
SUBMITTED TO THE IEEE TRANSACTIONS ON IMAGE PROCESSING, FEB2013 1

Cross-Domain Object Recognition via Input-Output
Kernel Analysis

Zhenyu Guo and Z. Jane Wang,Senior Member, IEEE,

Abstract—It is of great importance to investigate the domain
adaptation problem of image object recognition since now image
data is available from a variety of source domains. To understand
the changes in data distributions across domains, we study both
the input and output kernel spaces for cross-domain learning
situations, where most of the labeled training images are from
a source domain and the testing images are from a different
target domain. To address the feature distribution change issue in
the Reproducing Kernel Hilbert Space induced by vector-valued
functions, we propose a Domain Adaptive Input-Output Kernel
Learning (DA-IOKL) algorithm, which simultaneously learn s
both the input and output kernels with a discriminative vector-
valued decision function by reducing the data mismatch and min-
imizing the structural error. We also extend the proposed method
to the cases of having multiple source domains. We demonstrate
the ability of the proposed model to adapt across domains by
examining two cross-domain object recognition benchmark data
sets. The proposed method consistently outperforms the thestate-
of-art domain adaptation and multiple kernel learning methods.

Index Terms—Domain adaptation, Object Recognition, Output
Kernel, Multiple Kernel Learning

I. I NTRODUCTION

In traditional visual object recognition systems, a model is
always trained based on data from the same domain as the
testing data, where the implicit assumption is that the training
and testing distributions are the same. However, we often face
the situations that additional data (with or without labels)
from other similar but different domains can be available for
training. How to train a model that can take benefits from
the extra data in similar source domain(s) by overcoming
the side-effects introduced by domain shift is calleddomain
adaptation(DA), a research topic drawing increasing research
attentions in computer vision and machine learning fields
recently. In a domain adaptation problem, a source domain is
different from, but somewhat similar to the target domain. One
example in the text classification area is that the email spam
data sets [1] collected from different individual users form
different domains, characterizing individual users’ preferences.
One example in visual object recognition is given in [2],
where the Caltech-256 data set is considered as one domain
of object images, and the other domain is the collection of
the results from the image search engine Bing when using
the category names from Caltech-256 as search queries. Label
quality is a key characteristic of different domains. Although
the above two domains both contain images for the same
object categories, the images in Caltech-256 are manually
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Fig. 1: Example images of the same ‘bike’ category from four
different domains:amazon, dslr, webcamand Caltech256.

labeled (i.e., noiseless in label information), while on the other
hand, the labels for Bing images are noisy and unreliable. As
another example, a specific data set for cross-domain object
recognition is adopted in [3]–[5], where the images are ac-
quired bydslr, webcamand from theamazonwebsite. Figure
1 shows some example images for the ‘bike’ category from
the above 3 domains, along with images from the Caltech256
domain. As we can see, though the 4 domains are somewhat
similar (i.e., representing the same object categories), there
are differences across these four domains in terms of pose,
lighting, resolution, camera peculiarities and other factors. In
reality, the available data from target domain usually comes
with no labels or with very limited label information. In the
literature, the problem involving with available trainingdata
from target domain with no labels is referred asunsuper-
vised domain adaptation; the problem involving with target
training data with a small number of labels is calledsemi-
supervised domain adaptation. In the area of computer vision
and multimedia, thesemi-supervised domain adaptationis
attracting increasing attentions, and it is also the focus of
this paper. In this paper, we tackle the domain adaptation
problem of image object recognition that aims at efficiently
leveraging the labeled images from different but related source
and target domains to derive better hypothesis testing in the
target domain.

Though it is intuitive to believe that extra labeled data from
other source domains can potentially increase the recognition
accuracy in the target domain, it is not trivial to make good use
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(a) Sample images from domainwebcam.
sim(desk chair, back pack) > sim(desk chair, bike).

(b) Sample images from domainamazon.
sim(desk chair, back pack) < sim(desk chair, bike).

Fig. 2: From left to right in each row are images from
categories:back pack, deskchair, bike. The proposed output
kernel space analysis shows that the categoriesdesk chair
and back pack are more similar thandesk chair and bike in
the webcamdomain, while the opposite is observed in the
amazondomain. These observations are consistent with the
visual inspection results.

of the extra labeled data because of the distribution differences
in the feature spaces across domains. Experimental resultsin
[3], [6], [7] show that standard classifiers directly trained on
the combination of the source and target domains perform
poorly on the test data in the target domain, when compared
with the classifiers trained on a large number of labeled data
from the target domain. LetPA(x, y) and PB(x, y) denote
joint distributions of feature-label data from source domain
and target domain respectively, wherex is the feature vector
and labely is the label. Semi-supervised domain adaptation
is to use a small number of training samples fromPB(x, y)
and many fromPA(x, y) to build a learning model for
classification. The shift fromPA to PB causes troubles when
training a standard classifier. We denote the data set from
source domain asSA = {XA, YA} and data set from target
domain asSB = {XB, YB}. In detail, the feature data points
from two domains can be described as{xA

1 , . . . ,x
A
nA

}, and
{xB

1 , . . . ,x
B
nB

}.

In order to train a domain adaptive classifier by efficiently
leveraging the information from different domains, different
DA techniques have been proposed to learn a functionŷ =
f(xB

test|SA, SB) that predicts the class label of an unseen
testing samplextest from target domain with high probability,
pB(Y = ŷ|X = xB

test), by forcing pA(x, y) and pB(x, y) to
be close. By definition,p(x, y) = p(y|x)p(x), therefore the
mismatch between distributions can be handled in terms of
p(y|x) or p(x) under different assumptions [8]. Among those,
one trend is to directly or indirectly reduce the mismatch
of data distributions across domains by projection [5], [9]–
[12], kernel analysis [13]–[15], or metric learning [3], [4].
Another trend is to combine the decision functions of different
classifiers trained on the data from different domains to obtain
a more powerful augmented classifier for testing data in the
target domain [2], [6], [15].

In the previous work, label datay is usually treated as
a scalar, and multi-class classification is achieved based on
binary classification by adopting one-versus-all or one-versus-
one principle. The use of scalar functions as classifiers works
well in the traditional classification tasks. However, in practice,
we observe that the distribution shift fromPA to PB actually
results in changes in between-category similarity. For instance,
Figure 2 shows that the categoriesdesk chair andback pack
appear more similar in thewebcamdomain, whiledesk chair
and bike appear more similar in theamazondomain. Such
between-category similarity information plays an important
role in multi-class classification in domain adaptation, and it
also defines the structure of the intrinsic manifold where the
multi-class data points embed into. Correspondingly, a scalar
class label cannot capture the shift fromPB(y|x) to PA(y|x)
correctly. Therefore, we propose modeling the class label as a
vectory, using the binary coding scheme(1 stands for presence
and 0 stands for the absence of a class instance). Recalling
the theories of functional analysis on vector-valued functions
[16], [17], we can consider a multi-class classifier as a vector-
valued function with the structured output which induces a
vector-valued Reproducing Kernel Hilbert Space (RKHS). In
this case, theInput kernel space (the scalar kernel space on the
input features) of this RKHS is related to the mismatch of data
distributionsPB(x) andPA(x), and theOutput kernel space
(the matrix kernel space on the structured output of the func-
tion) actually corresponds to between-category similarities,
which also contributes to a better estimation ofP (y|x). The
input and output kernels together form a more comprehensive
kernel space for vector-valued decision functions than the
kernel space used in [13]–[15] for scalar functions. It is
also more comprehensive and richer than the intermediate
spaces introduced by linear projections [5], [9]–[12] and metric
learning [3], [4].

