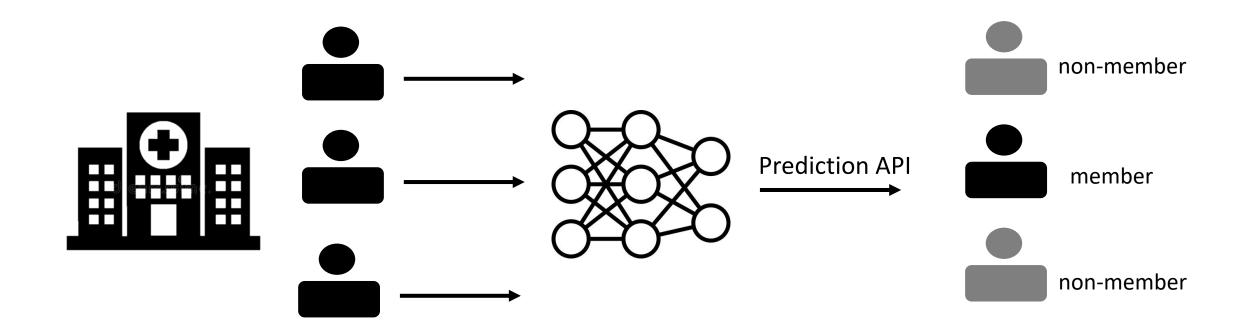


Overconfidence is a Dangerous Thing: Mitigating Membership Inference Attacks by Enforcing Less Confident Prediction

Zitao Chen, Karthik Pattabiraman

THE UNIVERSITY OF BRITISH COLUMBIA

Membership Inference Attacks (MIAs)



Does the sensitive training set contain a target record?

Confidentiality violation

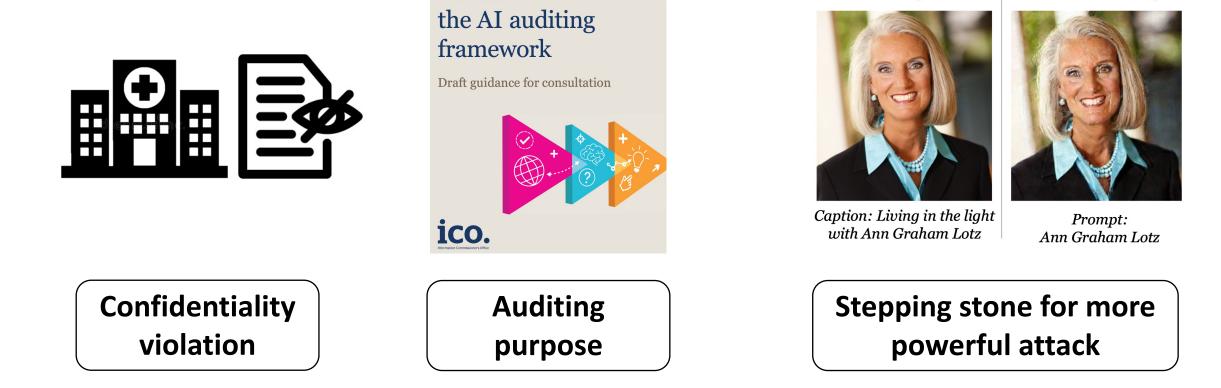
Guidance on the AI auditing framework

Draft guidance for consultation

https://ico.org.uk/media/about-the-ico/consultations/2617219/guidance-on-the-ai-auditing-framework-draft-for-consultation.pdf 5

Training Set

Generated Image



Guidance on

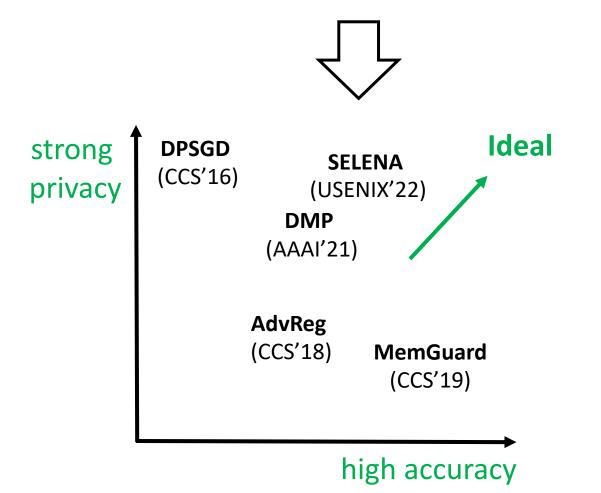
https://ico.org.uk/media/about-the-ico/consultations/2617219/guidance-on-the-ai-auditing-framework-draft-for-consultation.pdf ₆ Carlini et al., Extracting Training Data from Diffusion Models, USENIX'23

We need effective defense against MIAs!

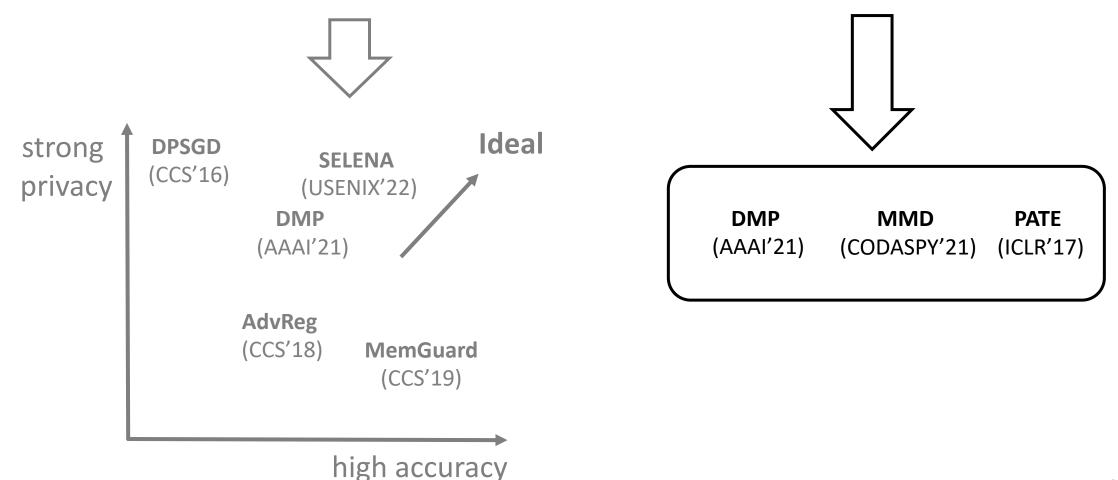
https://ico.org.uk/media/about-the-ico/consultations/2617219/guidance-on-the-ai-auditing-framework-draft-for-consultation.pdf ₇ Carlini et al., Extracting Training Data from Diffusion Models, USENIX'23

