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Cross-Domain Object Recognition via Input-Output
Kernel Analysis

Zhenyu Guo and Z. Jane Wangenior Member, IEEE,

Abstract—It is of great importance to investigate the domain
adaptation problem of image object recognition since now irage
data is available from a variety of source domains. To undersnd
the changes in data distributions across domains, we studyolh
the input and output kernel spaces for cross-domain learnig
situations, where most of the labeled training images are &m
a source domain and the testing images are from a different
target domain. To address the feature distribution changedsue in
the Reproducing Kernel Hilbert Space induced by vector-valied
functions, we propose a Domain Adaptive Input-Output Kerné
Learning (DA-IOKL) algorithm, which simultaneously learn s
both the input and output kernels with a discriminative vector-
valued decision function by reducing the data mismatch and rim-
imizing the structural error. We also extend the proposed méhod
to the cases of having multiple source domains. We demonstea
the ability of the proposed model to adapt across domains by
examining two cross-domain object recognition benchmark dta
sets. The proposed method consistently outperforms the thatate-
of-art domain adaptation and multiple kernel learning methods.
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Fig. 1: Example images of the same ‘bike’ category from four

Index Terms—Domain adaptation, Object Recognition, Output . .
! piat d gnit uted different domainsamazon, dslr, webcamnd Caltech256.

Kernel, Multiple Kernel Learning

. INTRODUCTION labeled (i.e., noiseless in label information), while oa tther

In traditional visual object recognition systems, a model hand, the labels for Bing images are noisy and unreliable. As
always trained based on data from the same domain as #mther example, a specific data set for cross-domain object
testing data, where the implicit assumption is that thening recognition is adopted in [3]-[5], where the images are ac-
and testing distributions are the same. However, we ofte@ fequired bydslir, webcamand from theamazorwebsite. Figure
the situations that additional data (with or without labelsl shows some example images for the ‘bike’ category from
from other similar but different domains can be available fahe above 3 domains, along with images from the Caltech256
training. How to train a model that can take benefits fromomain. As we can see, though the 4 domains are somewhat
the extra data in similar source domain(s) by overcomingmilar (i.e., representing the same object categoriéret
the side-effects introduced by domain shift is caltbainain are differences across these four domains in terms of pose,
adaptation(DA), a research topic drawing increasing researdighting, resolution, camera peculiarities and otherdest In
attentions in computer vision and machine learning fieldgality, the available data from target domain usually ceme
recently. In a domain adaptation problem, a source domainjgth no labels or with very limited label information. In the
different from, but somewhat similar to the target domaineO |iterature, the problem involving with available trainimtata
example in the text classification area is that the email spdmm target domain with no labels is referred assuper-
data sets [1] collected from different individual usersnfior vised domain adaptatigrthe problem involving with target
different domains, characterizing individual users’ prefices. training data with a small number of labels is callsemi-
One example in visual object recognition is given in [2]supervised domain adaptatiom the area of computer vision
where the Caltech-256 data set is considered as one domid multimedia, thesemi-supervised domain adaptatids
of object images, and the other domain is the collection gftracting increasing attentions, and it is also the foctis o
the results from the image search engine Bing when usitigs paper. In this paper, we tackle the domain adaptation
the category names from Caltech-256 as search queriesl Lalieblem of image object recognition that aims at efficiently
quality is a key characteristic of different domains. Altigh |everaging the labeled images from different but relateds®
the above two domains both contain images for the samgfd target domains to derive better hypothesis testingén th
object categories, the images in Caltech-256 are manuablyget domain.

) ~ Though it is intuitive to believe that extra labeled datanfro
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(a) Sample images from domaimebcam
sim(desk_chair, back_pack) > sim(desk_chair, bike).
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(b) Sample images from domaamazon
sim(desk_chair, back_pack) < sim(desk_chair, bike).

In the previous work, label datg is usually treated as
a scalar, and multi-class classification is achieved based o
binary classification by adopting one-versus-all or onesus-
one principle. The use of scalar functions as classifierssvor
well in the traditional classification tasks. However, imgtice,
we observe that the distribution shift frofy to Pg actually
results in changes in between-category similarity. Faaimse,
Figure 2 shows that the categoridssk chair and back pack
appear more similar in th&eebcamdomain, whiledesk chair
and bike appear more similar in thamazondomain. Such
between-category similarity information plays an impotta
role in multi-class classification in domain adaptationd a@n
also defines the structure of the intrinsic manifold whewe th
multi-class data points embed into. Correspondingly, dasca

Fig. 2: From left to right in each row are images fronflass label cannot capture the shift frdfa(y|x) to Pa(y[x)
categoriesback pack, deskchair, bike The proposed output correctly. Therefore, we propose modeling the class label a
kernel space analysis shows that the categadiesk chair Vectory, using the binary coding scheme(1 stands for presence
and back pack are more similar thanlesk chair and bike in and 0 stands for the absence of a class instance). Recalling
the webcamdomain, while the opposite is observed in théhe theories of functional analysis on vector-valued fioms

amazondomain. These observations are consistent with th&6], [17], we can (?onsider a multi-class classifi_er as aofect
visual inspection results. valued function with the structured output which induces a

vector-valued Reproducing Kernel Hilbert Space (RKHS). In

this case, thénput kernel space (the scalar kernel space on the

input features) of this RKHS is related to the mismatch ohdat
of the extra labeled data because of the distribution diffees distributionsPs(x) and P4(x), and theOutput kernel space
in the feature spaces across domains. Experimental résultgthe matrix kernel space on the structured output of the-func
[3], [6], [7] show that standard classifiers directly tradnen tjon) actually corresponds to between-category simiesit
the combination of the source and target domains perfoighich also contributes to a better estimationffy|x). The
poorly on the test data in the target domain, when comparggut and output kernels together form a more comprehensive
with the classifiers trained on a large number of labeled datgrne| space for vector-valued decision functions than the
from the target domain. LeP4(x,y) and Ps(x,y) denote kernel space used in [13]-[15] for scalar functions. It is
joint distributions of feature-label data from source d@mag|so more comprehensive and richer than the intermediate

and target domain respectively, whetds the feature vector gpaces introduced by linear projections [5], [9]—[12] aretric
and labely is the label. Semi-supervised domain adaptatiQgarning [3], [4].

is to use a small number of training samples frém(x, y)
and many fromP4(x,y) to build a learning model for
classification. The shift fron®4 to Ps causes troubles when
training a standard classifier. We denote the data set from
source domain as 4 = {X 4,Y4} and data set from target
domain asSi = {Xg, Ys}. In detail, the feature data points

Following the above inspiration, in this paper, we will
investigate both the input and output kernel spaces to ovesc
Nthe distribution mismatch issue caused by domain shift.evior
specmcally, we propose a Domain Adaptive Input-Output-Ker
nel Learning (DA-IOKL) algorithm for cross-domain image
object recognition, i.e., learning an separable RKHS fatae

; ; A
f{r021 two %omalns can be described fst',... »Xq, ), and valued functions (consisting of input kernel and outpunledr
X Xng S where the mismatch between the data distributions could be

In order to train a domain adaptive classifier by efficientlyaquced. The contributions of this paper can be summarized
leveraging the information from different domains, diffat 55 follows:

DA technigues have been proposed to learn a funcfica
f(xB,1S4,S5) that predicts the class label of an unseen 1) For the first time, we introduce the analysis of the
testing sample;.,; from target domain with high probability, output kernel space induced by a vector-valued decision

ps(Y = §|X = xf.,), by forcingpa(x,y) andps(x,y) to

be close. By definitionp(x,y) = p(y|x)p(x), therefore the
mismatch between distributions can be handled in terms of
p(y|x) or p(x) under different assumptions [8]. Among those,
one trend is to directly or indirectly reduce the mismatch
of data distributions across domains by projection [5]—[9]
[12], kernel analysis [13]-[15], or metric learning [3],]{4
Another trend is to combine the decision functions of défer
classifiers trained on the data from different domains t@iobt

a more powerful augmented classifier for testing data in the
target domain [2], [6], [15].