Following the above inspiration, in this paper, we will
investigate both the input and output kernel spaces to overcome
the distribution mismatch issue caused by domain shift. More
specifically, we propose a Domain Adaptive Input-Output Ker-
nel Learning (DA-IOKL) algorithm for cross-domain image
object recognition, i.e., learning an separable RKHS for vector-
valued functions (consisting of input kernel and output kernel)
where the mismatch between the data distributions could be
reduced. The contributions of this paper can be summarized
as follows:

1) For the first time, we introduce the analysis of the
output kernel space induced by a vector-valued decision
function into the domain adaptation problem;

2) We propose a particular objective function in the DA-
IOKL model to learn the optimal input and output
kernels jointly. We adopt Maximum Mean Discrepancy
(MMD) [18] as a regularizer to minimize the struc-
tural classification error and the mismatch between data
domains, and to avoid large computational cost and
optimization difficulty, we propose a multiple kernel
form to parameterize the input kernel. In addition, DA-
IOKL also provides a vector-valued function as a true
multi-class classifier;



SUBMITTED TO THE IEEE TRANSACTIONS ON IMAGE PROCESSING, FEB2013 3

Fig. 3: The proposed DA-IOKL framework for cross-domain
object recognition. Each circle represents a set of data, and its
size indicates the number of data points.

3) We present an efficient algorithm to solve the DA-
IOKL optimization problem. Although the objective
function of DA-IOKL is not jointly convex w.r.t. all
parameters, since it is invex [17] over the output kernel
and convex over the input kernel, it can converge to the
global minimum. By adopting box constraints, we apply
efficient off-the-shelf optimization approaches such as
L-BFGS-B [19] to compute the DA-IOKL solution.

We illustrate the cross-domain object recognition process
in Figure 3. We can see that a relatively smaller number
of labeled training data from the target domain is available
during training, compared with the number of labeled training
data from the source domain. And a classifier learned jointly
based on the data from both source and target domains is used
to classify the unlabeled testing data in the target domain.
For the details about DA-IOKL and the learned multi-class
classifier, please refer to Section III. In addition, a list of
major abbreviations used in this paper is given below:
DA: Domain Adaption
DA-IOKL : Domain Adaptive Input & Output Kernel Learning
RKHS: Reproducing Kernel Hilbert Space
MMD : Maximum Mean Discrepancy
MKL : Multiple Kernel Learning

The rest of the paper is organized as follows. Section II sum-
marizes previous works in cross-domain learning and general
multiple kernel learning. Section III presents the proposed DA-
IOKL algorithm. In Section IV, experiments for cross-domain
classification are conducted on two data sets: the object
domain adaptation (DA) data set [3] and Caltech256+domain
adaptation (cal+DA) data set [12]. Finally, we conclude the
paper in Section V.

II. RELATED WORK

The mismatch problem of data distributions was first in-
vestigated in the Natural Language Processing (NLP) com-
munity, where intensive researches have been conducted to
handle the domain adaptation problem. To capture the shift in

feature spaces,A-distance is introduced in [7], [9], [20] for
Structural Correspondence Learning (SCL), which presentsan
approximate estimation of the total variance distance between
two distributions. Although this method could measure the
shift in the feature spaces, it is hard to estimate and it is not
clear how to extend it to computer vision adaptation tasks.
Other approaches used in vision researches such as [14], [15],
[21] employ a domain similarity measure based on MMD [18],
which is non-parametric, easy to estimate empirically and also
flexible for the choice of kernel functions. Due to its good
performance [18] and its compatibility with kernel methods,
we adopt MMD as a penalty term over the input kernel space
in this paper.

There aretwo major categories of domain adaptation
methods based on various domain shift criteria: 1) reducing
the mismatch of data distributions in the feature spaces by
projections (or equivalently kernel functions or metrics); 2)
combining decision functions trained from different domains.
In the first category, following the idea of reducing the
mismatch of data distributions, the approaches proposed in
[7], [9], [20], [21] aim at finding a feature space which can
minimize the divergence of distributions between domains
based on a specific measure. In addition, [9] provides a
theoretical analysis on the feature representation function and
classification error. Besides these methods, within the scope of
data distributions in feature spaces, several intuitive methods
are proposed for recognition purposes. [10] presents a feature
augmented way to construct a common feature space. Instead
of looking for a subspace by projection, Saenko et al. [3] and
Kulis et al. [4] propose learning a metric that can minimize
the distance betweensimilar data pairs and maximize the
distance betweendissimilar data pairs across two domains,
by applying a regularized metric learning model [22]. This
approach needs to solve a Semi-Definite Programming (SDP)
[23] problem during learning subject to a large number of
linear constraints, and thus it is computationally expensive
and hard to scale up to high dimensional data. It is also
limited to two-domain adaptation scenarios and requires data
correspondences between two domains for better performance.
[5] adopts a general subspace approach to learn intermediate
feature spaces by sampling points along the geodesic of a
Grassmann manifold formed by two different domains. More
recently, [12] introduces a geodesic flow kernel to extend the
idea from [5] and also proposes a way to automatically de-
termine the optimal dimensionality of the subspace. Similarly,
[11] proposes finding an intermediate space where the data
points from the source domain could be well reconstructed by
the data points from the target domain. The intermediate space
is obtained by searching for an optimal linear operator and
removing noise and outliers simultaneously. In particularly,
among the above methods, the methods in [3]–[5], [10]–[12]
are investigated for cross-domain image object recognition
tasks. It is worth noting that most methods [5], [10]–[12] in
the first category can be used in both an unsupervised way and
semi-supervised way, since it is not necessary to have labels
for certain subspace methods. The small number of labels from
the target domains could further improve the performance on
the unsupervised subspace learning. In this paper, we include
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these methods [5], [11], [12] for comparison under the semi-
supervised learning setting for our domain adaptation problem.

In thesecond category, several methods are proposed, with
focus on the decision functions of the classifiers. [6] employs
the adaptive SVM to adapt the decision functionfS trained
on the source domain into the target SVM classifierfT by
formulatingfT = fS+△f , where△f is trained based on data
from the target domain. Transductive SVM [2], [24], Domain
Adaptive SVM and cross-domain SVM [25], and other variants
of SVMs are also explored in domain adaptation problems by
defining a new decision function incorporating data from both
the target and source domains.

Since the first category of methods could yield better
performances in cross-domain object recognition, we decide
to follow the idea of searching for one or several subspaces
to reduce the mismatch of data distributions. Recall that the
feature spaces or kernel spaces studied in the previous methods
[3]–[5], [10]–[12] are the spaces for scalar functions, which
can be considered as theInput spaces for the vector-valued
functions. Therefore, those methods don’t consider theOutput
space which is highly related to multi-class classification.
Instead of dealing only with data in the input space, we
investigate the domain shift in the RKHS for vector-valued
functions, which contains bothInput and Output kernel
spaces and is more comprehensive than the input space only.
To reduce the data mismatch in the RKHS of vector-valued
functions, as stated in Section I, we propose an Input-Output
kernel learning algorithm, DA-IOKL, to jointly learn an input
and output kernel space for the pooled data from source and
target domains. Equivalently it can be considered as searching
for a better input-output kernel space where the domain shift
is minimized. The proposed DA-IOKL also provides a vector-
valued function as the optimal multi-class classifier.

The proposed DA-IOKL contains the learning process for
an input kernel matrix and an output kernel matrix. The
dimension of the output kernel matrix is usually small, since it
only depends on the number of categories. But the dimension
of the input kernel matrix is usually large and grows with the
number of data points used in training and testing. Therefore,
we propose learning the output kernel matrix directly with a
non-parametric formulation [17] and learning the input kernel
matrix with a parametric form similar to Multiple Kernel
Learning (MKL) [26]–[28]. We plan to learn a convex com-
bination of kernel bases as the optimal input kernel function,
instead of learning the kernel matrix directly as in [29].

III. PROPOSEDMETHOD

In this section we will present the proposed DA-IOKL
algorithm. Different from previous works that model the class
label as scalar and use a scalar function as the predictive
function, the proposed algorithm represents the first attempt
to investigate domain adaptation with the analysis of the
RKHS for vector-valued functions, inspired by [16], [17],
[30]. With the assumption of a multivariate distribution on
class labels, we propose using MMD [18] to constrain the
mismatch in the marginal distributions. Following a geomet-
ric intuition described in [31], we assume the conditional

probability distributions should be similar if the marginal
distributions are shifted close to each other. Therefore, we
propose learning a vector-valued function in the RKHS that
can give a best classification performance on the target domain
data, where we put an MMD regularization on the parametric
input kernel estimation and adopt output kernel estimation
approach presented in [17]. Since the output kernel estimation
is based on the specific input kernel function, and the input
kernel function is constrained by MMD regularization, we first
fix the input kernel function and present the topics related
to output kernel learning in Section III-A, Section III-C and
Section III-D. Section III-B gives a detailed analysis on the
advantage of choosing vector-valued function and how this
choice could benefit domain adaptation. Section III-E present
the whole DA-IOKL that learns the input and output kernel
together in an alternating optimizing way. At last, SectionIII-F
proposes a new domain similarity measure based on the output
kernel matrix.

