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Home Appliance Load Modeling from Aggregated
Smart Meter Data

Zhenyu Guo, Z. Jane Wang,Senior Member, IEEE,and Ali Kashani

Abstract—With recent developments in the infrastructure of
smart meters and smart grid, more electric power data is
available and allows real time easy data access. Modeling in-
dividual home appliance loads is important for tasks such as
non-intrusive load disaggregation, load forecasting, anddemand
response support. Previous methods usually require sub-metering
individual appliances in a home separately to determine the
appliance models, which may not be practical, since we may
only be able to observe aggregated real power signals for the
entire-home through smart meters deployed in the field. In this
paper, we propose a model, named Explicit-Duration Hidden
Markov Model with differential observations (EDHMM-diff) , for
detecting and estimating individual home appliance loads from
aggregated power signals collected by ordinary smart meters.
Experiments on synthetic data and real data demonstrate that
the EDHMM-diff model and the specialized forward-backward
algorithm can effectively model major home appliance loads.

Index Terms—Load Modeling, Explicit Duration HMM,
Forward-backward, Disaggregation.

I. I NTRODUCTION

As part of the smart grid deployment, smart meters can
provide more energy consumption information than we could
imagine before in a near real-time way. With increasing instal-
lations of smart meters in more countries, such as Australia,
Canada, Italy, Japan, United States, etc., massive amount of
residential electric energy consumption data has been collected
and stored. Although current advanced infrastructures of smart
grid could provide full potentials for advanced services, in-
sightful analysis and modeling based on such big data is still
in its early stage. Exploration of such valuable data emerges
as a popular research direction both in academia and industry,
and conventional services, such as load disaggregation (LD),
load forecasting (LF) and demand response (DR) support, are
brought back to attention. Modeling the home appliance loads
plays an important role for these applications, since it is the
first step for understanding the electric consumption data.In
this paper, we focus on modeling home appliance loads under
a general assumption, where onlyaggregatedreal-time power
data is observed by ordinary smart meters already deployed,
with a low data sampling rate.

Starting from Hart [1], power consumption signatures [2],
[3] are used to describe the behaviors of home appliances,
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Fig. 1: Signals shown in (a) and (b) are two signals with
the same emission probabilities but different state duration
distributions. X axis is abstract index without unit for illus-
tration purpose. A conventional HMM model cannot capture
the difference between them since the state durations are not
considered.

which include information such as time of use, on-and-off
durations and patterns, power demands, etc. Some signatures
also encode thetransient properties of the current and voltage
signals of appliances when they are turned on or off, while
some signatures mainly focus onstable properties of the
power signals. Most smart meters installed in the field measure
and transmit the real power signals of residential users at a
relatively low frequency (1Hz ∽

1
900Hz). Therefore, the low

sampling rate makes stable signature a more suitable choice
for home appliance load modeling. Most home appliances
work at one or several fixed power demands, which can be
characterized by finite discrete states. In addition, one power
reading at present is independent from early readings in the
past. Therefore, Hidden Markov Model (HMM) [4] seems a
good choice and is widely used to model home appliances to
extract stable information.

However, the conventional HMM can not model the du-
ration of each state, which is important for estimating the
electric energy consumption of a home appliance. The states’
durations and switching patterns are also crucial for describing
appliances, and could help increase the accuracy of detection
and estimation. In Fig. 1 we illustrate a confusion caused by
the lack of duration modeling of conventional HMM on power
signals.

In many realistic situations, the aggregated power signal is
the only data collected from one household, and the estimation
of individual appliance models can only be done based on the
aggregated signals. Since several different appliances could be
turned on within the same period, the real power signal of one
appliance could be “lifted” or overlapped with power signals
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Fig. 2: Illustration of the ‘detect and re-estimate’ approach for the EDHMM-diff model. Y axis is power in Watts, and X
axis is time in a unit of a half minute. From top to bottom: A template is used to detect signal clips generated by a certain
AOI; Red boxes indicate rejected signal fragments and greenboxes indicate accepted fragments. The accepted (green boxes)
fragments are concatenated for estimating the true model using the EDHMM-diff estimation algorithm in Table I, and a final
estimation of the AOI is obtained.