2)

function into the domain adaptation problem;

We propose a particular objective function in the DA-
IOKL model to learn the optimal input and output
kernels jointly. We adopt Maximum Mean Discrepancy
(MMD) [18] as a regularizer to minimize the struc-
tural classification error and the mismatch between data
domains, and to avoid large computational cost and
optimization difficulty, we propose a multiple kernel
form to parameterize the input kernel. In addition, DA-
IOKL also provides a vector-valued function as a true
multi-class classifier;
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labeled data from Souce  feature spacesd-distance is introduced in [7], [9], [20] for
Structural Correspondence Learning (SCL), which presamts

4 X, ebeled datafrom Terget— approximate estimation of the total variance distance eetw
B s sisnenrags WO distributions. Although this method could measure the
) shift in the feature spaces, it is hard to estimate and it ts no
{0°.C",L’} optimal parameters clear how to extend it to computer vision adaptation tasks.
X, one tosting data point Other approaches used in vision researches such as [1#], [15

DA-IOKL Training by

solving Eqn.(9) [21] employ a domain similarity measure based on MMD [18],

which is non-parametric, easy to estimate empirically dad a
flexible for the choice of kernel functions. Due to its good
performance [18] and its compatibility with kernel methpds
we adopt MMD as a penalty term over the input kernel space
in this paper.

There aretwo major categories of domain adaptation

methods based on various domain shift criteria: 1) reducing

F'bg' 3: The pr_qposed ?}A'.IolKL framework for cr?zs—&qmanghe mismatch of data distributions in the feature spaces by
object recognition. Each circle represents a set of dathjtan projections (or equivalently kernel functions or metrjcg)

size indicates the number of data points. combining decision functions trained from different donsi
In the first category, following the idea of reducing the

3) We present an efficient algorithm to solve the DA[msmatch of data distributions, the approaches proposed in

R ... 171, [9], [20], [21] aim at finding a feature space which can
IOKL. optimization prpblem. .A_\Ithough the ObJeCtIVeminimize the divergence of distributions between domains
function of DA-IOKL is not jointly convex w.r.t. all

. o based on a specific measure. In addition, [9] provides a
parameters, since it is invex [17] over the output kernﬁf

d the input k Lit 0 t eoretical analysis on the feature representation fonand
and convex over ne input kernel, it can converge to tE(?assification error. Besides these methods, within thpesod
global minimum. By adopting box constraints, we appl

Yata distributions in feature spaces, several intuitivéhos
efficient off-the-shelf optimization approaches such as P '

! re proposed for recognition purposes. [10] presents arfeat
L-BFGS-B [19] to compute the DA-IOKL solution. augmented way to construct a common feature space. Instead

We illustrate the cross-domain object recognition procegg looking for a subspace by projection, Saenko et al. [3] and

in Figure 3. We can see that a relatively smaller numbgt,;is et al. [4] propose learning a metric that can minimize
of labeled training data from the target domain is availablfe distance betweesimilar data pairs and maximize the

during training, compared with the number of labeled trni yistance betweenlissimilar data pairs across two domains,
data from the source domain. And a classifier Iearn(_ad jplntm applying a regularized metric learning model [22]. This
based on the data from both source and_ target domains is Uﬁﬁﬁroach needs to solve a Semi-Definite Programming (SDP)
to classify th_e unlabeled testing data in the target o!omapg] problem during learning subject to a large number of
For the details about DA-IOKL and the learned multi-Clasgear constraints, and thus it is computationally expemsi
classifier, please refer to Section Ill. In addition, a li$t 05nq hard to scale up to high dimensional data. It is also
major abbreviations used in this paper is given below: limited to two-domain adaptation scenarios and requir¢a da
DA: Domain Adaption ~ correspondences between two domains for better perfornanc
DA-IOKL : Domain Adaptive Input & Output Kernel Learning s} adopts a general subspace approach to learn interreediat
RKHS: Reproducing Kernel Hilbert Space feature spaces by sampling points along the geodesic of a
MMD : Maximum Mean Discrepancy Grassmann manifold formed by two different domains. More
MKL : Multiple Kernel Learning recently, [12] introduces a geodesic flow kernel to extere th

) ) _ idea from [5] and also proposes a way to automatically de-

The rest of the paper is organized as follows. Section Il sSURymine the optimal dimensionality of the subspace. Siryila

marizes previous works in cross-domain learning and géneffy] proposes finding an intermediate space where the data
multiple kernel learning. Section Il presents the propbBA-  5qints from the source domain could be well reconstructed by
IOKL algorithm. In Section IV, experiments for cross-domai the ata points from the target domain. The intermediateespa

classification are conducted on two data sets: the objCloptained by searching for an optimal linear operator and
domain adaptationfA) data set [3] and Caltech256+domaiftemoying noise and outliers simultaneously. In partidylar

adaptation ¢al+DA) data set [12]. Finally, we conclude theamong the above methods, the methods in [3]-[5], [10]-[12]

paper in Section V. are investigated for cross-domain image object recognitio
tasks. It is worth noting that most methods [5], [10]-[12] in
the first category can be used in both an unsupervised way and
The mismatch problem of data distributions was first irsemi-supervised way, since it is not necessary to havedabel
vestigated in the Natural Language Processing (NLP) coffor certain subspace methods. The small number of labets fro
munity, where intensive researches have been conductedh® target domains could further improve the performance on
handle the domain adaptation problem. To capture the shiftthe unsupervised subspace learning. In this paper, wedaclu

YV, predicted label

{d,.C.L}

X

DA-IOKL Classifier

ad L1 % o using Eqn.(11)-(13)

Il. RELATED WORK
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these methods [5], [11], [12] for comparison under the senprobability distributions should be similar if the margdina
supervised learning setting for our domain adaptationlprab distributions are shifted close to each other. Therefore, w
In the second categoryseveral methods are proposed, witlpropose learning a vector-valued function in the RKHS that
focus on the decision functions of the classifiers. [6] emplo can give a best classification performance on the target toma
the adaptive SVM to adapt the decision functiffl trained data, where we put an MMD regularization on the parametric
on the source domain into the target SVM classiffér by input kernel estimation and adopt output kernel estimation
formulatingf” = f9+Af, whereA f is trained based on dataapproach presented in [17]. Since the output kernel estmat
from the target domain. Transductive SVM [2], [24], Domairis based on the specific input kernel function, and the input
Adaptive SVM and cross-domain SVM [25], and other variantsernel function is constrained by MMD regularization, wesffir
of SVMs are also explored in domain adaptation problems ffix the input kernel function and present the topics related
defining a new decision function incorporating data fromhboto output kernel learning in Section 1lI-A, Section IlI-C dn
the target and source domains. Section 1lI-D. Section 11I-B gives a detailed analysis ore th
Since the first category of methods could yield betteéidvantage of choosing vector-valued function and how this
performances in cross-domain object recognition, we decidhoice could benefit domain adaptation. Section IlI-E prese
to follow the idea of searching for one or several subspacie whole DA-IOKL that learns the input and output kernel
to reduce the mismatch of data distributions. Recall that thogether in an alternating optimizing way. At last, Sectik
feature spaces or kernel spaces studied in the previousdwetiproposes a new domain similarity measure based on the output
[3]-[5], [10]-[12] are the spaces for scalar functions, ethi kernel matrix.
can be considered as thieput spaces for the vector-valued
functions. _Therefor_e, those methods don_’t consideﬂbg_aut . A. Background on RKHS of Vector-valued Functions
space which is highly related to multi-class classification
Instead of dealing only with data in the input space, we Let) be areal Hilbert space with inner prodyet )y, X' a
investigate the domain shift in the RKHS for vector-value@et, andi is a linear space of functions ot with values iny.
functions, which contains bothnput and Output kernel We assumé is also a Hilbert space with inner product).
spaces and is more comprehensive than the input space of\gparently, if Y = R™, # is the space of vector-valued
To reduce the data mismatch in the RKHS of vector-valuddnctions. We call a functiory € H a Y-valued function,
functions, as stated in Section |, we propose an Input-Qutgid we denote the kernel associated with the RKHg ab
kernel learning algorithm, DA-IOKL, to jointly learn an iop @ Y-kernel. We give the definitions for RKHS q¥-valued
and output kernel space for the pooled data from source dH@ctions andy-kernel as follows.
target domains. Equivalently it can be considered as sgmych Definition 3.1: (RKHS of J-valued functions). A RKHS of
for a better input-output kernel space where the domairt sHf)-valued functiong : X — Y is a Hilbert spacel{ such
is minimized. The proposed DA-IOKL also provides a vectothat, for allx € X there exist;, € R,
valued function as the optimal multi-class classifier.
The proposed DA-IOKL contains the learning process for l9GOlly < Collgllz, g € H.

