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Framework for One-Shot Image Recognition
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Abstract—One-shot recognition has attracted increasing atten-
tion recently, inspired by the fact that human cognitive systems
could perform recognition tasks well provided only one or a
few labeled training samples, in contrast to the conventional
object recognition systems that require a large number of labeled
training images. One-shot recognition is a visual classification
task, where only one training sample is available for each object
category in the target test domain, with the help of prior-
knowledge data from the source domain. In this paper, we
tackle this challenging one-shot recognition problem under a
more exciting setting by using only unlabeled images as prior-
knowledge, which requires less labeling efforts than previous
works which adopt fully labeled data and/or a sophisticated
attribute table designed by human experts. We propose a
novel unsupervised hierarchical feature learning framework to
learn a feature pyramid from the prior-knowledge domain. The
proposed feature learning method also could be applied across
multiple feature spaces. Furthermore, we propose using pyramid
matching kernels to combine multi-level features. Examining the
“Animals with Attributes” and Caltech-4 data sets in our one-
shot recognition setting, we show that the proposed unsupervised
feature learning approach with very limited information could
achieve comparable performance with that of supervised ones.

Index Terms—object recognition, deep structure, hierarchical
feature learning, Dirichlet Process, feature combination, pyramid
matching

I. I NTRODUCTION

Object recognition using computer vision methods has gone
through considerable progress during the last decade, including
methods based on low level features (e.g., Scale-InvariantFea-
ture Transform(SIFT) [1], Speeded Up Robust Feature (SURF)
[2], pyramid Histogram of Oriented Gradients (pHOG) [3],
and Self Similarity [4]) and specific designed machine learning
techniques. Numerous papers [5] have shown that recognition
accuracy generally increases as the number of training samples
per category increases. However, a large number of labeled
training samples might not be feasible in practice.

However, there are significant evidences that human beings
can perform category-level object recognition in a more effi-
cient way, by learning novel concepts from only one or a few
exemplars. Motivated by such recognition ability of human
cognitive systems, “one-shot” recognition [6], where the sys-
tem is given only one training sample for each object category,
has attracted increasing research attention very recently. In
the computer vision community, theone-shot recognition
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Fig. 1. One-shot recognition framework: Only one training image with label
is provided for each category in the target domain. The prior-knowledge
domain contains images from categories that are different from the target
categories. Unlike previous works which usually use labeled images and the
designed attribute-table, we only use unlabeled images in the prior-knowledge
domain.

task consists of data from two domains: the target domain
and the prior-knowledge domain. The target domain, where
we actually perform the one-shot classification, consists of
data fromtarget categorieswith only one training sample in
each category. It is assumed that the prior-knowledge domain
consists of data from categories that aredifferent from the
target categories. Based on previous works [6]–[9], as shown
in Figure 1, the one-shot recognition procedure generally
contains two major components: 1) feature learning in the
prior-knowledge domain, and 2) supervised classification in
the target domain with only one labeled training sample per
category.
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Since there is only one exemplar for each category in the
target domain, a standard classifier (e.g. Nearest Neighbor
[8], Naive Bayesian [7] and Support Vector Machine (SVM)
[10]) is usually chosen for the supervised classification step.
Previous methods for one-shot recognition [6]–[9] are different
mainly in the settings of the feature learning step in the prior-
knowledge domain. [7] uses label information for all images
from the prior-knowledge domain, along with a sophisticated
attribute table designed by human experts. [8] doesn’t use
any manually designed attributes, but it still relies on the
fully labeled images. This similar setting was also adopted
by a recent work [9]. Although considerable progress has
been achieved by the methods mentioned above, the required
side information (e.g., the large number of class labels and
the manually designed attribute table) in the prior-knowledge
domain can be difficult to acquire in practice. Recalling the
original motivation mentioned earlier that human cognitive
systems are able to adapt useful information from prior-
knowledge without the help of such side information, we
propose using only theunlabeled images as prior-knowledge,
as illustrated in Fig 1.

To intuitively justify that the proposed setting of using
unlabeled images as prior-knowledge for one-shot learning
is feasible, in Figure 2, we take a “zebra-horse” problem as
an example. It is a simple task of classifying a test image
into category “zebra” or “horse”. If we know the concept
of “striped” texture pattern, we can easily distinguish zebras
from horses by generating this classification rule. If we could
learn this “striped” pattern from the “ zebra-horse” data set,
we can also use this simple classification rule to distinguish
tigers from leopards. From this example, we believe that such
meaningful features are shared among relevant categories and
can significantly benefit category-level recognition. There are
evidences [11] showing that human beings can learn from
unlabeled datathrough manifold regularization, indicating
that human beings can learn more meaningful features (for
category-level recognition) from daily experiences. In the
zebra-horse example, it is desirable to learn the “striped”
feature (and other abstract attributes) from unlabeled images
of zebra and horse. Therefore, how to learn the meaningful
features is a challenging but valuable task.

Fig. 2. The animal pairs, zebra and horse, and tiger and leopard, can be
classified by the “striped” pattern.

Since many low-level visual descriptors (e.g., SIFT) have

already showed good discriminative power in visual recog-
nition tasks, we plan to incorporate the advantages of these
handcrafted low-level features. In this paper, we formulate
feature learning from prior-knowledge as a latent mixture
modeling problem, which is to learn mixture components over
the low-level descriptors as more meaningful features from
unlabeled images. We propose using Hierarchical Dirichlet
Process (HDP) [12] for this purpose. Since the feature learning
process is actually a clustering operation on the histograms
of base features, we call it the HDP-encoder which can
encode low-level features’ histograms into higher level feature
representations automatically, as explained later in Section
III-D and Figure 7.

Now suppose we have the HDP-encoder and its output is
also a histogram vector based on the higher level features. We
assign the low-level descriptor aslevel− 0 (L0) and the new
features aslevel− 1 (L1). From WordNet [13] in the natural
language processing community, a large lexical database of
English, we note that human language has a hierarchical
structure to describe objects and events from holistic aspects
to details. Also, in the object recognition community, spatial
pyramid matching [14] shows the matching power of “coarse
to fine” in the 2-D image spatial domain. Inspired by the
hierarchy observed in human language and in image spatial
pyramid subdivision, we propose constructing a deep structure
of the feature pyramid by stacking the HDP-encoders layer by
layer, where each layer has a unique “describing resolution”.
The details will be explained in Section III-D (Figure 7) and
Section IV-C (Figure 10). From top to down, the pyramid
provides image representations from “coarse to fine”, wherea
higher level captures more “macro” information while a lower
level captures more “detail” information. It is worth noting that
HDP-encoders can be stacked across feature spaces (e.g., the
texture-L2 feature may be learned from SIFT-L1 and SURF-
L1 features). The joint feature vectors could be viewed as
histograms generated from a large joint dictionary.