A. Background on RKHS of Vector-valued Functions

Let Y be a real Hilbert space with inner product(·, ·)Y , X a
set, andH is a linear space of functions onX with values inY.
We assumeH is also a Hilbert space with inner product〈·, ·〉.
Apparently, if Y = R

m, H is the space of vector-valued
functions. We call a functiong ∈ H a Y-valued function,
and we denote the kernel associated with the RKHS ofg as
a Y-kernel. We give the definitions for RKHS ofY-valued
functions andY-kernel as follows.

Definition 3.1: (RKHS ofY-valued functions). A RKHS of
a Y-valued functiong : X → Y is a Hilbert spaceH such
that, for allx ∈ X there existsCx ∈ R,

||g(x)||Y ≤ Cx||g||H, ∀g ∈ H.

Definition 3.2: (Positive semidefiniteY-kernel). We say
that H : X × X → L(Y) is a positive semidefiniteY-kernel
if it satisfies the following property for any finite integerl:

l
∑

i=1

l
∑

j=1

(yi,H(xi,xj)yj)Y ≥ 0, ∀(xi,yi) ∈ (X ,Y).

In [17], it states that aunique positive semidefiniteY-
kernel H is associated with a given RKHS of aY-valued
function fromH, which is defined over data setX . We assume
Y = R

m, which is the output space in our object recognition
problem with m categories. ThereforeL(Y) is the space
of m ordered square matrices. Given a basis{bi}i∈T with
T = {1, ...,m}, a kernelR overX × T can be defined as

(bi,H(x1,x2)bj)Y = R((x1, i), (x2, j)).

Similarly, given aY-valued functiong : X → Y, we can
uniquely define a functionh : X × T → R such that

g(x) =
∑

i∈T

h(x, i)bi.

More details on RKHSs of vector-valued functions could be
found in [16], [17], [30].
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1) Output Kernel :From Definition 3.2, we know that aY-
kernelH is a function defined onX ×X . Forxi,xj ∈ X , the
value forH(xi,xj) is a linear operator inL(Y), which is a
square matrix. Recall the theory for RKHS of scalar functions,
a kernelK for a scalar function is defined onX ×X and its
valueK(xi,xj) is a scalar, wherexi,xj ∈ X . In multi-class
classification tasks, we denoteY = R

m as the output space
of m categories. If a data pointxj belongs to categoryi, its
label is denoted byyj ∈ R

m, which has+1 on the theith
element and 0 on others. LetH be the RKHS of the function
g : X → Y associated with theY-kernel H. H could be
decomposed as [17]:

H(xi,xj) = K(xi,xj) · L, ∀xi,xj ∈ X (1)

where L is a symmetric positive semidefinite matrix that
measures the relationships between output components (the
category similarity information in the multi-class recognition
case) of functiong(x). L is called theOutput Kernel ; the
kernelK is the scalar part ofH, and it measures the similarity
between data points in the input space of the functiong(x),
so the kernelK is called the Input Kernel . Given the
function g(x), the predicted category label of a testing data
x could be determined byypre = argmaxs∈T g(s)(x), where
T = {1, ...,m} andg(s)(x) is thes-th element of the vector-
valued functiong(x). We can see thatg(x) is a also a true
multi-class classification decision function.

B. Vector-valued Functions for Domain Adaptation

In this section, we will explain why it is important to use
vector-valued functions and how the input and output kernels
help domain adaptation.

1) Why Vector-Valued Functions?:Since the data distribu-
tion can be decomposed asp(x,y) = p(y|x)p(x), we focus
on the conditional probability to illustrate the advantages of
using a vector-valued function over a scalar function (e.g.used
in previous methods [5], [10]–[12] ) in domain adaptation.
For the convenience of expression, we suppose the predictive
function is a draw from a Gaussian Process. Accordingly,
for a scalar predictive function, the correspondingp(y|x) is
a univariate Gaussian distribution characterized by a mean
and a variance. When extending the scalar predictive function
from binary classification to multi-class classification (where
a vectory is used for the class label) by adopting the one-
against-one or one-against all rule, it is equivalent to model
the conditional probabilityp(y|x) with a covariance matrix
whose diagonal entries are the variances ofp(y|x) for different
classes and off-diagonal entries are zeros. While for a vector-
valued predictive function, the resultingp(y|x) is a general
Gaussian Vector distribution characterized by a mean vector
and a covariance matrix. The covariances between components
of y reflect the similarities between object categories, which
can be distinct across domains as discussed in Section I, shown
in Figure 2.

Let Gaussian distributionspA andpB denote the conditional
probability distributions of domainA and domainB. Suppose
we have a way to project the data into a new space where the
two conditional distributions could be matched. For the scalar

y and the scalar predictive function, only the mean vectors
and variances ofpA and pB could be matched (what most
of the previous methods try to do) and there is still a large
portion of mismatch between the two distributions due to the
differences in covariances. However, for the vectory and the
vector-valued predictive function, the mean vectors and the
covariance matrices (both variances and covariances) could be
matched, which leads to a better match betweenpA andpB.
Therefore, to fully estimate the data distribution, we propose
using a vectory to model the class label and using a vector-
valued functionf to model the predictive function.

2) How to Use Vector-valued Functions for Domain Adap-
tation?: Recalling that data samples are drawn from the dis-
tribution p(x,x) = p(y|x)p(x), we can tackle the distribution
shift issue from the marginal and conditional distributions
separately. According to [32], from the geometric perspective,
the connection betweenp(y|x) andp(x) could be assumed as
follows: If two pointsx1,x2 ∈ X are close in the intrinsic
geometry ofp(X), then the conditional distributionsp(y|x1)
andp(y|x2) are similar. Basically, the conditional probability
p(y|x) varies smoothly along the geodesics in the intrinsic
geometry ofp(X).

In Section III-A1, we decompose the kernel for a vector-
valued function asH = K · L, whereK is the input kernel.
Therefore, we propose minimizing MMD [18] ofpA(x) and
pB(x), the marginal distributions for two domains, to reduce
distribution shift between the two marginal distributions, by
learning a proper input kernel functionK in the RKHS. The
details of MMD regularization can be found in SectionIII-E1.
According to the above geometric assumption, with making
the marginal distributions of both domains similar, the condi-
tional distributions for the two domains,pA(y|x) andpB(y|x),
should be similar. Since we use a vectory for the class label
and a vector-valued functionf for the predictive function, the
covariance matrix ofy is already taken into consideration.
For the convenience of expression, we first fix the input kernel
functionK for the estimation of the output kernelL in Section
III-C and Section III-D. Then in Section III-E, we incorporate
a parametric form ofK with a MMD regularizer that can
learn an optimalK to reduce the mismatch betweenpA(x)
andpB(x).