of other appliances that are turned on during the same time. We
call such phenomenon as “aggregating effect”. In Fig. 2, an
aggregated power signal is shown as the “original observed
signal”, where the green boxes indicate real power signals
generated by the same refrigerator in the house. Although
these underlying “refrigerator signals” are generated by the
same appliance, the power signals observed in these boxes are
somehow different due to the “aggregating effect”. Since the
emission probabilities used in conventional HMM are modeled
directly on the observations, the conventional HMM cannot
handle the “aggregating effect”, which generates different
observations even for the same state of the same device.

To overcome the problems mentioned above, in this paper,
we propose an Explicit Duration Hidden Markov Model with
differential observations (EDHMM-diff), along with a special-
ized forward-backward algorithm for the inference and esti-
mation of EDHMM-diff model. In addition to the information
that can be learned in the conventional HMM, EDHMM-diff
can estimate the model of individual appliances based on the
aggregated power signal with state durations. Furthermore,
in most cases, only a few appliances are of interest to the
utilities or users, which we refer to as “Appliance of Interest”
(AOI). Accordingly, we propose a “detect and re-estimate”
approach, which uses a predefined template to detect the
best fragments for estimating one AOI, and then re-estimates
the template model using these detected fragments. In real
world applications, given the AOI’s, we could “detect and
re-estimate” them separately. The framework of the proposed
method is shown in Fig. 2.

LD is one of the most important applications of smart

grid data analysis, which aims to figure out what appliances
are used in a home as well as their individual energy con-
sumptions, by only observing the aggregated electric con-
sumption data for the entire-home. Factorial Hidden Markov
Mode(FHMM) based modeling [5]–[7] is one recent promising
direction for LD research, which shows satisfiable disaggre-
gation results on real data. However, all previous FHMM
methods require correctly estimated models of individual
HMM chains, where manually efforts are unavoidable [5], [7].
As one example, our proposed method could be used as an
automatic step of estimation of individual HMMs for other
FHMM based methods. In addition, our proposed method
is a general approach for situations where individual device
models are required. For instance, our method could be used
to estimate the power efficiency of the refrigerator used in a
monitored house, to remind the user to replace the refrigerator
with a more efficient ones to save money. The rest of the paper
is organized as following, in Section II, we will formulate the
research problem and propose the EDHMM-diff algorithm as
a solution. We will conduct experiments both on synthetic data
and real data in Section III. At last, we conclude the paper in
SectionIV.

II. PROPOSEDMETHOD

In this section, we will describe the EDHMM-diff model
for appliance load modeling, and propose a corresponding
specialized algorithm for inference and estimation.
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A. Explicit-Duration Hidden Markov Model with Differential
Observations (EDHMM-diff)

Under the current implementation of smart meters, the
observation is a sequence of aggregated real power readings,
which can be denoted aso = (o1, o2, ..., ot, ..., oT ). Suppose
there are N appliances in the home, then the power signal
generated by thelth appliance at timet is denoted asx{l}

t ,
therefore we haveot =

∑N
l=1 x

{l}
t . In previous works [5]–

[7], a conventional HMM is used to model each individual
appliance. Each appliance is assumed to work at finite discrete
states, i.e. two (on and off) states for a light; and cooking,
warming, and off 3 states for a cooker. For appliancel, the
lth HMM, HMM{l}, can be described as,

P (q
{l}
1 = k) = π

{l}
k

P (q
{l}
t = j|q

{l}
t−1 = i) = A

{l}
ij

x
{l}
t |q

{l}
t = k ∼ N (µ

{l}
k , (σ

{l}
k )2),

(1)

whereq{l}t is the hidden state variable for thelth HMM at time
t, which takes a discrete value from a finite set{1, 2, ...Ml}.
And π

{l}
k is the corresponding initial probability,A{l}

ij is
the corresponding entry in the transition matrixA{l}, and
µ
{l}
k and σ

{l}
k are the parameters for the Gaussian emission

probability density for theith HMM at statek. We denote the
set of parameters of theith HMM asΘ{l}, and the set of all
parameters of all HMMs forN appliances as{Θ{l}}Nl=1.