Based on the obtained feature-pyramid, how to transfer such
rich descriptions into classification power is our next concern.
Similar to spatial pyramid matching [14], we choose to use
weighted summation of intersection kernels to combine the
features at different levels. In addition, since the proposed
HDP-encoder could also model the latent components across
different feature spaces, we can learn a single feature thatcan
capture information from multiple lower levels of featuresand
is sufficiently compact for real world applications. Therefore,
the proposed feature learning algorithm can also be viewed
as a novel feature combination method. In summary, the main
contributions of this paper are as follows:

1) We propose a novel feature learning algorithm based on
HDP modeling, which can encode low-level image de-
scriptors into a high level feature vector from unlabeled
images in the prior-knowledge domain, as illustrated in
Section III-D (Figure 7).

2) We propose a deep structure for feature learning by
stacking the HDP encoders to learn a feature pyramid
with multiple “describing resolutions”, as illustrated in
SectionIII-D (Figure 7) and Section IV-C (Figure 10).

3) We evaluate the proposed unsupervised feature learning
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framework on one-shot image recognition tasks and
show comparable performances to that of previous su-
pervised feature learning methods [7]–[9], [15].

4) We evaluate the proposed framework on conventional
multi-shot tasks and show the recognition improvements.

In the remainder of this paper, Section II provides a brief
review of previous work on one-shot recognition and feature
combination. Section III describes the proposed unsupervised
hierarchical feature learning framework. Section IV demon-
strates the performances of the proposed method on real data
sets. Section V concludes the paper.

This paper expends upon our conference paper [10], in
which we investigated learning a high level feature from a
single type of local descriptor. In this paper, we propose a
novel deep structure for feature learning based on multiple
types of local descriptors and propose a new feature combina-
tion scheme using feature pyramid and averaging kernels. We
also conduct more experiments.

II. RELATED WORKS

Compared with the conventional multi-shot visual recog-
nition, there has been relatively less work in the area of
one-shot recognition. The concept “one-shot learning” was
first introduced in [6]. [6] propose a Bayesian framework
with a class prior learned from labeled prior-knowledge. [7]
tackles the challenge by incorporating human specified high
level attributes, where a number of supervised classifiers
are used to associate bag-of-feature representations withthe
binary attributes. Their proposed cascade recognition system
provides the state-of-art recognition accuracy on the “Animal
with Attributes” data set. To learn the semantic attributes
automatically from the prior-knowledge data, a nonlinear
mapping based method is used [8] to learn a mapping function
by optimizing the discriminative power of the intermediate
representation, where the mapping function can be viewed
as a projection from the original feature basis onto higher
level latent attributes. Their results on multi-class one-shot
recognition are better than the simple naive Bayesian method
in [7]. [8] still requires a large number of labeled images
as prior-knowledge. Later, similar to the setting in [7], the
work in [9] focuses on the attributes used in the attribute table
and designs a better knowledge transfer scheme by modeling
the attribute priors. [9] can be considered as a better way of
associating image features with the manually designed binary
attributes.

There are several research works in other areas which
emphasize weak supervision, not specific to one-shot learning.
[16] exploits side information from pairs of object images
labeled as “same” or “different” to learn a metric for measur-
ing similarity between unseen object images. Metric learning
approaches like [17] require at least weak supervision on
the prior-knowledge data, which cannot be obtained in our
problem. So far, the closest work to our paper is self-taught
learning [18], which uses sparse coding to learn a set of
bases for the linear combination to approximate the image
data in the prior-knowledge domain. The weights of the bases
are used as features to represent images. In [18], sparse

coding is performed on image pixel patches and cannot be
applied directly to the discrete space of the histogram of
low-level features (in the bag-of-feature representation). By
contrast, our proposed method is based on the handcrafted
image descriptors and thus it is suitable to learn a higher level
feature without losing the nice property of low-level features.
Another area in machine learning that seems be related to
our one-shot problem is semi-supervised learning (SSL) [19]–
[21], where unlabeled data are used to improve the weakly
supervised classification tasks. As we stated in Section I, one-
shot recognition generally contains two separated components:
1) feature learning in the prior-knowledge domain, and 2)
supervised classification in the target domain with only one
labeled training sample per category. Since there are no labeled
images in the prior-knowledge domain in our setting, there
is no room for semi-supervision in the prior-knowledge data.
In addition, it is not feasible to pool the unlabeled prior-
knowledge data and target one-shot training data together
to run a SSL method during the classification. Usually SSL
methods [19], [20] assume that the unlabeled training data
come from the same categories as the labeled training data,
while it is not true in our one-shot recognition setting where
the images in the prior-knowledge domain generally come
from categories that are different from the categories in the
target domain.

To our knowledge, this paper is the first work that attempts
to learn a deep structure of the feature pyramid based on low-
level image descriptors in the area of one-shot recognition.
Note that the idea of describing an object image in a “coarse
to fine” way has a long history, also reflected in the design
of low-level descriptors. [14] extended the pyramid matching
idea [22] to the spatial domain by matching the feature points
in different spatial subdivisions. Since the proposed feature
pyramid provides multiple “describing resolutions” whichare
similar to the “spatial resolutions” in [14], we will adopt the
weighted intersection kernels to combine different features
learned in the feature-learning step.

III. T HE PROPOSEDMETHOD

In this section, we will first formulate our unsupervised
feature learning problem for unlabeled prior-knowledge data,
then describe the proposed feature combination method and
the supervised classifier for one-shot recognition. For the
unsupervised feature learning step, we propose using a Hierar-
chical Dirichlet Process. By wrapping up the feature learning
process into the HDP-encoder, we propose a deep structure to
construct the feature pyramid in two ways: One emphasizes
the recognition performance, and the other emphasizes the
efficiency and compactness of the learned features. For the
supervised classification in the target domain, we present how
to incorporate intersection kernels and the average kernelto
combine all features in the pyramid, and then a standard
Support Vector Kernel Machine is used for classification.