C. Output Kernel Learning

Here we describe the algorithm proposed in [17] to learn an
output kernel from input data, which involves the learning of
a Y-valued functiong : X → Y and an output kernel matrix
L. The basic assumption here is that an output kernel matrix
describes the data structure best if the associated function
could achieve the minimum classification error on the training
data. LetS+ denote the positive semidefinite matrix space.
The objective function for obtaining the proper output kernel
could be written as

min
L∈Sm

+

[

min
g∈H

(

l
∑

i=1

||g(xi)− yi||
2
2

2λ
+

||g||2H
2

+
||L||2F
2

)]

, (2)

where (xi,yi) ∈ X × Y are data-label pairs in multi-class
classification. According to the representer theorem [16],the
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Algorithm 1 Output Kernel Learning
1: L,C,E,Z← 0
2: while ||Z+ λC−Y||F ≥ δ do
3: C← Solution toKCL+ λC = Y,
4: E← KC

5: P← 1

2
ETC− L

6: Q← Solution to(ETE+ λI)Q = P

7: L← L+ λQ
8: Z← EL

9: end while

TABLE I: An algorithm for learning a vector-valued function
and an output kernel simultaneously with block coordinate
descent. [17]

optimal solution for the inner minimization has the form

g∗(x) =
l
∑

i=1

H(x,xi)ci = L

l
∑

i=1

ciK(x,xi), (3)

whereK is the input kernel function. By setting the(i, j)
entry ofK ∈ S

l
+ asKij = K(xi,xj), andY,C ∈ R

l×m as

Y = (y1, . . . , yl)
T ,C = (c1, . . . , cl)

T , (4)

we can see that the objective function in Eqn. (2) becomes

Q(L,C) :=
||Y −KCL||2F

2λ
+

〈CTKC,L〉F
2

+
||L||2F
2

. (5)

Dinuzzo et al. shows in [17] thatQ(·, ·) is an invex function
over the open setSm+ × R

l×m and proposes an efficient
block-wise coordinate descent optimization algorithm, which
is described in Table I.

D. Domain Weighted Output Kernel Learning

In domain adaptation, one straightforward but effective
method is domain weighting [10], [33], [34], where the de-
cision functions or loss functions corresponding to individual
domains are weighted according to their “contributions” to
the task in the target domain. Here we adopt the formulation
of convex combination of decision functions [34] to address
different importance of training data from different domains.
The weight parameters can be estimated by cross-validation
or empirical studies.

For data setXA from the source domainA and data
set XB from the target domainB, the joint data set is
XAB = [XA, XB], which results in an output kernelLAB

that captures category relationship of the joint setXAB. Also,
the associated functiongAB should minimize the classification
errors of training data from both domains. Now the loss
function in Eqn. (2) could be split as

∑

xi∈A

α ·
||g(xi)− yi||

2
2

2λ
+
∑

xj∈B

||g(xj)− yj ||
2
2

2λ
, (6)

where the first item represents the total training error for the
source domain training data, and the second item represents
the total training error for the target domain training data.
In domain adaptation recognition, the goal is to achieve better

testing performance in the target domain, therefore we propose
a weighted loss to emphasize the importance of target training
error during optimization. By introducing a weightα ∈ [0, 1]
into the convex combination of the loss function, we could
weight the importance of training data from the source domain.
Let D be a diagonal matrix whose diagonal elements areα
for the firstnA ones, and1 for the rest. Similar to Algorithm
1, we can develop an efficient algorithm for domain weighted
output kernel learning by using̃Y = DY to replaceY and
usingK̃ = DK to replaceK in Algorithm 1, shown in Table
I. The parameterα could be chosen by cross-validation based
on the target domain training data.

E. Domain Adaptive Input-Output Kernel Learning

We now present the proposed DA-IOKL algorithm which
jointly learns the input and output kernels to reduce the domain
shift in both kernel spaces. We first briefly revisit the MMD
measure [18] for regularizing domain shift in the input kernel
space, we then present the structural risk function and the
corresponding optimization solution for the proposed DA-
IOKL.

1) Domain Shift Measure :To reduce the domain shift in
cross-domain recognition, we first need to define a domain
shift measure based on the data from both domains. An
efficient nonparametric criterion was proposed by Borgwardt
et al. [18], which is referred as MMD, to compare the data
distributions based on the distance between the sample means
from two domains in a RKHS induced by a certain kernel
function. Please refer to [18] for the details about MMD. It is
worth noting that, MMD can only measure the domain shift
in the input space of the vector-valued function.

2) Structural Risk with Multiple Kernel Formulation:Here
we introduce a multiple kernel parameterization for the DA-
IOKL algorithm for the domain adaptation purpose. Recall that
Eqn. (5) defines the classification error on the training data,
which is actually a function ofL andC. To learn an optimal
input kernel function, we use a convex combination of base
kernel functions to parameterize it, so that the new input kernel
is Kd that is a function respect to coefficientsd and has the
formKd =

∑M

m=1 dmKm, dm ≤ 0,m = 1, 2, . . . ,M , as used
in [26]–[28]. dm’s are the combination coefficients and form
a column vectord. Km is them-th base kernel function and
M is the total number of base kernels used. Accordingly, the
matrix formulation of the input kernel becomes

Kd =

M
∑

m=1

dmKm, (7)

then Eqn. (5) can be rewritten as,

Q(L,C,d) :=
||Y −KdCL||2F

2λ
+

〈CTKdC,L〉F
2

+
||L||2F
2

,

where the objective functionQ(·, ·, ·) is also a function of the
kernel combination coefficientsd. It is easy to see that we
could get an ‘optimal’ input kernel function by minimizing
Q(·, ·, ·) w.r.t. d.

In cross-domain recognition, reducing the domain shift is
one critical concern to ensure the generalizability of the model
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when tested in the target domain, since the number of training
samples from the target domain is usually small (e.g., 3 per
category in our experiments). Reducing the domain shift could
make the training samples from the source domain more
similar to the samples from the target domain. In addition to
reducing domain shift, minimizing classification error is the
most important concern to ensure the model’s discriminative
ability. Therefore, by addressing the two concerns jointly,
we include a MMD regularizing term into the structural risk
function along with the total classification error, which also
has a multiple kernel parameterization for the input kernel
learning. Now the MMD regularizer could be written as,

Ω(tr(KdS)) =
1

2
tr(

M
∑

m=1

dmKmS)2 =
1

2
dTppTd, (8)

where p = [p1, . . . , pM ]T , pm = tr(KmS), and d =
[d1, . . . , dM ]T . Km is the positive definite kernel matrix
associated with them-th base kernel functionKm.

At last, for the desired kernel functionKd =
∑M

m=1 dmKm, we put a simple box constraint on the coeffi-
cients, which isdm ≥ 0 anddm ≤ ub, for m = 1, 2, . . . ,M ,
with ub > 0, instead of using the simplex constraint in other
works [27]. We found that the box constraints are easier
to solve for large-scale data set or high dimensional data,
and could obtain good performances. In addition, in order
to control the model complexity ( preventing||d|| to be too
large), we place another regularizing term to bound the norm
of the coefficient. We use||d||1 for the parameter selection
purpose for a single image feature, and use||d||2 for cases
where multiple image features are available.

Therefore, the final objective function for our DA-IOKL is:

min
d∈D

min
L,C

1

2
dTppTd+ θQ(L,C,d) + ηR(d), (9)

where the feasible setD is {d|0 � d � ub, }, and R(d)
means thel1 or l2 norm ofd, andθ, η are penalty coefficients.
By solving this optimization problem, we could learn the op-
timal input kernel functionkd and the output kernel matrixL
jointly. In the next subsection, we propose an computationally
efficient algorithm to solve Eqn. (9) in an alternating way.

3) Learning Algorithm:To solve the optimization problem
of DA-IOKL, we make use of the Output Kernel Learning
algorithm described in Table I and build our solution based
on it. By definingJ(d) = minL,C Q(L,C,d), we can rewrite
Eqn. (9) as,

min
d∈D

f(d) = min
d∈D

1

2
dTppTd+ θJ(d) + ηR(d). (10)

For the above objective functionf(d), it is easy to show that
the first part is linear w.r.t.d and J(d) is quadratic w.r.t.
d. So that the objective function is convex w.r.t.d, C andL
separately, although not jointly convex. It is shown in [17]that
J(d) is invex w.r.t.C andL jointly, so we could infer thatf
is invex w.r.t(d,C,L) jointly and thus has the global minima
coinciding with a local minima. Therefore, we can employ an
efficient alternating optimization algorithm to solve Eqn.(10).

