and a visualization on the right.
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Figure 13: MembershipTracker maintains similarly high per-
formance when using different types of outlier features for
data marking, such as samples with random color stripes,
samples from an OOD dataset (TinyImageNet and CelebA).

Table 9: Comparing the instance-based and the proposed set-
based MI process. The latter consistently outperforms the
former method by leveraging the average loss across the target
samples by each user to perform MI auditing.

Approach
FPR@100% TPR

10 samples 15 samples 25 samples
(0.04% data) (0.06% data) (0.10% data)

Instance-based MI 36.09 20.47 7.97
Set-based MI 0.18 0.00 0.00

As shown, the resulting samples can be similarly memo-
rized by the model and enable MembershipTracker to main-
tain high provenance success. E.g., in the last two rows on
the left of Fig. 13 (where each user marks 20 or 25 samples),
using different types of outlier features can similarly avail
the users to achieve 0% FPR@100% TPR. This offers the
flexibility for the users to choose different types of outlier
features to mark and protect their data.

(2) Alternative noise injection. We compare injecting perlin
noise vs. uniform random noise. We find that perlin noise
yields better results (details omitted), because perlin noise is
a stronger adversarial noise [17], and thus more capable of
inducing the model to memorize the marked samples. Other
alternatives such as using other noises like gabor noise [17]
may also be explored in future studies.

C.2 Set-based MI Verification
This section compares the set-based MI with the common
instance-based MI process. Table 9 shows the results where
the target samples are marked with MembershipTracker (and
we observe a similar trend when comparing both approaches
on the original samples without data marking). As in Table 9,
the proposed set-based MI process consistently outperforms
the instance-based MI method. E.g., when each target user
can mark only 15 samples (the second column in Table 9),
they can achieve 0% FPR@100% TPR via the set-based MI
process, while the instance-based MI incurs 20.47% FPR.

Meanwhile, the FPR by the instance-based MI approach
reduces as the number of marked samples contributed by

the users increases (this trend is similar to that in Table 8
discussed earlier). Nevertheless, even if each user can mark
25 samples, the instance-based MI method still incurs 7.97%
FPR@100% TPR, while the set-based MI has 0% FPR.

D Comparison with Wenger et al. [68]

Wenger et al. propose a technique to audit the unauthorized
use of data in training DL models. It first injects a target
spurious feature into the user data, and then detects whether
the model has associated the injected feature with a target
class label. To detect, the users can separately overlay the
target feature and some non-target features to an auxiliary set
of samples (outside the target class), and then check whether
the target feature causes a slightly higher probability shift
to the target class in those samples, compared with the non-
target features. For instance, assume the target class is “cat”.
The user may compare the cat class probability on some “dog”
images that are overlaid with the target and non-target features
(e.g., 10% vs. 1%), and detect potential data misuse.

In the following, we first discuss a notable issue we found
in their work, which leads to a significant underestimate of
false positives by their technique; and then further compare
both techniques.

Understanding the problematic evaluation in Wenger
et al [68]. In their work, a testing feature should be detected
as being used for training, if it causes higher probability shift
than the non-target feature - this procedure should be the
same regardless of whether the testing feature has actually
been used for training or not (i.e., true or false positive). Un-
fortunately, this is not the case in [68].

We use Alg. 2 as an example to explain in the following.
Assume Tin is the true target feature that causes a probability
shift of 10%, and Tout 5% and T ′out 1% (Tout and T ′out are two
random non-target features that are not used for training).
Line 1 in Alg. 2 compares Tin with T ′out to check true positive.

To compute false positives (Line 2), however, Wenger et
al. [68] simply invert the order of Line 1, which essentially
compares the probability shift between the non-target feature
T ′out and the true target feature (Tin). This would report no
false positives (because T ′out has a lower probability shift than
Tin), but it is not the correct way to compute false positive.

Instead, a fair evaluation should: (1) sample a new non-
target feature (Tout); and (2) compare its probability shift
relative to another non-target feature (T ′out)

3. This is illus-
trated in Line 3 of Alg. 2 (which is basically the same as Line
1 for detecting true positive). In such a rectified procedure,
the technique would have a false positive, because Tout has a
higher probability shift than T ′out .

3In fact, the order of Tout and T ′out in Line 3 of Alg. 2 can be interchange-
able, as they are both random features that are not used for training. We use
the given order only to illustrate how Wenger et al. [68] could overlook a
false positive in their original detection.
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Algorithm 2 Illustrating the problematic evaluation in mea-
suring false positive by [68], and how to fix it.