In this paper, we focus on how to estimate someΘ{l}’s
from {Θ{l}}Nl=1, corresponding to certain AOI’s, based on
the aggregated observationso. As we pointed out in Section
I, a conventional HMM cannot capture the information of
the durations of individual states, which are important to
identify individual appliances and to estimate their energy con-
sumptions. To solve this problem, we introduce a probability
distribution over the duration of each state in the conventional
HMM{l}, which can be described as

P
{l}
j (d) = P (τ{l} = d|q{l} = j), (2)

whereτ{l} is the duration of stateq{l} staying atj.
In addition, the “aggregating effect” described in Section

I also causes a big trouble for evaluating and estimating
the emission probability. As shown in Fig. 2, when the
power signal of a refrigerator is “lifted” by a light’s power
signal by 500W, the resulting refrigerator power at the ‘off-
state’ becomes 500W and becomes 750W at the ‘on-state’,
which leads to a small probability when fitting the data with
the emission distribution of that refrigerator. To deal with
this concern, we adapt an reasonable assumption, which is
widely accepted in the load modeling and load disaggregation
research area [5]–[8], that the probability for more than one
appliance to change state is very low within a short period. In
another word, we assume that at most one appliance changes
state within a short period. Therefore, we could find segments
of signals where only thelth appliance changes state, which
is defined as Regions of Interest (ROIs) for appliancel.
Let y = (y1, y2, ..., yt, ..., yT ) denote the differential signal
of the original o, where yt = ot − ot−1 with o0 = 0.
Let δx

{l}
t = x

{l}
t − x

{l}
t−1 denote the differential signal of

Fig. 3: A graphical illustration of the proposed EDHMM-diff
model, whereyt = ot − ot−1, zt is the hidden state at timet,
andd is the duration of the hidden state.

appliance l. Now suppose fromt1 to tm is the ROI of
appliancel, then(yt1 , ..., ytm) = (δx

{l}
t1

, ..., δx
{l}
tm

), since only
appliancel changes state during this period. Therefore, we
propose addressing the “aggregating effect” by modeling the
differential observations in ROIs instead. By adding duration
modeling and differential observations to the conventional
HMM, we propose the Explicit Duration Hidden Markov
Model with Differential observations (EDHMM-diff), which
can be described by

bi,j(yt) = P (yt|qt−1 = i, qt = j),
Pj(d) = P (τ = d|q = j),
Aij = P (qt = j|qt−1 = i),
πi = P (q1 = i),

(3)

where we omit the{l} notation and use it as a general model
for a particular appliance.bi,j(yt) is the emission probability
of the differential observation given two adjacent hidden states
qt−1 and qt. Other variables retain the same meanings as
previous. A graphical illustration is shown in Fig. 3. Although
it seems that the only difference between our model and Ex-
plicit Duration model [9] is that we use differential signals as
observations, our contribution is not trivial, since the proposed
EDHMM-diff model is a second order model(observation
depends on two states) and a specialized forward-backward
algorithm needs to be invented for inference and estimation,
which is presented in Section II-B. A practical solution for
inference and estimation plays an important role in any HMM
based non-parametric methods.

In our implementation, we assume Gaussian distributions
for the emission probability and the duration, which are

yt|qt = j, qt−1 = i ∼ N (δµij , (δσij)
2),

d|q = k ∼ N (dµk, (dσk)
2),

(4)

whereδµij = µj −µi, andδσij = σi+σj . And dµk anddσk

are the mean and variance of the duration of a state staying at
k. In the practical implementation, we actually use a discrete
Gaussian distribution (sampled from a continuous Gaussian)
for the duration. However we still use the same notations in
the rest of the paper for consistency.

For convenience of expression, we call the set of parameters
of an EDHMM-diff asΘ, which contains{δµ, δσ, P (d), A, π}.
Among these parameters,δµ and P (d) are the two we are
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particularly interested in for home appliance load modeling.
In following sections, we will present a practical algorithm for
estimatingΘ.