Algorithm 2 DA-IOKL
1: d← 1

M
1M

2: while {not converges}
3: C,L← Solution tominC,L Q(L,C,d)

by Algorithm I
4: d← Solution to Eq. (10) by L-BFGS-B
5: end while

TABLE II: The proposed Domain Adaptive Input-Output
Kernel Learning Algorithm

The proposed DA-IOKL algorithm is iterative and each
iteration contains two optimization steps. For a givend, J(d)
can be computed andC and L can be estimated by using
Algorithm I described in Table I. We first initialized to get
C andL by solving Eqn. (5). We then minimize the function
f(d) over d with the fixed C and L. We repeat this two
optimization steps for several iterations until convergence or
the maximum number of iterations is reached. This DA-IOKL
algorithm is summarized in Table II.

For the 2nd step of each iteration, to minimizef(d) over
d, we first compute the gradient off(d) as,

▽f = ppT + θ▽dJ + η▽dR,

where▽dR is the gradient of thel1 or l2 norm. And▽dJ is
the gradient w.r.td with fixed L andC, which is given by

∂J

∂dm
=

1

λ
[
1

2
tr(Km(CL)2(KT

d +Km))− tr(KmCLYT )]

+
1

2
tr(CLKmC),

where ∂J
∂dm

is them-th element of▽dJ , Kd is the fused kernel
matrix given certain kernel coefficientd, andKm is themth
base kernel matrix.

After obtaining the gradient, we can use quasi-Newton
methods with reasonable memory size to optimizef(d) under
a simple box constraint. Therefore, the Limited-memory BFGS
with Bound constraints(L-BFGS-B) [19] is the natural choice
for us. L-BFGS-B converges faster than the previous first-
order methods [27] since it uses an approximate second-order
Hessian update and is suitable for large-scale real world data
due to its low rank approximation with limited memory size.

4) A True Multi-class Classifier :As illustrated in Figure
3, DA-IOKL consists of two major components for cross-
domain object recognition: DA-IOKL training and DA-IOKL
classification. Based on the joint setXAB, the DA-IOKL
model can be trained by solving Eqn. (9) using the efficient
algorithm described above. We now describe the correspond-
ing DA-IOKL classifier. As stated in Section III-A1, for a
certain RKHS, the associated vector-valued functiong(·) is a
true multi-classifier. According to the representer theory[16],
the non-parametric form (matrix form) of the corresponding
function in the RKHS ofg(·) is given asG = CL. And G is
a N ×m linear operator, whereN is the number of training
data andm is the number of categories. Letd∗,C∗ andL∗ be
the optimal solution learned by DA-IOKL, then the operator
is G∗ = C∗L∗, and the input kernel function isK∗

d
. For an
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unlabeled data pointxt to be tested in the target domain, its
row kernel vector computed based on the training data is given
as

kN
d∗(xt) = [Kd∗(xt,x1), . . . ,Kd∗(xt,xi), . . . ,Kd∗(xt,xN )],

(11)
wherex1, . . . ,xi, . . . ,xN areN labeled training data points.
For the testing data pointxt, its predicted label vector by using
G∗ is

yt = kN
d∗(xt)G

∗, (12)

whereyt is am dimensional row vector. According to Section
III-A1, the category label for testing dataxt can be determined
as

yt = argmax
s∈T

y
(s)
t , T = {1, . . . ,m}, (13)

where T is the set of category labels, andy(s)
t is the s-th

element of the row vectoryt. Therefore, Eqns. (11)(12)(13)
together form a true multi-class classifier, the DA-IOKL
classifier.

5) Extension to Multi-Source Domain Adaptation :Until
now, we have only talked about adaptation from a single
source domain, but it is straightforward to extend the proposed
DA-IOKL to multi-source domain cases. By investigating the
objective function of DA-IOKL, we can see that the MMD
term and the domain weighting parameterα are the two items
related to different domains. Take the case of having two
source domains as an example, in Section IV-B2, we could
simply employ two penalty weightsα1 and α2 for each of
the two source domains, which could be estimated by cross-
validation on a grid of[0, 1]× [0, 1]. For the MMD term, since
we only want to reduce the domain shifts between the target
domain and each of the source domains, we use the summation
of the MMD’s between two domains as the regularizer. LetA
andC be two source domains, andB be the target domain, the
MMD regularizer in the final objective function is

MMD2
K(A,B) +MMD2

K(C,B).

Similarly, we could also extend DA-IOKL to multiple source
domains if needed.

F. Domain Shift Measure Based on Output Kernel Matrix

After proposing the specific DA-IOKL model, we look back
to ask an important question: which domain should we adapt
from? The selection of source domains should be based on
domain shift or similarity between two domains. The smaller
shift two domains have, the better performance the adaptation
could get. Although the MMD introduced in Section III-E1
provides a measure of shift betweenpA(x) and pB(x), it
cannot reflect the shift frompA(y|x) to pB(y|x), which is
in the output kernel space. In addition, since in our proposed
algorithm the output kernelL is estimated based on the input
kernel K, we believe the domain shift information inK
could also be reflected inL. Therefore, we will introduce a
domain shift measure based on the divergence of output kernel
matrices in multi-class classification tasks. Besides serving
as a domain shift measure, this divergence can intuitively
explain how the proposed DA-IOKL handles shift in the output

kernel space. From SectionIII-A, we know that a RKHS of
Y-valued functions can be associated with a uniqueY-kernel
H , meaning that by carefully choosing aY-valued function
we could use the associatedH to characterize the underlying
structure of data from a certain domain. In other words, if
could use a pair of(H, g(x)) to describe the RKHS, we could
use this pair to represent the domain. According to Equation
(1), theY- kernelH can be further decomposed into an input
part and an output part. For a fixed input kernel function, a
unique output kernelL could be calculated which can reflect
the category level structure. Therefore, by fixing a common
input kernel function, the corresponding output kernel matrices
for different domains can be seen as a domain signature.

We now proceed to define a metric on the signatures
to measure the domain shift. Since the output kernelL is
fix-ordered positive semi-definite (PSD), we have considered
several popular metrics proposed for PSD matrices, including
Riemannian Metric [35], Affine Invariant Riemannian Metric
[36], Log-Euclidean Riemannian Metric [37], Bregman Diver-
gence (so calledLogDet) [38] and Jensen-BregmanLogDet
(JBLD) [39]. Among these, JBLD, a symmetric extended
version of Bregman Divergence, is much easier to compute
than the others. In this paper, we adopt the JBLD as a measure
between output kernelsLA andLB, and we refer it as Output
Kernel Divergence (OKD). The OKD between domainsA and
B is defined as the JBLD betweenLA andB,

JOKD(A,B) = Jjbld(LA,LB)
= log|LA+LB

2 | − 1
2 log|LALB|,

(14)

which is symmetric, nonnegative and invariant under con-
gruence transformation [40]. This proposed output kernel
divergence could be used as shift measure between domains
A andB. Suppose that we have multiple source domains, the
divergence measures between domain pairs could be used as a
criterion for domain selection, i.e., selecting the sourcedomain
with the smallest OKD value.

Unlike MMD which measures the shift in the input kernel
space, OKD actually measures the shift in the output kernel
space. We also notice that a Rand of Domain (ROD) metric
was proposed in [12] for the domain selection purpose. Similar
to MMD, the ROD is limited to the input kernel space (i.e.
the distribution shift onp(X)), which fails to capture the shift
in the output space. In Section IV, we will report illustrative
OKD values computed based on real data. The results not
only provide a criterion for source domain selection, but also
demonstrate that the proposed DA-IOKL method could learn a
RHKS where the data distributions from different domains are
closer than in the original feature spaces. The results provide
a direct and intuitive evidence that the proposed method can
reduce domain shift in the output kernel space, which leads to
better performances than previous state-of-art methods which
mainly focus on the shift in the input feature space.

IV. EXPERIMENTS

In this section, we will evaluate the proposed DA-IOKL
algorithm on theDA data set [3] and theCal+DA data set [12].
Experiments on theDA data set are conducted for multi-class
classification under three scenarios: single source adaptation,
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multi-source adaptation and multi-feature adaptation. The ex-
periments onCal+DA follow the protocol described in [12].
We also compute the OKD value between domains onDA
dataset to demonstrate how our proposed method handles the
domain shift in output kernel space. We compare our results
with the state-of-art methods for all experiments. The results
show that the proposed DA-IOKL consistently outperforms
the state-of-art methods, which demonstrates the ability and
robustness of DA-IOKL for cross-domain object recognition
tasks.