an input kernel matrix and an output kernel matrix. The Definition 3.2: (Positive semidefinite)-kernel). We say
dimension of the output kernel matrix is usually small, 8ifiC that H : X x X — L(Y) is a positive semidefinitg-kernel

only depends on the number of categories. But the dimensigit satisfies the following property for any finite integér
of the input kernel matrix is usually large and grows with the

. X 2 ' 1ol

number of data points used in training and testing. Theegfor

we propose learning the output kernel matrix directly with a ZZ (vi, H(xi,x;)y;)y = 0,V(xi, y:) € (X, D).

non-parametric formulation [17] and learning the inputriedr ==t

matrix with a parametric form similar to Multiple Kernel . . " e
. In [17], it states that t definite)-

Learning (MKL) [26]-[28]. We plan to learn a convex com- n [17], it states that alnique positive semidefinite)

binati f b th timal i t Kk | fumcti kernel H is associated with a given RKHS of #-valued
pination ot kernel bases as the optimal Input Kernet TUmClo . oy, from#, which is defined over data s&t. We assume
instead of learning the kernel matrix directly as in [29].

Y = R™, which is the output space in our object recognition
problem with m categories. Therefor&()) is the space
[1l. PROPOSEDMETHOD of m ordered square matrices. Given a bafis},c7 with

In this section we will present the proposed DA—IOKLT = {L,...,m}, a kemelF over &' x T can be defined as

algorithm. Different from previous works t_hat model thessjg _ (bi, H(x1,%2)b;)y = R((x1,4), (X2, ).

label as scalar and use a scalar function as the predictive

function, the proposed algorithm represents the first giten$imilarly, given a)-valued functiong : X — ), we can

to investigate domain adaptation with the analysis of théiquely define a function : X x 7 — R such that

RKHS for vector-valued functions, inspired by [16], [17], _

[30]. With the assumption of a multivariate distribution on 9(x) = Zh(x’l)bi'

class labels, we propose using MMD [18] to constrain the €T

mismatch in the marginal distributions. Following a geomeMore details on RKHSs of vector-valued functions could be
ric intuition described in [31], we assume the conditiondbund in [16], [17], [30].
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1) Output Kernel :From Definition 3.2, we know that ®- y and the scalar predictive function, only the mean vectors
kernelH is a function defined oi’ x X. Forx;,x; € X, the and variances op4 and pgp could be matched (what most
value for H(x;, x;) is a linear operator irC()’), which is a of the previous methods try to do) and there is still a large
square matrix. Recall the theory for RKHS of scalar funationportion of mismatch between the two distributions due to the
a kernelK for a scalar function is defined olf x X and its differences in covariances. However, for the vegtaand the
value K (x;,x;) is a scalar, where;, x; € X. In multi-class vector-valued predictive function, the mean vectors are th
classification tasks, we denod@ = R™ as the output space covariance matrices (both variances and covariances dxaul
of m categories. If a data point; belongs to category, its matched, which leads to a better match betwggrand pg.
label is denoted by; € R™, which has+1 on the theith Therefore, to fully estimate the data distribution, we mep
element and 0 on others. Let be the RKHS of the function using a vectoty to model the class label and using a vector-
g : X — Y associated with thé)-kernel H. H could be valued functionf to model the predictive function.
decomposed as [17]: 2) How to Use Vector-valued Functions for Domain Adap-

tation?: Recalling that data samples are drawn from the dis-

H(xi,x;) = K(xi, %)) - L, Vxi,%; € ¥ @) tribution p(x, x) = p(y|x)p(x), we can tackle the distribution
where L is a symmetric positive semidefinite matrix thaghift issue from the marginal and conditional distribusion
measures the relationships between output components @&garately. According to [32], from the geometric persipect
category similarity information in the multi-class recdtipn the connection betweer(y|x) andp(x) could be assumed as
case) of functiong(x). L is called theOutput Kernel; the follows: If two pointsx;,x; € X areclosein the intrinsic
kernel K is the scalar part oL, and it measures the similaritygeometry ofp(X), then the conditional distributions(y|x.)
between data points in the input space of the functjos), andp(y|xQ_) are similar. Basically, the conditional probability
so the kemelK is called thelnput Kernel. Given the P(y[x) varies smoothly along the geodesics in the intrinsic
function g(x), the predicted category label of a testing datd@e€ometry ofp(X).
x could be determined by,,. = argmax,., ¢*)(x), where  In Section ll-A1, we decompose the kernel for a vector-
T ={1,..,m} and¢(®(x) is the s-th element of the vector- Valued function adl = K L, \_/v_hereK is the input kernel.
valued functiong(x). We can see thaj(x) is a also a true Therefore, we propose minimizing MMD [18] gf(x) and
multi-class classification decision function. pi(x), the marginal distributions for two domains, to reduce
distribution shift between the two marginal distributipxy
learning a proper input kernel functidid in the RKHS. The
details of MMD regularization can be found in Sectionlll-E1

In this section, we will explain why it is important to useAccording to the above geometric assumption, with making
vector-valued functions and how the input and output kernehe marginal distributions of both domains similar, the dien
help domain adaptation. tional distributions for the two domaing. (y|x) andps(y|x),

1) Why Vector-Valued FunctionsBince the data distribu- should be similar. Since we use a vecgofor the class label
tion can be decomposed ax,y) = p(y|x)p(x), we focus and a vector-valued functiohfor the predictive function, the
on the conditional probability to illustrate the advantagd covariance matrix ofy is already taken into consideration.
using a vector-valued function over a scalar function (esgd For the convenience of expression, we first fix the input Kerne
in previous methods [5], [10]-[12] ) in domain adaptationfunction K for the estimation of the output kernklin Section
For the convenience of expression, we suppose the preglictiN-C and Section 1lI-D. Then in Section IlI-E, we incorpdea
function is a draw from a Gaussian Process. Accordingly, parametric form ofK with a MMD regularizer that can
for a scalar predictive function, the correspondpig|x) is learn an optimalK to reduce the mismatch between (x)

a univariate Gaussian distribution characterized by a meandpz(x).
and a variance. When extending the scalar predictive foncti
from binary classification to multi-class classificationh@ve C. Output Kernel Learning

a vectory is used for the class label) by adopting the one- q ibe the alaorith di |
against-one or one-against all rule, it is equivalent to etod Here we describe the algorithm proposed in [17] to learn an

the conditional probability(y|x) with a covariance matrix output kernel fro_m input data, which involves the Iearnirig 0
whose diagonal entries are the varianceg(gfx) for different a y-valued .functlong :,X -V a}nd an output kernel matrix .
classes and off-diagonal entries are zeros. While for sovectl The basic assumption here is that an output kernel matrix
valued predictive function, the resultingy|x) is a general describes the data structure best if the associated functio
Gaussian Vector distribution characterized by a mean vecf®uld achieve the minimum classification error on the trani
and a covariance matrix. The covariances between comp®n fa. LetS., denote the positive semidefinite matrix space.