B. Estimation

To apply EDHMM-diff in a real world application for a
given signalYt1:t2 = {yt1 , yt1+1, ..., yt2}, we need to com-
pute the likelihoodP (Yt1:t2 |Θ), and efficiently estimate the
parameters by maximizing the likelihood. Similar to the con-
ventional HMM, straightforwardly calculating the likelihood
is computationally infeasible and suffers from the floating-
point “underflow” problem. To provide efficient estimation and
inference for EDHMM-diff, here we propose a specialized
forward-backward procedure, inspired by [6] and [9], [10].
The pseudo code is given in Table I.

1) Definitions of Variables:In addition to the variables
defined in Eq. (3), we also define some auxiliary variables
for the forward-backward algorithm. Aforward variable is
defined as,

αt|λ(i, j, d)
def
= P (qt−1 = i, qt = j, τt = d|Y2:λ), (5)

where λ can be t − 1, t or T , which corresponds to the
“predicted”, “filtered”, or “smoothed” probability of the triplet
(qt−1, qt, τt). The calculation of the auxiliary variable is
usually a iterative process involving multiplication of a large
number of probability values (small positive numbers less than
1), so that the result will be a very small float number that
cannot be handled by a computer. Such problem is called
“arithmetic underflow”, or “underflow” for short. To overcome
the “underflow” problem caused by multiplications of a large
number of small probability values, we normalize the emission
probability at everyt as

b∗i,j(yt)
def
=

bi,j(yt)
P (yt|Y2:t−1)

, (6)

which approaches 1 when the fit of the observation to the
model increases, and reaches 1 when the observation fits
the model exactly. Such normalization can successfully avoid
“underflow” and maintain other conditions required in the
inference. For convenience, we denote the denominator prob-
ability as

γ−1
t

def
= P (yt|Y2:t−1), (7)

which can be computed recursively. To clearly demonstrate
the recursion, we define several other auxiliary variables,

St(i, j)
def
= P (qt = i, qt+1 = j, τt = 1|Y2:t),

εt(i, j)
def
= P (qt−1 = i, qt = j, τt = 1|Y2:t).

(8)

To calculate the smoothed probabilities, we define aback-
ward variable which is a standard smoothed probability
normalized by the predicted one as:

βt(i, j, d)
def
= P (Yt:T |qt−1=i,qt=j,τt=d)

P (Yt:T |Y2:t−1)
. (9)

To compute this backward variable recursively, we define
another two auxiliary variables as:

S∗
t (i, j)

def
= P (Yt:T |qt−2=i,qt−1=j,τt−1=1)

P (Yt:T |Y2:t−1)
,

ε∗t (i, j)
def
= P (Yt:T |qt−1=i,qt=j,τt−1=1)

P (Yt:T |Y2:t−1)
.

(10)

so far we have defined necessary variables for the forward-
backward induction. We now give details about the recursive
forward-backwardalgorithm.

2) Forward-backward Induction:Since the above auxiliary
variables are defined in a recursive fashion, we need to
initialize these variables at the beginning. The forward and
backward variables are initialized as follows:

α2|1(i, j, d) = πiAijPj(d), (11)

βT (i, j, d) = b∗i,j(yT ). (12)

Then the forward variable and corresponding auxiliary vari-
ables can be updated as:

αt|t−1(i, j, d) =

{

St−1(i, j)Pj(d), if i 6= j,
∑

k
αt−1|t−2(k, j, d+ 1)b∗i,j(yt−1), if i = j,

(13)

εt(i, j) = αt|t−1(i, j, 1)b
∗
i,j(yt), (14)

St(i, j) =
∑

k

εt(k, i)Aij , (15)

γ−1
t =

∑

i,j,d

αt|t−1(i, j, d)bi,j(yt). (16)

The backward variable and corresponding auxiliary vari-
ables are updated as:

βt(i, j, d) =

{

S∗
t+1(i, j)b

∗
i,j(yt), if d = 1,

βt+1(j, j, d − 1)b∗i,j(yt), if d > 1,
(17)

ε∗t (i, j) =
∑

d

βt(i, j, d)Pj(d), (18)

S∗
t (i, j) =

∑

k

ε∗t (j, k)Aij . (19)

So we have given the details for the forward-backward induc-
tion for the EDHMM-diff. We now present the re-estimation
step in the next section.