A. Data Sets and Features

1) Object Domain Adaptation Data Set (DA):This bench-
mark data set for domain adaptation used in our experiments
is released by Saenko et al. [3], which contains 31 object
categories of images from the following 3 domains:amazon,
dslr and webcam. In average, theamazondomain contains
90 instances for each category, whereasdslr domain and
webcamdomain have around 30 instances for each category.
Moreover, for dslr and webcamdomains, images are taken
for 5 corresponding objects in each category. There are 4652
images in total in the data set.

To compare with the state-of-art results on this benchmark
data set, we first use the same SURF [41] feature file released
by Saenko et al. in [3]. All images are resized to the same
width and converted to gray-scale. When abstracting SURF
descriptors, the blob response threshold is set to be 1000, with
other parameters left to be default values. A 64-dimensional
non-rotationally invariant SURF descriptor is used to describe
the patch surrounding each detected interest point. Then a
codebook of size 800 is constructed by K-means clustering
on a random subset of descriptors generated from images
in the amazondomain. Finally, all images in the data set
are represented by bag-of-word histograms formed by vector
quantization using the 800 dimensional codebook.

To further study the feature combination ability of DA-
IOKL granted by the multiple kernel parameterization in the
input kernel part, in addition to SURF, we also abstract GIST
[42], dense-SIFT [43], HoG [44] (signed and unsigned) and
Local Self Similarity (LSS) [45]. We thus investigate 6 types
of features in total.

2) Caltech + Domain Adaptation Data Set(Cal+DA):This
data set is introduced in [12] to reduce the potential bias in
the DA data set by adding the Caltech256 data set as the
fourth domain in addition to theamazon, dlsrandwebcamdo-
mains. They select 10 common categories between Caltech256
and DA: BACKPACK, TOURING-BIKE, CALCULATOR,
HEAD-PHONE, COMPUTER-KEYBOARD, LAPTOP-101,
COMPUTER-MONITOR, COMPUTER-MOUSE, COFFEE-
MUG, and VIDEO-PROJECTOR. There are 8 to 151 images
per category per domain, and 2533 images in total. Following
Section IV-A1, the same SURF features are abstracted from
images in Caltech domain and quantized into 800 dimensional
bag-of-word histograms using the same dictionary.

B. Results on DA Data Set

In this section, we will describe the experiment details
on the DA data set and discuss the results for each of the

experimental settings. For the convenience of comparing our
results with state-of-art results on this data set reportedin
[3]–[5], [11], we first follow the same experimental protocol
by using the same SURF feature file as in these works. In
addition, we also conduct experiments with multiple image
descriptors abstracted from the same data set to demonstrate
the ability of our model for feature combination. Specifically,
we use only SURF feature in SectionIV-B1 and SectionIV-B2,
and use multiple types of features in Section IV-B3. We also
want to mention another point: Since there are images taken
from the same objects in the domainsdslr and webcam. To
make a fair comparison, the same test objects areheld out
of training. In other words, if an image of a certain object is
a test object, the images of the same object cannot be used
during training. All the results reported for all methods in
SectionIV-B1 and SectionIV-B2 are obtained by following this
rule. However, the experiments in SectionIV-B3 don’t leave
out the images from the same objects.

1) Single Source Domain Adaptation :Following the
settings in [3], [4], for single source domain adaptation ex-
periments, there are labeled training images available forall
categories in both the source and target domains at the training
time. In every trial of the experiments, we randomly select 8
labeled images per category ifdslr or webcamis used as the
source domain, or 20 labeled images per category ifamazon
is used as the source. We also select 3 labeled images per
category from the target domain. Note that in our experiments,
images of the same test object are generallyheld out of
training. For the exceptional cases, we use the mark∗ to
indicate ‘without holding out the images of the same test
object’. In particular, for each category, we use images of
objects with IDs{1, 2, 3} for training and{4, 5} for testing in
the webcamdomain, and use images of objects with ID{1}
for training and{4, 5} for testing in thedslr domain.

We use kernel functions with the formkm(xi, xj) =
exp(−γmdistm(xi, xj)) as the kernel basis for the input
kernel. We use theχ2 distance,l1 norm and l2 norm as
the dist(·, ·) function, leading to theχ2 kernel, Laplacian
kernel and Gaussian kernel functions respectively. And we
select γm = 1

dim
, where dim is the dimensions of the

feature vectors. For the parameters used in the proposed DA-
IOKL algorithm, we usel1 norm regularization asR(d) in the
objective function to enforce sparsity in the kernel coefficients
for the purpose of selecting kernel parameters. We setθ
to 1 × 10−4 and η to 1 × 10−3 empirically. Further, we
cross-validate the loss penaltyα on the training set andλ
is set proportioned to the norm of the output matrixY. For
single source adaptation experiments, the optimalα is 1 for
dslr/webcamand for webcam/dslr, and 0.2 foramazon/dslr.
We repeat the experiments 10 times and report the average
accuracy with standard deviation. Results are shown in Table
III.

To demonstrate the accuracy improvements brought by the
proposed DA-IOKL algorithm, we also report the results from
several baseline methods. The baseline methods are described
as follows.

• NC stands for naive combination of the training data from
source and target domains. A standard SVM is applied
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Source Target NC A-SVM ITML [22] symm [3] ARC-t [4] RDALR [11] DA-IOKL
dslr webcam 32.2± 1.4 33.0± 0.8 23 35.1 36.1 36.9± 1.2 39.9± 1.1
webcam dslr 22.1± 1.1 26.0± 0.7 18 27.5 25.3 30.1± 0.8 34.4± 1.0
amazon dslr∗ 41.3± 1.3 42.2± 0.9 41 49.5 50.4 50.7± 0.8 72.2± 2.0

TABLE III: DA Data Set: Classification accuracy results for single sourceadaptation. The average accuracy in % is reported
and the corresponding standard deviation is included. Here∗ means ‘without holding out the images of he same test object’.
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Fig. 4: Classification accuracy v.s. the penalty termα curves
under three experimental settings.

to the combined training data.
• A-SVM applies Adaptive SVM [6] on the training data

from both domains.
• ITML applies metric learning [22] on combined training

data from both domains to learn a discriminative metric.
• symm applies metric learning [3] on the corresponding

pairs of training samples between two domains to reduce
the domain shift.

• ARC-t is presented in [4], which puts an asymmetric
regularizer on the cross-domain metric learning problem.
The metric is trained on all the data from both domains.

• RDALR is presented in [11], which learns an optimal
linear operator to project the data from the source domain
into an intermediate space by satisfying reconstruction
constraints using the target domain data.

In Table III, the results for previous methods are directly
quoted from the related papers published in the literature.
From the table we can see that the proposed DA-IOKL
outperforms all previous methods in all studied experimental
settings, and generally the performance improvement is not
negligible. Since the experimental caseamazon/dslr∗ is
conductedwithout holding out the images of the same test
objects, we can see clearly from the table that all methods
yield much better results than other experimental settingsand
that the proposed DA-IOKL provide the best performance on
amazon/dslr∗. Since we only use the SURF type of features
in the experiments in this section, the coefficients for the input
kernel we learned are quite sparse and thus help select the best
kernel function.

During the experiments, we also note that the domain weight
α plays an important role in cross-domain object recognition.
We visualize the recognition accuracy plots as a function of

Fig. 5: Illustrations of the output kernels learned from the
webcamdomain (upper) and theamazondomain (lower),
where the nodes represent the object categories and each edge
represents the pair-wise distance between categories measured
by a kernel score on it. The larger the output kernel score is,
the more similar two categories are.

α for three experimental settings in Figure 4. From the figure
we can see thatdslr and webcamdomains are close to each
other, sinceα = 1 gives the best performance, meaning that
the algorithm tends to treat these two domains as the same.
The best choice ofα actually reveals the domain similarity for
the training data, we therefore could use the MMD measure
to guide the selection ofα, if cross-validation is not feasible.
For the rest of the paper, we choose the sameα as used in
this section for simplicity. In Table III, the best performance
in amazon/dslris achieved by settingα = 0.2. To demonstrate
the performance improvement by using domain weighting in
the input and output kernel learning of DA-IOKL, we also
conduct experiments withα = 1 for amazon/dslr∗ and
compare the results of different methods. We note that DA-
IOKL still yields a much better accuracy at63.5% ± 2.1%,
which is 12.8% better than the state-of-art result in [11].