Poor privacy-utility trade off or requiring additional data

Poor privacy-utility trade off or requiring additional data

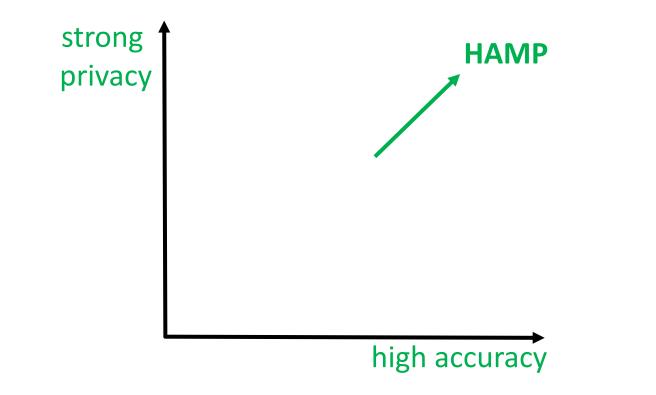


Poor privacy-utility trade off or requiring additional data



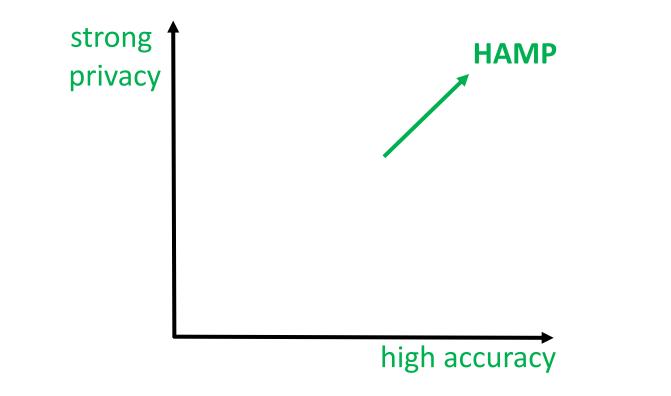
Our Work: HAMP

High Accuracy and Membership Privacy without additional data



Our Work: HAMP

A new way to combine soft label training, training regularization and output modification for privacy-preserving training!



Threat model

Adversary

- Knowledge:
 - Black-box adversary.
 - Half members and non-members.
 - Full defense knowledge.
- Goal: Membership inference

Threat model

Adversary

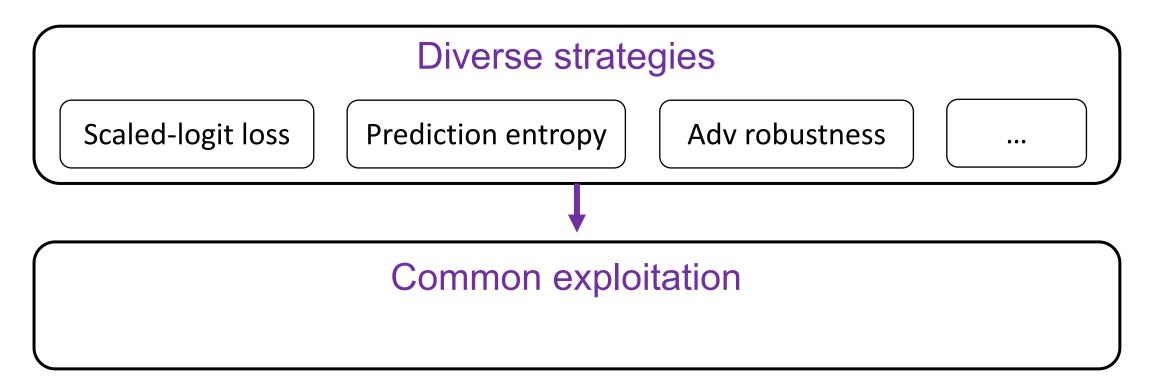
- Knowledge:
 - Black-box adversary.
 - Half members and non-members.
 - Full defense knowledge.
- Goal: Membership inference