Input: Tin: the true target spurious feature used for model training;
Tout ,T ′out : two random non-target features (not used for training);
/* Assume the prob shift by Tin,Tout ,T ′out to be 10%, 5% and 1% */

/* 3 Compare Tin with T ′out to check (true) positive */
1: if Prob shift by Tin > Tout

′ then true positive += 1 end if

/* 7 [68] invert the order of Line 1 to check (false) positive */
2: if Prob shift by T ′out > Tin then false positive += 1 end if

/* This would report no false positive */

/* 3 Sample a new Tout and compare it with T ′out for FP */
3: if Prob shift by Tout > T ′out then false positive += 1 end if

/* This would report a false positive */
/* 7 But it still cannot control the test under a specific low FPR */

/* 3 A principled way to satisfy the above requirement */
4: Estimate the prob shift by sampling a large number of non-target features

/* α can be a small number such as 0.01% (for the low FPR) */
5: c← (1−α)-percentile of the CDF for the above estimated prob shift
6: if Prob shift by Ttest > c then
7: if Ttest belongs to Tin then true positive += 1
8: else false positive += 1
9: end if

10: end if

Validation. To evaluate how this affects their results, we use
the implementation from the authors [68]. We use CIFAR100
dataset with 50 target classes and 50 non-target features for
comparison; and otherwise follow the the same parameters
they used in their experiment [68]. We first validate that we
are able to obtain similar results to their reported performance,
with 99.63% TPR and 0% FPR4.

To re-evaluate the FPR following Line 3 in Alg. 2, we
compare the probability shift between two disjoint sets of non-
target features (Tout ,T ′out). Because both feature sets are not
used for training, the FPR should be similar if we compare Tout
Vs. T ′out or T ′out Vs. Tout (i.e., their order is interchangeable).
We indeed did observe this (with 37% and 34.6% FPR). On
average, their technique incurs a 35.8% FPR.

Wenger et al. [68] do mention that comparing two sets of
non-target features is equivalent to random guessing, and we
also observe the same. However, this “indistinguishablity” ap-
plies only when attempting to distinguish two set of features;
if we consider two random individual features, it is likely that
one feature will cause a higher/lower probability shift than
the other. This is the exact issue with Wenger et al.’s method,
which performs each test on a feature-to-feature level (Line 3
in Alg. 2). Thus, it still permits a large number of FPs.

How to reduce (and control) FPR? One way to reduce
the FPR in [68] is to employ a tighter significance level λ,

4We identified a bug in their code (an issue related to pass-by-reference
in Python that results in the code using a different set of auxiliary data for
marking the target and non-target features), and we fixed it in our evalua-
tion. We have also notified the authors about this bug in their official code
repository using an anonymous account.
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Figure 14: Comparing the technique by Wenger et al. (under
varying data marking intensities) and MembershipTracker in
terms of their MI effectiveness for tracing data provenance.
Increasing the marking intensity in their approach can im-
prove the MI success, but it: (1) still has significantly lower
MI success than MembershipTracker; and (2) already incurs
considerably higher distortion to the images than Member-
shipTracker (visualization in Fig. 15).

which is used to detect whether the probability shift caused
by the target feature is statistically higher than the non-target
feature, and it defaults to be 0.1 in [68]. However, this will
also degrade the TPR, e.g., when we change to use a λ of 1e-8,
the FPR is reduced to 1.9%5, and the TPR is already degraded
to 86.4%6. In addition, while using a tighter significance level
can reduce the FPR, it still cannot control the FPR within a
specific low regime (e.g., 0.01%).

To fulfill this requirement, a principled way is to adapt a
similar setup established in existing MI studies [6,8,70]. This
procedure is sketched in Line 4 to Line 10 in Alg. 2. However,
based on our results in the previous paragraph, it is likely that
the TPR by their technique would further decrease when the
TPR is controlled at a lower FPR regime (e.g., 0.01%).

Further comparison with [68]. We further compare
Wenger et al. with MembershipTracker in our setting, where
we evaluate how effective is their approach, if adapted for
MI-based data provenance.

Specifically, we consider 100 target users and each user
marks 25 samples (0.1% of the training set). As in Wenger et
al. [68], we use ImageNet images as the outlier features to be
blended into the CIFAR100 samples, and MembershipTracker
uses random color stripes as before. [68] have a configurable
parameter to control the intensity of the outlier feature when
overlaid to the target data - we thus compare Membership-
Tracker with their approach under varying marking intensities.

Fig. 14 shows the results, and Fig. 15. shows a visualization
of the samples marked with different intensities.