of y reflect the similarities between object categories, WhicWe object|v_e function for obtaining the proper output kern
can be distinct across domains as discussed in Sectiorwwnsh(?ou'd be written as

B. Vector-valued Functions for Domain Adaptation

, (2)

in Figure 2. ! x;) — vl 12 2 LI
Let Gaussian distributions, andpp denote the conditional Ifgg; [f}élﬂ <Z g )2)\ yill2 + ||g2||H + I 2||F>
probability distributions of domaitd and domains. Suppose L i=1

we have a way to project the data into a new space where thieere (x;,y;) € X x Y are data-label pairs in multi-class
two conditional distributions could be matched. For thdarca classification. According to the representer theorem [fta,
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Algorithm 1 Output Kernel Learning
1:L,C,E,Z <+ 0
2: while ||Z +AC — Y]||r > 6 do

testing performance in the target domain, therefore wegsep
a weighted loss to emphasize the importance of target trgini

3 C « Solution toKCL + AC = Y, error during optimization. By introducing a weighte [0, 1]

4 E « KC into the convex combination of the loss function, we could
5: P« %ETC L weight the importance of training data from the source domai
6: Q + Solution to(ETE 4+ AI)Q = P Let D be a diagonal matrix whose diagonal elements are
7: L+~ L+)Q for the firstn 4 ones, and for the rest. Similar to Algorithm

8: Z +— EL 1, we can develop an efficient algorithm for domain weighted
9: end while output kernel learning by usiny = DY to replaceY and

usingK = DK to replaceK in Algorithm 1, shown in Table

TABLE I: An algorithm for learning a vector-valued function|. The parametet: could be chosen by cross-validation based
and an output kernel simultaneously with block coordinatsh the target domain training data.
descent. [17]

E. Domain Adaptive Input-Output Kernel Learning

optimal solution for the inner minimization has the form e now present the proposed DA-IOKL algorithm which
jointly learns the input and output kernels to reduce theaom

shift in both kernel spaces. We first briefly revisit the MMD
measure [18] for regularizing domain shift in the input ladrn
_ _ _ _ ~_ space, we then present the structural risk function and the
where K is the input kernel function. By setting th&,j) corresponding optimization solution for the proposed DA-
entry of K € S, asK;; = K(x;,x;), andY,C € R™*™ as  |oKL.
. . 1) Domain Shift Measure To reduce the domain shift in
Y=(,....y) . C=(cr,...,a)", (4)  cross-domain recognition, we first need to define a domain
we can see that the objective function in Eqgn. (2) becomesSh'.ﬂ. measure based. on. th? data from both domains. An
efficient nonparametric criterion was proposed by Borgward
Q(L,C) = |lY — KCLJ|% n (CTKC,L)p N [|L|| et al. [18], which is referred as MMD, to compare the data
O 2\ 2 2 distributions based on the distance between the samplesmean
Dinuzzo et al. shows in [17] thap(-, ) is an invex function from two domains in a RKHS induced by a certain kernel
over the open sef7 x RI*™ and proposes an efficientfunction. Please refer to [18] for the details about MMD gt i

block-wise coordinate descent optimization algorithmjolth Worth noting that, MMD can only measure the domain shift
is described in Table I. in the input space of the vector-valued function.
2) Structural Risk with Multiple Kernel Formulatiortiere
we introduce a multiple kernel parameterization for the DA-
IOKL algorithm for the domain adaptation purpose. Recait th
In domain adaptation, one straightforward but effectiveqn. (5) defines the classification error on the training data
method is domain weighting [10], [33], [34], where the dewhich is actually a function of. andC. To learn an optimal
cision functions or loss functions corresponding to indiial input kernel function, we use a convex combination of base
domains are weighted according to their “contributions” tRernel functions to parameterize it, so that the new inputde
the task in the target domain. Here we adopt the formulatig® /¢4 that is a function respect to coefficierdsand has the
of convex combination of decision functions [34] to addreferm K4 = fo:l dp Ko, dm <0,m=1,2,...,M, as used
different importance of training data from different domsi in [26]-[28]. d,,,’s are the combination coefficients and form
The weight parameters can be estimated by cross-validat®@olumn vectod. K, is them-th base kernel function and
or empirical studies. M is the total number of base kernels used. Accordingly, the
For data setX 4 from the source domaind and data matrix formulation of the input kernel becomes
set Xp from the target domainB, the joint data set is M
Xap = [X4,Xg|, which results in an output kerndl 45 _
that captl[Jres cat(]agory relationship of the joint Xetz. Also, Ka= D dnKp, @
the associated functiaju s should minimize the classification .
errors of training data from both domains. Now the Iosté1en Eqn. (5) can be rewritten as,
function in Eqn. (2) could be split as Y —K4CL||2 (CTK4C,L)r ||L||%

QL C.d) = 2\ + 2 Ty

S o |lg(xi) — yill3 Y llg(x;) — v;113 ©6) o _ _ _
2\ 2\ ' where the objective functio®(-, -, -) is also a function of the
z€A zj €8 kernel combination coefficientd. It is easy to see that we
where the first item represents the total training error f&r t could get an ‘optimal’ input kernel function by minimizing
source domain training data, and the second item represefifs, -, -) w.r.t. d.
the total training error for the target domain training data In cross-domain recognition, reducing the domain shift is
In domain adaptation recognition, the goal is to achievéebetone critical concern to ensure the generalizability of troaled

l l

g (x) = ZH(X, X;)¢ = LZ i K(x,%x;), 3)

=1 =

2
£.(5)

D. Domain Weighted Output Kernel Learning

m=1
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when tested in the target domain, since the number of trginin AIgorithml 2 DA-IOKL
samples from the target domain is usually small (e.g., 3 per 1id < 371um

category in our experiments). Reducing the domain shiftccou 2: while {not converge} '
make the training samples from the source domain more 3 C, L « Solution toming,, Q(L, C, d)
similar to the samples from the target domain. In addition to by Algorithm |

4: d « Solution to Eqg. (10) by L-BFGS-B

reducing domain shift, minimizing classification error et .
5: end while

most important concern to ensure the model’s discrimieativ
ability. Therefore, by addressing the two concerns jojntl i )
we include a MMD regularizing term into the structural risk "BLE 1I: The proposed Domain Adaptive Input-Output
function along with the total classification error, whicls@l <€mel Learing Algorithm

has a multiple kernel parameterization for the input kernel

learning. Now the MMD regularizer could be written as,

The proposed DA-IOKL algorithm is iterative and each
iteration contains two optimization steps. For a givkn/(d)
can be computed an@ and L. can be estimated by using
Algorithm | described in Table 1. We first initializd to get

M
1 1
Q(tr(KgS)) = 5tr(§ dmK,S)? = 5dTppTd, (8)
m=1 C andL by solving Eqgn. (5). We then minimize the function

where p = [p1,...,p0m) ,pm = tr(K,,S), andd = f(d) overd with the fixed C and L. We repeat this two

[di,...,dy]T. K,, is the positive definite kernel matrix optimization steps for several iterations until converggeor

associated with then-th base kernel functiot,,, . the maximum number of iterations is reached. This DA-IOKL
At last, for the desired kernel functionkqy = algorithm is summarized in Table II.