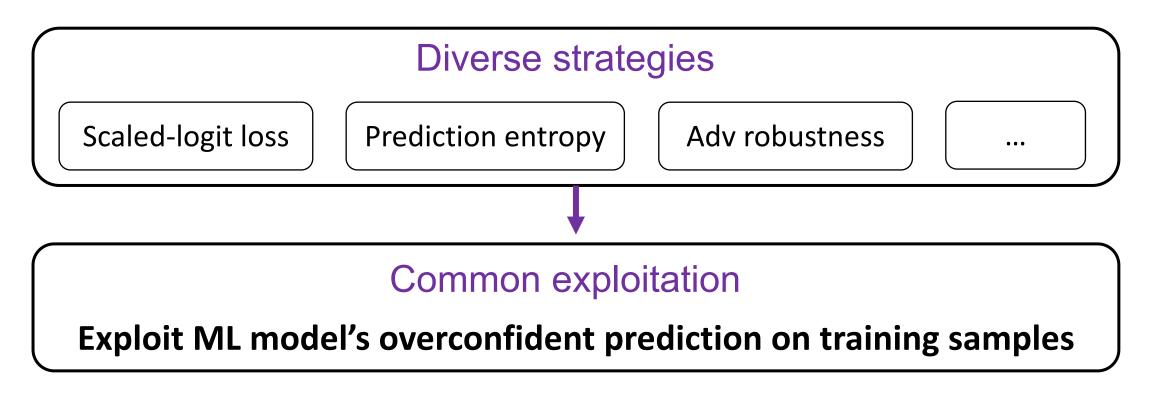
Defender

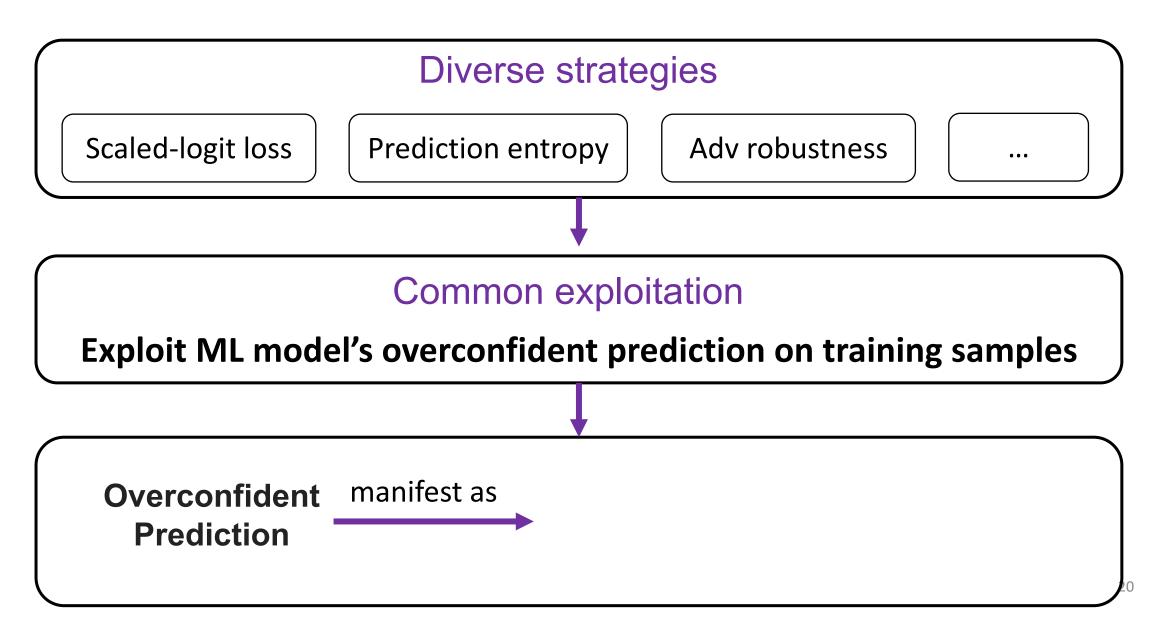
Knowledge:

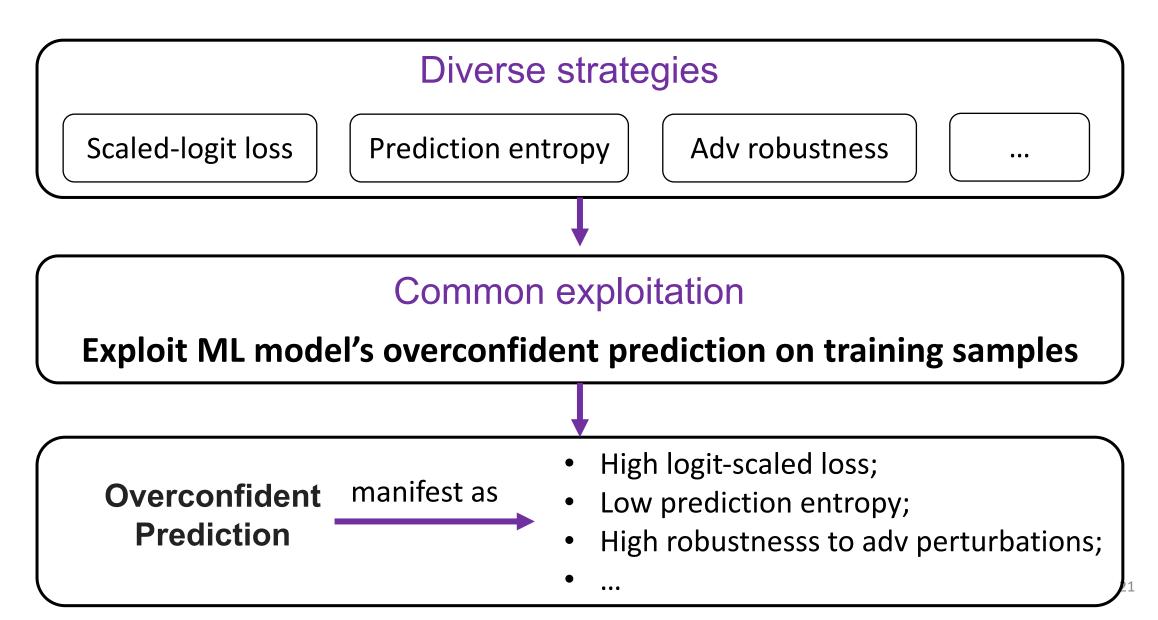
- The private dataset only.
- Goal: Model with high accuracy & membership privacy

