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ABSTRACT
The rise of deep learning (DL) has led to a surging demand for

training data, which incentivizes the creators of DL models to trawl

through the Internet for training materials. Meanwhile, users often

have limited control over whether their data (e.g., facial images)

are used to train DL models without their consent, which has en-

gendered pressing concerns.

This work proposes MembershipTracker , a practical data audit-
ing tool that can empower ordinary users to reliably detect the

unauthorized use of their data in training DL models. We view data

auditing through the lens of membership inference (MI). Member-
shipTracker consists of a lightweight data marking component to

mark the target data with small and targeted changes, which can

be strongly memorized by the model trained on them; and a spe-

cialized MI-based verification process to audit whether the model

exhibits strong memorization on the target samples.

MembershipTracker only requires the users to mark a small frac-

tion of data (0.005%∼0.1% in proportion to the training set), and it

enables the users to reliably detect the unauthorized use of their data

(average 100% TPR@0% FPR). We show that MembershipTracker is
highly effective across various settings, including industry-scale

training on the full-size ImageNet-1k dataset. We finally evaluate

MembershipTracker under multiple classes of countermeasures.
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1 INTRODUCTION
Modern deep learning (DL) models have attained remarkable per-

formance in various tasks such as image classification and language

generation. Their success is largely driven by the availability of mas-

sive training data [49, 51]. However, it is not always clear whether
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the data used to train these models has been used with the permis-

sion of the data owners. For instance, Clearview.ai, in developing

their facial recognition system, scraped billions of user photos from

social media platform without the users’ consent [25]. The unregu-

lated use of personal data for building DL models has engendered

mounting concerns [19, 25, 64], and is in violation of privacy laws

such as the European Union’s General Data Protection Regulation

(GDPR) [3]. In spite of this, data holders often have limited agency

in detecting the unauthorized use of their data due to the lack of

practical data provenance tools.

This leads to two main lines of work for data provenance. The

first line of work seek to inject designated features into the user

data, which can induce the model to exhibit a certain detectable

behavior for provenance purposes [26, 39, 52, 67]. The injected

features can take the form of a backdoor trigger pattern [26, 39];

or a spurious feature pattern that can cause output probability

shift by the model [67]. However, these techniques either impose

strong assumptions on the users (e.g., the ability to mark a large

fraction of data) [26, 39, 52] and/or suffer from limited auditing

performance [39, 52, 67].

The second line of work is based on membership inference (MI).

There are instance- and user-level MI - the former infers whether

a specific sample is used to train a model [8, 55]; while the latter

detects the usage of any of the user’s data [11, 31, 57]. Our work

focuses on auditing whether specific user samples are used for train-
ing the target model. Unfortunately, existing MI methods often

suffer from limited effectiveness, as measured by their true positive

rate (TPR) and false positive rate (FPR) [8]. However, a high-power

MI method is needed to facilitate data provenance with low FPR (to

avoid false accusation) and high TPR (for correct data provenance).

To improve, recent studies propose several techniques based on

data poisoning [9, 12, 63]. Their idea is to inject mislabeled samples

into the model’s training set, which can amplify the model’s behav-

ioral changes on some target samples, thereby making them easier

to be de-identified. To apply these techniques for data auditing,

users have to be able to mislabel some training data, which, unfor-

tunately, excludes the real-world scenarios where the data labels

are assigned by the model owner or an external service [18, 20].

This renders these techniques challenging for real-world use.

This work. We present MembershipTracker , a MI-based data

provenance tool that can overcome the aforementioned challenges,

with a two-step process as illustrated in Fig. 1.

MembershipTracker operates under the realistic setting where

we assume the users have neither the capability nor expertise to

train shadow/proxy models [6, 8, 69], or to manipulate the data la-

bels [63], as these are well beyond the capacity of ordinary personal

users (Section 3.1.1). Rather, MembershipTracker only requires the

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 1: MembershipTracker is a data provenance tool that
operates by: (1) marking the target data (e.g., facial images,
artworks) with small and targeted changes, and then (2) ini-
tiating a specialized membership inference process to audit
whether the target data are used for training the model.

users to mark a small fraction of data (amounting to 0.005%∼0.1% of

the training set) for provenance purposes. Our goal is to empower

the users to carry out high-power MI on their target data with high

TPR and low FPR, given black-box access to the model.

Technical design. We first observe that the effectiveness of

MI on a given model is directly related to the model’s ability in

memorizing individual data points, and hence samples that are

strongly memorized by the model (e.g., outlier samples) are easier

to be de-identified [8, 13, 63, 70]. Therefore, in order to fulfill our

goal, there are two challenges as follows.

(1) How can the users amplify the model’s memorization on the

target data with minimal data modification?

(2) How can the users reliably audit whether the model exhibits

strong memorization on their target data?

For the first challenge, we propose a lightweight data marking

technique to mark the target data with small and targeted changes,

which are formulated as the combination of outlier feature and

procedural noise [16]. These subtle changes can be readily created

by the users without assuming access to a proxy model, and can

still induce the model to strongly memorize the specially-marked

samples while preserving their visual information (e.g., Fig. 1).

For the second challenge, given a target user’s small set ofmarked

samples, we propose a novel set-based MI process to audit whether

they are used to train the model. Our approach follows a common

idea in existing user-level MI studies [31, 46, 57] to leverage the

collective information across the small set of target samples for MI.

But unlike prior methods, MembershipTracker does not require any
additional shadow/reference models [31, 46, 57] and can enable

high-power MI for reliable data provenance.

Contributions. We make three contributions as follows.

• Propose a lightweight data marking technique to mark the users’

target datawith small and targeted changes, which can be strongly

memorized by the model trained on them.

• Develop a high-power set-based MI verification process that can

reliably audit whether the target data are used to train the model

(with high TPR when controlled under a low FPR).

• Integrate the above as a tool called MembershipTracker , and eval-

uate its effectiveness across a variety of settings (six benchmark

datasets and six DL architectures). We also comprehensively

evaluate a total of six classes of countermeasures.

We find that by merely marking a small fraction of samples

(0.005%∼0.1% of the dataset), MembershipTracker effectively em-

powers the users to reliably audit the usage of their data (average

100% TPR@0% FPR), and it is scalable to the large-scale ImageNet

training (on both Convolutional and Transformer network). To the
best of our knowledge,MembershipTracker is the first technique that
can scale to support reliable data auditing in large-scale training
setting. This renders MembershipTracker a practical data auditing
tool that contributes to responsible AI practice.

2 RELATEDWORK
Our work focuses on detecting the unauthorized use of personal

data in training DL models, which is complementary to existing

work that aim to protect the data from unwanted use by rendering

them un-learnable [29, 54]. Hence we focus on existing literature

for data provenance, and we classify them into two categories.

Nonmembership-inference based solutions.Wedivide them

into dataset- and user-level solutions.

Dataset level provenance aims to detect whether a DL model is

trained on a specific dataset [39, 45, 52]. Maini et al. propose dataset

inference, which detects whether two models trained on the same

dataset exhibit similarities in their decision boundaries [45]. Other

workmodify portions of training set to leave a certain artifact on the

models, such as radioactive data [52] and backdoor watermark [39].

However, recent work [30] finds that these techniques [39, 52] still

have poor auditing performance. Moreover, dataset level solutions

require several assumptions that are outside the scope of our work.

First, many of them require control over a nontrivial portion of

training set (e.g., 10%∼20% [39, 52]). Some solutions assume access

to some known feature extractor [52], access to the training set or

the ability to train a proxy model [45, 52]. These are well beyond

the user capability we consider (in Section 3.1.1).

User level provenance seeks to detect whether the users’ data are

used to train a DL model [26, 67], and they require only modifying

the users’ own data. Their idea is to mark the users’ data with a

designated feature to induce a detectable behavior into the model.

Hu et al. propose to inject backdoor trigger feature into the user

data [26], but they assume the user capability to manipulate the

data labels. Other studies on clean-label backdoor attacks may be

repurposed to overcome this, but they still require training a proxy

model to compute the poisoned data [58, 72].

Wenger et al. propose to inject a target spurious feature into the

user data to be learned by the suspected model, and then detect

whether the model has associated the injected feature with the

target class label [67]. To detect, the users can separately overlay

the target and non-target features to some auxiliary data (outside

the target class), and then determine whether the target feature

causes a slightly higher prediction probability on the target class,

compared with the non-target features (e.g., 10% vs. 1%). Both their

work and ours involve adding spurious features to mark users’ data,

but there are several major differences between the two. Notably,

our analysis reveals that they [67] significantly underestimate their
detection false positives (from 0% to >30%). This is because they

employ a discrepant detection procedure for the testing features that
are used for training (true positives), and those that are not (false

positives); however, a fair evaluation should follow a consistent

procedure (see our detailed analysis in Appendix C).
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Membership-inference (MI) based solutions. MI also rep-

resents a natural fit for tracing data provenance, and there are

instance- and user-level MI solutions.

Instance-level MI detects whether a specific instance is used to

train a model. It was first proposed by Shokri et al. [55] and there

are many follow-up studies [6, 8, 15, 69, 70]. However, even state-

of-the-art MI methods [6, 8, 69] still struggle with achieving high

TPR when controlled at the low FPR regime (more in Section ??).
This has led to several attempts at improving the effectiveness

of existing MI methods via data poisoning. Tramer et al. propose to

inject mislabeled samples into the model’s training set, which can

transform the target samples into outliers and amplify their influ-

ence on themodel’s decision, therebymaking the target samples eas-

ier to be de-identified [63]. While injecting mislabeled samples rep-

resents an effective solution for improving the MI success [9, 12, 63],

it may be challenging for the users to apply to their data, because

in many scenarios the users may not have control over the data

labels [18, 20, 67]. Even if this is feasible, we find that such a method

can still only increase the MI success to a limited extent (validated

in Appendix D). By contrast, MembershipTracker does not assume

control of the data labels, and is still able to facilitate high-power

MI for tracing data provenance.

User-level MI aims to detect whether any of a user’s data is used

to train a model. Unlike instance-level MI, the auditor possesses a

set of samples from a target user that are not necessarily used to

train the target model. Song et al. [57] propose the first user-level

MI for natural language models, which first trains multiple shadow

models, and then uses the outputs from shadow models as the

features to train an audit model. Subsequent work develop solutions

for other settings, including speech recognition models [10, 47],

metric learning models [11, 37] and large language models [31, 46].