3) Parameter Re-estimation:After computing and storing
these variables, we can calculate the likelihood and updatethe
parameters of the EDHMM-diff model. The likelihood of the
modelMcan be computed by

P (Y2:T |M) =
∏T

t=3 P (yt|Y2:t−1)

=
∏T

t=3 γ
−1
t .

(20)

To update parameters of the EDHMM-diff model, we first
define the following auxiliary variables:

Tt|T (i, j) = P (qt−1 = i, τt−1 = 1, qt = j|Y2:T )
= εt−1(i, j)ε

∗
t (i, j)

(21)
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Dt|T (i, j, d) = P (qt−1 = i, qt = j, τt−1 = 1|Y2:t−1)

P (τt = d|qt = j)P (Yt:T |qt−1=i,qt=j,τt=d)
P (Yt:T |Y2:t−1)

= St−1(i, j)Pj(d)βt(i, j, d).

(22)

Dt|T (j, d) =
∑

i

Dt|T (i, j, d). (23)

γt|T (i, j) = P (qt−1 = i, qt = j|Y2:T )

=
∑

d

αt|t−1(i, j, d)βt(i, j, d).
(24)

Then the model parameters can be updated at each iteration
as:

Âij =

T
∑

t=3

Tt|T (i, j)/Na. (25)

P̂j(d) =

T
∑

t=3

Dt|T (j, d)/Np. (26)

δµ̂i,j =

T
∑

t=3

γt|T yt/Nδµ. (27)

π̂i =

∑

j γ2|T (i, j)

Nπ

. (28)

whereNa, Np, Nδµ, and Nπ are normalization constants to
make the resulting variables statistically valid. The forward-
backward algorithm is summarized in Table I. Since we want
to manually control the flexibility of the EDHMM-diff model
for both detection and estimation purpose, we don’t update the
covarianceδσ of emission probability function. In practice, the
δσ is fixed to a number depending on the task.

C. Detection and Re-estimation

As discussed in SectionII-A, before estimating an appliance
model through the EDHMM-diff, we need to detect the ROIs
for this particular appliance. For thisdetection purpose, a
prior model can be used as a template for this particular
appliance. Although home appliances vary in terms of brands
and models, the same type of appliances still share certain
common characteristics in their power signals. For example,
refrigerators usually work at a power demand of 70W∼ 200W,
with roughly a 20-minute duration for each of the on/off
states. Such consistent patterns are observed for appliances
such as refrigerator, cloth dryer, cloth washer, dish washer,
oven, etc., which are common AOI’s for load disaggregation
and forecasting. Therefore, the pattern of a certain AOI can
be encoded as prior knowledge into a template EDHMM-
diff model, which can be further used to detect ROIs for this
particular appliance.

Let o = (o1, o2, ..., ot, ..., oT ) denote the observations.
Definewindowt1:t2(O) as the sequence(ot1 , ot1+1, ..., ot2), a
window of signals from timet1 to t2. Given a template model
M0, the likelihood ofM0 given the window of signals can be
computed by using Eq.(20), denoted asL(windowt1 :t2). By

sliding the window along the observationso, we accept the
windows whose likelihoods are above the threshold as training
data for re-estimation. During the detection stage, onlysteps
1, 2, and6 in Table I are run for each iteration.

After detecting the valid training data for each AOI, we
update the template model according to the algorithm in Table
I to get the final appliance model. The procedure described
in this section is named “detect and re-estimate”, which is
illustrated in Fig.2.

III. E XPERIMENT

In this section, we describe the experiments on both syn-
thetic data and real data by applying the proposed method. On
the synthetic data, we will estimate the EDHMM-diff model
with the proposed forward-backward algorithm and report
the estimation results. On the real data, we will apply the
proposed “detect and re-estimate” procedure to learn models
for individual appliances. The data used in SectionIII-B1 is
from the REDD data set proposed by [8].