To understand the output kernel shift illustrated in Figure2
in Section I, we visualize a part of the output kernel matrix
in Figure 5. The output kernel scores are normalized for
comparison. And the larger the kernel score is, the closer two
nodes are. We can see from Figure 5 that the observations in
the output kernel space are consistent with the observations
in visual appearances shown in Figure 2 in Section I. We
believe that the correct estimation of the relationship between
categories by the proposed DA-IOKL leads to the improved
performances in domain adaptation.
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Source Target NC A-SVM [6] RDALR [11] DA-IOKL
amazon, dslr webcam 20.6± 1.8 30.4± 0.6 36.9± 1.1 39.2± 2.0
amazon, webcam dslr 16.4± 1.1 25.3± 1.1 31.2± 1.3 31.6± 1.9
dslr, webcam amazon 16.9± 0.7 17.3± 0.9 20.9± 0.9 25.2± 1.1

TABLE IV: DA Data Set: Classification accuracy results for multiple sources adaptation. The average accuracy in % and the
corresponding standard deviation are reported.

Source Target SimpleMKL [27] SVM DA-IOKL
dslr webcam 88.7± 1.8 88.6± 1.5 91.4± 1.4
webcam dslr 88.7± 1.4 90.3± 1.8 92.7± 1.1
amazon dslr 68.5± 1.9 65.7± 2.0 76.5± 1.5

TABLE V: DA Data Set: Classification accuracy results for
multiple features. The average accuracy in % is reported and
the corresponding standard deviation is included.

2) Multi-Source Domain Adaptation:We also study the
performances of the proposed DA-IOKL for multi-source do-
main adaptation, where multiple different source domains are
available during training. More specifically, following previous
works, we conduct experiments for 2-source domain adapta-
tion and evaluate DA-IOKL by comparing its performances
with state-of-art methods: A-SVM [6] and RDALR [11].
The settings of training/testing samples follow Section IV-B1,
where the same testing objects are held out during training.
We report the average accuracy with standard deviation for
5 trials of experiments. Results are shown in Table IV. We
can see that the proposed DA-IOKL consistently outperforms
other methods. The performance improvement is significant
in the casesamazon,dslr/webcamanddslr,webcam/amazon. In
amazon,webcam/dslr, the result is slightly better than that of
RDALR, though it is much better than that of NC and A-SVM.
The results in Table IV demonstrate that the proposed DA-
IOKL could successfully adapt from multiple source domains
to improve the overall object recognition in the target domain.

3) Multi-Feature Domain Adaptation:To validate the pro-
posed algorithm for the feature combination purpose, we
conduct the experiments with using multiple features. The base
kernels are the same as in previous sections, and all 6 types
of features are used. We conduct classification experiments
for dslr/webcam, webcam/dslrandamazon/dslrcases without
holding out the images from the same objects during training.
Results are shown in Table V. We compare with the multiple
kernel learning method SimpleMKL [27] and a standard SVM
using an average kernel. In DA-IOKL, we use thel2 norm of
d as regularizerR, to search for a meaningful combination
of kernel bases. From Table V, we can see that the proposed
DA-IOKL learns the optimal kernel coefficients successfully
and the learned input and output kernels lead to better per-
formances than the baseline methods. Its better performances
than SimpleMKL demonstrate that DA-IOKL could combine
multiple features efficiently for the domain adaptation tasks.

To show the impacts by varying the numbers of training
samples from the source domain / target domain, we conduct
the experiments where the number of training samples from
the source domain is fixed to 20 and the number of training

samples from the target domain is set as{1, 2, 3, 4, 5}
respectively. Also, we conduct the experiments where the
number of training samples from the target domain is fixed
to 4 and the number of training samples from the source
domain is set as{5, 10, 20, 30, 50} respectively. The results
are shown in Figure 6. Here for illustration, we only show the
results fordslr/webcamand only use the SVM with an average
kernel as the baseline method, though similar observationsare
noted for other cases. From Figure 6, as expected, we note
that the accuracy keeps increasing as the number of training
samples from the target or source domain increases, and the
accuracy saturates as the number of training samples from the
source domain is sufficiently large. The DA-IOKL consistently
outperforms the baseline method when employing different
numbers of training samples.
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(a) Accuracy v.s. the number of training samples from
the target domain.
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the source domain.

Fig. 6: Accuracy results for thedslr/webcamcase when
varying the numbers of training samples from the target and
source domains.
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Method C→ A C→ D A → C A → W W → C W → A D → A D → W

NC 23.1± 0.4 26.5± 0.7 24.0± 0.3 31.6±0.6 20.8±0.5 30.8±0.6 31.3±0.7 55.5±0.7
symm [3] 33.7± 0.8 35.0± 1.1 27.3± 0.7 36.0±1.0 21.7±0.5 32.3±0.8 30.3±0.8 55.6±0.7
SGF [5] 40.2± 0.7 36.6± 0.8 37.7± 0.5 37.9±0.7 29.2±0.7 38.2±0.6 39.2±0.7 69.5±0.9
GFK(PCA,PCA) [12] 42.0± 0.5 49.5± 0.8 37.8± 0.4 53.7±0.8 32.8±0.7 42.8±0.7 45.0±0.7 78.7±0.5
GFK(PLS,PCA) [12] 46.1± 0.6 55.0± 0.9 39.6± 0.4 56.9±1.0 32.1±0.7 46.2±0.7 46.2±0.6 80.2±0.4
GFK(PLS,PLS) [12] 38.7± 0.6 38.6± 1.4 36.6± 0.4 36.3±0.9 28.6±0.6 36.3±0.5 35.0±0.4 74.6±0.5
DA-IOKL 63.7± 1.5 67.1± 4.2 46.6± 1.5 71.0±3.4 33.8±1.7 54.8±2.3 54.8±2.8 83.3±1.6

TABLE VI: Cal+DA data set: Classification accuracy results, where the average accuracy in % and the corresponding standard
deviation are reported.

C. Results on Cal+DA Data Set

Since theDA data set is a medium-scale data set and
consists images from similar objects for the same categories
across two different domains, this may lead to bias for the
methods evaluated on this data set. To further demonstrate
the robustness of the proposed DA-IOKL, we conduct domain
adaptation experiments on theCal+DA data set in this section,
which contains the 4th domain consisting of images from
Caltech256, in addition toamazon, dslrandwebcamdomains.
When Caltech256 domain serves as a source domain, we
randomly sample 20 images per category for training. When
Caltech256 domain serves as the target domain, we randomly
select 3 images per category for training. And the experiments
follow the protocol mentioned in previous sections for other
three domains. We report the average accuracy with standard
deviation for 20 trials of experiments. We summarize the
results for DA-IOKL and the stat-of-art methods in Table VI.
We use the initials of the domain names in the table to describe
the adaptation between two domains, e.g.C → A means
that the source domain is Caltech256 and the target domain is
amazon.

In the table, the methodsNC andsymm [3] are described
in Section IV-B1. SGF is proposed in [5], which samples
subspaces along the geodesic line between two domains to
search for an intermediate space where the domain shift could
be reduced.GFK [12] is a kernelized method based on
geodesic flow presented bySGF and it is able to determine
the optimal dimensions of subspaces automatically. From
Table VI we could clearly see that the proposed DA-IOKL
consistently outperforms the previous methods, generallywith
large improvement margins.

The methodssymm, SGF and GFK are somehow similar
to each other in the sense that they all look for a ‘better’
subspace by projecting the data from the input feature space
using a linear projection. Although some of them also adopt
non-linear projections using the kernel trick, these methods
are still within the scope of theInput kernel space for scalar
functions. In the contrast, the proposed DA-IOKL reduces the
domain shift in the RKHSs of vector-valued functions, which
is more comprehensive and contains bothInput and Output
kernels. Therefore, it is not surprising that the proposed DA-
IOKL consistently provides the best results. We also note
that DA-IOKL usually shows larger variances, especially for
C → D and A → W cases. We believe it is caused by
the randomness of selecting training samples from the source
domain. Since DA-IOKL could make better use of the source

training data, the randomness introduced by the source domain
affects DA-IOKL more.