A common thread of existing user-level MI methods is to aggre-

gate the information across multiple samples (e.g., different voices

of the same speaker) to perform MI [10, 11, 31, 57]. The MI pro-

cess in MembershipTracker follows a similar philosophy. However,

prior work often requires access to additional reference models [31]

or shadow models [10, 11, 57], and they still have limited MI ef-

fectiveness (e.g., limited TPR under the low FPR regime [31, 46]).

MembershipTracker overcomes these limitations bymeans of a novel

data-marking and specialized MI auditing process, which can si-

multaneously achieve high TPR and low FPR for data provenance.

Recent work by Huang et al. [30] proposes a general framework

for auditing unauthorized data use in training DLmodels. Their idea

is to generate two perturbed copies of the target data, randomly pub-

lish one of them, and then compare the model’s membership score

on the published vs. the unpublished one. While their framework

can work for different domains such as foundation models, they still

require the data holders to mark a substantial portion (1%∼10%)

of dataset. Instead, MembershipTracker considers the more chal-

lenging (and realistic) setting where the marked data amounts to

≤ 0.1% of the dataset. We also “stress test” their technique under

a similar setting as ours and find that their performance degrades

considerably then (see Appendix E).

3 PROBLEM FORMULATION
Membership Inference (MI) Game. We denote Fθ : X → [0, 1]n as a

model that maps an input sample x ∈ X to a probability vector over

n classes. D = {(xi ,yi )}
n
i=1 is a training set sampled from some

distribution D. Fθ ← T(D) denotes a model Fθ produced from

running the training algorithm T on D.
Next, we define a MI game, which proceeds between a challenger

C and an adversary A. A has to guess which element from some

universeU was used to train a model. For a specific target point x ,
U = {x ,⊥}, where ⊥ indicates the absence of an example.

(1) The challenger samples a dataset D ← D, and a target point

z ←U (such that D ∩U = ∅).
(2) The challenger trains a model Fθ ← T(D ∪ {z}) on the

dataset D and target point z.
(3) The challenger gives the adversary query access to Fθ .
(4) The adversary emits a guess ẑ ∈ U.

(5) The adversary wins the game if ẑ = z.

3.1 MI for Data Provenance
We now describe the MI game for data provenance, which proceeds

between a challenger (model creator) C and a target user U . We

consider image classification in this work, and U seeks to audit

whether his/her images (denoted as X ) are used by C to train a

model F without permission. We add the ability forU to modify X
for provenance purpose.

(1) The user is allowed to modify X ∈ U (U = {X ,⊥}).
(2) The challenger samples a dataset D ← D, and a target set

Z ←U (such that D ∩U = ∅).
(3) The challenger trains a model Fθ ← T(D ∪ {Z }) on the

dataset D and target set Z .
(4) The challenger gives the user query access to Fθ .
(5) The user emits a guess Ẑ ∈ U.

(6) The user wins the game if Ẑ = Z .

For a given user U ,U = {X ,⊥}, where ⊥ indicates the absence

of the target samples by U , and the goal is to determine whether F
is trained on D or D ∪ {X }.

Unless otherwise stated, we follow the common practice to mea-

sure the MI success by its true positive rate (TPR) controlled under

a low false positive rate (FPR) [8, 69].

3.1.1 User capability. We consider ordinary personal users U
with limited ML expertise and resources, and they are willing to

add visual distortion to their data for provenance purposes. We

next specify their capabilities and constraints.

First, we assumeU can onlymark a small number of samples, and

these are to be included as part of a larger dataset. This simulates

the realistic scenario where the dataset is curated from multiple

data sources (e.g., [18]), and thus data contributed by each user

constitutes only a small portion of the dataset (e.g., 0.1%).

Next, in the provenance verification process, we assume U has

access to a set of non-member samples that are not used for training

the target model
1
, which is a common assumption

2
to control the

1
Under the presumption that only a small fraction of data sampled from the distribution

were used in training, one may simply draw a random sample from the underlying

distribution, and be confident that it is representative of the non-member data [6, 69].

2
While we also adopt this common assumption in our study, we conduct additional

experiments and find that this assumption can in fact, be relaxed (see Section 6.2).
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Figure 2: State-of-the-art MI methods [8] achieve limited
TPR under the low FPR regime (undesirable).

MI process at a low FPR regime. U also has black-box access to

query the target model. In a real world setting, users often have

limited control and knowledge beyond their own data, and thus we

specify the constraints byU as follows.

• U cannot modify their data’s labels, which are assigned by the

model owner or an external service [18, 20, 67].

• U has no access to D (i.e., the training data by other users).

• U has no knowledge of the black-box model F .
• U has no expertise/resources to train any shadow/proxy mod-

els, as in many settings, training even a single shadow model

can impose prohibitively high data and compute requirements

(especially for the large models) [63].

4 METHODOLOGY
We first conduct an empirical study to understand the limitations of

leveraging existing MI methods for data auditing, and then describe

our design goals. We then present MembershipTracker with a data

marking and provenance verification process: first by marking the

users’ protected data with targeted changes (Section 4.1); then

performing a specialized MI process to audit whether the marked

data are used to train the model (Section 4.2).

Motivation. Our work addresses data provenance through MI,

and there are several available MI methods [6, 8, 63, 69]. However,

these methods still suffer from limited MI effectiveness in the low

FPR regime and/or impose strong assumptions on the users - we

elaborate both limitations next.

1 Existing MI methods achieve limited TPR under a low FPR.

To validate this, we use two methods in the state-of-the-art

Likelihood-ratio attack, one is with and the other without shadow

model calibration (128 shadow models) [8]. We evaluate both meth-

ods on a WideResNet-28-4 model trained on half of the training

set in CIFAR100 dataset. As shown, even the shadow-model based

method can only achieve 27.21% TPR@0.1% FPR.

This is undesirable because achiving high TPR (under a low

FPR) is crucial for the users to reliably detect the unauthorized

use of their data. As in Fig. 2, existing MI methods struggle with

this task. The reason is that the training samples are not always

strongly memorized by the model (except some outliers) [8, 63, 70],

which is directly related to the ability of performing accurate MI.

This problem motivates related work [9, 12, 63] to amplify the

model’s memorization on the training samples, and we discuss

their limitation next.

2 State-of-the-art MI methods either require training shadow

models or assume control to manipulate the data labels, both are be-

yond ordinary users’ capabilities. For example, leading MI methods

[6, 8, 69] commonly require training shadow models to calibrate

the inference process, which assumes additional data and compute

access, and is challenging for the non-expert users.

There are other methods that do not require shadow-model

calibration, but they either suffer from poor effectiveness [8, 70]

or impose unrealistic assumption on the users [9, 63]. E.g., the

approach by Tramer et al. [63] can improve the MI success without

shadow-model calibration, but it assumes users have the ability to

mislabel some training data, which can be challenging in the cases

where the users have no control over the data labels [18, 20, 67].

Even if this is feasible, we find that the increase of MI success is

still largely limited (see Appendix D for a validation).

Design Goals. There are three design goals in our work.

Goal (1): High provenance effectiveness.Ourmain goal is to enable

those users whose data are misused for model training to perform

successful data provenance (high TPR), and we also want to ensure

low FPR to avoid false accusation. Therefore, our goal is to achieve

high TPR@low FPR.

Goal (2): Preserving high visual quality. The modification created

to mark the users’ data should not severely distort their visual

information, e.g., the identity in a facial image should still be easily

recognizable.

Goal (3): Minimal technical requirements. The provenance tool
should be usable by ordinary users even with limited expertise and

resources (specified in Section 3.1.1).

4.1 Data Marking
The goal of data marking is to ensure that the membership of the

marked samples can be reliably de-identified. To this end, we first

observe that the ability to perform accurate MI is directly related to

the model’s propensity in memorizing individual data points, and

data that are strongly memorized by the model (e.g., outlier samples,

mislabeled samples) are known to be easier to be de-identified [8,

13, 63, 70]. Based on this, our goal can be formulated as: how can

the users modify their data to amplify the model’s memorization

on the target data while preserving high visual quality?

In Section 4.1.1, we first present an initial approach that is highly

effective in inducing the target samples to be memorized by the

model, but it also completely destroys the visual information in the

data. We use this effective yet unrealistic method as a strawman

approach, and then introduce our proposal of a two-step solution,

which can greatly reduce the visual distortion to the data while still

fulfilling our goal.

4.1.1 An initial strawman approach. Inspired by the observa-

tion that atypical samples presented in the dataset are easier to

be de-identified (e.g., mislabeled samples [63], or samples that are

out-of-distribution - OOD [8]), a straightforward approach is to

directly replace the original target samples as OOD samples.

There are various ways to generate OOD samples, and we de-

velop a simple method that creates samples with random color

stripes, such as the one shown below (the method’s details are in

Section 5). Meanwhile, other alternative methods such as using sam-

ples from an OOD dataset may also be considered (Appendix B.1.3).
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Figure 3: The two-step data marking process: (1) blend the
original samples with OOD feature; (2) inject procedural
noise. These subtle changes can induce the target samples
to be strongly memorized by the model trained on them.

replaced as
We first conduct an experi-

ment to validate the effective-

ness of the above approach. We

use the CIFAR100 dataset with

half of the training set for model

training. We consider 100 target users from different classes replac-

ing their data as some random OOD samples, and each contributes

a small number of samples to the training set (0.1% in proportion).

In terms of the signal function for MI, we follow prior work [53, 69]

to use prediction loss values.

To perform MI, we compare the prediction loss on the target

OOD samples (from the member users) and some non-target OOD

samples (from the non-member users). We find that the model

indeed strongly memorizes those OOD samples present in the train-

ing set, for which we observe a 100% TPR@1% FPR. In comparison,

if the target data are unmodified, the model only exhibits weak

memorization on them, which yields merely 1.28% TPR@1% FPR.

Limitation. Despite its effectiveness, this approach completely

removes the visual information in the data (e.g., the facial identity is

no longer recognizable), and they are also easy to notice. Next, we

present two methods that can greatly reduce the visual distortion to

the target data, while still enabling them to be strongly memorized

by the model (Fig. 3).

