
TREATMENT LEARNING: IMPLEMENTATION AND APPLICATION

by

YING HU

B.Eng., University of Electronic Science and Technology of China, 1996

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF APPLIED SCIENCE

in

THE FACULTY OF GRADUATE STUDIES

(Department of Electrical and Computer Engineering)

We accept this thesis as conforming

to the required standard

. .

. .

. .

. .

THE UNIVERSITY OF BRITISH COLUMBIA

May 2003

c©Ying Hu, 2003

Abstract

Data mining and machine learning focus on inducing previously unknown,

potentially useful, and ultimately understandable information from data. In

this master’s thesis, we propose a new learning approach called treatment

learning. Treatment learning aims at mining a small number of control vari-

ables in a large option space that can lead to better system behavior. It

addresses two central issues in data mining: (1) the understandability of

learnt theories; (2) how can the learnt theories benefit decision making.

We design and implement a novel mining algorithm and deliver two

treatment learners that are freely downloadable from an online distribution.

We describe the implementation details of both learners and compare them

through algorithmic performance analysis.

We conduct extensive data experiments and case studies to demonstrate

the effectiveness of using treatment learner to seek a small number of control

variables that constrain the option space to a tight, near-optimal convergence.

We compare treatment learning with other learning schemes in the frame-

work of feature subset selection for supervised classification. Our treatment

learner selects smaller feature subsets than most other methods with minimal

or no loss in classification accuracy. Treatment learner has been successfully

ii

applied to various research domains through a collaboration with other re-

searchers. By presenting four examples, we show the general paradigms of

using it for decision making.

iii

Table of contents

Abstract ii

Table of Contents iv

List of Tables x

List of Figures xii

Preface xv

1 Introduction 1

1.1 Simplicity First Methodology 2

1.2 Classification vs. Class Comparison 5

1.3 Treatment Learning . 8

1.4 Organization . 8

2 Literature Review 12

2.1 Classification . 13

2.1.1 Introduction . 13

2.1.2 Decision Tree Induction 14

iv

2.1.3 k-Nearest Neighbors 19

2.1.4 Other Classification Methods 20

2.2 Association Rules . 24

2.2.1 Background and Formal Definitions 25

2.2.2 The APRIORI Algorithm 27

2.2.3 The MAX-MINER Algorithm 28

2.3 Integration of Classification and Association Rule Mining . . . 29

2.3.1 The CBA Classifier . 30

2.3.2 The JEP Classifier . 31

2.3.3 Contrast Set . 33

2.4 Summary . 34

3 Treatment Learning and The TAR2 Treatment Learner 36

3.1 The Narrow Funnel Effect . 36

3.2 Treatment Learning . 40

3.2.1 Problem Specification: Input/Output 41

3.2.2 The Algorithm . 44

3.2.3 The TAR2 Software Package 48

3.3 Case Study 1: Risk Assessment 49

3.3.1 Modelling . 49

3.3.2 Simulation . 50

3.3.3 Results and Validation 51

3.4 Case Study 2: Requirement Optimization 52

3.4.1 The Requirement Interaction Model 53

3.4.2 The Iterative Learning Cycle 54

3.4.3 Compared to Simulated Annealing 57

v

3.4.4 Discussion . 60

3.5 Relation To Other Techniques 60

3.5.1 Extension to Standard Machine Learning 60

3.5.2 Relation to Change Detecting Algorithms 62

3.6 Conclusion . 63

4 Algorithmic Evaluation and Improvement 65

4.1 Algorithm Performance of TAR2 65

4.1.1 Runtime vs. Data Size 66

4.1.2 Runtime vs. Treatment Size 67

4.1.3 Runtime in Practice 68

4.2 TAR3: The Improvement . 69

4.2.1 Random Sampling . 70

4.2.2 Treatment size . 71

4.2.3 lift(Rx) evaluation . 71

4.2.4 lift(Rx) penalization 71

4.2.5 Stopping point . 73

4.2.6 Usability . 74

4.3 Performance Improvement . 75

4.3.1 Runtime In Different Domains 75

4.3.2 Runtime vs. Data Size 75

4.3.3 Runtime vs. Treatment Size 77

4.4 Experiment Result Comparison 77

4.5 Case Study: The Pilot Domain Again 79

4.5.1 Comparison of the Cost-Benefit Distribution 83

4.5.2 Comparison of the Best 3 Class Distribution 84

vi

4.5.3 Comparison of Each Round 85

4.5.4 Comparison of the Final Treatments 86

4.5.5 Comparison of Runtimes 87

4.5.6 Summary . 87

4.6 Conclusion . 88

5 Evaluation Of Treatment Learning Through Feature Subset

Selection 89

5.1 Introduction . 89

5.2 The Feature Subset Selection Experiment 92

5.2.1 Feature Subset Selection Methods 92

5.2.2 The Methodology . 95

5.2.3 The Results . 97

5.3 Discussion . 100

5.4 Conclusion . 101

6 Application Of Treatment Learning 102

6.1 Application Approach . 103

6.2 Feasibility of Agile Process . 104

6.2.1 Agile Process and Pair Programming 105

6.2.2 Müller/Padberg Model 106

6.2.3 Menzies/Smith Studies 107

6.2.4 Discussion . 110

6.3 Software Metrics . 111

6.3.1 Background . 111

6.3.2 The Experiment . 112

vii

6.3.3 Discussion . 115

6.4 Software Inspection Policies 116

6.4.1 Modelling and Simulation 116

6.4.2 Sensitivity Analysis . 118

6.4.3 Discussion . 119

6.5 Testability of Finite-State Models 119

6.5.1 FSM and Testability 120

6.5.2 Summarizing the Search 121

6.5.3 Applying Gained Knowledge 124

6.5.4 Discussion . 125

6.6 conclusion . 125

7 Conclusion 127

7.1 Main Contributions . 127

7.2 Future Work . 129

References 132

Appendix 143

A User Manual for TAR3 Treatment Learner 143

A.1 Getting TAR3 . 143

A.2 Configuration File . 144

A.3 Name File . 145

A.3.1 Name Restriction . 145

A.3.2 Class Format . 146

A.3.3 Attribute Format . 146

viii

A.3.4 Optional Sections . 146

A.3.5 Little Language . 147

A.4 Command Line . 148

A.5 Cross-Validation . 148

ix

List of Tables

2.1 A small training set. 15

2.2 A natural representation of transactions. 25

3.1 Feature subset selection results from Kohavi and John, [KJ97] 38

3.2 Average performance of TABLEAU vs ISAMP on 6 schedul-

ing problems (A..F) with different levels of constraints and

bottlenecks. From [CB94]. 39

3.3 COCOMO-II parameters. Scale drivers are listed first. The cost

drivers are union of the product, platform, personnel, and project

attributes. Last two columns show values known within one NASA

software project. 49

3.4 Balanced score combination of cost and benefit values 56

4.1 Runtimes for TAR2 on different domains. First 6 data sets

come from the UC Irvine machine learning data repository;