D. Domain Shift Measure in Output Kernel Space

Here we present one of the first empirical studies ondomain
shift measurebetween visual data domains in the output kernel
spaces. Given theDA dataset, for a classification task on the
target domaindslr, we would like to choose a more similar
domain from the rest two as the source. To measure the
domain shift, first we randomly select 20 samples from each
domain, we then perform the DA-IOKL to learn the output
kernel for each domain separately. We also learn the output
kernels for all possible combinations of any domain pairs. In
all the experiments in this subsection, we use linear kernelas
the input kernel function. We use OKD to compute distances
between these output kernels as the shift measures between
domain pairs. The results are shown in Table VII.

Before computing theJOKD divergence, we normalize each
kernel by its largest diagonal entry to make all kernels com-
parable.JOKD between two identical matrices is a constant,
denoting byJself . Therefore we scale the resulting similarity
table by dividing all entries byJself . The smallestJOKD is
1.000, meaning that the two domains are identical. The smaller
the correspondingJOKD is, the more similar two domains are.

Now for the domain selection problem, according to Table
VII, if dslr is the target domain, it is better to choose
webcamas the source, sinceJOKD(webcam , dslr) is smaller
given amazon, dslras source candidates. This conclusion is
supported by experimental results in Section IV-B1, indicating
that the proposed OKD is powerful for domain shift measure.
Another interesting observation noted from Table VII is that
themonotonicityholds for OKD. In the experiments of domain
adaptation, we actually learn a RKHS from a mixed data
collection. For the 3 casesdslr/webcam, webcam/dslrand
amazon/dslr, from Table VII, we know that the proposed DA-
IOKL essentially learns an intermediate RKHS between the
source and target domains, which proves that DA-IOKL indeed
addresses the domain shift in the output kernel space.

For comparison, we also compute the domain similarity
using the Maximum Mean Discrepancy (MMD) measure [18].
Table VIII shows the MMD measure results, from which
we can see that MMD mis-judges the similarity between
webcam-dslrandwebcam-amazon, and it does not reveal the
monotonicityalong domain changes. In addition, [12] reports
the results of ROD metric on these three domains, which
coincide with our OKD results and the MMD results for the
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Domain webcam dslr amazon webcam+dslr amazon+dslr amazon+webcam webcam + dslr + amazon

webcam 1.000 1.293 1.314 1.165 1.301 1.247 1.353
dslr 1.293 1.000 1.410 1.195 1.280 1.375 1.683
amazon 1.314 1.410 1.000 1.270 1.150 1.107 1.201
webcam+dslr 1.165 1.195 1.270 1.000 1.189 1.209 1.125
amazon+dslr 1.300 1.280 1.150 1.189 1.000 1.133 1.070
amazon+webcam 1.247 1.375 1.107 1.209 1.133 1.000 1.053
webcam+dslr+amazon 1.353 1.683 1.202 1.125 1.070 1.053 1.000

TABLE VII: Domain shift measurements between all possible domain pairs by the proposed OKD measure.

Domain webcam dslr amazon webcam+dslr amazon+dslr amazon+webcam webcam+dslr+amazon

webcam 0.000 1.281 1.026 0.374 0.437 0.271 0.180
dslr 1.281 0.000 2.861 0.303 0.744 1.801 0.872
amazon 1.026 2.861 0.000 1.718 0.756 0.309 0.754
webcam+dslr 0.374 0.303 1.718 0.000 0.299 0.788 0.200
amazon+dslr 0.437 0.744 0.756 0.299 0.000 0.336 0.071
amazon+webcam 0.271 1.801 0.309 0.788 0.336 0.000 0.203
webcam+dslr+amazon 0.180 0.872 0.754 0.200 0.071 0.203 0.000

TABLE VIII: Domain similarity results between all possibledomain pairs by MMD [18]. The MMD value is0 between two
identical distributions. And the smaller the MMD is, the similar two distributions are.

three domains. However, they didn’t include the results on
transiting domains (e.g.webcam-amazon), we didn’t include
them here for further comparison.

V. CONCLUSION

In this paper, we introduce the output kernel analysis into
the domain adaptation problem. We also propose a Domain
Adaptive Input-Output Kernel Learning algorithm, referred as
DA-IOKL, to learn an optimal input and output kernel space
for cross-domain image object recognition. The proposed DA-
IOKL is generally applicable to single source, multiple sources
and multiple features domain adaptation tasks, and our exper-
iment results show that it consistently outperforms the state-
of-art methods when tested on two standard benchmark data
sets. For the future work, to get more compact representations
and a more efficient algorithm, we plan to study RKHSs for
operator-valued functions.
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[10] H. Daumé III, “Frustratingly easy domain adaptation,” in Conference of
the Association for Computational Linguistics (ACL), 2007.

[11] I.-H. Jhuo, D. Liu, D. Lee, and S.-F. Chang, “Robust visual
domain adaptation with low-rank reconstruction,” inIEEE Conference
on Computer Vision and Pattern Recognition (CVPR), June 2012.
[Online]. Available: http://www.ee.columbia.edu/ln/dvmm/publications/
12/DomainAdaptation.pdf

[12] B. Gong, Y. Shi, F. Sha, and K. Grauman, “Geodesic flow kernel for
unsupervised domain adaptation,” inIEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2012. [Online]. Available:
http://www.cs.utexas.edu/∼grauman/papers/subspace-cvpr2012.pdf

[13] J. Huang, A. J. Smola, A. Gretton, K. M. Borgwardt, and B.Schölkopf,
“Correcting sample selection bias by unlabeled data,” inAdvances in
Neural Information Processing Systems(NIPS), 2006.

[14] L. Duan, I. W. Tsang, D. Xu, and S. J. Maybank, “Domain transfer svm
for video concept detection,” inIEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2009.

[15] L. Duan, I. W. Tsang, and D. Xu, “Domain transfer multiple kernel
learning,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 2012.

[16] C. A. Micchelli and M. A. Pontil, “On learning vector-valued functions,”
Neural Computation, 2005.

[17] F. Dinuzzo, C. S. Ong, P. Gehler, and G. Pillonetto, “Learning output
kernels with block coordinate descent,” inInternational Conference on
Machine Learning (ICML), 2011.

[18] K. M. Borgwardt, A. A. Gretton, B. M. J. Rasch, H. peter Kriegel, A. B.
Schölkopf, and B. A. J. S. D, “Integrating structured biological data by
kernel maximum mean discrepancy,” inIn ISMB, 2006.

[19] R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu, “A limited memory algorithm
for bound constrained optimization,”SIAM Journal on Scientific and
Statistical Computing, 1995.

[20] D. Kifer, S. Ben-David, and J. Gehrke, “Detecting change in data
streams,” in International Conference on Very Large Data Bases
(VLDB), 2004.

[21] S. J. Pan, I. Tsang, J. T. Kwok, and Q. Yang, “Domain adaptation via
transfer component analysis,”IEEE Transactions on Neural Networks,
2011.

[22] J. V. Davis, B. Kulis, P. Jain, S. Sra, and I. S. Dhillon, “Information-
theoretic metric learning,” inInternational Conference on Machine
Learning (ICML), 2007.

[23] P. Jain, B. Kulis, J. V. Davis, and I. S. Dhillon, “Metricand kernel
learning using a linear transformation,”Journal of Machine Learning
Research (JMLR), 2012.

[24] A. G. an V. Vovk and V. Vapnik, “Learning by transduction,” in
Conference on Uncertainty in Artificial Intelligence (UAI), 1998.



SUBMITTED TO THE IEEE TRANSACTIONS ON IMAGE PROCESSING, FEB2013 14

[25] W. Jiang, E. Zavesky, and S.-F. Chang, “Cross-domain learning methods
for high-level visual concept classification,” inInternational Conference
on Image Processing (ICIP), 2008.
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