A. Simulation Study

To measure the inference and estimation effectiveness of
the proposed forward-backward algorithm for the EDHMM-
diff model, we conduct two sets of experiments.

In the first set of experiments, two time series with 500
data points are generated, which are shown in Fig. 4. The
parameters to generate these two signals are listed in Table
II. To simulate the “aggregating effect”, we add a random DC
value(with zero mean Gaussian noise) to each of these two
signals. We use Gaussian distributions for both the emission
probability and duration distribution for these two signals. It
is reasonable to assume that most home appliances work with
0 power demand at the “off” state (although sometime a small
value of power can be consumed if there is a standby mode).
We assume this assumption for all the experiments conducted
in this paper.

We perform the estimation on Signal-a and Signal-b with
the conventional HMM [4], EDHMM [10], and the proposed
EDHMM-diff. In Table II, µ represents the true mean vector of
the emission probability function that generates the signal, and
dµ represents the true mean vector of the state durations. And
µ̂ and d̂µ are the estimated values respectively. The estimated
P̂ (d)’s for each state duration for Signal-a and Signal-b are
plotted in Fig. 6. For the EDHMM-diff model, we initialize the
model withµ = (0, 150) anddµ = (50, 50) for Signal-a;µ =
(0, 100, 200) and dµ = (50, 50, 50) for Signal-b. From the
results we can see that the proposed EDHMM-diff model can
successfully estimate the power demands and state durations
for multi-state power signals. The convergence of the proposed
forward-backward algorithm is illustrated in Fig. 5 by showing
the likelihood as a function of iteration index. It is clear that
the proposed algorithm converges fast under both situations.

We also can see that the conventional HMM and EDHMM
do a good job on estimating the “apparent” emission means.
However, both of them cannot deal with the “aggregating
effect”, which is critical for estimating appliance loads from
aggregated power signals. In this set of experiments, since
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Algorithm 1 The Forward-backward Algorithm for the EDHMM-diff
Set iter = 1, lkhprev = 0.
While iter < maxIter and △lkh < threshold
1: Initialize αt|t−1 at t = 2 according to Eq.(11).
2: Forward Induction : for t = 3, . . . , T

Compute and storeαt|t−1 using Eq.(13),εt using Eq.(14),St using Eq.(15), andγ−1

t using Eq.(16).
3: Initialize βt at t = T according to Eq.(12).
4: Backward Induction : for t = T − 1, . . . , 2

Computeβt in Eq.(17),ε∗t in Eq.(18), andS∗
t in Eq.(19).

Compute and storeTt|T in Eq.(21),Dt|T in Eq.(23), andγt|T in Eq.(24).
5: Update the parameters:

Âij in Eq.(25),Pj(d) in Eq.(26), andµ̂i,j in Eq.(27).
6: Compute the likelihood:

lkhcurr in Eq.(20),△lkh = |lkhcurr − lkhprev|.
7: Setiter = iter + 1, lkhprev = lkhcurr.
end While

TABLE I: The proposed forward-backward algorithm for the EDHMM-diff model.
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Fig. 4: We show the signals and the state duration distributions of the synthetic signals used the first set of experimentsin
Section III-A. Abstract indices are used for both axis without units.

Signal Method µ µ̂ dµ d̂µ

Signal-a
EDHMM-diff (0, 100.00) (0, 100.37) (30, 20) (30, 21)
HMM (0, 100.00) (108.18, 207.95) (30, 20) −
EDHMM (0, 100.00) (107.96, 206.99) (30, 20) (31, 20)

Signal-b
EDHMM-diff (0, 70, 250) (0, 70.66, 249.67) (30, 20, 30) (28, 20, 32)
HMM (0, 70, 250) (83.98, 153.94, 334.15) (30, 20, 30) −
EDHMM (0, 70, 250) (83.99, 154.08, 330.57) (30, 20, 30) (31, 18, 30)

TABLE II: Estimation results of HMM, EDHMM, and the proposedEDHMM-diff on the synthetic data.

the DC value added to Signal-a is generated randomly, the
conventional HMM and EDHMM will give different (and
incorrect) estimates for the same underlying load signals when
different DC values are added.

