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Membership Inference Attacks (MIAs)
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MIAs as a privacy threat

Guidance on
the Al auditing
framework

Draft guidance for consultation

Confidentiality Auditing
violation purpose

https://ico.org.uk/media/about-the-ico/consultations/2617219/guidance-on-the-ai-auditing-framework-draft-for-consultation.pdf ¢
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MIAs as a privacy threat

Guidance on Training Set Generated Image

the AI auditing
framework

Draft guidance for consultation

Caption: Living in the light Prompt:
with Ann Graham Lotz Ann Graham Lotz
Confidentiality Auditing Stepping stone for more
violation purpose powerful attack

We need effective defense against MIAs!

https://ico.org.uk/media/about-the-ico/consultations/2617219/guidance-on-the-ai-auditing-framework-draft-for-consultation.pdf -
Carlini et al., Extracting Training Data from Diffusion Models, USENIX'23
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Our Work: HAMP

High Accuracy and Membership Privacy without additional data

strong

privacy /

HAMP

—
high accuracy
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Our Work: HAMP

A new way to combine soft label training, training regularization and
output modification for privacy-preserving training!

strong

privacy /

HAMP

- —
high accuracy
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Threat model
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 Full defense knowledge.

~
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Threat model

-

Adversary

 Knowledge:

« Black-box adversary.

~

« Half members and non-members.

 Full defense knowledge.

&Goal: Membership inference j

/ Defender

 Knowledge:
* The private dataset only.

* Goal: Model with high accuracy &

membership privacy

\_

~

/
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Existing attacks

4 Diverse strategies A
[ Scaled-logit loss J [ Prediction entropyJ [ Adv robustness ] [ ]
\_ l )
(" )

Common exploitation

_ Exploit ML model’s overconfident prediction on training samples )

!

4 . * High logit-scaled loss; )
Overconfident manifestas . |4y prediction entropy;
- n —
Prediction * High robustnesss to adv perturbations;

\ * .. )




Example: Overconfident prediction via
logit-scaled loss

Carlini et al., Membership Inference Attacks From First Principles, S&P’22
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Example: Overconfident prediction via
logit-scaled loss
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Logit-scaled loss

Carlini et al., Membership Inference Attacks From First Principles, S&P’22
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Example: Overconfident prediction via
logit-scaled loss

102 ;

Count

100

11
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il N

—20 -10 0 10 20
Logit-scaled loss

Carlini et al., Membership Inference Attacks From First Principles, S&P’22

Member samples with
high scaled loss
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Example: Overconfident prediction via
logit-scaled loss

1 Non-member

102 0 Member
| Il Member samples with
o il high scaled loss
@) 101': ] i :
| Il i Due to overly high prediction
M | * % confidence
1% | Wl

—20 -10 0 10 20
Logit-scaled loss
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Carlini et al., Membership Inference Attacks From First Principles, S&P’22



Defense principle

g MIAs exploit ML model’s overconfident prediction on
training samples

Mitigating ML model’s overconfident prediction on training
samples without jeopardizing model accuracy

26
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 Training with one-hot hard label.
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What leads to overconfident prediction?

 Training with one-hot hard label.

_________

—————————

_________

—————————
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0.95 0.05
Dog Cat
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{ Training-time defense
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Testing-time defense

Produce high-utility models with
strong membership privacy

36




N 4 N

[ Training-time defense Testing-time defense
) . J

Produce high-utility models with Gain higher privacy without
strong membership privacy degrading accuracy
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HAMP - Training-time defense

[ High-entropy soft labels J [ Entropy-based regularization J
Original hard Dog Cat
label . o 1)
High-entropy Dog Cat
soft label 0.7 0.3 <:9

Explicitly enforce the model to

make less confident prediction
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HAMP - Training-time defense

[ High-entropy soft labels J [ Entropy-based regularization J
Original hard Dog Cat
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Explicitly enforce the model to
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HAMP - Training-time defense

[ High-entropy soft labels J [ Entropy-based regularization J
Original hard Dog Cat
jabel " o 1) <L
High-entropy | Dog Cat Penalize low-entropy predictions
soft label 0.7 0.3 <j/

Explicitly enforce the model to

make less confident prediction

Regularize the prediction
confidence level
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J Modify all output vectors = low confidence outputs.