A. Problem Formulation

We denote the data set in the target domainT as XT ,
with data points {x1, x2, . . . , xnT

}, and the data set in
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the prior-knowledge domainP as XP , with data points
{x̃1, x̃2, . . . , x̃nP

}. The data inXT comes fromM categories
CT = {c1, c2, . . . , cM}, and the data inXP comes from
categoriesCP = {cM+1, cM+2, . . . , cS}. It is worth noting
thatCT andCP are disjoint, which makes one-shot learning
a problem different from semi-supervised learning. In one-shot
recognition tasks, the training data fromXT is XtrainT

with
category labelsYtrainT

. The prior-knowledge data is denoted
as XtrainP

without corresponding category labels. We want
to learn latent features based onXtrainP

, and to project the
target training dataXtrainT

into the learned feature space,
which is denoted aŝXtrainT

. At last, a supervised classifier is
trained on{X̂trainT

, YtrainT
}. In the testing phase, the trained

classifier is used to predict the labels of projected test data
X̂testT to get Ypredict. The framework can be described by
major steps in Table I, where step 1 is described in Section
III-B and Section III-D, and steps 2 and 4 are described in
Section III-C and Section III-E, and steps 3 and 5 are described
in Section III-F.

Algorithm 1 One-shot Recognition Framework
1: HDP-encoder ← HDP modeling onXtrainP

,
2: X̂trainT

← ProjectXtrainT
onto the latent feature space

using HDP-encoder,
3: Classifier ← Train a SVM on{X̂trainT

, YtrainT
} ,

4: X̂testT ← ProjectXtestT onto the latent feature space
using HDP-encoder,

5: Ypredict ← Predict the labels of̂XtestT usingClassifier.

TABLE I
MAJOR STEPS FOR THE PROPOSED ONE-SHOT RECOGNITION SYSTEM.

Furthermore, we briefly discuss data representation in gen-
eral object recognition problems. A standard way to represent
object images is to use the bag-of-feature model, which was
originally borrowed from the document modeling area. In the
bag-of-feature model, the low-level image descriptors serve
as visual words, a codebook or dictionary is computed by
clustering the total samples of visual words, then images are
represented by the occurrence histograms of the visual words
in the dictionary. We useV = {w1, w2, . . . , wi, . . . , wd} to
denote the dictionary with vocabulary sized, wherewi means
the ith visual word. For an imageI, we use its histograms
of the dictionary visual wordsh = (h1, h2, . . . , hi, . . . , hd)
to represent it in the bag-of-feature model, wherehi means
the occurrence frequency ofwi in the imageI. The histogram
vector is based on the low-level features and can be used as
training and testing data in classifiers. Considering that each
image is represented by a histogram vector, our goal here is
to learn a higher level feature by fitting a mixture model to
the grouped feature data (i.e., histograms of the images).

Let us denote the L0 level feature dictionary asV0 =
{w1, w2, . . . , wi, . . . , wd} and the L1 level feature dictionary
as V1 = {z1, z2, . . . , zi, . . . , zl}. Here a higher level visual
word zi may be a mixture component ofwi’s with different
proportions. We could see that a low level feature word
may belong to different higher level features with different
probabilities according to its group statistics. Sincewi’s are
exchangeable across different groups, we also needzj ’s to

Fig. 3. The blue circles indicate local patches which the low-level descriptors
are generated from, and the squares are local clusters of descriptors within
each image. Those two red squares linked by a dotted line belong to the same
global cluster across image groups.

be shared among all groups. Through the feature learning
method, we could obtainp(zj |wi), the probability that a low-
level feature belongs to a higher level feature. We also can
obtain the new histogram of the imageI based on the L1
dictionaryV1 by normalizing the posteriorp(zj|I).

We therefore need a method that could solve the mixture
modeling problem from one lower level to the next higher
level. Since the new features are homogeneous with the lower
level ones they are learned from, it is desirable to be able to
apply the feature learning method layer by layer to construct
a feature pyramid. We propose using Hierarchical Dirichlet
Process (HDP) [12] as the feature encoder in the proposed
unsupervised feature learning approach. We will explain our
choice of HDP and describe the details of HDP shortly.

B. Hierarchical Dirichlet Process Mixture Model

Our idea is to assemble related descriptors (lower level
features) into mixture components as higher level features.
In Fig 3, the blue circles indicate local patches which the
low-level descriptors are generated from, and the squares are
clusters on the descriptors as higher level features. Sincewe
use the bag-of-feature representation, we choose the latent
topic model in the document modeling community to find the
latent mixture components. After comparing with parametric
latent topic models such as Latent Dirichlet Allocation (LDA)
[23] and Probabilistic Latent Semantic Analysis (pLSA) [24],
we adopt Hierarchical Dirichlet Process (HDP), a nonpara-
metric generative model, for our feature learning task. As an
infinite mixture model, HDP provides a way to sample an
unbounded number of latent mixture components for grouped
data, which means HDP can find the number of the mixture
components and the data points related to each component
automatically. This property is highly desirable for our feature
learning task, since there is no easy way to predetermine the
number of mixture components. Although Dirichlet Process
(DP) is also a nonparametric infinite mixture model and is
easier to sampling, we don’t choose DP because DP is suitable
for mixture modeling in non-grouped data (all the data in
a single group), but can’t be applied to grouped data. As
illustrated in Fig 3, the squares connected by the dotted line
indicate the same latent component (“striped pattern”) shared
by two individual groups. In contrast to DP, HDP has the
clustering property to model the latent components shared
among groups. Before describing the details of HDP, we first
define some notations:
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Fig. 4. The graphical model of HDP with auxiliary variables.xji is
the ith observation (visual word) in groupj ( image j), and zji is the
mixture component indicator associated withxji. πj is the prior distribution
on mixture components, which follows a Beta distribution controlled by
the concentrating parameterα and the stick-breaking random variableβ. β
follows a Beta distribution controlled by the parameterγ. θk controls the
distribution over the observationxji andH is the Dirichlet Prior distribution
on θk.