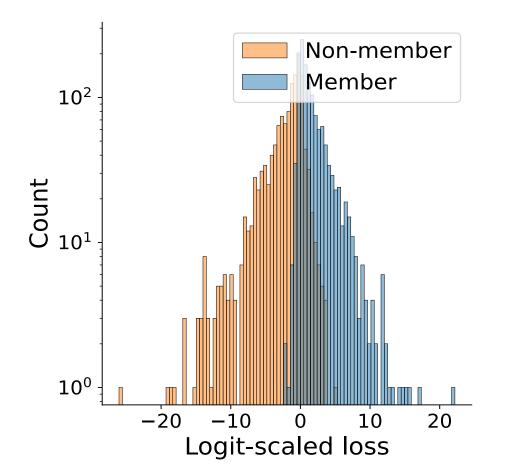
Diverse strategies

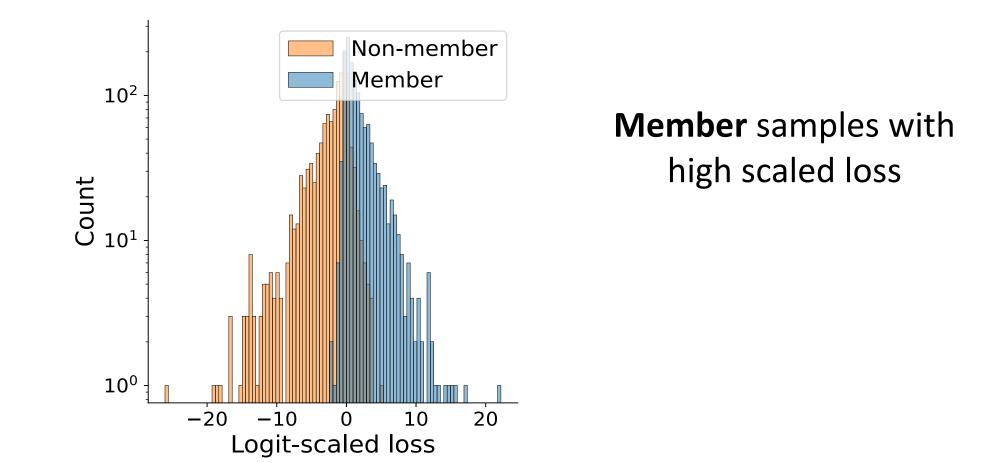


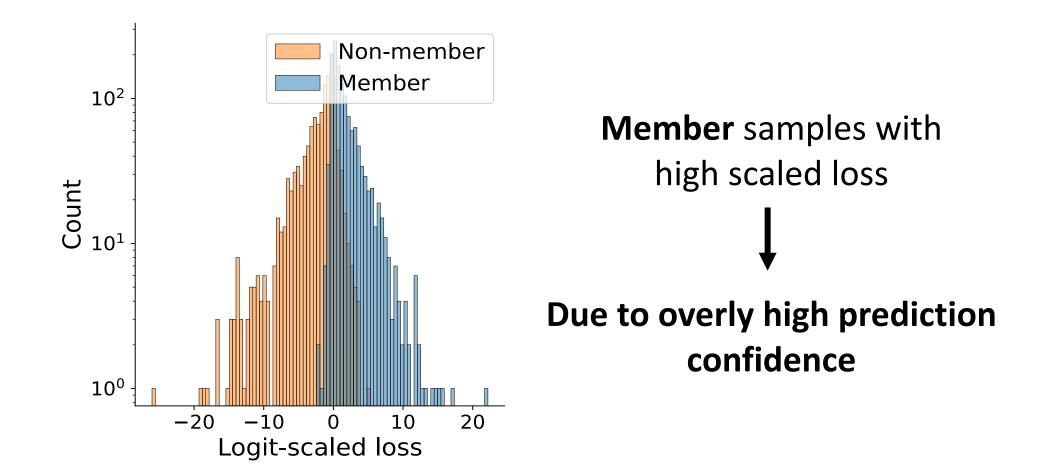








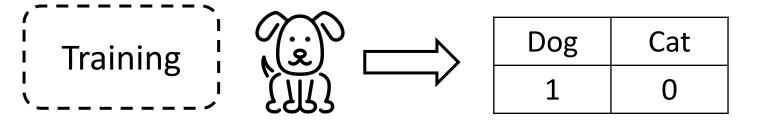


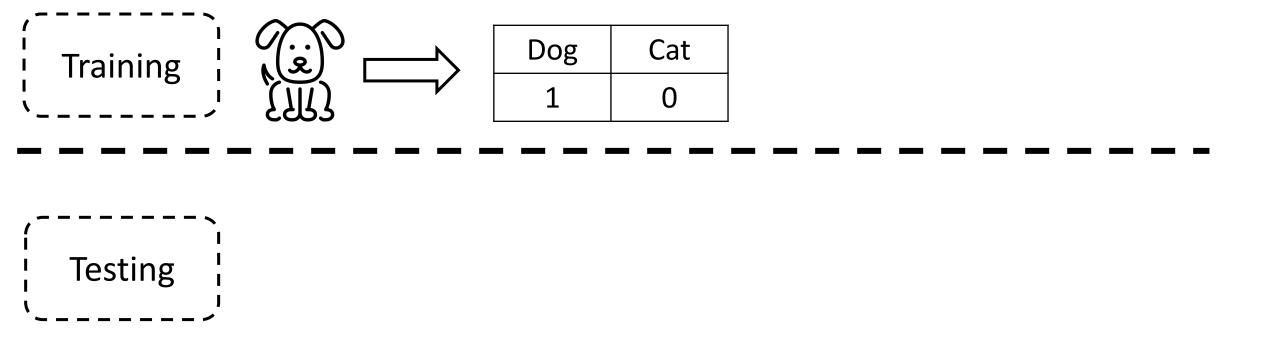


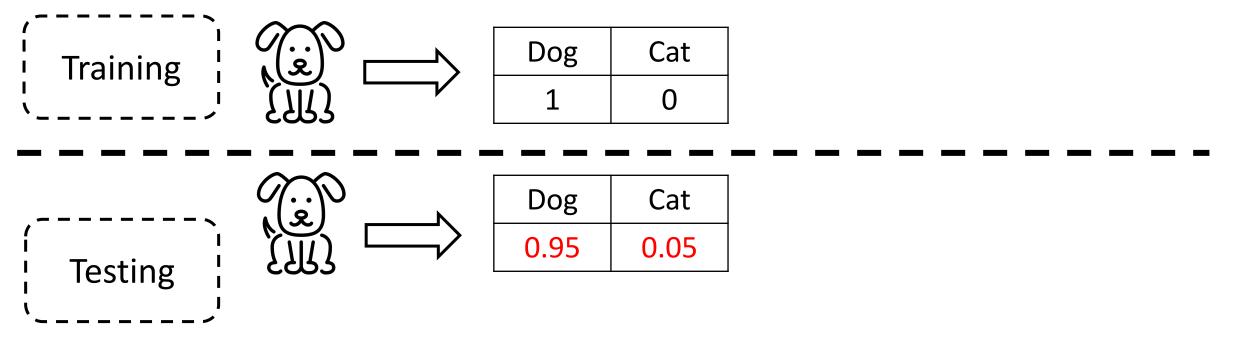
Defense principle

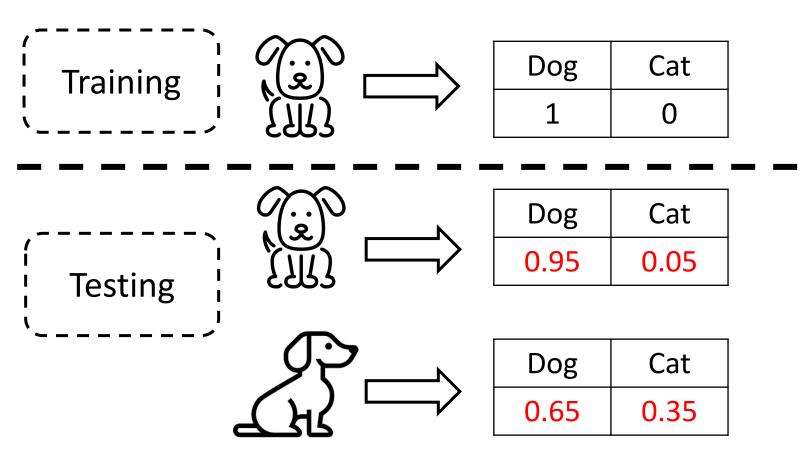
MIAs exploit ML model's overconfident prediction on training samples