Zn]‘le d., K,,, we put a simple box constraint on the coeffi- For the 2nd step of each iteration, to minimifed) over
cients, which isd,, > 0 andd,, < ub, form =1,2,..., M, d, we first compute the gradient ¢f(d) as,

with ub > 0, instead of using the simplex constraint in other T
works [27]. We found that the box constraints are easier vf=pp +0VaJ +nVakk,

to solve for large-scale data set or high dimensional datgherevyR is the gradient of thé, or I, norm. Andvg4.J is

and could obtain good performances. In addition, in ordgfe gradient w.r.d with fixed L and C, which is given by
to control the model complexity ( preventingl|| to be too L1

large), we place another regularizing term to bound the nornﬂ — [
of the coefficient. We uséld||; for the parameter selection Idm A2
purpose for a single image feature, and Ysk|, for cases +1tr(CLKmC),
where multiple image features are available. 2
Therefore, the final objective function for our DA-IOKL iSZWhereaaT" is them-th element ofv4.J, K4 is the fused kernel
S S matrix giT/en certgin kernel coefficieat, andK,,, is themth
min min §d pp' d+60Q(L,C,d) +nR(d), (9) base kernel matrix.

' After obtaining the gradient, we can use quasi-Newton
where the feasible seP is {d|0 < d =< ub,}, and R(d) methods with reasonable memory size to optinyizd) under
means thé; or [, norm ofd, andé, n are penalty coefficients. a simple box constraint. Therefore, the Limited-memory BFG
By solving this optimization problem, we could learn the opwith Bound constraints(L-BFGS-B) [19] is the natural cheic
timal input kernel functiorkyq and the output kernel matrik  for us. L-BFGS-B converges faster than the previous first-
jointly. In the next subsection, we propose an computatipnaorder methods [27] since it uses an approximate second-orde
efficient algorithm to solve Eqgn. (9) in an alternating way. Hessian update and is suitable for large-scale real worta da

3) Learning Algorithm:To solve the optimization problem due to its low rank approximation with limited memory size.
of DA-IOKL, we make use of the Output Kernel Learning 4) A True Multi-class Classifier As illustrated in Figure
algorithm described in Table | and build our solution base®l DA-IOKL consists of two major components for cross-
on it. By definingJ(d) = miny, ¢ Q(L, C,d), we can rewrite domain object recognition: DA-IOKL training and DA-IOKL
Eqgn. (9) as, classification. Based on the joint s&f 45, the DA-IOKL

1 model can be trained by solving Eqn. (9) using the efficient
min f(d) = min —d”pp’d + 6.J(d) + nR(d). (10) algorithm described above. We now describe the correspond-
dep deD 2 ing DA-IOKL classifier. As stated in Section IlI-Al, for a
For the above objective functiofid), it is easy to show that certain RKHS, the associated vector-valued funcgjén is a
the first part is linear w.r.td and J(d) is quadratic w.r.t. true multi-classifier. According to the representer theldj,
d. So that the objective function is convex w.dt, C andL  the non-parametric form (matrix form) of the corresponding
separately, although not jointly convex. It is shown in [1/dt function in the RKHS ofyg(-) is given asG = CL. And G is
J(d) is invex w.r.t.C andL jointly, so we could infer thaff a N x m linear operator, wher&/ is the number of training
is invex w.r.t(d, C, L) jointly and thus has the global minimadata andn is the number of categories. Lét, C* andL* be
coinciding with a local minima. Therefore, we can employ athe optimal solution learned by DA-IOKL, then the operator
efficient alternating optimization algorithm to solve E¢§h0). is G* = C*L*, and the input kernel function i&j. For an

tr(K, (CL)2(KY + K,,,)) — tr(K,,CLY")]
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unlabeled data point, to be tested in the target domain, itkernel space. From Sectionlll-A, we know that a RKHS of
row kernel vector computed based on the training data is\giv@-valued functions can be associated with a unigukernel
as H, meaning that by carefully choosingJ)&valued function

N B _ we could use the associatéfl to characterize the underlying
ka- (x¢) = [Ka- (xt, %), Kae (%5, X3), - Ka- (%6 %3], giycture of data from a certain domain. In other words, if

h _ N labeled training dat (1'1)t could use a pair ofH, g(x)) to describe the RKHS, we could
WRETexy, ..., Xi,..., Xy are v jabeied fraining data points.  cq g pair to represent the domain. According to Equation
For the testing data point, its predicted label vector by usmg(l) the - kernel H can be further decomposed into an input
G*is ' . . .

. art and an output part. For a fixed input kernel function, a
ve = kY. (x,)G*, @) P put p P

unique output kernel. could be calculated which can reflect
wherey; is arn dimensional row vector. According to Sectiorthe category level structure. Therefore, by fixing a common
l1-A1, the category label for testing data can be determined input kernel function, the corresponding output kernelrnas

as for different domains can be seen as a domain signature.
g = argmaxy T ={1,....m}, (13) We now proceed to define a metric on the signatures
s€T to measure the domain shift. Since the output kemelk

where T is the set of category labels, aws) is the s-th  fix-ordered positive semi-definite (PSD), we have considere

element of the row vectoy;. Therefore, Eqns. (11)(12)(13)several popular metrics proposed for PSD matrices, inatudi
together form a true multi-class classifier, the DA-l0KRiemannian Metric [35], Affine Invariant Riemannian Metric

classifier. [36], Log-Euclidean Riemannian Metric [37], Bregman Diver
5) Extension to Multi-Source Domain Adaptationuntil  9€nce (so called.ogDet) [38] and Jensen-Bregmalivg Det

now, we have only talked about adaptation from a singQBL_D) [39]. Among t_hese, ‘]BLD’ a symme_tric extended
source domain, but it is straightforward to extend the psago version of Bregman Divergence, is much easier to compute

DA-IOKL to multi-source domain cases. By investigating thi12n the others. In this paper, we adopt the JBLD as a measure
objective function of DA-IOKL, we can see that the MMDPEtween output kernels. and L, and we refer it as Output

term and the domain weighting parameteare the two items <€Mel Divergence (OKD). The OKD between domaj4and

related to different domains. Take the case of having nd 1S defined as the JBLD betwedry and 5,
source domains as an example, in Section IV-B2, we could Joxp(A,B) = Jjna(La,Lp)
simply employ two penalty weights; and ay for each of = log|LA—;J“B| — 3log|LaLg],

the two source domains, which could be estimated by Croggs; -y, jg symmetric, nonnegative and invariant under con-

validation on a grid of0, 1] x [0, 1]. For the MMD term, since ruence transformation [40]. This proposed output kernel

we only want to reduce the domain shifts between the tar \t/ergence could be used as shift measure between domains

domain and each of the source domains, we use the summa%gnd B. Suppose that we have multiple source domains, the

of fjhce bM'\:ID s betweedn tWO. dom%nbs ati thte regtu(;arlze_r. Jﬁt divergence measures between domain pairs could be used as a
an € two source domains, attibe the target domain, the . iqion for domain selection, i.e., selecting the sowtamain

MMD regularizer in the final objective function is with the smallest OKD value.