“cocomo” comes from the COCOMO software cost estimation

model [MH01c]; “pilot” comes from the NASA Jet Propulsion

Laboratory [FM02a]; “reachness” and “reachness2” come from

other source [MH02]. 66

x

4.2 Different parameters required by TAR2 and TAR3. 74

4.3 Runtimes for TAR3 on different domains (on a 333 MHz Windows

machine with 200MB of ram). 75

4.4 Best treatment returned by TAR3 and TAR2 on various domains. 80

4.5 Best treatment returned by TAR3 and TAR2 on the pilot domain. 81

4.6 Comparison of the best 3 class distributions for TAR2 and

TAR3 experiments. 84

4.7 Comparison of the final treatments found by TAR2 and TAR3,

respectively. 86

4.8 Comparison of the runtimes of each round. 87

5.1 Datasets used in the benchmark experiment, all from UCI data

repository [CEC98]. 95

5.2 Classification accuracy of J4.8 and Naive Bayes before and

after using TAR2 as attribute subset selector 97

5.3 Size of trees (number of nodes) produced by J4.8 with and

without attribute selection . 98

5.4 Number of features selected for J4.8 98

5.5 Number of features selected for Naive Bayes 99

6.1 Parameters systematically varied by Müller and Padberg . . . 107

6.2 Parameters and ranges used by Smith and Menzies 108

6.3 Metric Groups. 112

6.4 Best and worst treatments learned by TAR2. 123

A.1 Parameters seen in the configuration file. 144

xi

List of Figures

1.1 A decision tree learnt from HOUSING data set from UCI data repository

http://www.ics.uci.edu/\nobreakspace{}cmerz/mldb.tar.Z. 4

1.2 Treatments learnt in the same domain 7

2.1 A decision tree corresponding to table 2.1. 16

2.2 A sample multi-layer feed-forward neural network. Input (x1, x2, x3)

is fed to the input layer. Weighted connections exist between

each layer, where wij denotes the weight from a unit j in one

layer to a unit i in the previous layer. 21

3.1 A example data set. 41

3.2 class distribution seen in the original salary data set and the sub-

set after applying the treatment [occupation=manager]. Three

bars correspond to 3 classes (”low”,”medium”,”high”) respectively.

Height of each bar indicates the percentage of examples fallen into

that class. The original data set contains 100 examples while the

treated subset contains only 25. 43

xii

3.3 confidence1 histogram seen in ”salary” data. Each bar denotes a

particular M value. Height of each bar indicates how many at-

tribute value pairs have that M value 46

3.4 Simulation outputs using inputs specified in KC-1 project. 51

3.5 Re-simulation results after constraining the model using the treatment. . 51

3.6 The iterative cycle of Simulation/Summarization/Decision. . . 54

3.7 Initial result from executing the model of pilot domain. . . . 55

3.8 Result from executing the model of pilot domain when it was

constrained by treatments after the 5th iteration. 57

3.9 Percentile matrices showing four rounds of treatment learning

for the pilot study. 58

3.10 Comparison of TAR2 and simulated annealing. 59

4.1 Runtime vs dataset size. Datasets are generated from COCOMO

risk estimation model [ACDC+98]. 67

4.2 Runtime vs treatment size. Data set size is fixed to 3MB. Datasets

are generated from COCOMO model. Note the Y-axis is the log-

arithm of the runtime. 68

4.3 Confidence1 distributions seen in eight domains. Y-axis is the number of

times a particular confidence1 was seen. (i)-(iv) come from datasets taken

from the UC Irvine machine learning repository. (i)-(iv) were generated

from other domains discussed in this thesis. 69

4.4 Runtime vs attributes. Datasets come from the pilot domain . . . 76

4.5 Runtime vs instances. Datasets come from the pilot domain 76

4.6 Runtime vs instances. Datasets come from the cocomo domain . . 78

xiii

4.7 The cost-benefit distribution of the initial simulation from the

pilot domain. 82

4.8 The cost-benefit distribution from executing the model of pilot

domain when it was constrained after the 5th iteration of TAR2. 83

4.9 The cost-benefit distribution from executing the model of pilot

domain when it was constrained after the 4th iteration of TAR3. 83

4.10 The mean and standard deviation of cost at each round. . . . 85

4.11 The mean and standard deviation of benefit at each round. . . 86

5.1 Feature subset selection as a pre-process prior to learning. . . 90

6.1 Raw data plots of a) completely random cases, b) cases with DeveloperProductivity

set to maximum (T1), and c) cases with PairSpeedAdvantage and

PairDefectAdvantage set to maximum (T2). The vertical line indi-

cates the point where PP is no longer advantageous 109

6.2 Results . 114

6.3 Sorted utilities generated in case study 2. 118

6.4 Intuitive testability interpretation of search results 121

6.5 Plateau height results for 15,000 models. Average plateau

height=69.39% . 122

6.6 Search data for input models generated according to TAR2’s

suggestions—average plateau height = 91.34%. 124

xiv

Preface

This thesis describes the research proceeded during the pursuit of my Mas-

ter’s degree. The work presented in this thesis has resulted in the following

publications:

• “Agents in a Wild World”, a book chapter in “Formal Approaches to

Agent-Based Systems”[MH02]

• “Model-based Tests of Truisms”, in the proceedings of IEEE ASE

2002[MRoS+02]

• “Condensing uncertainty via Incremental Treatment Learning”, in “An-

nals of Software Engineering”[MCF+02]

• “Reusing models for requirements engineering”[MH01b] and “Constrain-

ing discussions in requirements engineering”[MH01a], for the “First In-

ternational Workshop on Model-based Requirements Engineering”

Also, currently under review, are the following two submissions:

• “Data Mining for Busy People”, submitted to IEEE Computer

• “Just Enough Learning (of Association Rules)”, submitted to the Jour-

nal of Data and Knowledge Engineering

xv

The software package discussed in this thesis has been used by other

researchers in the following papers:

• “Should NASA embrace Agile Processes?” [Sm02]

• “Metrics That Matter” [MSCM02]

• “Model-based Tests of Truisms” [MRoS+02]

• “What Makes Finite-State Models more (or less) Testable” [DO02]

I would like to thank Dr.Tim Menzies, my supervisor for his vision, in-

sight and guidance. Dr.Menzies helped me by means of encouragement and

enthusiasm, without him, this thesis would not be possible. I also wish to

thank my husband, for his constant support.

xvi

Chapter 1

Introduction

We are living in an information age where powerful database systems for data

collecting and managing are in use in virtually all companies, accumulating

data on operations, activities and performance. The need for automated ex-

traction of useful information (e.g., trends and patterns) from huge amounts

of data has led to the rapid development of knowledge discovery and data

mining techniques. Knowledge Discovery in Database (KDD) is defined as

the non-trivial process of identifying valid, novel, potentially useful, and ulti-

mately understandable patterns in data [UPSS96]. Data Mining is a step in

the KDD process. It consists particular algorithms that, under some accept-

able computational efficiency limitations, produce a particular enumeration

of the required patterns. Although data mining gains its popularity only re-

cently, the similar concept has been well researched in an artificial intelligence

area called machine learning. Machine Learning concentrates on induction

algorithms and on other algorithms that can be said to “learn”. Because both

data mining and machine learning aim at inducing previously unknown, and

1

potentially useful, information from data, we use the two terms interchange-

ably.

Despite the explosion in the development of data mining, there remains

two central issues:

• Understandability of the learnt theory.

• How the knowledge gained from data actually benefit decision making?

In this thesis, we introduce the concept of treatment learning. Treatment

learning is a new learning approach that aims at identifying a small number

of control variables in a large search space. In the rest of this chapter, we

address the above issues respectively to bring in the distinguishing features

of treatment learning.

1.1 Simplicity First Methodology

Theories learnt by different learners vary widely in term of their explanatory

value. At one extreme, some learning algorithms output theories too intricate

to be understood by human. For example, it is difficult to understand the

prediction system of a neural network merely by studying the net topology

and individual node weights. If a particular prediction is in some sense

surprising to the end-user, it is harder to establish any rationale for the value

generated. By comparison, decision tree learners are commonly considered

to be easily understandable. By explicitly enumerating rules used by the

prediction system, such learners can lead to insights about the data.

Improving both accuracy and simplicity is one of the goals of machine

learning research. In the past, researchers have designed learning algorithms

2

with a strong bias toward short rules. One such bias is Ockham’s Razor, a

principle proposed by William of Ockham in the fourteenth century. It states

that “entities should not be multiplied unnecessarily”, which is normally

interpreted as “keep it simple”. In machine learning, when we face two

theories with the same predictions and the available data cannot distinguish

between them, Ockham’s Razor favors the simplest one.

There are always tradeoffs between simplicity and accuracy. Based on

different emphasis, two methodologies exist in parallel:

• Traditional methodology encourages learning algorithm to search through

very large hypothesis space containing complex hypothesis.

• Alternatively, a “simplicity first” methodology directs learning algo-

rithm to search through a relatively small space containing only simple

hypothesis.

Although it is perfectly possible that simple hypothesis can be produced

by using the traditional methodology, we emphasize that simplicity first ap-

proach offers attractive features. Firstly, systems designed using this method-

ology are guaranteed to produce theories that are near-optimal with respect

to simplicity. Secondly, accuracy of the simple theory provides a baseline for

more complex ones. In other words, increased complexity must be justified

by increased accuracy.

Treatment learning adopts the simplicity first methodology. It produces

minimal model of the target domain. If the theory found by treatment learner

is unsatisfactory, then there does not exist a simple satisfactory theory. As a

result, the output of treatment learner is small, simple, understandable and

3

Figure 1.1: A decision tree learnt from HOUSING data set from UCI data repository
http://www.ics.uci.edu/~cmerz/mldb.tar.Z.

t

lstat=<11.66

lstat>11.66

high

medlow

medhigh

low

rm=<6.54

rm>6.54

dis=<1.5106

dis>1.5106 lstat=<7.56

lstat>7.56

ptratio=<19.6

ptratio>19.6

rm=<6.142

rm>6.142

indus=<10.01

indus>10.01

tax>256

tax=<256

age=<26.3

age>26.3

crim=<0.13158

crim>0.13158

rad=<1

rad>1

zn=<17.5

zn>17.5

dis=<3.9454

dis>3.9454

ptratio=<17.4

ptratio>17.4
dis>3.9342

dis=<3.9342 tax=<233

tax>233

rm=<5.99

rm>5.99

age=<26.3

age>26.3

rm=<6.319

rm>6.319

age=<52.6

age>52.6

rm>7.061

rm=<7.061

lstat=<5.39

lstat>5.39

rad>4

rad=<4

indus>6.41

indus=<6.41

rm>6.678

rm=<6.678

age=<22.3

age>22.3

rad=<1

rad>1

crim=<0.06162

crim>0.06162

nox=<0.435

nox>0.435

lstat=<8.43

lstat>8.43

indus=<2.97

indus>2.97
ptratio=<17

ptratio>17
b=<381.32

b>381.32

lstat=<16.21

lstat>16.21

indus=<4.15

indus>4.15

zn>45

zn=<45 rm=<5.878

rm>5.878

b=<240.52

b>240.52

b=<109.85

b>109.85

chas=<0

chas>0

zn=<21

zn>21

lstat=<14.37

lstat>14.37

indus=<4.95

indus>4.95

rad=<4

rad>4

crim=<1.27346

crim>1.27346

dis=<1.5331

dis>1.5331

lstat=<14.19

lstat>14.19

lstat=<14.67

lstat>14.67

ptratio=<19.1

ptratio>19.1

b=<382.44

b>382.44 dis=<2.4329

dis>2.4329

b=<394.23

b>394.23b=<366.15

b>366.15

age=<59.7

age>59.7

nox>0.585

nox=<0.585

chas>0

chas=<0

age=<49.3

age>49.3

lstat>22.6

lstat=<22.6

crim=<0.22212

crim>0.22212

rad=<5

rad>5

dis=<2.4786

dis>2.4786

easy to interpret.