Fig. 5. Illustration of the clustering property of the Chinese Restaurant
Franchise [12]. Tablesψ’s, as the local clusters of customersθ’s, are linked
by dishesφ’s to form global clusters across the restaurants.

1) A feature dictionary V at a low-level.
V = {w1, w2, . . . , wd}, where each entry is a
dictionary visual word.

2) An image is a group of visual feature data and rep-
resented by orderless visual words denoted asxj =
(xj1, xj2, . . . , xjN ), wherexji is corresponding to an
instance ofith visual word in thejth image. Note that
although we use bag-of-feature histogram to represent an
image, thexji here is the indicator for certain dictionary
word in V, not the frequency.

We represent an image as a group of orderless visual
words, as defined in the bag-of-feature model. We assume
that there exist latent mixture components corresponding to
clusters of low level visual words with related attributes.We
also assume that such latent mixture components are shared
among different images. We therefore need to study the latent
components and the component memberships of the visual
words. In order to model the images with better describing
ability, we construct a new visual dictionary based on the
learned latent components, and encode the images with the
new dictionary. To serve this learning purpose, we use HDP

to model the unlabeled images in the prior-knowledge domain
in an unsupervised way. The graphical model of HDP with
auxiliary variables is showed in Fig 4. In HDP model,xji

means theith visual word in imagej, zji is the indicator
variable (index) associated with a mixture component andzji
has discrete values on{1, 2, . . .}. θ is the factor associated
with the distribution ofxji given eachzji. Referring to Fig 4,
we now show how to generatexji for imagej.

1) Sampleβ ∼ GEM(γ), where GEM is a distribution
designed from stick-breaking construction of Dirichlet
Process:

β
′

k ∼ beta(1, γ), βk = β
′

k

k−1
∏

l=1

(1 − β
′

l ),

β = (β1, β2, . . . , β∞).

(1)

2) Sampleθk from the Dirichlet prior’s base distribution
H .

3) Generate the groupj (imagej) by the following steps:
a) Sampleπj from

πj |α, β ∼ DP (α, β) by the construction:

π
′

jk ∼ beta(αβk, α(1 −

k
∏

l=1

βl)),

πjk = π
′

jk

k−1
∏

l=1

(1− π
′

jl).

(2)

whereπj = (πj1, πj2, . . . , πj∞).
4) Givenπj , generatexji by the following steps:

a) Sample component indicatorzji from a multino-
mial distributionπj : zji|πj ∼ πj .

b) Samplexji given zji and θk from a multinomial
distributionF (θzji ): xji|zji, θk ∼ F (θzji ).

To estimate the HDP model, among those Markov Chain
Monte Carlo Sampling schemes, Chinese Restaurant Franchise
(CRF) is probably the most intuitive one, which also can
illustrate the clustering property of HDP over grouped data.
Before going into details of CRF, we first introduce the CRF
metaphor.

In CRF, there are multiple restaurants with an unbounded
number of tables. A customer comes into a restaurant and
chooses a table to sit at, and there is a shared menu across
the restaurants and one dish is ordered from the menu by
the first customer who sits at that table. Tables within each
restaurant play the role of local clusters within one group,
over the customers sitting at them. The dishes shared across
the restaurants are used to link all the tables together to get
mixture components over all data points in different groups.
Table II shows the notations and the process of CRF.

As an analogy to the CRF model in Table II, in our one-shot
recognition problem, we treat each image as one restaurant,a
visual word in that image as customerxji coming in and a
local cluster (within the image) as tabletji wherexji sitting
at. To link the tables in different restaurants, we use dishkjt
serving at tablet in restaurantj as the indicator of global
mixture component shared across all images. The distributions
of tji andkjt given previous random variables are given here:
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Chinese Restaurant Franchise

θji : the ith customers in restaurantj. φk : dishes in the global menu.ψjt : the dish served at tablet in restaurantj.
tji : the index of theψjt associated withθji. kjt : the index ofφk associated withψjt

The metaphor will be:
customeri in restaurantj sits at tabletji, whereas tablet in restaurantj serves dishkjt.
njtk : the number of customers in restaurantj at tablet eating dishk.
njt. : the number of customers in restaurantj at tablet.
nj.k : the number of customers in restaurantj eating dishk.
nj.. : the number of customers in restaurantj.
mjk : the number of tables in restaurantj serving dishk.
mj. : the number of table in restaurantj.
m.k : the number of tables serving dishk.
m.. : the number of tables occupied.
Initialization: customeri = 1 enters the restaurantj and sits at table 1, and orders dish 1.
θj1 = ψj1, nj11 = 1,mj1 = 1

For i = 2, ...,

customeri sits at table

{

t with probability
njt.

i−1+α0
, for i = 1, 2, ..., nj..

nj.. + 1 with probability α0
i−1+α0

, for new table

table t serves dish

{

k with probability m.k

m..+γ
, for k = 1, 2, ...,m..

m.. + 1 with probability γ

m..+γ
, for new dish

TABLE II
PARAMETER DETAILS AND THE SAMPLING PROCEDURE OF THECHINESERESTAURANT FRANCHISE SCHEME.

tji|tj1, . . . , tj(i−1), α,G0 ∼

Tj
∑

t=1

njtδtji=t + αG0, (3)

kjt|k11, k12, . . . , k21, . . . , kjt−1, γ ∼
K
∑

k=1

mkδkjt=k + γH.

(4)
whereG0 ∼ DP (γ,H). Equations (3), (4) have the same
meaning as Table II, which is also the guidance for us to do
sampling for HDP. Note that the number ofkjt variables is
not fixed by the algorithm, which is an important property
of infinite mixture model that the mixture component space
is infinite. The CRF also illustrates the clustering property of
HDP, as shown in Fig. 5. After modeling the local clusters
(tables) in images (restaurants), HDP also models the global
clusters across all groups using table specific dishes. Finally,
the dishkjt indicates the cluster associated with customers
xji’s sitting at the tabletjt, which is the higher level feature
we want to model.

Sampling t: According to Equations 3 and 4, the likeli-
hood due toxji given tji = t for some previously usedt
is f−xji(xji|θkji

), where f−xji(xji|θkji
) is the conditional

probability of xji given all data points except itself. The
likelihood for tji = tnew can be calculated as :

p(xji|t
−ji, tji = tnew , k)

=

K
∑

k=1

m.k

m.. + γ
f−xji(xji)|θkji

+
γ

m.. + γ
f−xji(xji|θnew).