4.1.2 Step 1: Image blending. As discussed earlier, the marked

samples should contain the original feature (to preserve visual

information), as well as the OOD feature (for provenance purposes).

Inspired by the common image blending technique [67, 73], we

propose to blend the target sample with the OOD feature:

x ⊕ (xood ,m) =m · x + (1 −m) · xood , (1)

where x is the original image, xood is the OOD feature, andm
moderates the contribution of different features.

By using a large m, we can largely preserve the high image

quality (e.g., the center image in Fig. 3 is markedwithm = 0.7) while

keeping the OOD feature to amplify the model’s memorization on

the resulting samples.We find thatmerely blending theOOD feature

into the target samples (m = 0.7) can improve the TPR@1% FPR

from 1.28% to 16.44%.

Limitation. Although the TPR is largely improved, it is still too

low. We find that this is due to the existence of the original feature,

which hinders the model’s memorization on the OOD feature. We

next explain how to mitigate this.

4.1.3 Step 2:Noise injection. Our idea is to inject a small amount

of noise to suppress the influence of the original feature, and have

the model memorize the OOD feature. For this, we draw inspiration

from the concept of adversarial samples, which works by adding

imperceptible noise to the inputs and cause them to be misclassified

by the model [16, 38, 42]. The perturbation can thus be viewed as

the noise that can suppress the influence of the original feature and

cause the model to predict the wrong label.

In our context, we can inject adversarial perturbation into the

users’ target samples and prompt the model to memorize the OOD

feature. There are different ways to generate the perturbation.

Optimization-based approach requires access to some proxy model

to generate the perturbation [38, 42], which can still be challenging

for the ordinary users we consider.

We therefore resort to another optimization-free strategy that

does not assume any additional access. In particular, Co et al. [16]

propose that procedural noise functions can be used to generate

input-agnostic adversarial perturbation. These functions are com-

monly used in computer graphics to generate different textures and

patterns and enrich the image details [16]. Co et al. find that the

procedural noise patterns share visual resemblance with existing

adversarial perturbation patterns, and demonstrate that they can

be similarly used to construct adversarial samples.

This inspires our solution in injecting perlin noise [16] to the

target samples, and its generation is as follows.

Sper lin (x ,y) =
Ω∑
n=1

p(x ·
2
n−1

λx
,y ·

2
n−1

λy
), (2)

Gper lin (x ,y) = sin((Sper lin (x ,y)) · 2πϕsine ), (3)

where λx , λy ,Ω,ϕsine are to control the noise value at point

(x ,y). λx , λy are the wavelengths, Ω is the number of octaves that

contribute to the most visual change, ϕsine is the periodicity of the

sine function that creates distinct bands in the image to achieve a

high frequency of edges, which can achieve more distinct visual

patterns [16].We followCo et al. to use L∞ norm as the perturbation

budget δ and create random perlin noise [16] for data marking.

Generating the perlin noise is a lightweight process that does

not assume access to a proxy model. Despite its simplicity, we find

that injecting a small amount of perlin noise (with δ = 8/255) is

very effective and it can further increase the TPR@1% FPR from

16.44% to 57.8% (a 3.5x improvement).

Overall, the two-step marking process is able to increase the

TPR@1% FPR from 1.28% to 57.8%. While the TPR can be further

improved by using a smallerm for image blending or larger δ for

noise injection, it would increase the visual distortion (see Appen-

dix B.1.2 for an evaluation). We thus propose another innovation

in the MI process to improve the TPR, and without degrading the

image quality.

4.2 Data Provenance via Membership Inference
To start with, we note that so far we have been considering MI on

a common instance basis [6, 8, 55, 69], which uses the per-instance

loss as the signal function value for MI. We first explain why this

approach would incur low TPR under a low FPR, and then present

a specialized MI process to overcome it.

4.2.1 Why instance-based MI suffers from low TPR. It uses
the per-sample loss for MI, which can incur low TPR even if the
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Figure 4: Comparison of using the per-instance loss and
the average loss across the samples by each user (each con-
tributes 0.1% of the training data) as the signal function
for MI verification. The former yields 57.8% TPR@1% FPR;
while the latter has 100% TPR (our proposal).

prediction loss on the target marked samples are very low. This is

because many non-member samples may also have low loss values.

To control the MI process under a low FPR, only a small fraction

of member samples with significantly lower prediction loss are

recognized as members, thereby resulting in low TPR.

For instance, the left figure in Fig. 4 shows the individual loss

values on different samples, where many non-member samples also

yield low prediction loss (the low loss values are shown towards

the right side because they are plotted in the logit-scaled form [8]

for visualization purposes). This leads to a 57.8% TPR@1% FPR.

4.2.2 Set-basedmembership inference for reliable data prove-
nance. To overcome the above, our key insight is that, although

each target user only contributes a small number of samples to

the model’s training set (e.g., 25 out of 25,000 instances), they can

still leverage the collective information across their own samples to

construct a more reliable signal function for MI, and reduce FPR.

To realize this, we start by identifying a pattern that can dis-

tinguish the model’s behavior on the member and non-member

samples, and it is as follows. For the non-member samples, although
a few of them may have low loss, the majority of them would incur

much higher prediction loss, because these samples are not used

for training the model (e.g., see the left of Fig. 4). In contrast, the

member samples predominantly have very low prediction loss.

Therefore, we make the observation that the average loss for the
samples by the non-member users are higher than that by the member
users. A visualization for this is on the right of Fig. 4. This leads

to our proposal of the set-based MI process, which leverages the

average loss of the small set of target samples by each user as the

signal function for MI. We explain the verification process next.

4.2.3 Provenance verification process. Algorithm 1 outlines

the process. Let each user possessk samples, wherek is a small num-

ber compared with the dataset size (e.g., 25 out of 25,000 samples).

Pout denotes a set of non-member data to control the MI process

at the low FPR regime (Section 3.1.1), which are also marked with

some random outlier features and perlin noise (data-marking de-

tails in Section 5). By comparing the model’s behavior on the target

data and the data in Pout, the auditing userU is to detect whether

his/her target data are used to train F .
The first step is to derive an inference threshold c based on

a pre-defined FPR (α ). α is a small number such as 1% or 0% to

ensure low false positive. To derive the threshold c ,U first computes

Algorithm 1 Set-based MI verification process

Input: F : The target DL model;

U : The auditing user (each user with k target samples);

Pout : Users from the out world (i.e., non-member data);

α : False positive rate (FPR) to control the verification process (e.g., 0.1%);

L(F , (x, y)): Loss function (e.g., cross-entropy loss);

1: function Data Provenance(F , U , Pout, α, L)
2: ∀Ui ∈ Pout , compute L(F , Ui ), whereUi = {(x ij , y

i
j )}

k
j=1

3: Lavg ← {L(F , U1), · · · , L(F , Un )}, n = |Pout |
4: c ← α -percentile of the CDF for the loss histogram of Lavg

5: /* Data provenance based on the inference threshold c */

6: Compute L(F , U ), whereU = {(x j , yj )}kj=1
7: LU

avg
← L(F , U )

8: if LU
avg

< c then
9: U ’s data are used to train F (i.e., member)

10: else
11: U ’s data are not used to train F (i.e., non-member)

12: end if
13: end function

original

marked

Figure 5: Visualization of the original and marked samples.

the empirical loss histogram for data in the out world Pout. For

each non-member user in Pout, the auditing user U first computes

the per-instance loss on their data (line 2), and then derives the

average loss for each (line 3). Line 4 estimates the CDF for the loss

distribution, and computes its α-percentile to derive a threshold

c [69].
Next, the auditing user U similarly computes the average loss

on his/her samples, and compares it against the MI threshold c . If
the loss is lower than c , the user’s data are deemed to be used for

training the model (vice versa).

5 EVALUATION
Datasets and model training. We consider six common bench-

mark datasets, including CIFAR100 [34], CIFAR10 [34], ArtBench [40],

CelebA [44], TinyImageNet [35] and ImageNet-1k [18]. We first

consider the first five datasets and the evaluation on the ImageNet-

1k dataset is in Section 5.3. For CIFAR10 and CIFAR100, we train

a WideResNet-28-4 model on 25,000 samples for 100 epochs, with

a learning rate of 0.1 (decayed by 5 at epoch 60, 80, 90), a weight

decay of 5e-4 and momentum of 0.9. For TinyImageNet and Art-

Bench, we fine-tune an ImageNet-pretrained ResNet-18 model on

25,000 samples. For CelebA, we first follow [1] to create a 307-class

subset from the dataset, and then similarly fine-tune an ImageNet-

pretrained model on 2,000 samples. For fine-tuning, we use a small

fine-tuning rate of 0.01 with 30 epochs and a momentum of 0.9. In

all datasets except CelebA (where we find that fine-tuning on the

entire set yields better accuracy), we use 20% of the training data as

the validation set. We also use common data augmentations such

as random cropping and horizontal flip.
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MembershipTracker configuration. We explain the default

configurations for the main experiments, and we study different

configurations in the ablation study (Appendix B).

As explained earlier, we create outlier features as random color

stripes, each with 16 stripes from 11 different common colors. Such

a large feature set (11
16

choices) can support multiple users to

generate their own features for data marking, and we use a image

blending ratiom = 0.7. Next, we follow Co et al. [16] to generate

random perlin noise for each sample with δ = 8/255. We assume

each user possesses a small number of samples from a given class,

which constitute 0.1% of the training set.

Fig. 5 provides additional visualizations of the original andmarked

samples, and we quantitatively evaluate the visual quality of the

images in Appendix A.

Unless otherwise stated
3
, we follow the common practice to

use TPR@low FPR for evaluation and we use a 0% FPR threshold

(to minimize false accusations). We use 5,000 non-member users

for controlling the FPR and these samples may be collected by

sampling random data from the data distribution [6, 8, 69]. We use

all the samples that are not used for training as the non-member

set. Due to the limited size of the non-member set, the non-member

users’ samples are drawn randomly from the non-member set (with

replacement), and these are similarly marked with random outlier

features and perlin noise.