MMD?3(A,B) + MMDZ%(C, B). Unlike MMD which measures the shift in the input kernel
o ) space, OKD actually measures the shift in the output kernel
Slmllgrly, we could also extend DA-IOKL to multiple SOUrCespace. We also notice that a Rand of Domain (ROD) metric
domains if needed. was proposed in [12] for the domain selection purpose. gimil
to MMD, the ROD is limited to the input kernel space (i.e.
F. Domain Shift Measure Based on Output Kernel Matrix the distribution shift orp(X)), which fails to capture the shift

After proposing the specific DA-IOKL model, we look backin the output space. In Section IV, we will report illustrati
to ask an important question: which domain should we addpt<D values computed based on real data. The results not
from? The selection of source domains should be based @MY Provide a criterion for source domain selection, bsbal
domain shift or similarity between two domains. The smalléfemonstrate that the proposed DA-IOKL method could learn a
shift two domains have, the better performance the adaptatRHKS where the data distributions from different domaires ar
could get. Although the MMD introduced in Section lll-E1closer than in the original feature spaces. The resultsigeov
provides a measure of shift between (x) and ps(x), it @ direct and intuitive evidence that the proposed r_nethod can
cannot reflect the shift fromp_4(y|x) to ps(y|x), which is reduce domain shift in the output kernel space, which !eadst
in the output kernel space. In addition, since in our progosBetter performances than previous state-of-art methodshwh
algorithm the output kerndl is estimated based on the inpuffainly focus on the shift in the input feature space.
kernel K, we believe the domain shift information if
could also be reflected if.. Therefore, we will introduce a IV. EXPERIMENTS
domain shift measure based on the divergence of outputlkerndn this section, we will evaluate the proposed DA-IOKL
matrices in multi-class classification tasks. Besides isgrv algorithm on theDA data set [3] and th€al+DA data set [12].
as a domain shift measure, this divergence can intuitiveBxperiments on th®A data set are conducted for multi-class
explain how the proposed DA-IOKL handles shift in the outputlassification under three scenarios: single source atilapta

(14)
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multi-source adaptation and multi-feature adaptatiore - experimental settings. For the convenience of comparirrg ou
periments onCal+DA follow the protocol described in [12]. results with state-of-art results on this data set repoited
We also compute the OKD value between domainsD#n [3]-[5], [11], we first follow the same experimental protbco
dataset to demonstrate how our proposed method handleshiheusing the same SURF feature file as in these works. In
domain shift in output kernel space. We compare our resusiddition, we also conduct experiments with multiple image
with the state-of-art methods for all experiments. The ltssudescriptors abstracted from the same data set to demanstrat
show that the proposed DA-IOKL consistently outperformthe ability of our model for feature combination. Specifigal

the state-of-art methods, which demonstrates the abitity awe use only SURF feature in SectionlV-B1 and SectionlV-B2,
robustness of DA-IOKL for cross-domain object recognitioand use multiple types of features in Section IV-B3. We also

tasks. want to mention another point: Since there are images taken
from the same objects in the domaidslr and webcam To
A. Data Sets and Features make a fair comparison, the same test objectshaid out

1) Object Domain Adaptation Data Set (DAJhis bench- of training. In other words, if an image of a certain object is
mark data set for domain adaptation used in our experimentgest object, the images of the same object cannot be used
is released by Saenko et al. [3], which contains 31 objeduring training. All the results reported for all methods in
categories of images from the following 3 domaiasiazon, SectionlV-B1 and SectionlV-B2 are obtained by followingsth
dslr and webcam In average, theamazondomain contains rule. However, the experiments in SectionlV-B3 don't leave
90 instances for each category, wheretsdr domain and out the images from the same objects.
webcamdomain have around 30 instances for each categoryl) Single Source Domain Adaptation Following the
Moreover, fordslr and webcamdomains, images are takensettings in [3], [4], for single source domain adaptation ex
for 5 corresponding objects in each category. There are 4g&iments, there are labeled training images availablealior
images in total in the data set. categories in both the source and target domains at théngain

To compare with the state-of-art results on this benchmdikie. In every trial of the experiments, we randomly select 8
data set, we first use the same SURF [41] feature file releasaleled images per categorydsir or webcamis used as the
by Saenko et al. in [3]. All images are resized to the sanseurce domain, or 20 labeled images per categognitizon
width and converted to gray-scale. When abstracting SURFused as the source. We also select 3 labeled images per
descriptors, the blob response threshold is set to be 100, wategory from the target domain. Note that in our experigient
other parameters left to be default values. A 64-dimensiorienages of the same test object are generaiyd out of
non-rotationally invariant SURF descriptor is used to diésc training. For the exceptional cases, we use the maro
the patch surrounding each detected interest point. Therindicate ‘without holding out the images of the same test
codebook of size 800 is constructed by K-means clusteriagject’. In particular, for each category, we use images of
on a random subset of descriptors generated from imagdgects with IDs{1,2, 3} for training and{4, 5} for testing in
in the amazondomain. Finally, all images in the data sethe webcamdomain, and use images of objects with {ID}
are represented by bag-of-word histograms formed by vecfor training and{4, 5} for testing in thedslr domain.
quantization using the 800 dimensional codebook. We use kernel functions with the form,,(z;,z;) =

To further study the feature combination ability of DA-exp(—ymdist.,(zi,x;)) as the kernel basis for the input
IOKL granted by the multiple kernel parameterization in thkernel. We use they? distance,/; norm andl, norm as
input kernel part, in addition to SURF, we also abstract GIShe dist(-,-) function, leading to thex? kernel, Laplacian
[42], dense-SIFT [43], HoG [44] (signed and unsigned) arkernel and Gaussian kernel functions respectively. And we
Local Self Similarity (LSS) [45]. We thus investigate 6 tgpeselect,, = = , where dim is the dimensions of the
of features in total. feature vectors. For the parameters used in the proposed DA-

2) Caltech + Domain Adaptation Data Set(Cal+DAThis 10KL algorithm, we us€; norm regularization a(d) in the
data set is introduced in [12] to reduce the potential bias abjective function to enforce sparsity in the kernel coédfits
the DA data set by adding the Caltech256 data set as ttoe the purpose of selecting kernel parameters. We 6set
fourth domain in addition to themazon, diseandwebcando- to 1 x 10™* andn to 1 x 10~3 empirically. Further, we
mains. They select 10 common categories between Caltech2b@ss-validate the loss penalty on the training set and
and DA: BACKPACK, TOURING-BIKE, CALCULATOR, is set proportioned to the norm of the output matix For
HEAD-PHONE, COMPUTER-KEYBOARD, LAPTOP-101, single source adaptation experiments, the optimas 1 for
COMPUTER-MONITOR, COMPUTER-MOUSE, COFFEE-dsIr/webcamand for webcam/dslrand 0.2 foramazon/dslr
MUG, and VIDEO-PROJECTOR. There are 8 to 151 imagese repeat the experiments 10 times and report the average
per category per domain, and 2533 images in total. Followirgcuracy with standard deviation. Results are shown ineTabl
Section IV-Al, the same SURF features are abstracted froth
images in Caltech domain and quantized into 800 dimensionallo demonstrate the accuracy improvements brought by the

bag-of-word histograms using the same dictionary. proposed DA-IOKL algorithm, we also report the results from
several baseline methods. The baseline methods are debcrib
B. Results on DA Data Set as follows.

In this section, we will describe the experiment details « NC stands for naive combination of the training data from
on the DA data set and discuss the results for each of the source and target domains. A standard SVM is applied
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[Source | Target || _NC | A-SVM | ITML[22] | symm [3] | ARCt [4] | RDALR [11] | DAJOKL ]
dslr webcam || 322+ 1.4 | 33.0£ 038 23 351 36.1 369+ 1.2 | 399+ 1.1
webcam | dslr 2214+ 1.1 | 26.0+ 0.7 18 275 25.3 301+ 0.8 | 344+ 10
amazon | dslr* 413+ 13 | 4224 0.9 4 49.5 50.4 50.7+ 0.8 | 722+ 2.0

TABLE llI: DA Data Set: Classification accuracy results for single soadagptation. The average accuracy in % is reported
and the corresponding standard deviation is included. Hereans ‘without holding out the images of he same test object’
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Fig. 4: Classification accuracy v.s. the penalty ternsurves

under three experimental settings. Fig. 5: lllustrations of the output kernels learned from the
webcamdomain (upper) and themazondomain (lower),
where the nodes represent the object categories and eaeh edg

to the combined training data. represents the pair-wise distance between categoriesineelas
« A-SVM applies Adaptive SVM [6] on the training databy a kernel score on it. The larger the output kernel score is,
from both domains. the more similar two categories are.

o ITML applies metric learning [22] on combined training
data from both domains to learn a discriminative metric.