For example, figure 1.1 shows a decision tree learnt by C4.5 from the same

HOUSING dataset. The dataset comes from the UC Irvine machine learning

4

data repository [CEC98]. It contains 506 examples of high, mediumHigh,

mediumLow, and low quality houses in the Boston area. The decision tree

is a predicting system. Given a new housing record, the system can predict

what quality this house might be classified. Although decision trees are one

of the most explainable learners, the tree is still too complex for human to

understand. If a person wants to find high quality houses in this area, giving

him this tree doesn’t provide intuitive guidelines for his house hunting pro-

cess. The tree doesn’t tell him what elements to watch for or what elements

to avoid, which are the keys for human to make decisions. Treatment learn-

ing, on the other hand, gives this kind of information as we should see in the

next section.

1.2 Classification vs. Class Comparison

In most domains, data are grouped into several comparable categories or

classes. This resembles the natural way of human learning. Two different

data mining tasks arise when understanding classes: classification and class

comparison. Classification is one of the most well researched and widely used

techniques. It analyzes the data to construct one or a set of models, and at-

tempts to predict the behavior of new data examples. Models usually take

the form of decision trees, rules, neural nets or Beyesian belief networks.

Class comparison focuses on mining descriptions that distinguish a target

class from its contrasting classes. Intuitively, both techniques discover dif-

ferences between classes. If an attribute is highly relevant with respect to a

given class that it can be used to classify novel instances of that class, then it

5

is likely that the values of the attribute can distinguish the class from others.

However, classification and class comparison put quite different emphasis on

the interpretation of discovered theories by human domain experts. Rubin-

stein and Hastie [RH97] argue that the goal of automatically finding classes

differences can be approached from 2 points of view:

1. discriminative: where the algorithm focuses on learning the class bound-

aries without regard to the underlying class densities. This way, it at-

tempts to find differences that are useful for predictive classification

with a high degree of accuracy.

2. Informative: where the algorithm learns the class densities, and at-

tempts to find significant differences in the class descriptions, some of

which may also be highly predictive but are not necessarily so.

Most classifiers are discriminative miners. The learnt theory can be

thought as a black box: once the box is ready, all we care is whether it

could output a correct classification when giving a new example. Unlike

classifiers, treatment learner takes the informative approach. It learns the

class distribution, and seeks for solutions (e.g., treatments) that could most

change the distribution in a user preferred way. Theory learnt from treat-

ment learner is more like a white box: we actually look into it and want

to understand why this would lead to certain direction. By emphasizing on

the understandability of the theory, treatment learning generates insights

into the target domain and inspires decision making. Take the HOUSING

example, treatment learner outputs a theory shown in figure 1.2. The left

most plot in that figure shows the quality distribution of houses in that area:

among the 506 houses, 21% is of poor quality while 29% is very good. For

6

house hunting policy within the area, treatment learner offers two strategies

(Visualized in the middle and the right plot of figure 1.2 respectively):

rule 1





IF : 6.7 ≤ RM ≤ 9.8 AND 12.6 ≤ PTRATIO ≤ 15.9

THEN : 97% of the found houses will be high quality

rule 2





IF : 0.6 ≤ NOX ≤ 1.9 AND 17.16 ≤ LSTAT ≤ 39

THEN : 98% of the found houses will be low quality

Despite any domain specific details, the above two rules are easy to interpret

and helpful for people seeking houses in that area.

Figure 1.2: Treatments learnt in the same domain

baseline controllerH monitorH

(i.e. best action) (i.e. diaster if..)

Treatment nothing 6.7 ≤ RM < 9.8 0.6 ≤ NOX < 1.9
∧12.6 ≤ PTRATION < 15.9 ∧17.16 ≤ LSTAT < 39.0

Results 0
25
50
75

100

21 21 29 29

0
25
50
75

100

0 0 3

97

0
25
50
75

100
98

1 1 0

N 506 38 81

Attributes used in the treatments:
rm = number of rooms

ptratio = parent-teacher ratio at local schools
nox = nitric oxides concentration

lstat = living standard

7

1.3 Treatment Learning

In summary, treatment learning addresses the understandability and decision

making issues of data mining by providing two attractive features:

• It takes a simplicity first methodology. As a result, it seeks to generate

minimal theories that are small, simple, easily understandable from the

target domain.

• It approaches learning in an informative way, emphasizing on the in-

terpretation of the learnt theory by human experts to inspire decision

making.

We present this novel learning approach, and advocate the use of treatment

learning as an alternative to other, more elaborate learning algorithms. As

shall be seen in the rest of the thesis, treatment learning has been success-

fully applied to numerous research domains such as software engineering,

requirement optimization and attribute subset selection. Treatment learning

contributes to the data mining community a new learning concept, a readily

accessible learner and a wide applicability.

1.4 Organization

This thesis discusses four main topics:

1. Introduction of treatment learning in the context of machine learning

and data mining.

2. A detailed description of treatment learning by providing algorithm

implementation and performance comparison of two treatment learners.

8

3. A evaluation of treatment learning with respect to other state-of-the-

art techniques in the framework of Feature Subset Selection (FSS) for

supervised classification.

4. Application of treatment learning in various research domains.

The above topics are organized as follows:

In chapter 2, we present a literature review that serves as background of

this thesis. Two groups of concepts and techniques are outlined: one is super-

vised classification in machine learning, the other is association rule mining

in data mining. We also review some recent development in integration of

classification and association rule mining. All of them are closely relevant to

the topics discussed in this thesis, and represent the state-of-the-art in each

of these areas.

In chapter 3, we first bring forward the concept of narrow funnel effect :

an observation repeated in many researches, where most domain variables

are controlled by a very small subset. We then introduce treatment learning

as an ideal way to identify funnel variables: a lightweight learning approach

that focuses on producing the minimal models to describe significant differ-

ences among groups of data. We go deep into the problem by presenting

implementation details of a treatment learner TAR2. This is followed by

two case studies illustrating the effectiveness of using treatment learner in

practice for actionable decision making. Finally, we relate treatment learning

to extensions of standard learning techniques and general change detecting

algorithms to show their differences and the novelty of our approach.