To perform MI, we directly use the cross-entropy loss as the

signal function value, which is easy to compute by the users. We

consider the global-threshold method by Carlini et al. [8] as the

baseline method; and we do not choose the shadow-model-based

approaches [6, 8, 69]. The reason is that, even though these methods

can achieve better results, they still yield limited increase of MI

success (Section 4); and more importantly, training shadow models

is prohibitively challenging for ordinary personal users to carry

out (Section 3.1.1).

The closest work to ours in improving the MI success without

shadow-model calibration is Tramer et al. [63]. However, their

technique assumes the users can manipulate the data labels, which

excludes the real-world scenarios where the data labels are assigned

by the model creator or an external service [18, 20, 67]. Though

MembershipTracker does not impose such an assumption, for com-

pleteness, we still quantitatively compare it with the method by

Tramer et al. (Appendix D).

5.1 Results
We first evaluate the single-target-user setting, and then the multi-

target setting.

Single-target evaluation. For each experiment, we randomly

choose 5 target users from different classes and report the average

results. Table 1 presents the results.

As shown, with MembershipTracker , the users can reliably trace

the provenance of their marked data with 100% TPR@0% FPR.

In comparison, without MembershipTracker , performing standard

instance-based MI on the unmodified target samples cannot reli-

ably identify the member samples under a 0% FPR threshold and

it has 0% TPR. This is because: 1) the unmarked samples cannot

be strongly memorized by the model; and 2) the instance-based

3
We will use a different metric in Section 5.2 for reasons we will explain there.

Table 1: Evaluation on different datasets (parenthesized
numbers show accuracy diff. with the original models).

Dataset TPR@0% FPR Model accuracy

CIFAR100 100.00 66.34 (-0.41)

CIFAR10 100.00 90.64 (-0.50)

CelebA 100.00 69.41 (-0.63)

ArtBench 100.00 59.46 (-0.42)

TinyImageNet 100.00 67.22 (-0.40)

Table 2: Evaluation on differentmodels.

Model TPR@0% FPR Model accuracy

WideResNet 100.00 66.34 (-0.41)

ResNet 100.00 64.49 (-0.69)

ResNext 100.00 63.43 (-0.47)

DenseNet 100.00 67.14 (-0.16)

GoogleNet 100.00 69.09 (-0.33)

SeNet 100.00 65.26 (-0.37)

Table 3: Evaluation on different training-set sizes.

Training-set size TPR@0% FPR Model accuracy

25,000 100.00 66.34 (-0.41)

20,000 100.00 63.73 (-0.16)

15,000 100.00 58.99 (-0.83)

10,000 100.00 50.28 (-0.09)

5,000 100.00 35.74 (-0.10)

MI process fails to leverage the collective information across the

target samples by each user. These two limitations are overcome by

MembershipTracker’s data marking and set-based MI process; and

the detailed ablation study on these two components is presented

in Appendix B.

Meanwhile, since the target samples only occupy a small fraction

of the training set (0.1%), the models still maintain high perfor-

mance, and have <1% accuracy difference compared with the ones

trained without MembershipTracker .
Evaluation on different architectures and training-set sizes. We

next consider additional evaluation (using CIFAR100 dataset) on dif-

ferent model architectures (includingWideResNet [71], ResNet [22],

ResNext [68], SeNet [27], GoogleNet [61] and DenseNet [28]), as

well as different training-set sizes (from 5,000 to 25,000). We report

the results in Table 2 and Table 3, where we observe a similar trend

as before (and thus we omit the discussion).

Multi-target evaluation We now evaluate how Membership-
Tracker can support multiple users simultaneously (using CIFAR100

dataset), and the results are in Table 4. We study a large number

of target users (more than the number of classes in the dataset),

which encompasses the settings where the users are from different

classes and from the same class.

Table 4: Evaluation on multiple target users. Supporting
more users indicates more specially-marked samples in the
dataset, which can lead to higher accuracy drop; but Mem-
bershipTracker still maintains high auditing performance.

Num of target users 20 50 100 200 300 500

TPR@0% FPR 100.00 100.00 100.00 100.00 100.00 100.00

Accuracy drop -0.44 -0.56 -1.39 -2.32 -4.47 -8.93
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Supporting multiple users requires the model to memorize more

target samples (from different users). However, DL models are

known to be capable of memorizing a large corpus of data (e.g.,

to encode sensitive information [13, 56]). Likewise, in our case,

the model still strongly memorizes the marked samples and en-

ablesMembershipTracker to achieve 100% TPR@0% FPR even under

multiple target users.

Meanwhile, as the number of target users increases, the model

also has higher accuracy drop. E.g., supporting 100 target users (i.e.,

10% of training set are marked) incurs a 1.39% accuracy drop, while

supporting 500 users has a higher 8.93% drop. This is understandable

as supporting more users implies more training samples are marked.

Supporting more target users will result in a larger accuracy drop -

we defer this to future work.

5.2 Robustness to Countermeasures
While Section 5.1 demonstrates MembershipTracker’s capability in

enabling the users to perform reliable data provenance, a deliber-

ate model creator can also employ countermeasures to sabotage

MembershipTracker .

Table 5: Overview of evaluated countermeasures.

Defense level Defense type

Model level

1 MI defense; 2 Adversarial augmentation;

3 Model fine-tuning; 4 Model pruning

Input level 5 Out-of-distribution and spurious features detection

Output level 6 Add noise to the output, or return only the label

To understand this, we evaluate a total of 6 types of counter-

measures in the model, input and output level (Table 5), and we

use the CIFAR100 dataset. For the model-level defenses that re-

quire model training, we first consider the single-target setting

(similar to Section 5.1), and then the multi-target setting. For the

input- and output-level defenses, we consider the more challenging

multi-target setting (100 targets in total).

Evaluationmetric. In this section, we use a different evaluation
metric, FPR@high TPR. This is because using TPR@low FPR (as

in our previous evaluation) requires choosing a low FPR threshold

and evaluating the corresponding TPR. However, the pre-defined

FPR threshold may be too conservative or aggressive.

We use the results from the DPSGD experiment (Section 5.2.1)

to explain the issue involved. In this example, using a 0.1% FPR

threshold is too conservative as MembershipTracker has the same
100% TPR for the noise multiplier σ = 0.01 and σ = 0.03. Likewise,

using a 0% FPR threshold is too aggressive as MembershipTracker
has the same 0% TPR for σ = 0.2 and σ = 0.3. In both cases, using

a pre-defined TPR may not adequately reflect MembershipTracker’s
performance changes in different settings.

To overcome the above issue, we advocate the use of FPR under

100% TPR. This metric is able to properly compare Membership-
Tracker’s performance under different settings (e.g., Table 6), and

hence we use it for the evaluation in this Section, as well as Sec-

tion 6.2 and Appendix B (for the same reason explained above).

5.2.1 MI defense. We first evaluate several representative pri-

vacy defenses for mitigating MI (five in total).

Table 6: Evaluating MembershipTracker against DP-SGD
with different amounts of noise injected.

Noise multiplier σ FPR@100% TPR Model accuracy

w/o defense 0.00 66.34

0.01 0.01 60.10

0.03 0.02 57.26

0.05 0.38 54.70

0.2 1.07 51.56

0.3 3.10 50.03

DP-based defense. Differentially private (DP) training [4] is a

principled defense that can bound the influence of any training sam-

ples to the model, by means of gradient clipping and noise injection

to the clipped gradients. We adopt the implementation from Aerni

et al. to consider the strong DP-SGD baselines that comprise vari-

ous DP-training techniques such as custom initialization scheme,

augmentation multiplicity [5]. We also follow their work to tune

hyperparameters for high model utility. We use a tight clipping

norm of 1, and inject different amounts of noise (σ ).
The results are in Table 6. DPSGD with a loose DP bound is

known to be able to reduce the exposure from the instance-based
MI methods that aim to de-identify some individual training in-

stances [5, 8], and our results also validate this (e.g., in our context,

the FPR@100% TPR under instance-based MI is increased to 47.22%,

with σ = 0.01). With that said, MembershipTracker can still over-

come the defense via its set-based MI process, because the average
loss of the samples by the member users, though increased due to

defense, are still lower than that by the non-member users (aver-

age 0.1642 vs. 4.130). This avails MembershipTracker to maintain a

low 0.01% FPR@100% TPR (and the defense already incurs 6.24%

accuracy drop). Increasing the amount of noise can further increase

the FPR by MembershipTracker , but it also inflicts a larger accuracy

drop (undesirable).

Empirical defense. Next, we also evaluate two representative
defenses that aim to provide strong empirical privacy while pre-

serving model utility: SELENA [62] and HAMP [14]. We follow the

original work to set up both techniques. They both can mitigate the

model’s memorization (increase the prediction loss) on the marked

samples, and with small accuracy drop (2.17% and 1.42%). However,

we find that the average loss of the samples by the member users

are still much lower than that by the non-member users, and thus

MembershipTracker still achieves a low FPR of 0.97% (on SELENA)

and 0.83% (on HAMP).

Finally, we evaluate two common regularization techniques:

early stopping and dropout. We find that MembershipTracker can
still achieve < 0.1%FPR@100% TPR, unless under excessive regu-
larization (e.g., aggressively early-stopping the training or using a

large dropout rate). However, this would also cause a large (> 10%)

accuracy drop to the model.

5.2.2 Adversarial augmentation. We consider employing ad-

ditional augmentation techniques during training to mitigate the

model’s memorization on the marked samples. We study three

strategies: (1) injecting Gaussian noise (we inject zero-mean noise

with various standard deviation values (0.02∼0.5)); (2) usingMixup [73]

(we use seven different alpha parameters from 0.1 to 1.5); and (3)
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Standard deviation Num of augmentations

RandAugmentGaussian noise injection

Figure 6: Adversarial augmentation by Gaussian noise injec-
tion and RandAugment [17].
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Figure 7: Evaluation with model fine-tuning. Fine-tuning
the model with additional data can improve model accuracy
(the more data the better), but MembershipTracker consis-
tently maintains high auditing performance regardless.

using RandAugment [17] to perform multiple random data aug-

mentations (we consider 3∼15 different augmentations).

We find that MembershipTracker still maintains 0% FPR@100%

TPR under Mixup training with different parameters. We report the

results for the other two strategies in Fig. 6.