« symm applies metric learning [3] on the corresponding
pairs of training samples between two domains to reduaefor three experimental settings in Figure 4. From the figure
the domain shift. we can see thadslr and webcamdomains are close to each

o ARC-t is presented in [4], which puts an asymmetriother, sincen = 1 gives the best performance, meaning that
regularizer on the cross-domain metric learning problenhe algorithm tends to treat these two domains as the same.
The metric is trained on all the data from both domainghe best choice of actually reveals the domain similarity for

« RDALR is presented in [11], which learns an optimathe training data, we therefore could use the MMD measure
linear operator to project the data from the source domatim guide the selection af, if cross-validation is not feasible.
into an intermediate space by satisfying reconstructi¢for the rest of the paper, we choose the samas used in
constraints using the target domain data. this section for simplicity. In Table IIl, the best perforne

amazon/dslis achieved by setting = 0.2. To demonstrate

In Table Ill, the results for previous methods are directll ) . . Lo
quoted from the related papers published in the literatuff® Performance improvement by using domain weighting in

From the table we can see that the proposed DA-lOKihe input and _output ke_rnel learning of DA-IOKL, we also
outperforms all previous methods in all studied experimen{onduct experiments withv = 1 for amazon/dslr* and
settings, and generally the performance improvement is rf¥mpare the results of different methods. We note that DA-
negligible. Since the experimental caseazon/dsli* is IOI_(L s_tlll yields a much better accuracy ﬁB.5%_i 2.1%,
conductedwithout holding out the images of the same tegfvhich is 12.8% better than the state-of-art result in [11].
objects, we can see clearly from the table that all methodsTo understand the output kernel shift illustrated in Figlre
yield much better results than other experimental settangs in Section |, we visualize a part of the output kernel matrix
that the proposed DA-IOKL provide the best performance an Figure 5. The output kernel scores are normalized for
amazon/dslr*. Since we only use the SURF type of featuresomparison. And the larger the kernel score is, the closer tw
in the experiments in this section, the coefficients for tigt  nodes are. We can see from Figure 5 that the observations in
kernel we learned are quite sparse and thus help selectshe ke output kernel space are consistent with the obsengtion
kernel function. in visual appearances shown in Figure 2 in Section I. We
During the experiments, we also note that the domain weidhtlieve that the correct estimation of the relationshipveen
« plays an important role in cross-domain object recognitionategories by the proposed DA-IOKL leads to the improved
We visualize the recognition accuracy plots as a function p&rformances in domain adaptation.
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[ Source | Target | NC | A-SVM [6] | RDALR [11] | DA-IOKL |
amazon, dslr webcam 20.6+ 1.8 | 30.44+ 0.6 369+ 1.1 39.2+ 2.0
amazon,webcam | dslr 1644+ 1.1 | 253+ 1.1 31.2+ 1.3 316+ 1.9
dslr, webcam amazon 16.9+ 0.7 | 17.3£ 0.9 20.9+ 0.9 252+ 1.1

TABLE IV: DA Data Set: Classification accuracy results for multiple sesradaptation. The average accuracy in % and the
corresponding standard deviation are reported.

S Target SimpleMKL [27 SVM DA-IOKL L
[ Source | Target | SimpleMKL [27] | | | samples from the target domain is set &5 2, 3, 4, §
dslr webcam 88.7+ 1.8 88.6t15 | 914+ 14 . .
webcam | dsir 887+ 1.4 003+ 1.8 | 927+ 1.1 respectively. Also, we conduct the experiments where the
amazon | dslr 68.5+ 1.9 65.7+ 2.0 | 765+ 1.5 number of training samples from the target domain is fixed

to 4 and the number of training samples from the source
TABLE V: DA Data Set: Classification accuracy results fojomain is set a§5, 10, 20, 30, 5P respectively. The results
multiple features. The average accuracy in % is reported ag& shown in Figure 6. Here for illustration, we only show the
the corresponding standard deviation is included. results fordsIr/webcanmand only use the SVM with an average

kernel as the baseline method, though similar observations

noted for other cases. From Figure 6, as expected, we note

2) Multi-Source Domain AdaptationWe also study the that the accuracy keeps increasing as th_e ljumber of training

performances of the proposed DA-IOKL for multi-source dosamples from the target or source dom.al_n increases, and the
main adaptation, where multiple different source domaies 2CCUracy saturates as the number of training samples frem th
available during training. More specifically, followingguious Seurce domain is sufficiently large. The DA-IOKL consistgnt
works, we conduct experiments for 2-source domain adapfitPerforms the baseline method when employing different
tion and evaluate DA-IOKL by comparing its performance@Umbers of training samples.
with state-of-art methods: A-SVM [6] and RDALR [11].
The settings of training/testing samples follow SectiorBY, o rwean
where the same testing objects are held out during training.
We report the average accuracy with standard deviation for
5 trials of experiments. Results are shown in Table IV. We
can see that the proposed DA-IOKL consistently outperforms oser
other methods. The performance improvement is significant gost
in the caseamazon,dslr/webcaenddslr,webcam/amazotn & oul
amazon,webcam/dslthe result is slightly better than that of
RDALR, though it is much better than that of NC and A-SVM.
The results in Table IV demonstrate that the proposed DA-
IOKL could successfully adapt from multiple source domains
to improve the overall object recognition in the target doma s 1 1

2 25 35 4
Number of training data from Target domain

3) Multi-Feature Domain AdaptationTo validate the pro- (a) Accuracy v.s. the number of training samples from
posed algorithm for the feature combination purpose, we the target domain.
conduct the experiments with using multiple features. Taeeb : [ csiwetean
kernels are the same as in previous sections, and all 6 types
of features are used. We conduct classification experiments J””%’”"’//{

for dslr/iwebcamwebcam/dslandamazon/dslicases without

holding out the images from the same objects during training
Results are shown in Table V. We compare with the multiple
kernel learning method SimpleMKL [27] and a standard SVM
using an average kernel. In DA-IOKL, we use thenorm of

d as regularizerR, to search for a meaningful combination

of kernel bases. From Table V, we can see that the proposed
DA-IOKL learns the optimal kernel coefficients successfull

and the learned input and output kernels lead to better per- B
formances than the baseline methods. Its better perforesanc (b) Accuracy v.s. the number of training samples from
than SimpleMKL demonstrate that DA-IOKL could combine the source domain.

multiple features efficiently for the domain adaptatiorktas Fig. 6: Accuracy results for thalsliwebcamcase when

To show the impacts by varying the numbers of training,ving the numbers of training samples from the target and
samples from the source domain / target domain, we condugt;rce domains.

the experiments where the number of training samples from
the source domain is fixed to 20 and the number of training
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[ Method | C-A [ C—oD | A-C JASSW [ W—SC[W—A]D—=A[D=>W |
NC 231+ 04| 265+ 0.7 | 240+ 0.3 | 31.6:0.6 | 20.8:0.5 | 30.8:0.6 | 31.3:0.7 | 55.5+0.7
symm [3] 33.7+£ 08 | 35.0+ 11| 273+ 0.7 | 36.0:1.0 | 21.7£0.5 | 32.3£0.8 | 30.3:0.8 | 55.6+0.7
SGF [5] 402+ 0.7 | 36,6+ 0.8 | 37.7£ 0.5 | 37.9:0.7 | 29.2£0.7 | 38.2£0.6 | 39.2:0.7 | 69.5+0.9

GFK(PCA,PCA) [12] | 420+ 0.5 | 49.5+ 0.8 | 37.84+ 0.4 | 53.7+0.8 | 32.8£0.7 | 42.8+0.7 | 45.0:0.7 | 78.7£0.5
GFK(PLS,PCA) [12] || 46.1+ 0.6 | 55.0+ 0.9 | 39.6+ 0.4 | 56.9+1.0 | 32.1+0.7 | 46.2£0.7 | 46.2+0.6 | 80.2£0.4
GFK(PLS,PLS) [12] || 38.7+ 0.6 | 38.6+ 1.4 | 36.64+ 0.4 | 36.3:0.9 | 28.6+0.6 | 36.3:0.5 | 35.0:0.4 | 74.6£0.5
DA-IOKL 63.7+ 15| 671+ 42 | 46.6+ 1.5 | 71.0£3.4 | 33.8£1.7 | 54.8+2.3 | 54.8£2.8 | 83.3£1.6

TABLE VI: Cal+DA data set: Classification accuracy results, where the agexacuracy in % and the corresponding standard
deviation are reported.