In the second set of experiments, we demonstrate how to
use the proposed EDHMM-diff model to perform detection,
given a specific appliance template. We would want our model
to give higher log-likelihood scores for signal fragments which
are similar to the template, and lower log-likelihood scores for
signal fragments that are distinct from the template. It is worth
noting that, random DC values are added to the generated
signals to simulate the “aggregating effect”. The template
modelM0 used here is withµ = (0, 150) anddµ = (50, 50),
which is similar to Signal-a. The log-likelihood scores of
the template given different signals are shown in Table III,
along with the parameters of the signals. From the table, we
can see that Siganl-a, Signal-a3, and Signal-a4 get higher
log-likelihood scores due to their similarity to the template
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Fig. 5: The log-likelihood values as a function of the iteration
index in the EDHMM-diff model when estimating Signal-a
and Signal-b.

model. And we can also see that the EDHMM-diff model
takes both power demands and state duration distributions
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Fig. 6: EstimatedP̂ (d) for Signal-a and Signal-b.

µ dµ Log-likelihood

M0 (0, 150) (50, 50) −

Signal-a (0, 100) (30, 20) - 1.46
Signal-a1 (0, 100) (3, 2) - 15.17
Signal-a2 (0, 100) (50, 60) - 0.83
Signal-a3 (0, 500) (30, 20) - 25.32
Signal-a4 (0, 200) (30, 20) - 2.20

TABLE III: The log-likelihood scores for different signalsused
in the second set of experiments in Section III-A

into consideration. For example, Signal-a1 has similarµ but
distinctdµ, and Signal-a3 has similardµ but distinctµ, while
both get lower log-likelihood scores. Therefore, we can usethe
log-likelihood score estimated by the template model to detect
similar signal fragments from aggregated power signals.

B. Experiments on Real Data

The main motivation of the proposed EDHMM-diff model
is to estimate individual home appliance loads from the aggre-
gated power signals. In this section, we test on aggregated real
power signals collected from real houses. We userefrigerator
and dryer as AOI examples in the following experiments,
and the EDHMM-diff can be generalized to other appliances
if needed. Both Reference Energy Disaggregation Data Set
(REDD) and our own data collected by neurioTMsystem from
the Energy Aware Technology Inc.1 are investigated.

1) Experiments on Reference Energy Disaggregation Data
Set (REDD): The REDD data set is proposed by [8], which
contains both whole-home and circuit/device specific electric
consumptions for a number of real houses over several months.
To simulate the low frequency real power signals that we can
usually access through smart meters, here we only use the
aggregated whole-home real power signal and down-sample
it to 1

30 Hz (1 reading per 30 seconds) in our experiments.
Although they claimed the breakdown signals were provided,
those are actually circuit level signals and have corruptions for
most of the devices, which results in no ground truth for our
estimations.

As discussed in SectionII-C, a template model is required
for the detection purpose before we can extract the AOI’s
from aggregated signals. There are two ways to construct the
templates: (1) estimate models from real signals by monitoring

1https://www.neur.io/

a number of AOI’s and then average the models; (2) set
the parameters in the template manually, according to the
specifications reported by agencies such as Electric Power
Research Institute (EPRI). We take the second approach in our
experiments due to its simplicity. To demonstrate the robust-
ness of the proposed method, we use the same template models
for the same devices across all the houses. The template forre-
frigerator is µ = (0, 150), σ = (10, 10), dµ = (50, 50), dσ =
(5, 5), A = [0, 1; 1, 0], π = [1, 0]. And the template fordryer
is µ(0, 1000), σ = (50, 100), dµ = (1, 1), dσ = (5, 5), A =
[0, 1; 1, 0], π = [1, 0].

We set the length of the sliding window to be 50 min-
utes (100 points at the current granularity), and slide the
windows for every 25 minutes (50 points correspondingly).
After computing the likelihood scores of the template model
for individual windows, we select the top windows with
likelihood scores above a threshold as training signals forthe
re-estimation purpose.