(5)

Thus the conditional distribution oftji is:

p(tji = t|xji, t
−ji, k)

∝

{

n
−ji
jt. f

−xji(xji|θkji
) if t previously used

αp(tji = t|xji, t
−ji, k) if t = tnew

. (6)

If the sampled value oftji is tnew, then we need to assign
a global cluster to thistnew . The probability forkjtnew is:

p(kjtnew = k|t, k−jtnew

)

∝

{

m.kf
−xji(xji|θkji

) if k previously used

γf−xji(xji|θknew
) if k = knew

. (7)

If some tablet becomes unoccupied during the updating oftji,
we may delete the correspondingkjt from the data structure. If
the result of deletingkjt some mixture componentk becomes
unallocated, then we delete this mixture components as well.

Sampling k: Becausekjt determines the component mem-
bership of all the data points in tablet, the likelihood by setting
kjt = k is given byf−xji(xji|θkji

), so the probability ofkjt
is:

p(kjt = k|t, k−jt)

∝

{

m.kf
−xji(xji|θkji

) if k previously used

γf−xji(xji|θknew
) if k = knew

. (8)

Following the sampling scheme above, givenzji = kjt, we
can updateF (θzji ) in Fig. 4 for imagej.

C. New Feature Representation

After modeling HDP over the prior-knowledge data, we
now obtain the likelihoodp(wi|zk, Dprior) and the probability
p(zk|wi) for connecting latent components with the dictionary
visual words. To find the representations of images based on
the latent components, we need to computep(zk|Ij) for thejth
image. Recall that the histogram for imageIj based on visual
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dictionaryV is hj, and we havehji = p(wi|Ij). According
to the Bayesian rule, we have

p(zk|Ij) =
∑

wi∈Ij

p(zk|wi)p(wi|Ij), (9)

wherep(wi|Ij) corresponds to theith dimension of the nor-
malized bag-of-feature histogram, i.e. hji

∑dj
s=1 hjs

. We define

fk(hj) ≡ p(zk|Ij) to map the raw feature vectorhj =
(hj1, hj2, . . . , hjdj

) to the higher level representationF(hj),
where F(·) = (f1(·), f2(·), . . . , fk(·), . . . , fdj

(·)), for j =
1, 2, . . . , N . Supposehj is the bag-of-feature histogram repre-
sentation based on visual dictionaryVl, the new representation
F(hj) is actually the normalized bag-of-feature histogram
based on the next level dictionaryVl+1, where each entry is
a latent mixture component learned from HDP modeling. We
call F(·) the HDP-encoder.

D. Hierarchical Feature Learning

In this section, we will present the hierarchical feature
learning structure based on the HDP unsupervised feature
learning model described in previous sections. Fig 7 shows
the construction process of multiple-level features basedon a
single type of low-level features.

To motivate the proposed structure, we first review the
spatial pyramid matching scheme [14]. In spatial pyramid
matching, as shown in Fig 6, the two-dimensional image space
is divided into sub-images equally, then the sub-images are
treated as separate channels to compute the feature match-
ing at each level. Experimental results show that this spa-
tial pyramid construction yields improvements in similarity
measurement using intersection kernels. Since the bag-of-
feature representation treats the visual vocabulary features
orderless, the improvement introduced by such multiple spatial
histogram resolutions is intuitive: It actually takes the location
information of feature points into consideration. In this paper,
we propose a similar solution in the discrete feature space:
We construct a multi-layer feature space where each level
consists of features with different “describing resolutions”.
For example, in the “zebra-horse” problem, the “stripped”
pattern has higher level of “describing resolution” than “black”
and “white”, since we can describe certain areas as “black”
or “white”, while only a structure with repeating lines and
alternative color areas in between could be called “stripped”.
A lower level feature captures local characteristics of an image
while a higher level feature describes properties related to
certain structure of the object or image background.

Incorporating the idea of multiple “describing resolutions”,
we now present how to use HDP-encoders to build the feature-
pyramid. Fig 7 reveals that the feature learning method is
actually a clustering process on the previous lower level, where
L0 denotes the bottom level andL1 denotes the next higher
level, and so on. In contrast to spatial pyramid subdivisions
where higher levels have more details, our method provides
more informative descriptions at higher levels. In our feature
pyramid, from bottom to top, the descriptions focus from local
details to regions, then to objects. Similar to spatial pyramid,
we believe that our multiple “describing resolutions” could

Fig. 6. Illustrations of spatial pyramid subdivisions [14]and the weights for
each level of resolutions.

Fig. 7. Construction of the feature pyramid based on a singletype of features
using HDP-encoders. Each HDP-encoder is obtained by Equation (9) from
HDP modeling on the lower level features.

provide a more comprehensive similarity metric, which can
benefit the classification later. In details, Fig 7 shows how
the HDP-encoders work under the pyramid structure based
on a single type of features. In Fig 7,HDPL0−L1 means
the transformation function learned fromL0 features using
Equation (9) based on HDP modeling, and thisHDPL0−L1

is used to encodeL0 features intoL1 features. Recursively, we
learn the functionHDPL1−L2 from L1 features and encode
them into L2 features and so on. Note that with applying
the HDP-encoder multiple times, we reduce the feature space
to a low dimensional one. In practice, we stop the multiple
HDP-encoder process once the dimensionality of the new level
feature is below 100, to ensure the discriminative power of
each level. It is worth noting that we estimate the stacked
HDPs layer by layer in a greedy way, under the assumption
that features at each layer follow a multinomial distribution.