C. Results on Cal+DA Data Set training data, the randomness introduced by the sourceidoma

. . . affects DA-IOKL more.
Since theDA data set is a medium-scale data set an

consists images from similar objects for the same categorie _ _ .
across two different domains, this may lead to bias for tHé. Domain Shift Measure in Output Kernel Space
methods evaluated on this data set. To further demonstratiere we present one of the first empirical studieslomain

the robustness of the proposed DA-IOKL, we conduct domadhift measurdetween visual data domains in the output kernel
adaptation experiments on tlxal+DA data set in this section, spaces. Given thBA dataset, for a classification task on the
which contains the 4th domain consisting of images fromarget domaindslr, we would like to choose a more similar
Caltech256, in addition tamazon, dslandwebcamdomains. domain from the rest two as the source. To measure the
When Caltech256 domain serves as a source domain, @main shift, first we randomly select 20 samples from each
randomly sample 20 images per category for training. Whefdmain, we then perform the DA-IOKL to learn the output
Caltech256 domain serves as the target domain, we randodynel for each domain separately. We also learn the output
select 3 images per category for training. And the experterkernels for all possible combinations of any domain pains. |
follow the protocol mentioned in previous sections for otheyll the experiments in this subsection, we use linear keasel
three domains. We report the average accuracy with standgié input kernel function. We use OKD to compute distances

deviation for 20 trials of experiments. We summarize thgetween these output kernels as the shift measures between
results for DA-IOKL and the stat-of-art methods in Table Vigomain pairs. The results are shown in Table VII.

We use the initials of the domain names in the table to describ Before computing thdp x » divergence, we normalize each

the adaptation between two domains, e(§.— A means kernel by its largest diagonal entry to make all kernels com-
that the source domain is Caltech256 and the target domaimﬁ’ab|e_J0KD between two identical matrices is a constant,
amazon denoting byJ,.;¢. Therefore we scale the resulting similarity
In the table, the method’C andsymm [3] are described table by dividing all entries by/s.;¢ . The smallest/okp is
in Section IV-B1. SGF is proposed in [5], which samples1.000, meaning that the two domains are identical. The smaller
subspaces along the geodesic line between two domaingHe correspondingo x p is, the more similar two domains are.
search for an intermediate space where the domain shifticoul Now for the domain selection problem, according to Table
be reduced.GFK [12] is a kernelized method based onvll, if dsir is the target domain, it is better to choose
geodesic flow presented BGF and it is able to determine webcamas the source, sincéo i p (webcam, dsir) is smaller
the optimal dimensions of subspaces automatically. Fragiven amazon, dslras source candidates. This conclusion is
Table VI we could clearly see that the proposed DA-IOKlsupported by experimental results in Section IV-B1, intiiga
consistently outperforms the previous methods, genewatly that the proposed OKD is powerful for domain shift measure.
large improvement margins. Another interesting observation noted from Table VIl isttha
The methodsymm, SGF and GFK are somehow similar themonotonicityholds for OKD. In the experiments of domain
to each other in the sense that they all look for a ‘betteadaptation, we actually learn a RKHS from a mixed data
subspace by projecting the data from the input feature spamdlection. For the 3 casedslr/webcam webcam/dslrand
using a linear projection. Although some of them also adopmazon/dslrfrom Table VII, we know that the proposed DA-
non-linear projections using the kernel trick, these meésholOKL essentially learns an intermediate RKHS between the
are still within the scope of thinput kernel space for scalar source and target domains, which proves that DA-IOKL indeed
functions. In the contrast, the proposed DA-IOKL reduces tladdresses the domain shift in the output kernel space.
domain shift in the RKHSs of vector-valued functions, which For comparison, we also compute the domain similarity
is more comprehensive and contains bbthut and Output  using the Maximum Mean Discrepancy (MMD) measure [18].
kernels. Therefore, it is not surprising that the proposéd D Table VIII shows the MMD measure results, from which
IOKL consistently provides the best results. We also notee can see that MMD mis-judges the similarity between
that DA-IOKL usually shows larger variances, especially fovebcam-dsland webcam-amazgrand it does not reveal the
C —» D and A — W cases. We believe it is caused bynonotonicityalong domain changes. In addition, [12] reports
the randomness of selecting training samples from the southe results of ROD metric on these three domains, which
domain. Since DA-IOKL could make better use of the souramincide with our OKD results and the MMD results for the
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Domain webcam| dslr | amazon| webcam+dslr| amazon+dslr] amazon+webcanm webcam + dslr + amazol
webcam 1.000 1.293 1.314 1.165 1.301 1.247 1.353
dslr 1.293 [ 1.000 | 1.410 1.195 1.280 1.375 1.683
amazon 1.314 1.410 1.000 1.270 1.150 1.107 1.201
webcam-+dsir 1.165 | 1.195| 1.270 1.000 1.189 1.209 1.125
amazon-+dsir 1.300 | 1.280| 1.150 1.189 1.000 1.133 1.070
amazon+webcam 1247 | 1.375] 1.107 1.209 1.133 1.000 1.053
webcam+dsir+amazor)| 1.353 | 1.683 | 1.202 1.125 1.070 1.053 1.000

TABLE VII: Domain shift measurements between all possibdendin pairs by the proposed OKD measure.

[ Domain [[ webcam [ dsIr | amazon| webcam+dslr] amazon+dsIr[ amazon+webcan] webcam+dslr+amazor
webcam 0.000 [ 1.281] 1.026 0.374 0.437 0.271 0.180
dslr 1.281 0.000 2.861 0.303 0.744 1.801 0.872
amazon 1.026 2.861 0.000 1.718 0.756 0.309 0.754
webcam-+dslIr 0.374 | 0.303| 1.718 0.000 0.299 0.788 0.200
amazon-+dsIr 0.437 | 0.744| 0.756 0.299 0.000 0.336 0.071
amazon+webcam 0.271 1.801 0.309 0.788 0.336 0.000 0.203
webcam+dslr+amazo 0.180 0.872 | 0.754 0.200 0.071 0.203 0.000

TABLE VIII: Domain similarity results between all possiblomain pairs by MMD [18]. The MMD value i8 between two
identical distributions. And the smaller the MMD s, the #8an two distributions are.

three domains. However, they didn’t include the results ofg] E. zhong, W. Fan, J. Peng, K. Zhang, J. Ren, D. Turaga, ande®
transiting domains (e.gvebcam-amazgnwe didn’t include
them here for further comparison.

V. CONCLUSION

El

In this paper, we introduce the output kernel analysis in{oo]
the domain adaptation problem. We also propose a Domain
Adaptive Input-Output Kernel Learning algorithm, refetras
DA-IOKL, to learn an optimal input and output kernel space
for cross-domain image object recognition. The proposed DA
IOKL is generally applicable to single source, multiple smms

and multiple features domain adaptation tasks, and ourrex
iment results show that it consistently outperforms théesta
of-art methods when tested on two standard benchmark d

sets. For the future work, to get more compact representati
and a more efficient algorithm, we plan to study RKHSs for
operator-valued functions.
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