We apply the “ detect and re-estimate” procedure for
refrigeratorandcloth dryeron the signals from 6 houses in the
REDD data set. The estimation results are reported in Table
IV. It is worth noting that, since we model the state duration
distribution as a discrete Gaussian function, for some cases, we
obtain Gaussian mixtures forP (d) with multiple centers. We
report all these centers of mixtures in Table IV. The Gaussian
mixtures actually give better estimations of the state durations
than a single Gaussian density function, since some states of a
certain appliance might have different durations. In addition,
except house1 and house3, there are no valid cloth dryer
signals in other houses.

As mentioned above, there is no reliable ground truth for
the REDD data set, so that we manually calculated the means
of power demands for all the devices as ground truth. Since
it is hard to manually determine the duration distributions,
we didn’t report ground truth in the table. To verify the
performance of the proposed method, we plot the detected
signals of the refrigerators and cloth dryers from individual
houses, along with the estimated state duration distributions
in Fig.8. By manually examining the signals, we can see that
the estimation results listed in Table IV are reasonable forthe
home appliance load modeling purpose.

2) Experiments on the Energy Aware Data:The Energy
Aware data is collected by the nerioTMsystem monitoring
one apartment in Vancouver. There are around 10 appliances
running in the apartment and several major appliances are sub-
metered. To simulate the low frequency real power signals
that we can usually access through smart meters, here we
only use the aggregated whole-home real power signal and
down-sample it to 1

30 Hz (1 reading per 30 seconds) in
our experiments. We follow the same experiment protocol
as in the previous section, and perform “detection and re-
estimation” for the refrigerator and the dryer as AOI’s. Forthe
refrigerator, the estimated̂µ = (0, 114.73), and for the dryer
the estimated̂µ = (0, 3786.7). The detected signals of the
refrigerator and the dryer and their corresponding estimated
duration distributions are shown in Fig. 7.
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Fig. 7: Detected signals and corresponding estimated duration distributions for Energy Aware data. Y axis is power in Watts,
and X axis is time in a unit of a half minute.

House ID Refrigerator
µ µ̂ d̂µ

1 (0, 187.90) (0, 180.56) ((17, 39, 57), 19)
2 (0, 243.26) (0, 243.08) ((56, 64, 68, 100), 38)
3 (0, 122.23) (0, 114.26) ((37, 50), (25, 28, 34))
4 (0, 113.67) (0, 111.40) ((80, 84), 44)
5 (0, 137.29) (0, 138.72) ((76, 95), 33)
6 (0, 153.26) (0, 151.17) ((29, 35, 39, 45), 37)

Cloth Dryer
µ µ̂ d̂µ

1 (0, 1646.51) (0, 1511.96) ((1, 10), 2)
3 (0, 2229.74) (0, 2240.87) (2, 3)

TABLE IV: Estimation results on the REDD data set.µ
denotes the ground truth of the mean of power demand, and
µ̂ denotes the estimated value. And̂dµ denotes the estimated
mean of duration distribution.

IV. CONCLUSION

In this paper, we tackle the appliance load modeling prob-
lem from aggregated smart metered data by propose a Explicit
Duration Hidden Markov Model with Differential observations
model and a specialized forward-backward inference and
estimation algorithm. The proposed method can successfully
model the state durations and overcome the problem caused
by “aggregating effect”. We demonstrate the effectivenessof
the proposed method on synthetic data. The estimation results
on real data, the REDD data set, show that the proposed
EDHMM-diff model can be a promising solution for home
appliance load modeling when only observing aggregated real
power signals.
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Fig. 8: The REDD data set: Detected signal fragments and corresponding estimated state duration distributions for different
appliances, where house1 refrigerator: (a)(b), house1 dryer: (c)(d), house2 refrigerator: (e)(f), house3 refrigerator: (g)(h),
house3 dryer: (i)(j), house 4 refrigerator: (k)(l), house5 refrigerator: (m)(n), and house6 refrigerator: (o)(p). Y axis is
power in Watts, and X axis is time in a unit of a half minute.