In chapter 4, we examines the algorithmic performance of the learner

described in the previous chapter. We point out its efficiency limitation

9

by reporting runtime curves with respect to parameters such as data size

and treatment size. After analyzing the search procedure that leads to the

problem, we solve it by employing a series of strategies, including a random

sampling algorithm. The improved learner TAR3 is evaluated through com-

parison experiments with TAR2 and a revised case study. The results show

that TAR3 has made major improvement in efficiency: it can reach stable

conclusions in linear time.

In chapter 5, we further explore treatment learning in the framework of

Feature Subset Selection for supervised classification. Feature subset selec-

tion is the process of identifying and removing as much of the irrelevant and

redundant information from data as possible prior to learning. We use treat-

ment learner as feature subset selector on ten commonly used datasets and

compare the result with six standard techniques. Experiments show that our

approach is the best overall feature subset selection method. It finds the

smallest feature subsets with minimal or no loss in classification accuracy.

The test of any technique cannot be how much the inventor likes it.

Rather, it is how much other people wants to use it. In chapter 6, we describe

how other researchers have used the software developed in this thesis. We

present real world applications of treatment learning to demonstrate how it

can be integrated into different research frameworks to assist decision making.

We present studies in four domains:

1. Assessment of software development paradigm

2. Project quality analysis using software metrics

3. Study of software inspection policies

4. Testability analysis of Finite-State Models

10

Among them some are model-based while others are data-present. In either

case, we give brief background and state the approach and goal of the study.

Although each case is discussed from a domain-specific point of view, we

emphasize the general applicability of treatment learning and the approach

of modelling the problem such that we can make decisions by identifying

minimal key factors in the domain.

In chapter 7, we conclude this by reviewing the main contributions of our

research and pointing out future research issues.

11

Chapter 2

Literature Review

We present in this chapter a literature review which is closely related to

the topics discussed in this thesis. We also provide basic definitions asso-

ciated with data mining and supervised machine learning. They serve as a

background to the thesis and will be frequently used throughout it. Some

of the definitions will be repeated or emphasized again if necessary, other

additional, non-frequently used definitions will be given when required.

Classification and association rule mining are two major topics in the

review. Typical algorithms as well as other commonly used methods in each

field are discussed. Association based classification methods have attracted

much attention in recent years, showing an increasing interest in integrating

the two approaches for real world application. Our goal is to provide a

representative sample of the research in each of these areas.

12

2.1 Classification

2.1.1 Introduction

The problem of classification has been well studied and continued to be an im-

portant research topic in the fields of machine learning, pattern recognition,

statistics over decades, and recently in the database and data mining com-

munities. Classification is defined as the process of finding a set of models(or

functions) that describe and distinguish data classes or concepts, for the pur-

pose of being able to use the model to predict the class of objects whose class

label is unknown [JH01]. The derived model may be represented in various

forms, such as classification (IF-THEN) rules, decision trees, mathematical

formulae, or neural networks.

Typically, a classification task consists of two steps:

• The learning phase: In this phase, a model is constructed by analyzing

data examples described by attributes. Each data example is assumed

to belong to a predefined class(e.g., edible or poisonous, play or don’t

play), they collectively form the training data set. This step is also

known as supervised learning, metaphor being that the learning of the

model is “supervised” explicitly by the class label of each training ex-

ample.

• The testing phase: In this step, the accuracy of the learnt model is

estimated on the test data set. If the accuracy is acceptable, the model

is used to classify future data examples for which the class label is

unknown.

13

Two different learning strategies are employed for classification: eager

learning and lazy learning. Lazy learners [Aha97] (also called instance-based

learning) defer processing of training examples until requests for classifica-

tion of new data examples are received. They accomplish classification by

combing their stored (e.g., training) data and discard the constructed answer

as well as any intermediate results. In contrast, eager learners greedily com-

pile their inputs into an intensional concept model (e.g., rule set, decision

tree, or neural network), and in this process discard the inputs. They then

use this induced model for classification.

Decision tree induction and neural networks are examples of eager learn-

ing method, nearest neighbor classifiers are typical learners using the lazy

learning strategy. In the following section, we outline 2 representative algo-

rithms: C4.5 and k-nearest neighbor. To show the diversity of approaches,

other methods such as backpropagation, Naive Bayesian classifier and 1R are

also discussed.

2.1.2 Decision Tree Induction

Ross Quinlan’s work on ID3 [Qui86] and C4.5 [Qui92] is widely acknowledged

to have made some of the most significant contributions to the development

of classification. The idea originates from the concept learning systems(CLS)

[HS66].

A decision tree is a tree structure, where each internal node denotes a

test on an attribute, each branch descending from that node corresponds to

one of the possible values for this attribute, and leaf nodes represent classes

[Qui92]. An instance is classified by starting at the root node of the decision

14

outlook temp(oF) humidity windy? class
sunny 75 70 true play
sunny 80 90 true don’t play
sunny 85 86 false don’t play
sunny 72 95 false don’t play
sunny 69 70 false play

overcast 72 90 true play
overcast 83 88 false play
overcast 64 65 true play
overcast 81 75 false play

rain 71 96 true don’t play
rain 65 70 true don’t play
rain 75 80 false play
rain 68 80 false play
rain 70 96 false play

Table 2.1: A small training set.

tree, testing the attribute specified by this node, then moving down the tree

branch corresponding to the value of the attribute. This process is then

repeated at the node on this branch and so on until leaf node is reached.

Table 2.1 is an example training data, and its corresponding decision tree

is shown in figure 2.1. That tree has 100% accuracy on the 14 training

instances. Decision trees can easily be converted into a set of decision rules.

The basic algorithm for decision tree induction is a greedy algorithm that

constructs decision trees in a top-down recursive divide-and-conquer manner.

It involves determining the attribute which is most discriminatory and then

splitting the training instances into groups, containing multi-class instances

or single-class instances, categorized by this attribute. Next, the process is

repeated to further partition each group until every subgroup contains data

of one class only. The key to constructing a decision tree is how to choose an

15

outlook

windyhumidity

playplay play don't playdon't play

rain

overcast

sunny

truefalse<=75 >75

Figure 2.1: A decision tree corresponding to table 2.1.

appropriate attribute to divide the data, and subsequently other attribute

values for subgroups.