When the samples are moderately augmented, in the form of

Gaussian noise or multiple random augmentations, Membership-
Tracker still enables the target users to reliably trace the provenance
of their data with low FPR.

Aggressive augmentation such as applying 15 random transfor-

mations to each sample can further increase the FPR to 11.54%,

but it also reduces the accuracy from 66.34% to 54.09%, as such

aggressive augmentation severely degrades the image quality and

leads to inferior model performance.

5.2.3 Model fine-tuning. Fine-tuning is a technique performed

on additional data that differs from the training data to improve

model performance. We evaluate how it may be used to mitigate the

model’s memorization on the target samples. We assume an ideal

defender with access to an additional set of clean and unmodified

samples. We consider multiple settings with different amounts of

data (5,000 to 20,000 samples). For each setting, we fine-tune the

model using various learning rates from 0.1∼0.000001 for 20 epochs,

and we report the one with the highest accuracy. The results are

reported in Fig. 7.

As shown, using a small set of fine-tuning data (5,000 samples)

can increase the model accuracy, and using more data can lead to
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Figure 8: Evaluation with model pruning. Membership-
Tracker is resilient to moderate model pruning. Aggressive
countermeasures can slightly increase the FPR incurred by
MembershipTracker, but at the cost of major accuracy degra-
dation.

larger accuracy improvement (understandably so). For instance, us-

ing 20,000 samples can increase the accuracy to 69.66%, which trans-

lates to a 10% reduction in the test error. Nevertheless, despite its

effectiveness in enhancing model accuracy, model fine-tuning still

has limited effectiveness in degrading MembershipTracker , which
consistently achieves 0% FPR@100% TPR in all cases.

5.2.4 Model pruning. Another related countermeasure we con-

sider is to prune the model’s parameters, with the goal of removing

the parameters that are associated with the target samples. We use

the popular pruning strategy by Han et al. [21], which sets the

parameters with small absolute values to zero and has minimal

impact to the model’s performance. We evaluate different pruning

ratios and the results are shown in Fig. 8.

We find that MembershipTracker is highly resilient even when

70% of the parameters are pruned, where MembershipTracker has
only 0.02% FPR@100% TPR, but the defense already incurs a 11.8%

accuracy drop. More aggressive pruning can slightly increase the

FPR, but with a much higher accuracy drop.

5.2.5 Model-level defenses under multi-target setting. The previ-
ous model-level defenses are evaluated under the single-target

setting. We now evaluate a more challenging setting where Mem-
bershipTracker needs to support multiple users at the same time.

We consider 25 target users, and summarize the key findings below.

Among different defenses, we find that model fine-tuning stands

out as the most potent solution that outperforms other methods in

terms of high mitigation performance without accuracy drop. By

fine-tuning the model on 20,000 additional samples, it can increase

the FPR@100% TPR to 42.84% without accuracy drop (the model

still has 67.30% accuracy).

Hence, unlike the single-target setting whereMembershipTracker
can maintain high performance, supporting multiple target users

under model-level defenses remains a major challenge by Member-
shipTracker . We leave the potential improvement of this aspect to

future investigation.

5.2.6 Input detection. Given that MembershipTracker leverages

outlier features and perlin noise to the mark the target data, the

defender may also perform out-of-distribution (OOD) detection or
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𝑚 = 0.7, 𝛿 = 8/255 (default) 𝑚 = 0.8, 𝛿 = 4/255

example example

𝑚 = 0.7, 𝛿 = 8/255 (default) 𝑚 = 0.8, 𝛿 = 4/255

𝑚 = 0.7, 𝛿 = 8/255 (default) 𝑚 = 0.8, 𝛿 = 4/255

Figure 9: Unsupervised OOD detection. How different data-
marking intensities affect the detection performance. Left:
Samples marked with higher marking intensity are prone
to be detected (0.8085 AUC). Right: Reducing the marking
intensity can effectively reduce the AUC to only 0.6333.

spurious features detection on the specially-marked samples. We

consider both types of countermeasures and we discuss them next.

Unsupervised OOD detection. We consider eight common

detection techniques: Mahalanobis [36], MSP [24], Energy-based

OOD [41], RMD [50], kNN [60], KLMatching [23], VIM [65], DICE [59].

We follow the implementation from [33], and use a pre-trained Im-

ageNet model to produce the feature representation. As before, we

assume an ideal defender with access to a small set of clean and

unmodified samples (equivalent to 10% of the training set) for fit-

ting the unsupervised detector, which does not assume any prior

knowledge of the potential outlier samples.

We report the results on the left of Fig. 9, where, for brevity, we

report only the highest AUC among all detectors. We find that the

Mahalanobis-based approach [36] achieves the highest performance

with 0.8085 AUC. Next, we explain how to (partially) mitigate it.

Our idea is to reduce the amount of distortion applied to the

data. For this, we conduct an experiment to reduce the intensity of

the outlier features (by increasing the image blending ratiom from

0.7 to 0.8) and perlin noise (by reducing the perturbation budget δ
from 8/255 to 4/255). The results are shown on the right of Fig. 9,

where the highest AUC is reduced from 0.8085 to 0.6333, which

translates to a 57% reduction in the detection performance (over

random guessing).

Naturally, reducing the marking intensity would attenuate the

model’s memorization on the marked samples, and increase their

prediction loss. But we find that the prediction loss on the member

samples are still much lower than that on non-members, and thus

MembershipTracker can overcome it via the set-based MI process

(similar to Section 5.2.1), and maintain a 0% FPR@100% TPR
4
.

Supervised OOD detection. Next, we consider a more knowl-

edgeable defender who is aware of the potential data marking

strategy. We use the MCHAD method to train a supervised OOD

detector [32], and we consider two scenarios below.

(1) We first assume a hypothetical defender with perfect knowl-
edge of the data marking strategy adopted by the users, i.e., each

sample is marked with features consisting of random color stripes

and perlin noise. The result is in the blue line in Fig. 10. As ex-

pected, the detector is very capable of detecting the samples that

4
However, there are certain scenarios where the reduced data-marking intensity would

lead to lower auditing performance, and an evaluation for this is in Appendix B.1.2.

Perfect-knowledge defender

Realistic defender

Defender’s training User (testing) data

Defender’s training User (testing) data

blending

Unpredictable 

Known

𝑚 = 0.7, 𝛿 = 8/255 (default) 𝑚 = 0.8, 𝛿 = 4/255 𝑚 = 0.7, 𝛿 = 8/255 (default)

Figure 10: Supervised OODdetection. Blue line assumes a de-
fenderwith perfect knowledge of the type of outlier features
adopted by the users for data marking. Orange line consid-
ers a realistic defender with knowledge of the possible types
of outlier features, but the exact one followed by the users
to mark their data is unpredictable.

are marked with the same strategy as the one used for training the

detector itself (e.g., see the top right illustration in Fig. 10).

Though this represents the worst-case scenario against Member-
shipTracker , it may be difficult to realize in practice, as the outlier

features created by the users for data marking can take diverse
forms (e.g., as features consisting of random color stripes, or fea-

tures from an OOD dataset - details next), and the exact one used

by the users can be hard to predict.

(2) Hence, a more realistic setting is to consider a defender with

knowledge of the possible types of outlier features, but is not aware

of the exact one adopted by the users to mark their data. In this case,

the outlier features in the samples used for training the detector

are not in the same type as those in users’ actual data (e.g., see the

bottom right illustration in Fig. 10).

Specifically, we train the detector on samples marked with ran-

dom color stripes, and evaluate it on samples marked with the

features from an OOD (TinyImageNet) dataset (this is an effective

alternative strategy we study in Appendix B.1.3). The result is in

the orange line in Fig. 10, and the detection performance degrades

considerably under such a realistic setting (with only 0.66 AUC).

Although the defender can attempt to train the detector on sam-

ples marked with different types of outlier patterns, with the hope

that some of them may overlap with those in users’ data, this es-

sentially turns the detection into a cat-and-mouse game, and may

not be a desirable practice.

Spurious features detection is another related method. We

evaluate a leading technique by Neuhaus et al. [48] based on neural

PCA components. But we find that it also has limited success in

detecting the marked samples (0.6181 AUC).

5.2.7 Output perturbation. MembershipTracker leverages the
model’s outputs to performMI auditing, and we consider two strate-

gies to perturb the model’s outputs: (1) injecting Gaussian noise to

the outputs; and (2) returning only the top-1 prediction label [15, 30].

However, we find that MembershipTracker still maintains high au-

diting success even with the perturbed outputs.

(1) For the first method, we find that injecting Gaussian noise

(using zero-mean noise with standard deviation σ in 0.5∼5) to the

output vectors is not an effective solution, and MembershipTracker
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Figure 11: Output noise injection increases the prediction
loss of themember samples (from the leftmost to themiddle
figure), but their loss are still lower thanmany non-member
samples’. Thus, MembershipTracker can leverage the aver-
age loss of the samples by each user to achieve a 0% FPR@
100% TPR (the rightmost figure).

can still maintain very low FPR even if the defense has caused

severe accuracy degradation. E.g., injecting Gaussian noise with

σ = 3 degrades the accuracy from 65.32% to 52.05%, under which

MembershipTracker still achieves a 0% FPR@100% TPR. We use

Fig. 11 to explain next.

As in the first two figures of Fig. 11, injecting noise to the outputs

increases the prediction loss on the member samples (and non-

members too). Hence, more member samples (the blue area in the

middle figure of Fig. 11) now have similar loss as the non-member

samples (undesirable).

Fortunately,MembershipTracker can still overcome this via its set-

based MI process. This is because, the prediction loss of the member

samples, though increased, are still much lower than that of many

non-member samples. Thus, there is still a clear difference between

the average loss for the member and non-member users’ samples

(the rightmost figure in Fig. 11), from which MembershipTracker is
able to achieve a 0% FPR@100% TPR.

(2) In the label-only setting, since the class probabilities are

not available, we use a simple method to compute a proxy for the

prediction loss: we assign a loss value of 0 for the correctly-classified

samples and 1 for other samples. In this case, all the correctly-

classified non-members have the same 0 loss as themember samples.

However, we find that MembershipTracker can still overcome the

defense and achieve a 0.04% FPR@100% TPR.