So far the feature learning we described is based on a
single type of image descriptor (e.g., SIFT). Is this enough?
Empirically conducting feature learning on one individual
image descriptor cannot capture all useful information. For
instance, both color and texture information can be important
for classification tasks and should be learned into joint higher
level features. It is therefore important that we can jointly
model different image descriptors (e.g., SIFT from gray scale
images and Color Histogram from color images). We propose
learning a higher level feature vector from multiple types of
low-level descriptors: To couple the feature spaces together in
HDP modeling, we concatenate different feature vectors into a
long vector and then apply HDP, which is equivalent to encode
images with a large joint dictionary. In practice, we may need
to design a specific learning structure for a particular task, by
analyzing the features provided. Fig 10 in Section IV-C shows
two possible feature learning procedures.
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E. Feature Combination

In this section, we will discuss how to combine features
learned from above sections into the classifier’s input data.
One reason why object recognition is a challenging task is
that images within the same class usually have high intraclass
variability. The low-level image descriptors are designedto
be invariant to the variations within classes. At the same
time, the descriptors are desired to have discriminative power
for different classes. There is no single descriptor that can
satisfy both requirements for all object classes, thus adaptively
combining different types of features is preferred. Basically,
we want to combine descriptors based on color, shape and
texture information.

In this paper, we are facing two kinds of feature combination
problems: 1) How to combine all types of features at the same
level; and 2) how to combine features at different levels? For
the first question, the described crossing-space HDP modeling
can be a solution. The new higher level features learned from
concatenated spaces capture information from all lower level
features, yielding a much more compact feature space than the
original ones. However, as we mentioned earlier, since every
feature space has its unique advantages, we need to integrate
useful information as much as we can, especially for one-shot
tasks where only extremely limited information is provided.

Grauman and Darrell [22] propose pyramid matching to find
an approximate correspondence between two sets of features.
Pyramid matching works by placing a sequence of increasingly
coarser grids over the feature space and taking a weighted sum
of matches that occur at each level of resolution. In our feature
pyramid, at any level, the occurrence of the same feature in
two images is considered as a match. More specifically, for
the feature pyramid with levels0, 1, 2, . . . , L, we useH l

X(k)

andH l
Y(k)

to denote the histograms of featurek for images
X andY at levell. Then the intersection kernel for these two
histogram vectors is:

κl
(k)(HX , HY ) =

Dk
∑

i=1

min(H l
X(k)

(i), H l
Y(k)

(i)). (10)

It was shown that this histogram intersection is additive Mercer
Kernel [22]. Now let us look closely at all features at levell

of the feature pyramid. [7], [8] simply concatenate all feature
vectors into a long vector, which is equivalent to using the av-
erage kernel over intersection kernels calculated for all types of
features. [5] shows that Multiple Kernel Learning (MKL) and
its variants have the best performances on classification tasks.
However, in our one-shot recognition problem, we don’t have
sufficient training data to optimize the linear combinationof
different kernels when optimizing the classifier’s coefficients
simultaneously. Thus, we choose the average kernel here for
simplicity and good performance according to [5]. Then the
kernel function for levell is:

κl(HX , HY ) =
1

Ml

Ml
∑

k=1

κl
(k)(HX , HY ). (11)

After defining the matching kernel at each level, we put
weights on the kernel scores according to the “describing

resolutions” of different levels. Unlike the spatial pyramid, in
which finer grid has higher weights, in our feature pyramid,
intuitively higher level features have higher weights since we
believe that the features at higher levels are more meaningful
than the lower level ones with respect to objects’ character-
istics. More specifically, the low-level features have a large
proportion of noisy information, which is an important concern
in the one-shot recognition problem, and higher level features
somehow ’filter’ out unimportant information by clustering
lower level features. Later in the Caltech 4-class experiments,
we can see that the higher level feature SIFT-L1 yields
better recognition performance than the lower SIFT-L0 feature.
Therefore, intuitively it makes sense to assign higher weights
for higher level features. The weight associated with levell is
heuristically set to be 1

2L−l , whereL means the highest level.
The final kernel function for all levels in the pyramid is as:

K(HX , HY ) =
∑L

l=0
1

2L−lκ
l(HX , HY )

=
∑L

l=0
1

2L−l
1
Ml

∑Ml

k=1 κ
l
(k)(HX , HY )

=
∑L

l=0
1

2L−l
1
Ml

∑Ml

k=1

∑Dk

i=1 min(H l
X(k)

(i), H l
Y(k)

(i))

.

(12)
where the final intersection kernel is actually weighted sum-
mation of matching scores for all the dictionary words in all
feature types from all levels.

F. One-shot Recognition Decision

For one-shot recognition tasks, we first use the proposed
unsupervised structural learning method to build a feature
pyramid based on unlabeled prior-knowledge data, we then
compute the kernel matrix for the testing data in the target
domain according to Equation (12). Since [22] shows that the
intersection kernel is additive Mercer Kernel, we can directly
input our pre-computed final kernelK, as in Equation (12),
into the popular Support Vector Machine classifier to make
the classification decision.

IV. EXPERIMENTAL RESULTS

To evaluate the performance of the proposed method on one-
shot image recognition, we examine two popular, publicly-
available data sets in the area of one-shot recognition. We first
evaluate the proposed unsupervised feature learning method
on a 4-class data set which is a subset of Caltech-101, com-
paring with previous reported performances based on multi-
shot training; We then report the results on the “Animals with
Attributes” data set using two different feature learning proce-
dures (as shown in Fig 10). All classifications are performedby
LIBSVM [25] with using our pre-computed kernels or linear
kernel (in the 4-class experiment) with the parameterC = 10.

A. Data Sets

4-Class [6], [15], a subset of Caltech-101, is a data set
consisting of images from Airplane, Faces, Leopard and
Motorbikes 4 classes. Since no previous work using unlabeled
data as prior-knowledge under one-shot recognition setting, we
compare our one-shot recognition results with [15] which used
50 training samples in classifications. Airplane, Faces, Leopard
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Fig. 8. Images from 4-class data set

and Motorbikes are used as target categories, and 30 images
from each of the remaining categories are used as prior-
knowledge data. We compute SIFT descriptors on a dense grid
of the images, every 8 pixels, to form the dictionary and vector
data. In the testing phase, we randomly select 1 training sample
from each target category, and use the remaining 29 samples
as the testing data. The experiments are repeated 10,000 times
to calculate the averaged classification accuracy.