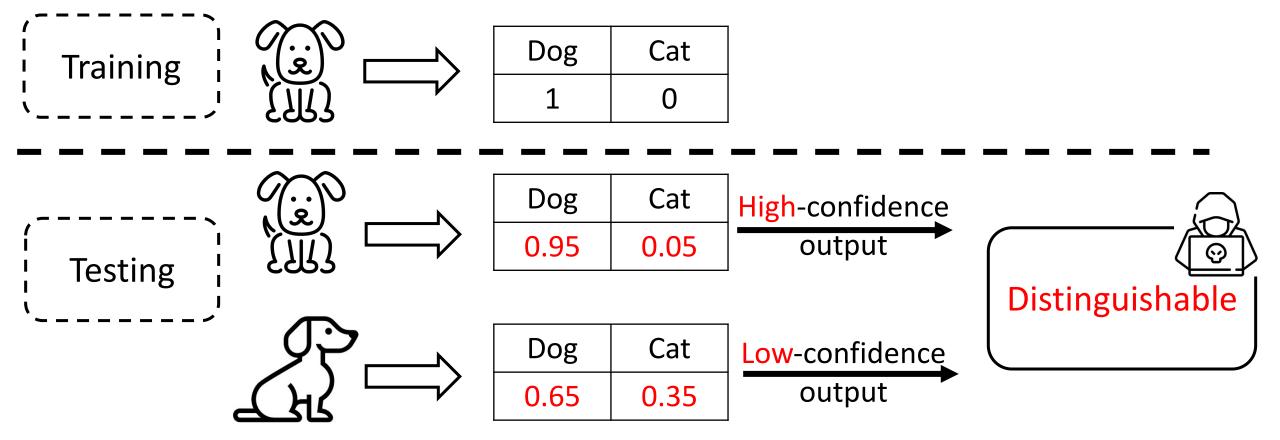
Mitigating ML model's overconfident prediction on training samples without jeopardizing model accuracy











HAMP

Training-time defense

Testing-time defense

HAMP

Training-time defense

Testing-time defense

Produce high-utility models with strong membership privacy

HAMP

Training-time defense

Produce high-utility models with strong membership privacy

Gain higher privacy without degrading accuracy

Testing-time defense

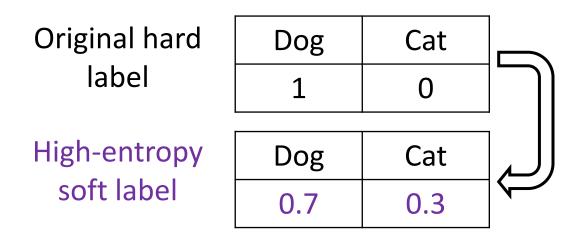
High-entropy soft labels

High-entropy soft labels

Original hard label

High-entropy soft label

High-entropy soft labels

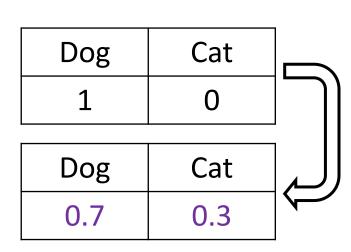


Explicitly enforce the model to make less confident prediction

High-entropy soft labels

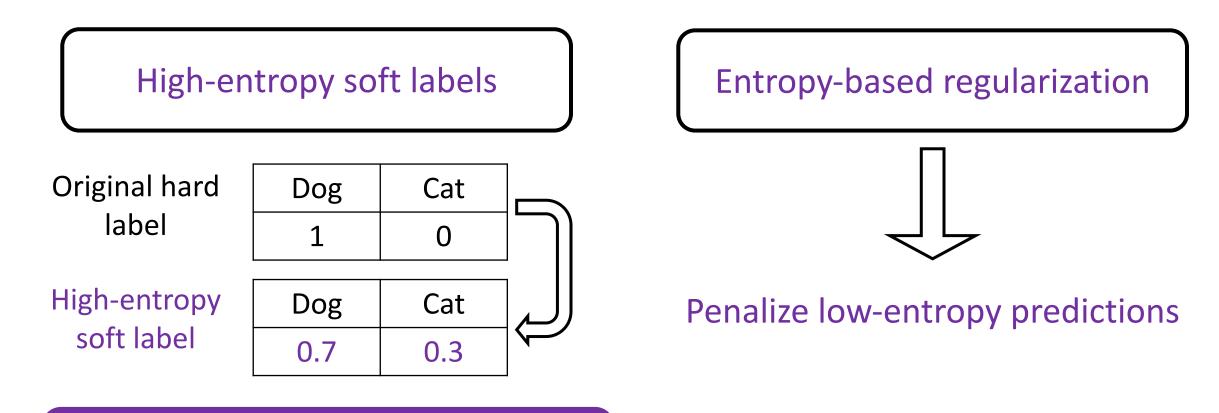
Original hard label

High-entropy soft label

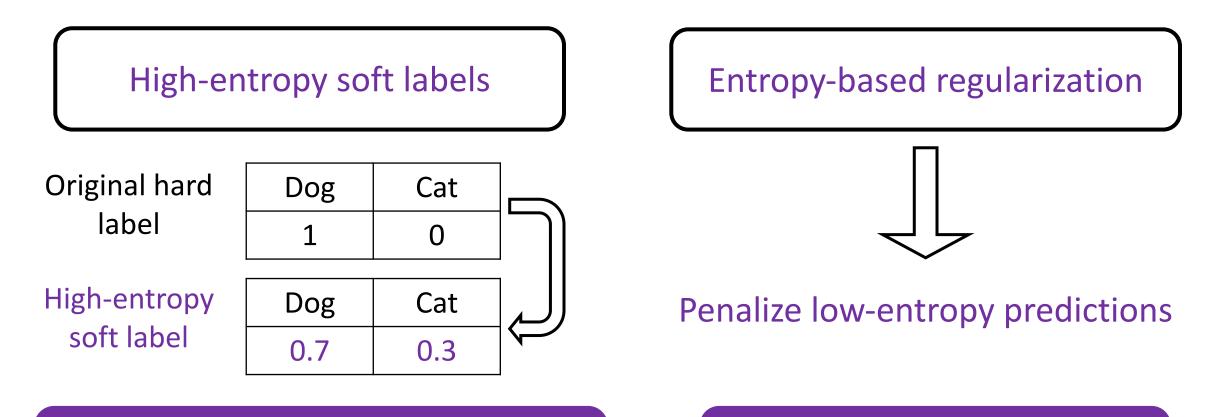


Explicitly enforce the model to make less confident prediction

Entropy-based regularization

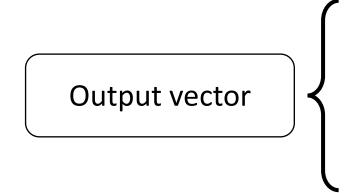


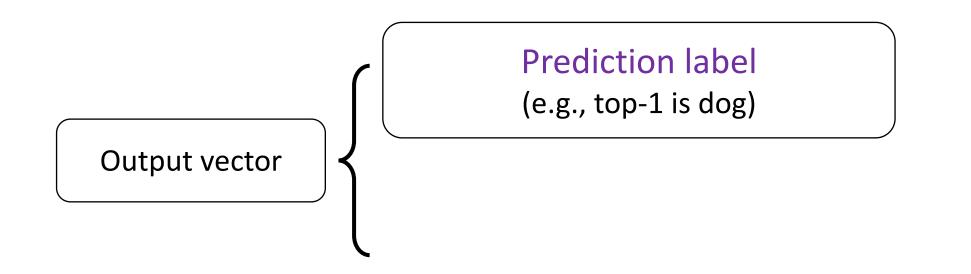
Explicitly enforce the model to make less confident prediction