The reason is that there is a major accuracy difference between

the member and non-member users’ samples: 100% vs. 22.02% (the

latter yield low accuracy as they aremarkedwith the random outlier

features and perlin noise, but they are not present in the training

set). Thus, the “average loss” for the samples by the member users

are still lower than that by the non-member users. This enables

MembershipTracker to succeed even under the label-only setting.

5.3 Evaluation on ImageNet Training
This section evaluatesMembershipTracker under the full-sized ImageNet-

1k training (over 1.28million training samples).We train a ResNet50 [22]

and Swin-Transformer [43], and they have 75.09% and 80.29% accu-

racy respectively (both with <1% accuracy drop). We consider the

challenging setting of supporting multiple users in different classes

(1,000 target users in total). Each user contributes 125 samples to

the training set, which is <0.01% in proportion.
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Figure 12: Evaluating MembershipTracker under full-sized
ImageNet training with different portions of samples for
data marking.

We find that even under the large-scale training setting, the

marked samples can still be strongly memorized by the models,

which enables MembershipTracker to achieve 100% TPR@0% FPR.

Next, we evaluate how the performance varies with lesser sam-

ples for marking (using ResNet50): we consider 63 and 32 samples

by each user, which amount to ∼ 0.005% and ∼ 0.0025% of the

training set. The results are in Fig. 12.

MembershipTracker can still maintain 100% TPR@0% FPR, when

the marking ratio is reduced from 0.01% to 0.005%. However, when

the marking ratio is further reduced to 0.0025%,MembershipTracker
experiences lower auditing performance - this trend is similar to

that in our ablation study in Appendix B.1.1 and thus we defer the

detailed discussion to Appendix B.1.1 (due to space constraints).

With that said, even under such a challenging case, Membership-
Tracker still achieves reasonably good performance with >75%

TPR@0.1% FPR (the blue line of Fig. 12). To the best of our knowl-
edge, MembershipTracker is the first technique that can scale to
support reliable data auditing in large-scale training setting.

6 DISCUSSION
In this section, we first discuss how our assumption on the access

to a set of non-member samples can be relaxed, and then discuss

the limitations of MembershipTracker .

6.1 (Relaxed) Assumption on Non-member Set
Do non-member samples need to be definitely outside the
training set? Recall that MembershipTracker follows a common
assumption [6, 8, 67, 69] that users have access to a set of non-

member samples (for calibrating the MI process under low FPR

regime). However, in practice, it can be challenging for users to

determine whether these non-member samples are definitely not

used for training the target model. For instance, an auditing user

may collect some random facial images from the Internet as non-

member samples, but it is possible that these samples already have

been used for training the target model.

To understand how this may affect MembershipTracker’s perfor-
mance, we study a hypothetical scenario where all the non-member

samples (used for data auditing) have been used for training the

target model. Even under such a challenging case, we find thatMem-
bershipTracker can still maintain reliable auditing performance with

100% TPR@0% FPR. We explain the reason below.
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Table 7: Evaluation on the partial inclusion of user data in
model training. With lesser data (50 samples per user) in-
cluded for training, the average loss on the entire set of sam-
ples by each target user increases. This in turn (1) increases
the FPR incurred by MembershipTracker, and (2) leads to
larger accuracy drop due to lesser data for training.

% of user samples

FPR@100% TPR Accuracy drop

used for model training

100% (50/50) 0.00 0.00

90% (45/50) 0.00 0.12

70% (35/50) 0.00 4.83

50% (25/50) 0.34 12.34

40% (20/50) 0.84 14.76

30% (15/50) 2.42 21.37

Recall that MembershipTracker performs data marking on non-

members using random outlier features. These random features are

highly unlikely to be used for training (e.g., among 10
16

possible

random color stripe features), and thus they significantly increase

the prediction loss of non-member samples, e.g., reducing their ac-

curacy from >99% (this is high because these non-member samples

are used for training) to <30% after data marking. Consequently, the

marked non-member samples still exhibit much higher prediction

loss than marked member samples, from which MembershipTracker
still maintains 100% TPR@0% FPR for reliable data auditing.

Overall, we find that with MembershipTracker , users only need

to collect some data from the underlying population, and these

data can be any data; they do not necessarily have to be outside

the training set of the target model. This demonstrates the broader

practicality of MembershipTracker .

6.2 Limitations
Next, we discuss the three main limitations by MembershipTracker .

1 MembershipTracker works by marking a small number of

target samples to be strongly memorized by the model, and de-

tecting whether the model memorizes these samples. However, a

malicious developer may seek to jeopardize MembershipTracker’s
performance, by using only a subset of data from each user for

training, so that not all target samples are memorized by the model.

To understand how this affects MembershipTracker , we perform
an experiment where we assume the model owner collects 50 sam-

ples from each user (0.2% of the training set), and he/she includes

only a subset of samples from each user for training. Table 7 shows

the results, where we consider five target users (we observe a similar

trend when considering the support for more target users). We use

FPR@100% TPR as the metric, as explained earlier in Section 5.2.

The FPR incurred byMembershipTracker grows as the number of

marked samples used for training decreases. This is because those

samples that are not used for training would yield higher prediction

loss, which in turn increases the average loss on the entire set of

marked samples, and affectsMembershipTracker . On the other hand,
while using a subset of user data can degrade MembershipTracker’s
performance, it also results in lesser data for model training and

causes an accuracy drop (third column in Table 7).

Overall, we find that MembershipTracker can still maintain <

0.5% FPR@100% TPR, even when only 50% of the user data are

used for training. In this case, the model already suffers from a 12%

accuracy drop. Using lesser amounts of user data for training can

further degrade MembershipTracker’s auditing performance, but it

will also result in a larger accuracy drop (undesirable).

2 Despite our best effort in keeping the targeted changes from

severely distorting the marked data, the artifacts created by Mem-
bershipTracker are still visible under close inspection (e.g., Fig. 5).

However, performing manual inspection to filter out the specially-

marked samples byMembershipTracker can still be a challenge, par-

ticularly under the large-scale training setting (e.g., with millions

of images). With that said, creating more subtle targeted changes

still remains an important venue for future investigation.

3 Finally, since MembershipTracker targets the model’s propen-

sity in memorizing data, in principle, any effective measures that

can mitigate the model’s memorization on training data would be

able to degrade the performance byMembershipTracker . Indeed, our
evaluation in Section 5.2 comprehensively considers multiple mea-

sures applied to model, input, and output levels; we find that though

some approaches such as differential privacy can be configured to

degrade the auditing success achieved by MembershipTracker , they
also result in utility loss to the model (undesirable).

Given that building high-performance models often represents

the model creators’ foremost interest, the development of tools

like MembershipTracker can prompt the practitioners to reconsider

the choice of resorting to other legal data acquisition means and

building high-performance models using the authorized data.

7 CONCLUSION AND FUTUREWORK
This work presentsMembershipTracker , a practical data provenance
tool that can support ordinary users to audit whether their specific

data are used to train deep learningmodels without their permission.

MembershipTracker consists of a lightweight data marking process

that can mark the target data with small and targeted changes, and

a high-power set-based membership inference process that can re-

liably trace the provenance of the target data. By merely marking a

small fraction of samples (0.005%∼0.1% of the dataset),Membership-
Tracker effectively empowers the users to reliably audit the usage

of their data (average 100% TPR@0% FPR), and it is also scalable to

the large-scale (ImageNet) training setting. If their data are found

to be misused, the users can take legal action or request the “right

to be forgotten” in accordance with privacy regulations such as

GDPR [3] (e.g., based on techniques on machine unlearning [7]).

Finally, we discuss future work directions. First, while Mem-
bershipTracker retrofits the conventional membership inference

(attack) to enable responsible AI, it also faces the risk of being

misused by the malicious party. Notably, the data marked with

MembershipTracker would now become easier to be de-identified

by any party with access to them. However, MembershipTracker
should be applied only when the users do not want their data to be

used for training DL models, in which membership privacy may

not be of the users’ concern. By contrast, if the users are willingly

sharing their data for model training, they should refrain from using

MembershipTracker to avoid unnecessary membership exposure.

Future studies can explore potential usage cases whereMembership-
Tracker is applicable and protecting the membership privacy of the

marked samples is necessary, and consider the further adaptation

of MembershipTracker to cater to such a need.
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Second, future work can explore the potential of extendingMem-
bershipTracker to other domains like generative models. Large gen-

erative models are often trained on massive amount of data col-

lected from the Internet [49, 51], and are the frequent targets where

unauthorized use of personal/copyrighted contents arises [19, 64].

Thus, future work can investigate whether the large generative

models would also be prone to memorize the samples marked with

MembershipTracker under the billion-scale training environment.
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A QUANTITATIVE EVALUATION OF IMAGE
VISUAL QUALITY

A key goal of our work is to preserve high visual quality. While

we provided some visualization examples earlier in Fig. 5, in this

section, we conduct experiments to quantitatively assess the visual

quality of the images marked by MembershipTracker .
We use three commonly used metrics: (1) Mean Squared Er-

ror (MSE), (2) Structural Similarity Index Measure (SSIM) and (3)

Learned Perceptual Image Patch Similarity (LPIPS) to assess visual

quality. MSE measures the average squared difference between cor-

responding pixel values of two images. SSIM is commonly used to

assess the similarity between two images, considering changes in

structural information, luminance, and contrast [66]. LPIPS com-

putes the distance between feature representations of two images

extracted from a pre-trained neural network [74]. This approach

capturesmore nuanced differences in texture and structure, aligning

more closely with human perception of image quality.

We use the built-in SSIM implementation from TorchMetric [2].

We adopt the LPIPS implementation from the original authors [74],

and we follow their technique to use an AlexNet for extracting the

feature representations. We use 5,000 random images for evalu-

ation under three settings: 1 images marked with full Member-
shipTracker (with OOD feature and procedural noise); 2 images

blended with OOD feature (without procedural noise); and 3 the

strawman approach (which replaces the target images with OOD

feature). We report the results in Table 8.