ID3 [Qui86] uses an entropy-based measure known as information gain

as a heuristic for selecting the attribute. The information theory underlying

it states that: The information conveyed by a message depends on its prob-

ability and can be measured in bits as minus the logarithm to base 2 of that

probability. Let S be a set containing s training examples, Ci(i = 1..m) be

one of m distinct classes. The entropy or expected information needed to

classify a given sample is given by:

E(S) = −
m∑

i=1

pi log2(pi)

where pi = |S,Ci|
|S| is the probability that an arbitrary sample belongs to class

Ci. Consider a similar measurement after S has been partitioned in accor-

dance with the n distinct values of attribute A. The entropy based on the

16

partitioning into subsets by A is the weighted sum over all subsets:

E(A) =
n∑

j=1

|Sj|
|S| ∗ E(Sj)

=
n∑

j=1

|Sj|
|S| ∗ (−

m∑
i=1

pij log2(pij))

where pij =
|Sj ,Ci|
|Sj | is the probability that a sample in Sj belongs to class Ci.

The information gained by partitioning S in accordance with attribute A is:

Gain(A) = E(S)− E(A)

ID3 in its each iteration selects attribute to maximize this information gain

criterion.

The gain measure is biased in that it tends to prefer attributes with many

values. To avoid this, C4.5 uses gain ratio which considers the probability of

each attribute value:

gain ratio(A) =
gain(A)

split info(A)

=
gain(A)

−∑n
i=1

|Si|
|S| ∗ log2(

|Si|
|S|)

Experiments show that gain ratio is robust and typically gives a consistently

better choice of test than the gain criterion [Qui88]. However, it is reported

to have the tendency to favor unbalanced splits in which one subset is much

smaller than the others [Min89]. Various other selection measures have been

proposed, including Gini index of CART [BFOS84], distance-based measures

[deM91] and the TARZAN tree query language (also a prolog prototype of

the TAR2 system described in the later chapters) [MK01].

17

Decision Tree 1R

1R is a simple decision tree learner developed by Holte [Hol]. It reads in

dataset and outputs 1-level decisions tree. The learning algorithm is straight-

forward:

• Divide the value range of continuous attribute into several disjoint in-

tervals.

• Treat missing value as a legitimate value.

• For each attribute, construct a 1-level decision tree using that attribute

by assigning class membership for each of its value. Class C is assigned

to attribute A value V such that most examples having value V of

attribute A belong to class C (i.e., P (A.V |C) is maximum).

• Choose the decision tree that has the highest accuracy on the training

set. This is the final output of 1R.

In summary, 1R ranks attributes according to the accuracy on the training

set. The highest ranked attribute is selected to construct the 1-level decision

tree.

1R was compared to C4 (the immediate ancestor of C4.5 [Qui86]) on 16

commonly used machine learning datasets. The experiment showed that 1R’s

1-level trees, although much simpler, are only a few percentage points (3.1%)

less accurate, on most of the datasets, than the decision trees produced by

C4 [Hol]. The comparison offers two important implications:

1. 1R provides a benchmark accuracy for other, more sophisticated clas-

sifiers. More complex systems must justify their additional complexity

with improved accuracy.

18

2. The comparison suggests that very simple learners can perform well in

practice.

2.1.3 k-Nearest Neighbors

Nearest-neighbor methods are among the most popular for classification.

They represent the earliest general(nonparametric) methods proposed for

this problem and were heavily investigated in the fields of statistics and

pattern recognition [CH67]. Recently renewed interest in them has emerged

in the connectionist literature and machine learning. Despite their basic

simplicity and the fact that many more sophisticated alternative techniques

have been developed since their introduction, nearest-neighbor methods still

remain among the most successful for many classification problems.

The nearest neighbor searching is: given a set of S of n points in a

metric space X, the task is to preprocess these points so that, given any

query point q ∈ X, the data point nearest to q can be reported quickly.

The intuition behind the k-nearest neighbor classification is that the class

label of a test instance is most likely to be the class prevailing the k nearest

training examples of the test instance. Training examples are described by

n-dimensional numeric attributes. Each sample represents a point in an n-

dimensional space. When given an unknown sample, the k-nearest neighbor

classifier searches the n-dimensional pattern space for the k training examples

that are closest to the unknown sample. “Closeness” is defined in terms

of Euclidean distances, where the Euclidean distance between two points,

19

X = (x1, x2, ..., xn) and Y = (y1, y2, ..., yn) is:

d(X, Y) =

√√√√
n∑

i=1

(xi − yi)2

The unknown sample is assigned the most common class among its k nearest

neighbors. Specifically, when k = 1, the unknown sample is assigned the class

of the training sample that is closest to it in pattern space. Nearest neighbor

classifiers do not require categorical class attributes, they could return a real-

valued prediction for a given unknown example. Therefore, thy can also be

used for regression, in which case, the classifier returns the average value of

the numeric labels associated with the k nearest neighbors of the unknown

example.

Recall that the eager learning classifiers such as C4.5 and backpropagation

produce discriminating knowledge from training data before any individual

decision is made, and maintain the knowledge unchanged unless new training

instances are added. In contrast, nearest neighbor classifiers are lazy learners

in the sense that they store all of the training examples and do not build a

generalization model until a new sample needs to be classified. Since all the

training is delayed to that time, lazy learners can incur expensive compu-

tational costs when the number of potential neighbors (i.e., stored training

examples) is great. These costs become a serious issue in applications where

many objects are to be classified in a very short time.

2.1.4 Other Classification Methods

In addition to decision tree and nearest neighbors, there are numerous other

classification methods. In this section, we briefly describe neural nets and

20

x1

x2

x3
w(ij) w(kj)

O(j) O(k)

Input Layer Hidden Layer Output Layer

X(i)

Figure 2.2: A sample multi-layer feed-forward neural network. Input
(x1, x2, x3) is fed to the input layer. Weighted connections exist between
each layer, where wij denotes the weight from a unit j in one layer to a unit
i in the previous layer.

bayesian networks.

Neural Networks

Neural networks [Ros62] were inspired by psychologists and neurobiologists

who sought to develop and test computational analogues of neurons. Neural

network is a set of connected input/output units where each connection has

a weight associated with it. During the training phase, the network learns

by adjusting the weights for each unit. After successful completion of train-

ing, the neural network architecture is frozen. When new instances traverse

the network, they are multiplied by appropriate weights and the products

are summed up. The output from one node serves as input to another node

following the connection. This process repeats until the neural network gen-

21

erates an output value which determines the instance’s class.