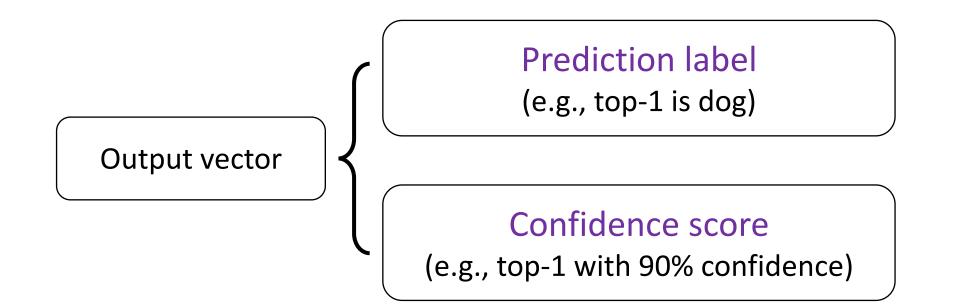


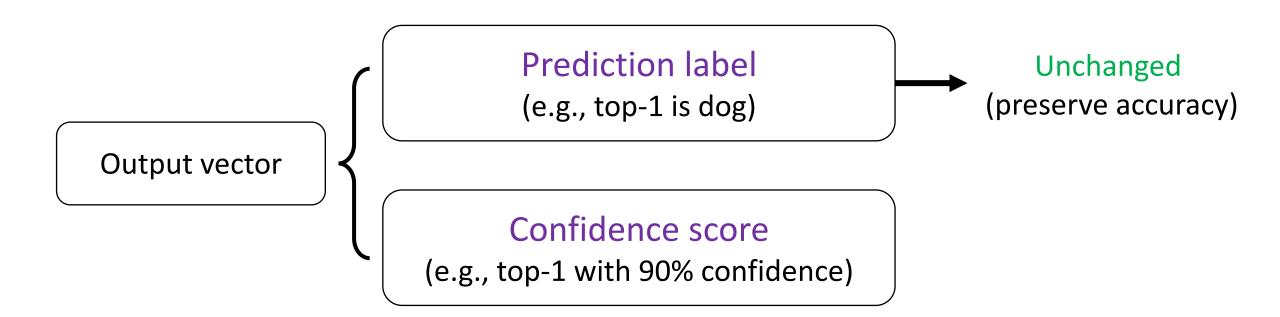
Explicitly enforce the model to make less confident prediction

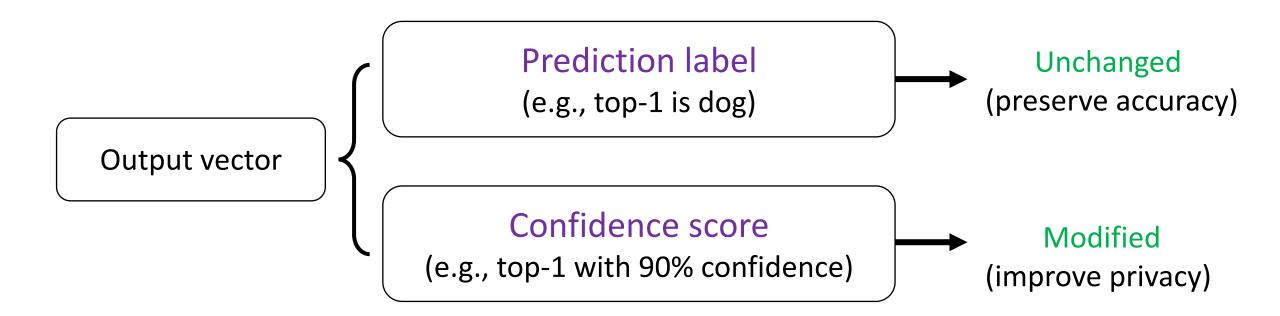
Regularize the prediction confidence level











 \Box Modify all output vectors \rightarrow low confidence outputs.

□ How to obtain low confidence outputs?

 \Box Modify all output vectors \rightarrow low confidence outputs.

□ How to obtain low confidence outputs?

Utilize random samples as (highly probable) non-members.

 \Box Modify all output vectors \rightarrow low confidence outputs.

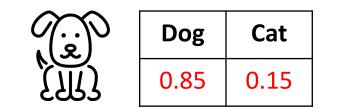
□ How to obtain low confidence outputs?

Utilize random samples as (highly probable) non-members.

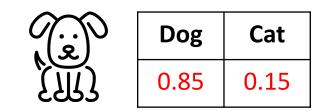
 \Box Modify all output vectors \rightarrow low confidence outputs.

□ How to obtain low confidence outputs?

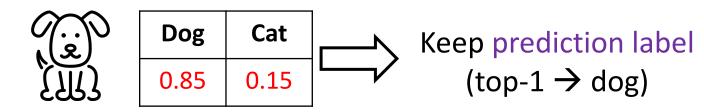
Utilize random samples as (highly probable) non-members.