For fullMembershipTracker ( 1 ), the average SSIM is high (0.8424),

and the LPIPS and MSE are low (0.0244 and 0.0077), indicating high

similarity between the marked and original images. Removing the

procedural noise ( 2 ) can improve the visual quality, under which

the MSE is reduced to 0.0072, the SSIM is increased to 0.8900 and

LPIPS reduced to 0.0173. Compared with 1 and 2 , the strawman

approach ( 3 ) has the highest MSE and LPIPS and the lowest SSIM,

which is understandable as it replaces the target image with OOD

features. Overall, our results quantitatively validate that the images

marked by full MembershipTracker can still preserve high visual

quality under different metrics.

B ABLATION STUDY
MembershipTracker consists of a data marking and set-based MI

process, and we conduct a detailed ablation study into these two
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Table 9: Ablation study of MembershipTracker’s two-step
data marking process: a : Image blending with OOD fea-
ture; b : Perlin noise injection. Each column reports the per-
formance under a specific number of target samples con-
tributed by the users (5∼15 samples by each).

Approach

FPR@100% TPR

15 samples 10 samples 5 samples

(0.06% dataset) (0.04% dataset) (0.02% dataset)

a + b 0.00% 0.18% 0.64%

a 0.10% 0.96% 4.62%

b 0.06% 0.40% 1.8%

None 0.34% 1.54% 7.18%

in Appendix B.1 and B.2, respectively. As explained earlier in Sec-

tion 5.2, we use FPR@100% TPR as the evaluation metric.

B.1 Ablation of the Two-step Data Marking
We first evaluate the effectiveness of the two data-marking com-

ponents (Appendix B.1.1). Meanwhile, we also study how Member-
shipTracker’s performance varies under different number of target

samples contributed by the users.

Next, we evaluate how different data-marking intensities may

affect MembershipTracker’s performance (Appendix B.1.2). Finally,

we explore alternative data marking methods in Appendix B.1.3.

B.1.1 Investigating the two-step data marking process. This sec-
tion compares the performance of different variants of Member-
shipTracker , including (1) the full MembershipTracker with image

blending and noise injection; variant (2) with image blending only;

variant (3) with noise injection only; and variant (4) without any

data marking.

We consider a total of 100 target users, and each contributes

different number of samples (5 to 15) to the training set (25,000 in-

stances). Table 9 shows the results, and there are two main findings.

(1) The two-step datamarking process is vital forMember-
shipTracker’s high auditing success. The full technique with

the two-step process consistently achieves lower FPR than the two

other variants with only a single-step marking (second and third

row in Table 9). The last variant (the bottom row in Table 9) consid-

ers the set-based MI process on the original target samples without

any data marking, which suffers from even higher FPR. E.g., under

5 target samples per user, the full technique has only 0.64% FPR vs.

7.18% by the one without data marking.

Meanwhile, the performance difference between different ap-

proaches in Table 9 shrinks as the number of target samples con-

tributed by the users increases. Thus, there is a low FPR even when

auditing the original target samples (without data marking), e.g.,

0.34% FPR@100% TPR on the setting with 15 target samples per user.

This is in fact due to the effectiveness of the proposed set-based MI

process
5
However, this is not enough and using the two-step data

marking still achieves better performance. The performance advan-

tage of performing data marking is even more profound under the

more challenging cases with limited user samples (third and fourth

column in Table 9).

5
The ablation study on MembershipTracker with and without the set-based MI process

is in Appendix B.2.

more 
distortions

more  distortions

Figure 13: Performance evaluation under different image
blending ratios (left) and noise perturbation budgets (right)
(5 target samples per user).

(2) Performance variation under different number of tar-
get samples by the users. Table 9 also showsMembershipTracker’s
performance degrades as the number of target samples by the users

reduces (this trend is also similar to our earlier evaluation of the

ImageNet training experiment in Section 5.3). There are two rea-

sons.

First, recall that in MembershipTracker , each user applies a ran-

dom outlier feature to mark their data, and with lesser data for

marking, the outlier feature appears in fewer samples. Thus, the

model’s memorization on the marked samples (that contain the

outlier feature) subsides. This can be reflected from the higher

prediction loss on the samples, and we validated this.

Secondly, the limited size of target samples also reduces the

amount of information available to the set-based MI process, which

can result in a lower auditing performance as well. With that said,

even in the challenging case where each user can only mark 5

samples (0.02% of the dataset), the full MembershipTracker still

incurs a reasonably low FPR of 0.64% with 100% TPR.

B.1.2 Data marking with different parameters. There are two pa-
rameters: the blending ratiom and noise perturbation budget σ . Our
main experiments usem = 0.7 and σ = 8/255, and we study how

different parameters may affect MembershipTracker’s performance.

The results are in Fig. 13, where we consider a more challenging

case with 5 target samples per user, because the performance differ-

ence between different marking intensities is less distinctive when

there are more target samples by each user (e.g., 15).

In both figures of Fig. 13, higher marking intensity indeed en-

hances the ability of the marked samples to be memorized by the

model, and contributes to the better performance by Membership-
Tracker . This illustrates that the users can moderate the balance

between the amount of distortion applied to their data and the

degree of auditing performance obtained from the resulting data.

B.1.3 Alternative data marking methods. (1) Alternative outlier fea-
ture generation. In addition to constructing outlier features as sam-

ples consisting of random color stripes, we consider alternative

strategies by using samples from an OOD dataset. Specifically, we

use random samples from the TinyImageNet and CelebA dataset,

which are blended into the CIFAR100 samples. The results are

shown on the left of Fig. 14, and a visualization on the right.

As shown, the resulting samples can be similarly memorized by

the model and enable MembershipTracker to maintain high prove-

nance success. E.g., in the last two rows on the left of Fig. 14 (where

each user marks 20 or 25 samples), using different types of outlier
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TinyImageNet

CelebA

Color stripes

Figure 14:MembershipTracker maintains similarly high per-
formance when using different types of outlier features for
data marking, such as samples with random color stripes,
samples from an OOD dataset (TinyImageNet and CelebA).

Table 10: Comparing the instance-based and the proposed
set-based MI process. The latter consistently outperforms
the former method by leveraging the average loss across the
target samples by each user to perform MI auditing.

Approach

FPR@100% TPR

10 samples 15 samples 25 samples

(0.04% data) (0.06% data) (0.10% data)

Instance-based MI 36.09 20.47 7.97

Set-based MI 0.18 0.00 0.00

features can similarly avail the users to achieve 0% FPR@100% TPR.

This offers the flexibility for the users to choose different types of

outlier features to mark and protect their data.

(2) Alternative noise injection. We compare injecting perlin noise

vs. uniform random noise. We find perlin noise yields better re-

sults (details omitted), because perlin noise is a stronger adversarial

noise [16], and thus more capable of inducing the model to mem-

orize the marked samples. Other alternatives such as using other

noises like gabor noise [16] may also be explored in future studies.

B.2 Ablation of the Set-based MI Verification
This section compares the set-based MI with the common instance-

based MI process. Table 10 shows the results where the target

samples are marked with MembershipTracker (and we observe a

similar trend when comparing both approaches on the original

samples without data marking). As in Table 10, the proposed set-

based MI process consistently outperforms the instance-based MI

method. E.g., when each target user can mark only 15 samples (the

second column in Table 10), they can achieve 0% FPR@100% TPR

via the set-based MI process, while the instance-based MI incurs

20.47% FPR.

Meanwhile, the FPR by the instance-based MI approach reduces

as the number of marked samples contributed by the users increases

(this trend is similar to that in Table 9 discussed earlier). Neverthe-

less, even if each user can mark 25 samples, the instance-based MI

method still incurs 7.97% FPR@100% TPR, while the set-based MI

has 0% FPR.

C COMPARISONWITHWENGER ET AL. [67]
Wenger et al. propose a technique to audit the unauthorized use

of data in training DL models. It first injects a target spurious

Algorithm 2 Illustrating the problematic evaluation in measuring

false positive by [67], and how to fix it.

Input: Tin : the true target spurious feature used for model training;

Tout , T ′out : two random non-target features (not used for training);

/* Assume the prob shift by Tin, Tout , T ′out to be 10%, 5% and 1% */

/* ✓ Compare Tin with T ′out to check (true) positive */

1: if Prob shift by Tin > Tout ′ then true positive += 1 end if

/* ✗ [67] invert the order of Line 1 to check (false) positive */

2: if Prob shift by T ′out > Tin then false positive += 1 end if
/* This would report no false positive */

/* ✓ Sample a new Tout and compare it with T ′out for FP */

3: if Prob shift by Tout > T ′out then false positive += 1 end if
/* This would report a false positive */

/* ✗ But it still cannot control the test under a specific low FPR */

/* ✓ A principled way to satisfy the above requirement */

4: Estimate the prob shift by sampling a large number of non-target features

/* α can be a small number such as 0.01% (for the low FPR) */

5: c ← (1 − α )-percentile of the CDF for the above estimated prob shift

6: if Prob shift by Ttest > c then
7: if Ttest belongs to Tin then true positive += 1

8: else false positive += 1

9: end if
10: end if

feature into the user data, and then detects whether the model has

associated the injected featurewith a target class label. To detect, the

users can separately overlay the target feature and some non-target

features to an auxiliary set of samples (outside the target class),

and then check whether the target feature causes a slightly higher

probability shift to the target class in those samples, compared with

the non-target features. For instance, assume the target class is

“cat”. The user may compare the cat class probability on some “dog”

images that are overlaid with the target and non-target features

(e.g., 10% vs. 1%), and detect potential data misuse.

In the following, we first discuss a notable issue we found in their

work, which leads to a significant underestimate of false positives

by their technique; and then further compare both techniques.

Analyzing the problematic evaluation inWenger et al [67].
In their work, a testing feature should be detected as being used

for training, if it causes higher probability shift than the non-target
feature - this procedure should be the same regardless of whether
the testing feature has actually been used for training or not (i.e.,

true or false positive). Unfortunately, this is not the case in [67].

We use Alg. 2 as an example to explain in the following. Assume

Tin is the true target feature that causes a probability shift of 10%,

andTout 5% andT ′out 1% (Tout andT
′
out are two random non-target

features that are not used for training). Line 1 in Alg. 2 compares

Tin with T ′out to check true positive.