Different neural network models exist depending on how the units are

connected: The network may be feed forward networks [Ros62] in which the

output of one set of units is fed into another layer of units. Networks can be

recurrent networks such as Boltzmann Machines [HS86] in which the output

of a unit as well as being an input to other units is also an input to itself.

Networks may either be fully connected (e.g., Hopfield networks [Hop82])or

sparsely connected.

The most widely used neural network learning algorithm is backpropa-

gation. It performs learning on a multi-layer feed-forward neural network

such as the one shown in figure 2.2. Backpropagation learns by iteratively

processing a set of training examples. In each iteration (called epoch), the

mean squared error between the network’s prediction and the actual class

is calculated and propagated backwards from the output layer through each

hidden layer down to the first hidden layer. The weights are updated, using

gradient descent, to minimize the error. Although it is not guaranteed, in

general the weights will eventually converge, and the learning process stops

[Fau94].

Neural networks involve long training times. They require a number of

parameters that are typically best determined empirically, such as the net-

work topology. They have been criticized for their poor interpretability, since

it is difficult for humans to interpret the semantics behind the learned weights

[Hay99]. Advantages of neural networks, however, include their high toler-

ance to noisy data as well as their ability to classify pattern on which they

have not been trained. Shavlik et. al., [SMT91] did extensive experiments

22

comparing packpropagation with ID3. Their results show that backpropaga-

tion is more accurate than ID3 with small training set, when data contains

numerical-valued features, and when examples are noisy or have more miss-

ing values. Recent efforts in speeding up the algorithms and extraction of

rules from trained neural networks contribute towards the usefulness of neu-

ral networks for classification.

Naive Bayesian Classifier

Beyesian classifiers, originally presented by Duda and Hart [DH73] are sta-

tistical classifiers using Bayes’ theorem to compute a probabilistic summary

for each class. Beyes’ theorem states that: the posterior probability of a

hypothesis H conditioned on observation O is a function of the prior prob-

ability of the hypothesis H (i.e., the probability you would have assigned to

the hypothesis before you made the observation). In mathematical formula,

it is:

P (H|O) =
P (O|H)P (H)

P (O)

the essence of the Bayesian approach is to provide a mathematical rule ex-

plaining how we should change our existing beliefs in the light of new evi-

dence. In classification, we try to predict the class membership probability

given the data examples.

Naive Bayesian classifiers assume that the values of the attributes are

conditionally independent of one another given the class label of the example,

that is, there are no dependencies among the attributes. Despite the fact that

the assumption is only made to simplify the computation, Naive Bayesian

classifier is reported to be comparable in performance with decision tree and

23

neural network classifiers [Koh96].

When the class conditional independence condition holds true, Naive

Bayesian classifier has the minimum error rate in comparison to all other

classifiers. In practice however, dependencies can exist between variables. In

this case, Bayesian belief networks which allow the representation of depen-

dencies among subsets of attributes can be used instead. Bayesian classifiers

are also useful in that they provide a theoretical justification for other clas-

sifiers that do not explicitly use Bayes theorem. For example, under certain

assumptions, many neural network and curve-fitting algorithms output the

maximum likelihood hypothesis, just as naive Bayesian classifier does [D.H96]

.

2.2 Association Rules

Association rule discovery [TA93] [AS94] differs fundamentally from classi-

fication rule discovery paradigms. While the classification concentrates on

finding rules that are predictive of a single, predefined class label, associa-

tion rule discovery has been motivated by finding rules that predict increased

frequency of an attribute value, or collection of attribute values, without limi-

tation on the values that may appear in the consequent of a rule. Association

rule discovery can be distinguished by the aims of [Web00]:

1. discovering all rules that satisfy a given set of constraints,

2. an emphasis on processing large training sets, and

3. allowing any available condition to appear as either an antecedent or

consequent.

24

As shown in the classification section, any machine learning system has its

own bias. Since association rules do not filter through a machine learning

system, it enables the user to identify the interesting rules rather than relying

on a machine learner to determine the rules of interest. This makes associ-

ation rule discovery a very valuable tool for discovering inter-relationships

between variables in many different types of domains.

2.2.1 Background and Formal Definitions

Association rule discovery originates in basket (transactional) data analysis

[TA93]. In transactional databases, the attributes are the names of mer-

chandise such as bread, milk and butter. Such attributes are binary with the

values of either 0 or 1. An attribute with the value 1 means that this mer-

chandise was bought, otherwise it was not. An item is an attribute-value

pair. Table 2.2 is a natural representation of the real transactions.

TID Transactions

1 A,B,C

2 B,C,E

3 B,C,D,E

4 B,D

Table 2.2: A natural representation of transactions.

Definition: Support of an itemset Given a database D and an itemset

X, the support of X in D is the percentage of transactions in D

25

containing X.

support(X) =
|X|
|D| = P (X)

Definition: Large or frequent itemset Given a database D and a real

number δ(0 ≤ δ ≤ 1), and itemset X is defined as a large (or frequent)

itemset if support(X) ≤ δ.

Definition: Association rules Given a database D, an association rule

is an implication of the form X −→ Y , where X and Y are two itemsets

in D and X ∩ Y = ∅. The itemset X is the antecedent of the rule,

and the itemset Y is the consequent of the rule.

Definition: Support and confidence of an association rule Given a database

D and an association rule X → Y , the support of the rule is the per-

centage of the transactions in D that contain both X and Y . The

confidence of the rule is the percentage of the transactions in D that

contain X, also contain Y .

support(X → Y) =
|X ∪ Y |
|D| = P (X ∧ Y)

confidence(X → Y) =
|X ∪ Y |
|X| = P (Y |X)

For example, in table 2.2, the rule B, C → E has a support of 50%, and a

confidence of 66.7%

Given a set of transactions D, the problem of mining association rules

is to generate all association rules that have support and confidence greater

than the user-specified minimum support (called minsup) and minimum con-

fidence (called minconf) respectively [TA93].

This problem can be decomposed into two subproblems]:

26

1. Generate all large itemsets with respect to the support threshold min-

sup. A naive approach is to generate all itemsets and test them. In a

data set containing n items per transaction, this would result in 2n− 1

itemsets (not including the empty set).