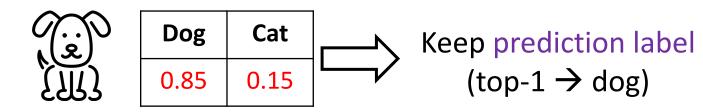
member sample



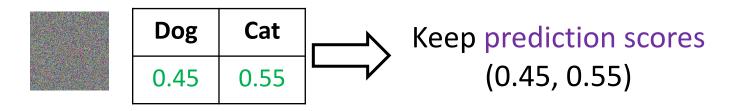
member sample

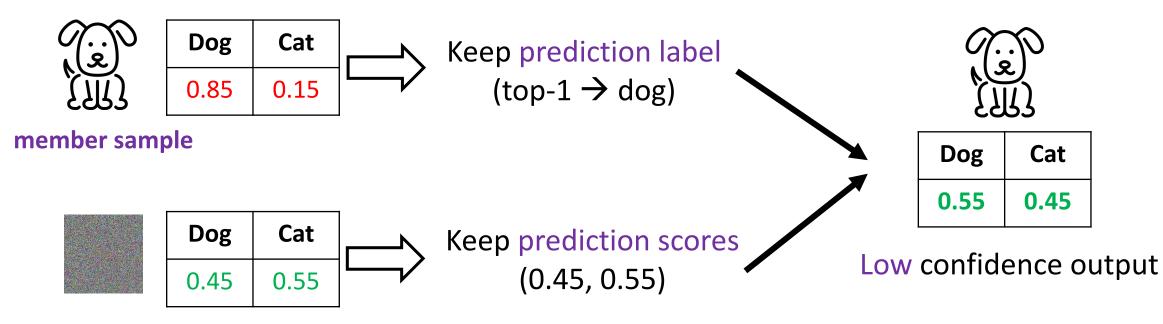


member sample



member sample





	Purchase100
	Texas100
5 datasets	Location30
	CIFAR10
	CIFAR100

5 datasets	Purchase100 Texas100 Location30 CIFAR10 CIFAR100	9 attacks	NN-based Loss-based Entropy-based Modified-entropy-based Confidence-based Likelihood-ratio attack (Li	Correctness-based Boundary-based Augmentation-based RA)
------------	--	-----------	--	--

5 datasets	Purchase100 Texas100 Location30 CIFAR10 CIFAR100	9 attacks	NN-based Loss-based Entropy-based Modified-entropy-based Confidence-based Likelihood-ratio attack (Li	Correctness-based Boundary-based Augmentation-based RA)
Me DN 7 defenses SEI Ear Lat	vReg (CCS'18) emGuard (CCS'19) /IP (AAAI'21) LENA (USENIX'22) rly stopping (USENIX'21 bel Smoothing (CVPR'16 SGD (CCS'16)			

5 datasets	Purchase100 Texas100 Location30 CIFAR10 CIFAR100	9 attacks	NN-based Loss-based Entropy-based Modified-entropy-based Confidence-based Likelihood-ratio attack (Li	Correctness-based Boundary-based Augmentation-based RA)
Me DN	vReg (CCS'18) emGuard (CCS'19) 1P (AAAI'21)	НАМР	α for high-entropy so labels	ft γ for regularization strength
Ear Lab	ENA (USENIX'22) Iy stopping (USENIX'21) Sel Smoothing (CVPR'16) SGD (CCS'16)	configurat		aper for details

5 dataset	Purchase100 Texas100 Location30 CIFAR10 CIFAR100	9 attacks	Confidence	d ased entropy-based	Correctness-based Boundary-based Augmentation-based RA)
	AdvReg (CCS'18) MemGuard (CCS'19) DMP (AAAI'21)	HAM		high-entropy so labels	ft γ for regularization strength
	SELENA (USENIX'22) Early stopping (USENIX'22)	· ·	ation		J
	Label Smoothing (CVPR'1 DPSGD (CCS'16)	6)		Refer to the p	aper for details

TPR @ 0.1% FPR

TNR @ 0.1% FNR

2 metrics

5 datasets	Purchase100 Texas100 Location30 CIFAR10 CIFAR100	9 attacks	NN-based Loss-based Entropy-based Modified-entropy-based Confidence-based Likelihood-ratio attack (Li	Correctness-based Boundary-based Augmentation-based iRA)
Mer DMI	Reg (CCS'18) nGuard (CCS'19) P (AAAI'21)	HAM	P labels	oft γ for regularization strength
Earl Labe	ENA (USENIX'22) y stopping (USENIX'2 el Smoothing (CVPR'1 GD (CCS'16)			y paper for details