To compute false positives (Line 2), however, Wenger et al. [67]

simply invert the order of Line 1, which essentially compares the

probability shift between the non-target feature T ′out and the true
target feature (Tin ). This would report no false positives (because
T ′out has a lower probability shift thanTin ), but it is not the correct
way to compute false positive.

Instead, a fair evaluation should: (1) sample a new non-target fea-
ture (Tout ); and (2) compare its probability shift relative to another
non-target feature (T ′out )

6
. This is illustrated in Line 3 of Alg. 2

6
In fact, the order ofTout andT ′out in Line 3 of Alg. 2 can be interchangeable, as they

are both random features that are not used for training. We use the given order only
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(which is basically the same as Line 1 for detecting true positive). In

such a rectified procedure, the techniquewould have a false positive,
because Tout has a higher probability shift than T ′out .

Validation. To evaluate how this affects their results, we use

the original implementation from [67]. We use CIFAR100 dataset

with 50 target classes and 50 non-target features for comparison;

and otherwise follow the the same parameters they used in their

experiment [67]. We first validate that we can obtain similar results

to their reported performance, with 99.63% TPR and 0% FPR
7
.

To re-evaluate the FPR following Line 3 in Alg. 2, we compare the

probability shift between two disjoint sets of non-target features

(Tout ,T
′
out ). Because both feature sets are not used for training,

the FPR should be similar if we compare Tout Vs. T
′
out or T

′
out Vs.

Tout (i.e., their order is interchangeable). We indeed did observe

this (with 37% and 34.6% FPR). On average, their technique incurs

a 35.8% FPR.

Wenger et al. [67] do mention that comparing two sets of non-

target features is equivalent to random guessing, and we also ob-

serve the same. However, this “indistinguishablity” applies only

when attempting to distinguish two set of features; if we consider
two random individual features, it is likely that one feature will

cause a higher/lower probability shift than the other. This is the

exact issue with Wenger et al.’s method, which performs each test

on a feature-to-feature level (Line 3 in Alg. 2). Thus, it still permits

a large number of FPs.

How to reduce (and control) FPR? One way to reduce the FPR in

[67] is to employ a tighter significance level λ, which is used to

detect whether the probability shift caused by the target feature is

statistically higher than the non-target feature, and it defaults to be

0.1 in [67]. However, this will also degrade the TPR, e.g., when we

change to use a λ of 1e-8, the FPR is reduced to 1.9%
8
, and the TPR

is already degraded to 86.4%9
. In addition, while using a tighter

significance level can reduce the FPR, it still cannot control the FPR
within a specific low regime (e.g., 0.01%).

To fulfill this requirement, a principled way is to adapt a similar

setup established in existing MI studies [6, 8, 69]. This procedure

is sketched in Line 4 to Line 10 in Alg. 2. However, based on our

results in the previous paragraph, it is likely that the TPR by their

technique would further decrease when the TPR is controlled at a

lower FPR regime (e.g., 0.01%).

Further comparison with [67].We further compare Wenger

et al. withMembershipTracker in our setting, wherewe evaluate how
effective is their approach, if adapted for MI-based data provenance.

Specifically, we consider 100 target users and each user marks

25 samples (0.1% of the training set). As in Wenger et al. [67], we

use ImageNet images as the outlier features to be blended into

the CIFAR100 samples, and MembershipTracker uses random color

stripes as before. [67] have a configurable parameter to control the

to illustrate how Wenger et al. [67] could overlook a false positive in their original

detection.

7
We identified a bug in their code (an issue related to pass-by-reference in Python

that results in the code using a different set of auxiliary data for marking the target

and non-target features), and we fixed it in our evaluation. We have also notified the

authors about this bug in their official code repository using an anonymous account.

8
We also checked that larger λ like 1e-10 cannot further reduce FPR.

9
Another option to reduce FPR is to adjust the proportion of positive tests (δ ) for
the tool to return a positive outcome (details omitted): we increased δ from 0.6 (their

default setting) to 1.0, and still observed a similar trade-off.
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Figure 15: Comparing the technique byWenger et al. (under
varying data marking intensities) and MembershipTracker
in terms of their MI effectiveness for data auditing.Member-
shipTracker achieves much higher TPR than their approach
in the low FPR regime.
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Figure 16: Samples marked with different intensities by the
method ofWenger et al. vs. the samples marked byMember-
shipTracker. Our approach incurs significantly lower distor-
tion to images thanWenger et al., and still outperforms their
approach with much higher MI success.

intensity of the outlier feature when overlaid to the target data -

we thus compare MembershipTracker with their approach under

varying marking intensities.

Fig. 15 shows the results, and Fig. 16. shows a visualization of

the samples marked with different intensities.

As shown in Fig. 15, compared with the baseline approach with-

out any data marking, the method by Wenger et al. can indeed

increase the MI success. For instance, the green line in Fig. 15

(marked usingm = 0.6, which is equivalent to the default marking

intensity in [67]) increases the AUC from 0.7927 to 0.9253. How-

ever, this still has very limited performance in the low FPR regime

(e.g., 0% TPR@0.01% FPR). Increasing the marking intensity in their

approach can further improve the MI success, but it: 1) comes at

the cost of higher image distortion; and 2) still has lower auditing

performance than MembershipTracker .
For instance, underm = 0.5 (meaning 50% of the original fea-

tures are replaced with the outlier features), their approach still

yields much lower MI success than MembershipTracker , e.g., 3.8%
TPR@0.01% FPR vs. 100% TPR by MembershipTracker (the gray Vs.

blue line in Fig. 16), and the samples marked by their approach

already become highly conspicuous compared with the original

samples (the second and fifth column in Fig. 16). Using higher

marking intensity (m = 0.3) still suffers from a similar trade-off.
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Our earlier discussion in Section 4.1.2 explains that injecting

outlier features alone is not enough, as the original features hinder

the model’s memorization on the outlier features. To overcome this,

we propose a novel approach to inject a small amount of perlin
noise, which works similar to adversarial perturbation and can

significantly enhance the model’s memorization on the marked

samples (as evaluated earlier in Appendix B.1.1) while preserving

high image quality (the fourth column in Fig. 16). Combined with

the proposed set-based MI process (another key component in our

work),MembershipTracker is able to achieve perfect MI success (the

blue line in Fig. 15) and outperforms the method by Wenger et al.

Summary.While bothWenger et al. and our work aim at detect-

ing the unauthorized data use in training DL models, their original

technique greatly underestimates the detection false positives, and

thus still struggles with achieving high TPR and low FPR.

We also realign their technique forMI-based provenance.We find

MembershipTracker outperforms their approach by: 1) incurring

lower distortion to the data; and 2) achieving significantly higher

auditing performance. This renders MembershipTracker a more

practical data auditing tool.

D COMPARISONWITH TRAMER ET AL. [63]
This section compares MembershipTracker with another related

work (Tramer et al). Their work proposes a technique to improve

the MI success based on data poisoning. The main idea is to inject

mislabeled samples into the model’s training set, which can trans-

form the target samples into outliers and amplify their influence to

the model’s decision, thereby making the target samples easier to

be de-identified.

Tramer et al. is the closest work to ours that can improve the MI

success and without requiring the expensive shadow-model calibra-

tion. However, it assumes the users can mislabel their data, which

can be challenging in the real-world scenarios where the users do

not have control over the data labels [18, 20, 67]. In comparison,

MembershipTracker makes no such assumption and it only requires

the users to mark their data with some small and targeted changes,

which is a more realistic setting.

For completeness, we evaluate how effective their approach is, if
the users are able to mislabel their data for provenance purpose. We

follow the targeted label flipping attack in Tramer et al., where for

each target instance (x ,y), we inject multiple mislabeled data points

D
adv
= {(x ,y′), ..., (x ,y′)} for some label y′ , y [63]. We consider

100 target users where each user injects 15 poisoned samples. We

compare their approach with MembershipTracker next.
Fig. 17 compares the performance by both approaches. As shown,

the method by Tramer et al. indeed increases the exposure against

the targeted samples. For example, under a 0.1% FPR threshold, the

TPR is increased from from 0% to 36%. Nevertheless, the increase

of MI success for the method by Tramer et al. is still highly limited,

while MembershipTracker can achieve 100% TPR@0.1% FPR.

Therefore, comparedwith the approach by Tramer et al.,Member-
shipTracker (1) represents a much more practical data provenance

tool that does not require mislabeling any data, and (2) still achieves

significantly higher MI success for tracing data provenance.
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Figure 17: Comparing the performance between the ap-
proach by Tramer et al. and MembershipTracker. Member-
shipTracker achieves much higher TPR than their approach
in the low FPR regime.

E EVALUATING HUANG ET AL. [30] UNDER
LIMITED DATA SETTING

Recent work by Huang et al. introduces a general framework for au-

diting unauthorized data use in training DLmodels [30]. Their main

idea is to generate two perturbed copies of the target data, randomly

publish one of them, and then compare the model’s membership

score on the published Vs. the unpublished one.

While both their work and MembershipTracker have a similar

goal, their work assumes the users can mark a large portion of data

(1%∼10%). However, in a real-world setting, model creators often

curate their dataset by scraping data from multiple sources, and

thus the data collected from each data holder may only constitute a

small proportion of the dataset. For this,MembershipTracker targets
a more realistic (and challenging) scenario, where the users can

modify only a limited amount of data (≤ 0.1%).

To understand the performance of their technique under such a

limited-data setting, we use the original implementation from the

authors [30] for an evaluation. Their approach can be applied to

both image classifiers and foundation models, and we evaluate their

approach under the same classifier setting as MembershipTracker
(using CIFAR100). We first consider marking 1% of the dataset, and

find that their technique can still maintain 100% detection success

rate.

We then stress test their technique using 0.1% marking percent-

age, under which their auditing performance degrades considerably:

the detection success rate is reduced to 20% when the output vector

is available. Under the label-only setting, the success rate further

drops to 5%. Therefore, our evaluation indicates that auditing data

use under the limited-data setting still remains a major challenge,

and MembershipTracker represents a desirable technique that can
offer superior auditing performance in these settings.

With that said, their framework can still be used for other appli-

cation domains thatMembershipTracker currently does not support,
such as foundation models. In those applications, their tool remains

the state-of-the-art data auditing solution, and we leave the exten-

sion of MembershipTracker to other domains to future work.
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