As shown in Fig. 14, compared with the baseline approach
without any data marking, the method by Wenger et al. can
indeed increase the MI success. For instance, the green line
in Fig. 14 (marked using m = 0.6, which is equivalent to the

5We also checked that larger λ like 1e-10 cannot further reduce FPR.
6Another option to reduce FPR is to adjust the proportion of positive tests

(δ) for the tool to return a positive outcome (details omitted): we increased δ

from 0.6 (their default setting) to 1.0, and still observed a similar trade-off.
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Figure 15: Samples marked with different intensities by the
method of Wenger et al. vs. the samples marked by Member-
shipTracker. Our approach incurs significantly lower distor-
tion to images than Wenger et al., and still outperforms their
approach with much higher MI success.

default marking intensity in [68]) increases the AUC from
0.7927 to 0.9253. However, this still has very limited perfor-
mance in the low FPR regime. Increasing the marking inten-
sity in their approach can further improve the MI success, but
it: 1) comes at the cost of higher image distortion; and 2) still
has lower auditing performance than MembershipTracker.

For instance, under m = 0.5 (meaning 50% of the original
features are replaced with the outlier features), their approach
still yields much lower MI success than MembershipTracker
(the gray Vs. blue line in Fig. 15), and the samples marked by
their approach already become highly conspicuous compared
with the original samples (the second and fifth column in
Fig. 15). Using higher marking intensity (m= 0.3) still suffers
from a similar trade-off.

Our earlier discussion in Section 4.3.2 explains that in-
jecting outlier features alone is not enough, as the original
features hinder the model’s memorization on the outlier fea-
tures. To overcome this, we propose a novel approach to inject
a small amount of perlin noise, which works similar to adver-
sarial perturbation and can significantly enhance the model’s
memorization on the marked samples (as evaluated earlier
in Appendix C.1.1) while preserving high image quality (the
fourth column in Fig. 15).

Combined with the proposed set-based MI process (another
key component in our work), MembershipTracker is able to
achieve perfect MI success (the blue line in Fig. 14) and
outperforms the method by Wenger et al.

Summary. While both Wenger et al. and our work aim at
detecting the unauthorized use of personal data in training DL
models, their original technique greatly underestimates the de-
tection false positives, and thus still struggles with achieving
high TPR and low FPR.

We also realign their technique for MI-based provenance.
We find MembershipTracker outperforms their approach by:
1) incurring lower distortion to the data; and 2) achieving
significantly higher auditing performance. This renders Mem-
bershipTracker a more practical data provenance tool.

Table 10: Comparing the technique by Tramer et al. and Mem-
bershipTracker in terms of their MI effectiveness for tracing
data provenance.
Their approach works by injecting mislabeled samples to in-
crease the MI success, which can reduce the FPR, but only to
a limited extent.
In comparison, MembershipTracker does not require misla-
beling any data, and still achieves considerably lower FPR.

Approach
FPR@100% TPR

5 samples 15 samples 25 samples
(0.02% data) (0.06% data) (0.1% data)

Original 49.33 54.79 56.32
Tramer et al. 10.80 6.96 4.92

MembershipTracker 0.64 0.00 0.00

E Comparison with Tramer et al. [65]

This section compare MembershipTracker with another re-
lated work (Tramer et al). Their work proposes a technique to
improve the MI success based on data poisoning. The main
idea is to inject mislabeled samples into the model’s train-
ing set, which can transform the target samples into outliers
and amplify their influence to the model’s decision, thereby
making the target samples easier to be de-identified.

Tramer et al. is the closest work to ours that can improve
the MI success and without requiring the expensive shadow-
model calibration. However, it assumes the users can mis-
label their data, which can be challenging in the real-world
scenarios where the users do not have control over the data
labels [19,21,68]. In comparison, MembershipTracker makes
no such assumption and it only requires the users to mark
their data with some small and targeted changes, which is a
more realistic setting.

For completeness, we evaluate how effective their approach
is, if the users are able to mislabel their data for provenance
purpose. We follow the targeted label flipping attack in Tramer
et al., where for each target instance (x,y), we inject multiple
mislabeled data points Dadv = {(x,y′), ...,(x,y′)} for some
label y′ 6= y [65]. We inject different number of poisoned sam-
ples and compare their approach with MembershipTracker.