“Animals with Attributes” data set [7] contains natural
color images of 50 animal categories. There are 30,475
images in total and six types of pre-computed features for
downloading, including RGB color histograms (CH), SIFT [1],
rgSIFT [26], PHOG [3], SURF [2] and local self-similarity
histograms (LSS) [27]. Lampert et al. extracted CH feature
vectors for all 21 cells of a 3-level spatial pyramids(1×1, 2×2,
4×4). For each cell, 128-dimensional color histograms are
extracted and concatenated to form a 2688-dimensional feature
vector. Each of the other vectors, except PHOG, is 2000-
bin bag-of-feature histogram. We didn’t use PHOG because
that its simple structure is not suitable for recursive feature
learning. Among the descriptors, SIFT and SURF provide
image gradient information, CH captures color information,
LSS serves as texture descriptor and rgSIFT is a combination
of color and local gradient information.

For one-shot recognition, we examine the same 10 tar-
get categories suggested by [7], and use the remaining as
unlabeled prior-knowledge data. We only use 30 samples
per prior-class as unlabeled training data, to achieve low
computational cost and to show the generalization ability of
the proposed feature learning method. In the testing phase,
we randomly select one training sample from each target
class and use the remaining as testing data. Therefore we
have 10 training samples and 6170 testing samples for each
independent experiment. We repeat the experiments 10,000
times to report the average classification accuracy. The 10
target testing categories are: chimpanzee, giant panda, leopard,
Persian cat, pig, hippopotamus, humpback whale, raccoon, rat
and seal (See Fig. 11).

For the conventionalmulti-shot recognition, we follow the
protocol in [7] with using50 images in each target category
for training and the rest for testing. We randomly select
the training samples in each iteration, and repeat 10,000
iterations to report an averaged accuracy. Similar to the one-
shot recognition experiments, for feature learning, we still
only use the features learned from a small subset of prior-
knowledge data, without using the training data in the target
categories. The training data in the target categories are only
used for classifier training.

Classes 50 training [15] 50 training (SIFT-L1) one-shot (SIFT-L1) one-shot (SIFT-L0)
Airplanes 94 % 89% 79 % 46 %

Faces 74 % 93% 82 % 85 %
Leopard 92 % 89% 77 % 99 %
Motorbikes 88 % 94% 93 % 68%
mean 87 % 91% 83 % 74%

TABLE III
PERFORMANCES OF ONE-SHOT RECOGNITION ON THE4-CLASSCALTECH

DATA SET.
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(b) Learned intermediate representations

Fig. 9. 2D plots of the subsets of the 4-class data set. Each color/pattern
represents a different class from the four categories.

B. Results on “4-class” data set

Based on the SIFT-L1 features learned as in Section III, we
employ the SVM classifier to perform one-shot recognition.
For the 4-class data set, the classification accuracy results are
reported in Table III, where an average accuracy of83% is
observed for SIFT-L1. We clearly note a9% improvement
from SIFT-L0. It is worth noting that the proposed one-
shot learning method yields comparable performances to the
method in [15] which is trained on 50 training samples per
class and provides an average accuracy of87%. In addition,
to show the general applicability of the proposed method, we
also report the results for SIFT-L1 with 50 training samples
per category, and the average accuracy is91% which is better
than that of [15]. It is worth mentioning that the 50 labeled
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samples per category are used in both feature learning and
classification stages in [15], while they are only used in the
classification stage in our proposed method.

To understand the feature learning process better, in Fig.
9, we visualize the raw SIFT-L0 features and the learned
intermediate (SIFT-L1) features in 2D plots using the t-SNE
technique [28]. In the plot of raw features, the testing data
points from different classes are somehow mixed, though
they seem to reveal a separable pattern by using nonlinear
classifiers. However, it is important to recall that, since we only
have one training sample per class in one-shot recognition,it
is infeasible to discover such nonlinear distribution patterns
based on one training sample without any prior assumption.
In the plot of the learned intermediate representations, it
is clear that testing data points from different classes are
well separated in the feature space, therefore even with only
one training sample available for each target class, the SVM
classifier may still be able to make correct decisions for the
testing data. The proposed feature learning based on disjoint
prior-knowledge data may have the potential to achieve a
comparable accuracy as that of the fully trained classification
method in [15], although more investigations will be needed
in the future to test on a larger number of categories.

C. One-shot Results on “Animals with Attributes”

(a) feature learning procedure 1.

(b) feature learning procedure 2.
Fig. 10. Two feature learning procedures used for examining“Animals with
Attributes”. The dotted line boxes mean that we concatenatedifferent feature
spaces together and then apply the HDP-encoder.

We perform the unsupervised feature learning on a small
subset (30 images each class and 1200 images in total) of
the 40-class prior-knowledge data. The feature pyramids are
constructed by two different procedures, as illustrated inFig
10. In the first procedure in Fig 10(a), we use the HDP-encoder
to learnL1 features from each of the 5L0 descriptors. Here
we don’t do the cross-space learning yet mainly due to the
concern of computational cost. The HDP learning fromL0
to L1 actually filters the feature spaces. We then assign 5
types ofL1 features into 2 categories, texture and color, and
perform cross-space learning to obtain anL2 “texture” feature
and anL2 “color” feature. Further, we combine the texture and

color features together to learn anL3 “All” feature. Finally,
we compute the final average kernel by Equation (12) and
perform classifications using SVM.

Alternatively, we can construct a feature pyramid following
Fig 10(b), to learn a compactL2 “Fusion-single” feature. We
compute an interaction kernel based on thisL2 feature by
Equation (10) to do classifications. Since the “Fusion-single”
feature is compact (e.g., 60 dimensions), it is possible to
be used in real time mobile applications. Also [29] designs
a fast approximate training approach to speed up the SVM
training and testing over intersection kernels. We believethat
the “Fusion-single” feature has practical advantages.