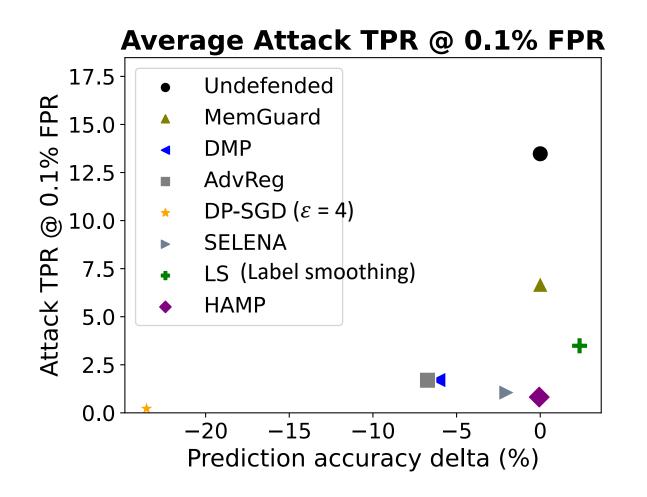
2 metrics

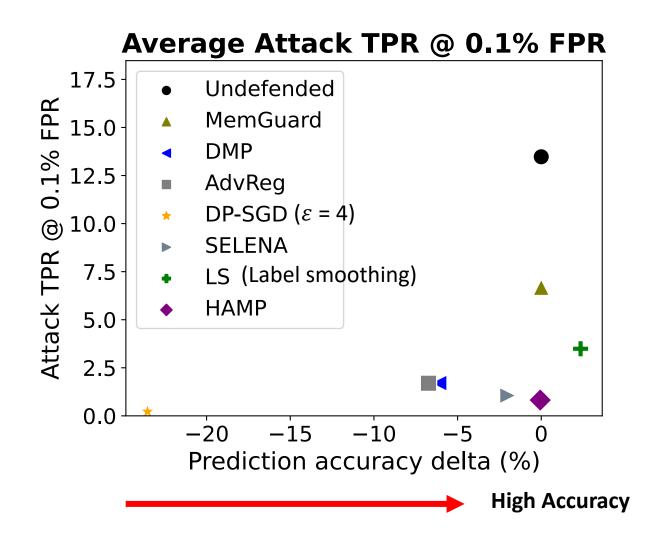
TNR @ 0.1% FNR

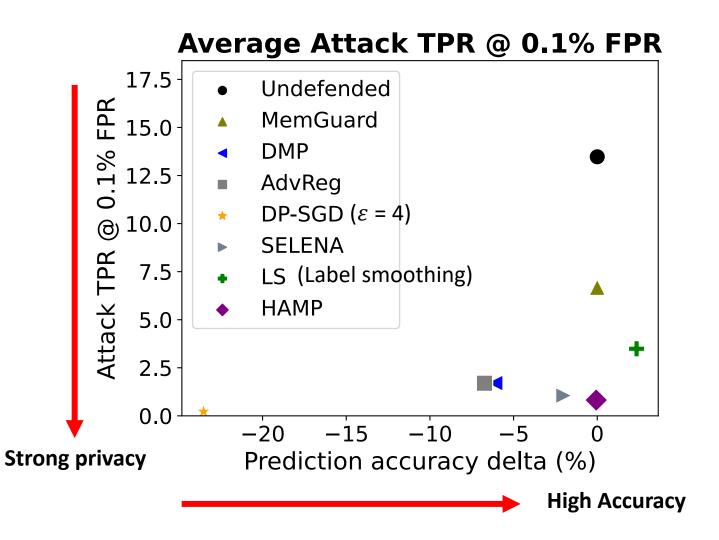
Artifact https://github.com/DependableSystemsLab/MIA_defense_HAMP

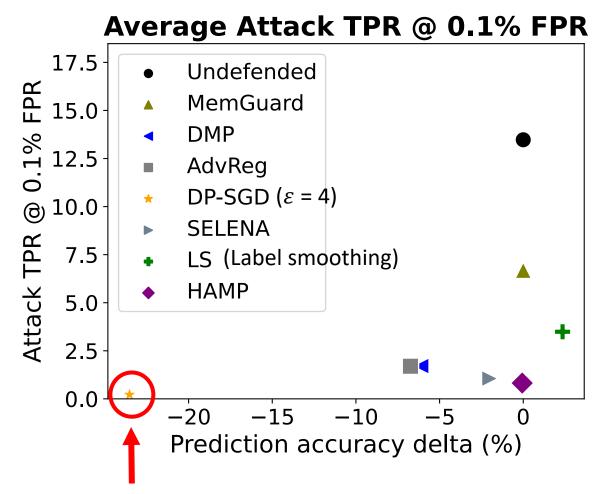
Artifact Evaluated

NDSS



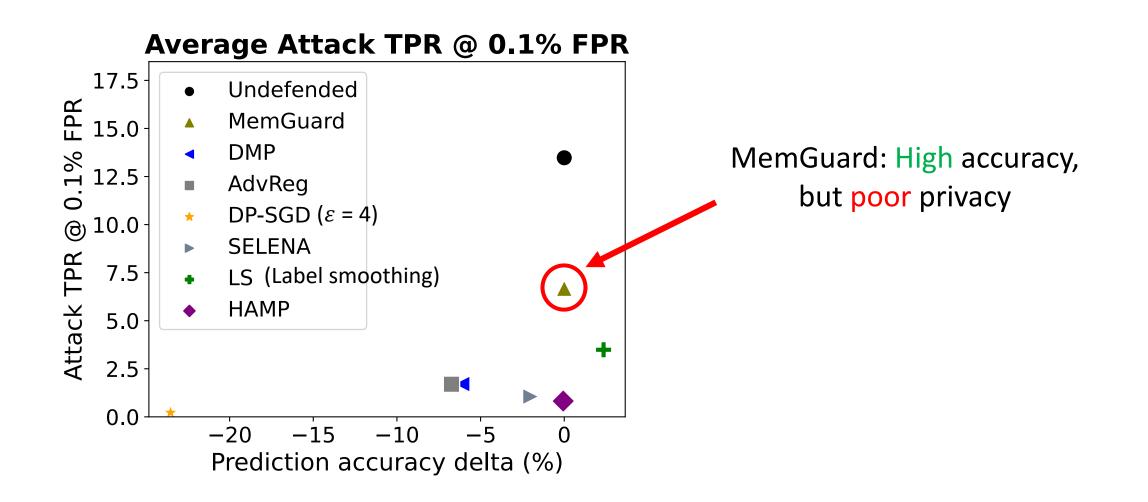


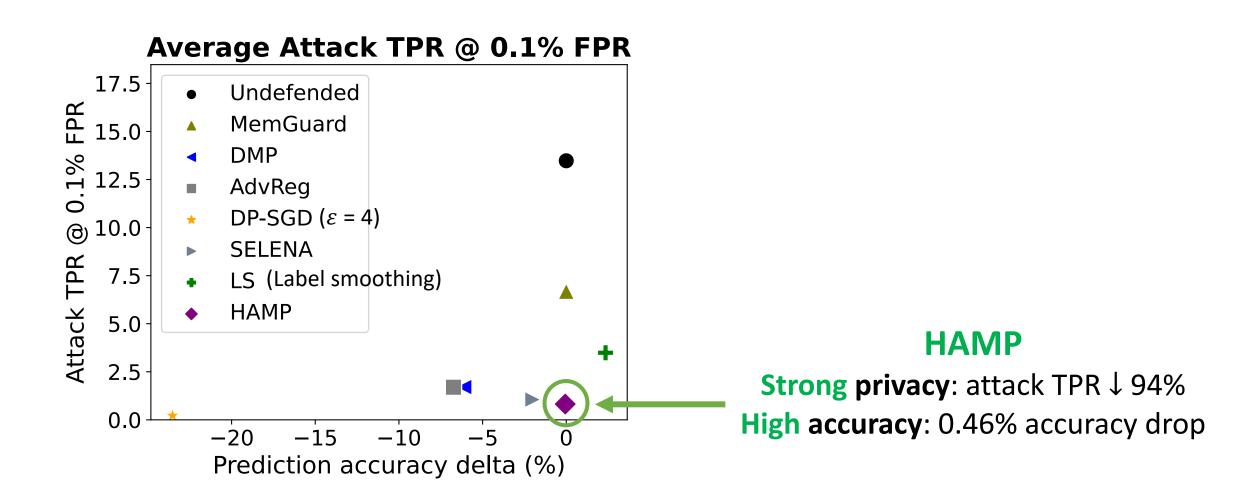




DPSGD: Strong privacy, but low accuracy

Key results





Summary

How to mitigate membership inference attacks with strong privacy protection and low accuracy drop?

Summary

Perform to mitigate membership inference attacks with strong privacy protection and low accuracy drop?

Mitigating ML model's overconfident prediction on training samples without jeopardizing model accuracy.

Summary

How to mitigate membership inference attacks with strong privacy protection and low accuracy drop?

Mitigating ML model's overconfident prediction on training samples without jeopardizing model accuracy.

HAMP: A new way to combine soft label training, training regularization and output modification for privacy-preserving training!

zitaoc@ece.ubc.ca