- Prediction label
(e.g., top-1is dog)

{ Output vector }{

47



HAMP — Testing-time defense

J Modify all output vectors = low confidence outputs.

- Prediction label
(e.g., top-1is dog)

. { Confidence score J

{ Output vector }{

(e.g., top-1 with 90% confidence)

48



HAMP — Testing-time defense

J Modify all output vectors = low confidence outputs.

- Prediction label Unchanged
(e.g., top-1is dog) (preserve accuracy)

. { Confidence score J

{ Output vector }{

(e.g., top-1 with 90% confidence)
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HAMP — Testing-time defense

J Modify all output vectors = low confidence outputs.

, { Prediction label Unchanged

(e.g., top-1is dog) | (preserve accuracy)

{ Output vector }{

Modified

(improve privacy)

. Confidence score
(e.g., top-1 with 90% confidence)
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J Modify all output vectors = low confidence outputs.

- How to obtain low confidence outputs?

= Utilize random samples as (highly probable) non-members.

Simple «

(optimization-free)
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HAMP — Testing-time defense

J Modify all output vectors = low confidence outputs.

- How to obtain low confidence outputs?

= Utilize random samples as (highly probable) non-members.

Simple / Effective J

(optimization-free) (improve membership privacy)
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Output modification with random samples
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Output modification with random samples
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Output modification with random samples

Dog

(4L} | 0.85

member sample

Cat
0.15
Dog Cat
0.45 | 0.55

random sample

Keep prediction label
(top-1 = dog)

Keep prediction scores
(0.45, 0.55)
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Output modification with random samples

Dog Cat .. | | O‘Q
Keep prediction labe \

(Y1) | 085 | 015 (top-1 > dog) ()]1)
member sample Dog | Cat
0.55 | 0.45
Dog | Cat Keep prediction scores .
Low confidence output

0.45 | 0.55 (0.45, 0.55)

random sample

59



Evaluation



/ Purchase100
Texas100
5 datasets Location30
CIFAR10
\ CIFAR100 /

Evaluation



Evaluation

f NN-based Correctness-based \
Loss-based Boundary-based
9 attacks Entropy-based Augmentation-based

Modified-entropy-based
Confidence-based
\ Likelihood-ratio attack (LiRA) /




Evaluation

/ AdvReg (CCS’18) \

MemGuard (CCS’19)
DMP (AAAI’21)
7 defenses SELENA (USENIX’22)
Early stopping (USENIX’21)
Label Smoothing (CVPR’16)

\ DPSGD (CCS’16) /




Evaluation
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configuration
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a for high-entropy soft  y for regularization

labels strength
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Refer to the paper for details

/
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Evaluation

. TPR @ 0.1% FPR
2 metrics
TNR @ 0.1% FNR
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Reproduced

Artifact https://github.com/DependableSystemsLab/MIA defense HAMP

66



https://github.com/DependableSystemsLab/MIA_defense_HAMP
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Key results
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DPSGD

Attack TPR @ 0.1% FPR

Key results

Average Attack TPR @ 0.1% FPR
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: Strong privacy, but low accuracy
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Attack TPR @ 0.1% FPR
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72



Artifact

summary ANDSs

Available

?  How to mitigate membership inference attacks with strong privacy [

[ Reproduced

protection and low accuracy drop?

73



Artifact

summary ANDSs

Available

?  How to mitigate membership inference attacks with strong privacy [

[ Reproduced

protection and low accuracy drop?

i}/ Mitigating ML model’s overconfident prediction on training samples
without jeopardizing model accuracy.
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Artifact

summary Snoss

Available

?  How to mitigate membership inference attacks with strong privacy [

") Reproduced

protection and low accuracy drop?

_i}/ Mitigating ML model’s overconfident prediction on training samples
without jeopardizing model accuracy.

( HAMP: A new way to combine soft label training, training regularization
and output modification for privacy-preserving training!

zitaoc@ece.ubc.ca
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