Table IV summarizes the results in one-shot recognition
tasks when employing the two feature pyramid constructions
showed in Fig 10. Note that a14.1% accuracy based onL0
features was reported by [7]–[9], where they simply concate-
nated all feature vectors into a long vector and used PCA
to get a lower dimensional representation for classification.
In our experiments, we use average intersection kernels and
get a better accuracy as17.8%. As we can see from the
table, employing feature learning from L0 to L1 can provide
a good performance improvement, i.e. from17.8% to 20.0%.
By constructing the feature pyramid, we get accuracy gains
gradually as the feature level increases. It seems that we
can achieve the best performance by constructing a 4-level
pyramid. From L0 to L0-L1-L2-L3 we observe an absolute
7.5% accuracy improvement (i.e., representing a relative im-
provement over50%). From L0-L1 to L0-L1-L2-L3 we only
observe a1.6% absolute accuracy gain. However, it is worth
emphasizing that even1.6% represents a significant progress in
one-shot recognition where the provided information is limited
and the average accuracy is generally quite low. In one-shot
recognition, the standard deviation of recognition accuracy is
usually large due to the randomness introduced by selecting
only a single training sample in each category. However we
observe a consistent improvement (more than 75% of the
trials) from L0-L1 to L0-L1-L2-L3 during the repeated 10,000
independent experiments and the improvement represented by
the pair-wise accuracy differences is statistically significant,
judged by the t-test. In addition, it is worth mentioning that
we used SIFT-L1 only and can achieve a18.3% accuracy in
our conference paper [10], and here we can further improve the
accuracy by3.3%. From Table IV, we also note that the 60-
dimensionalL2 “Fusion-single” feature can achieve a20.30%
accuracy. It suggests that the proposed feature learning method
can learn a single compact feature with good discriminative
power.

Since there are no specific algorithms designed for one-shot
recognition with using only unlabeled prior-knowledge data,
to have a feeling of the accuracy upper-bound, we compare
the performance of the proposed method with the ones using
much more prior information. Lampert et al. [7] used fully
labeled images in the prior-knowledge domain and used a
sophisticate animal attribute table designed by human experts
for each of the class. They achieve27.8% in the IAP [7] setting
and40.5% in the DAP [7] setting. Tang et al. [8] used fully
labeled data in the prior-knowledge domain, which is probably
the closest experimental setting to ours, and they reportedan
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Fig. 11. Sample images from 10 target classes in “Animals with Attribute” data set

Feature pyramid 1 L0 L0− L1 L0− L1− L2 L0− L1− L2− L3 Feature pyramid 2 L2 Fusion-single
Accuracy 14.1% [7], [8]/17.8%(ours) 20.0% 20.3% 21.6% Accuracy 20.3%

TABLE IV
ONE-SHOT RECOGNITION ACCURACY ON“A NIMALS WITH ATTRIBUTES” DATA SET WITH FEATURE PYRAMID 1 AND 2. THE RESULTS SHOWN IN

BOLDFACE ARE SIGNIFICANTLY BETTER THAN THE OTHERS, JUDGED BY A PAIRED-SAMPLE T-TEST.

average accuracy of23.7% for linear projection and27.2%
for logistic projection. We are glad to notice that under our
experimental setting which provides very limited information
compared with previous works, the proposed method can
achieve a comparable performance of21.6%, which is close
to the 23.7% accuracy obtained by using fully labeled prior-
knowledge [8].

To show the scalability of the proposed one-shot recogni-
tion method, we also conduct a 50-class recognition task as
described in [8]. Here all the testing images are still drawn
from the 10 target categories, and the training images from the
rest 40 prior-knowledge categories serve as distractors [8]. For
convenience and saving computational cost, we use a subset of
distractors in the feature learning, and the results are shown in
Table V. For the proposed method, the L0 features achieve an
accuracy of4.68%, and the combination of 4 levels of features
achieve an accuracy of5.27%. [8] reported an accuracy of
5.38% for the raw features and an accuracy of7.5% for the
logistic projection method. The accuracy difference between
the proposed method and [8] when using the raw features (L0)
could be due to the following major setting differences: We
use a subset of 40 prior-knowledge categories as distractors
for simplicity and [8] uses the entire data set; we only
use the unlabeled prior-knowledge images and [8] uses the
labeled ones. However the proposed method still shows an
improvement from4.68% to 5.27% when combining different
levels of features.

Methods Proposed Method in [8]
Accuracy(raw/learned) 4.68%/5.27% 5.38%/7.5%

TABLE V
RECOGNITION ACCURACY RESULTS OF USING RAW FEATURES AND

LEARNED FEATURES IN DIFFERENT METHODS.

Methods Raw Features [7] Feature Pyramid 1 Feature Pyramid 2
Accuracy 65.9% 71.4% 70.0%

TABLE VI
MULTI -SHOT RECOGNITION ACCURACY RESULTS ON THE“A NIMALS

WITH ATTRIBUTES” DATA SET WHEN USING RAW FEATURES IN[7] AND
FEATURE PYRAMIDS1 AND 2 IN THE PROPOSED METHOD.

D. Multiple Shots Results on “Animals with Attributes”

To evaluate the general applicability of the proposed
method, we conduct the conventional multi-shot recognition
experiments on the “Animals with Attributes” data set, and the
results are shown in Table VI. The proposed method based on
feature pyramid 1 in Fig. 10(a) achieves a71.4% accuracy, and
the proposed “Fusion-single” feature also yields an accuracy
as high as70.0%. [7] reported a65.9% accuracy in multiple
shots experiments based on 6 types ofL0 raw features. It
is noted that our feature learning process performed only on
the prior-knowledge data can improve the absolute accuracy
by 5.5% in multi-shot recognition tasks. It indicates that the
proposed feature learning method can learn a general represen-
tation and provides better discriminative power by transferring
information between the prior-knowledge and target domains.
This example shows that the usage of the proposed method is
not limited to one-shot recognition tasks. It is expected that we
could get further improvement if we perform feature learning
also on the multiple training samples in the target categories.

V. CONCLUSIONS ANDFUTURE WORK

In this paper, we tackle the problem of one-shot image
recognition and we propose a novel unsupervised hierarchical
feature learning framework to learn higher level features based
on low-level image descriptors. To construct the hierarchical
feature pyramid, we propose using Hierarchical Dirichlet
Process to perform feature learning from a lower level to a
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higher level. We also show that the HDP encoder can be ap-
plied recursively, which makes the feature learning procedure
flexible and can be customized depending on particular tasks.
Furthermore, we propose using the summation of weighted
intersection kernels and the average kernel to transfer ourfea-
ture pyramid into discriminative power. The proposed feature
pyramid construction procedure is capable of learning a single
compact feature for recognition. Our experimental results
show that the proposed feature learning framework could
benefit both one-shot recognition and conventional multi-shot
recognition tasks.

Since we could perform the HDP modeling across feature
spaces, in the future, we plan to incorporate multiple media
sources into the proposed one-shot recognition system. For
instance, we would like to add the image-associated text
descriptions into the feature learning phase.
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