Table 10 shows the results, where the method by Tramer et
al. indeed increases the exposure against the targeted samples,
and the FPR@100% TPR is reduced from 49.33%∼56.32%
to 4.92%∼10.80%. Fig. 16 shows the ROC curve under the
setting of 15 samples per user (similar trend on other settings).
Meanwhile, the second row in Table 10 also shows that in-
jecting more poisoned samples can contribute to higher MI
success, which is also in line with [65]. Nevertheless, even in
the case where each user contributes 25 samples, the method
by Tramer et al. still incurs 4.92% FPR@100% TPR; while
MembershipTracker has 0% FPR@100% TPR.
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Figure 16: Comparing the performance between the approach
by Tramer et al. and MembershipTracker (under 15 samples
per user), and MembershipTracker achieves much higher MI
success than their approach.

F Evaluating Huang et al. [31] under Limited
Data Setting

Concurrent work by Huang et al. introduces a general frame-
work for auditing unauthorized data use in training DL mod-
els [31]. Their main idea is to generate two perturbed copies
of the target data, randomly publish one of them, and then
compare the model’s membership score on the published Vs.
the unpublished one.

While both their work and MembershipTracker have a simi-
lar goal, their work assumes the users can mark a large portion
of data (1%∼10%). However, in a real-world setting, model
creators often curate their dataset by scraping data from multi-
ple sources, and thus the data collected from each data holder
may only constitute a small proportion of the dataset. For this,
MembershipTracker targets a more realistic (and challenging)
scenario, where the users can modify only a limited amount
of data (≤ 0.1%).

To understand the performance of their technique under
such a limited-data setting, we use the original implementa-
tion from the authors [31] for an evaluation. Their approach
can be applied to both image classifiers and foundation mod-
els, and we evaluate their approach under the same classifier
setting as MembershipTracker (using CIFAR100). We first
consider marking 1% of the dataset, and find that their tech-
nique can still maintain 100% detection success rate.

We then stress test their technique using 0.2% marking
percentage, under which their auditing performance degrades
considerably: the detection success rate is reduced to 65%
when the output vector is available. Under the label-only set-
ting, the success rate further drops to 25%. Therefore, our
evaluation indicates that auditing data use under the limited-
data setting still remains a major challenge, and Member-
shipTracker represents a desirable technique that can offer
superior auditing performance in these settings.

With that said, their framework can still be used for other
application domains that MembershipTracker currently does
not support, such as foundation models. In those applications,
their tool remains the state-of-the-art data auditing solution,

Figure 17: Output noise injection increases the prediction
loss of the member samples (from the leftmost to the middle
figure), but their loss are still lower than many non-member
samples’. Thus, MembershipTracker can leverage the average
loss of the samples by each user to achieve a 0% FPR@ 100%
TPR (the rightmost figure).

and we leave the extension of MembershipTracker to other
domains to future work.

G Detailed Results for Output Perturbation
Defense

Section 5.2.7 studies two defense strategies to perturb the
model’s outputs: (1) injecting Gaussian noise to the prediction
outputs; and (2) returning only the top-1 prediction label. We
discuss the detailed results below.

(1) For the first method, we find that injecting Gaussian
noise (using zero-mean noise with standard deviation σ in
0.5∼5) to the output vectors is not an effective solution, and
MembershipTracker can still maintain very low FPR even
if the defense has caused severe accuracy degradation. E.g.,
injecting Gaussian noise with σ = 3 degrades the accuracy
from 65.32% to 52.05%, under which MembershipTracker
still achieves a 0% FPR@100% TPR. We use Fig. 17 to
explain next.

As in the first two figures of Fig. 17, injecting noise to the
outputs increases the prediction loss on the member samples
(and non-members too). Hence, more member samples (the
blue area in the middle figure of Fig. 17) now have similar
loss as the non-member samples (undesirable).

Fortunately, MembershipTracker can still overcome this
via its set-based MI process. This is because, the prediction
loss of the member samples, though increased, are still much
lower than that of many non-member samples. Thus, there
is still a clear difference between the average loss for the
member and non-member users’ samples (the rightmost figure
in Fig. 17), from which MembershipTracker is able to achieve
a 0% FPR@100% TPR.

(2) In the label-only setting, since the class probabilities
are not available, we use a simple method to compute a proxy
for the prediction loss: we assign a loss value of 0 for the
correctly-classified samples and 1 for other samples. In this
case, all the correctly-classified non-members have the same
0 loss as the member samples. However, we find that Mem-
bershipTracker can still overcome the defense and achieve a
0.04% FPR@100% TPR.
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The reason is that there is a major accuracy difference
between the member and non-member users’ samples: 100%
vs. 22.02% (the latter yield low accuracy as they are marked
with the random outlier features and perlin noise, but they are
not present in the training set). Thus, the “average loss” for
the samples by the member users are still lower than that by
the non-member users. This enables MembershipTracker to
succeed even under the label-only setting.
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