2. Use the large itemsets to generate rules whose confidence satisfy the

threshold minconf. Note that, if ABCD and AB are both large item-

sets, we have confidence(AB → CD) = support(ABCD)
support(AB)

. Hence this

problem is straightforward.

The efficiency issue of discovering all large itemsts has been extensively

studied in both the database and data mining communities. There exists

two widely used algorithms, the APRIORI algorithm [AS94] and the MAX-

MINER algorithm [Bay98].

2.2.2 The APRIORI Algorithm

The basic idea in the APRIORI algorithm is to use the Apriori property of

large itemset to narrow search space. The Apriori property states that: all

non-empty subset of a large itemset is also large. In other words, if a k-itemset

is not large, all its supersets are not large either. The APRIORI algorithm

generates large itemsets in a level-wise manner (e.g., generates large k-itemset

first, then large (k + 1)-itemset), following a two-step process:

• The join step: generating a collection of k-itemset candidates Ck by

joining the large (k − 1)-itemsets Lk−1.

• The prune step: going through the database and calculating the sup-

ports of the candidates to get the large k-itemsets Lk. In this step, the

27

Apriori property is used to reduce the candidates before testing.

We use an example ([AS94], APRIORI-GEN function) to illustrate the

main point in candidate generation. Suppose the collection L3 of all the large

3-itemsets in some database be {{1,2,3},{1,2,4},{1,3,4},{1,3,5},{2,3,4}}. Af-

ter a joint step, the candidate collection C4 will be {{1,2,3,4},{1,3,4,5}}. In

the prune step, the itemset {1,3,4,5} will be removed from C4 because its

subset {1,4,5} is not in L3. As a result, only itemset {1,2,3,4} is a candidate

and needs support calculation.

The APRIORI algorithm achieves a good performance by reducing the

size of candidate itemsets. However, in some situations where there exist

long large itemsets or where a quite low support threshold is required, the

APRIORI algorithm still suffers from heavy computational costs.

2.2.3 The MAX-MINER Algorithm

MAX-MINER Algorithm differs from APRIORI in both its output represen-

tation and prune strategy. Unlike APRIORI, the MAX-MINER algorithm

doesn’t explicitly output all large itemsets, it outputs only those large item-

sets whose proper supersets are not large. Those large itemsets are called

maximal large itemsets. They can be seen as a frontier boundary to separate

the large itemsets from non-large ones. Because any subset of the maximal

large itemsets is also large, this output implicitly and concisely represents all

large itemsets.

There are two prune strategies used in MAX-MINER:

• superset-frequency pruning: if an itemset is large, then its subsets must

28

also be large, hence there is no need to generate its subsets for support

calculation.

• subset-frequency pruning: if an itemset is non-large, then its supersets

must also be non-large and it’s unnecessary to generate its supersets

for support calculation.

Those prune strategies of MAX-MINER are implemented in set-enumeration

trees [Rym92] by incorporating some heuristic. This allows MAX-MINER

for looking ahead to quickly identify long frequent itemsets and short non-

frequent itemsets so that both pruning can be used simultaneously. Com-

pared to APRIORI, which only uses the second pruning, MAX-MINER has

been shown to perform two or more orders of magnitude better on some

data sets , especially when support threshold is low or the data set is high

dimensional [Bay98].

Related work close to MAX-MINER include PINCER-SEARCH [LK98]

and MAX-CLIQUE [ZPOL97].

2.3 Integration of Classification and Associa-

tion Rule Mining

A range of different types of classification algorithms, including decision tree

induction, nearest neighbor methods, error back propagation, Bayesian learn-

ing, have been discussed in section 2.1. Those algorithms arrive at a classifi-

cation decision by making a sequence of micro decisions, where each decision

is concerned with one attribute only. In this section, we study classification

approaches based on association rule mining concept by describing two clas-

29

sifiers, the CBA classifier [BLM] and JEP classifier [LDR00]. We also briefly

discuss a concept called contrast set mining, that mines a special case of

associations in classified data.

2.3.1 The CBA Classifier

Classification Based on Associations (CBA) [BLM] is a successful classifica-

tion method using the dependency of association rules. The basic idea of

CBA is to discover a special type of association rule, called class association

rules (CARs), satisfying the user-specified support and confience threshold

requirements. The CBA classifier then selects the most interesting rules for

classification.

In CBA, a CAR is an association rule whose consequence (or RHS:Right

Hand Side) is restricted to the class label. The algorithm consists of two

parts, a rule generater and a classifier builder.

1. Generating all CARs that satisfy user-specified support and confidence

thresholds.

2. Evaluating all CARs and selecting the subset that gives the least num-

ber of errors.

In this step, CBA uses the following heuristic: Given two rules r1 and r2, the

rule r1 precedes r2 if

1. the confidence of r1 is greater than that of r2; or

2. their confidence are the same, but the support of r1 is greater than that

of r2; or

30

3. both the confidences and supports are the same, but r1 is generated

earlier than r2.

CBA was reported more accurate than C4.5 as it outperforms C4.5 on 16

out of 26 datasets and decreases the average error rate [BLM].

A major disadvantage of CBA is that the number of discovered rules

is usually very large. In their 26 experimented data sets, the average rule

limit is 80,000. It is ironic that they claim standard classification has an

understandability problem because those systems use domain independent

biases and heuristics to generate a small set of rules. However, their huge rule

set, although may be complete, is clearly overwhelming. Secondly, CBA relies

on user-specified support and confidence thresholds to mine rules (by default,

they set support=1%, confidence=50%). This could be tricky, since a high

support dramatically degrades the classification accuracy while a low support

results in long run times. Thirdly, CBA discretizes continuous attributes first,

different discretization could lead to different collection of rules.

2.3.2 The JEP Classifier

The JEP classifier is based on the notion of emerging patterns (EPs). An EP

is an itemset whose support increases significantly from one class of data to

another. The ratio of the two supports is the growth rate of EP, i.e.,

growth rate(X) =
supportD2(X)

supportD1(X)

where D1, D2 are two different classes and X is an itemset. The JEP classifier

exploits the discriminating power of a special type of EPs called jumping

31

emerging patters (JEPs), whose support increases abruptly from zero in one

class to non-zero in another–the growth rate being ∞ or 0.

Suppose we have a training set containing 3 classes, the JEP classifier

works as follows:

• The training set D is partitioned into D1, D2, D3 3 subsets, each has

only 1 class.

• Because the JEP works in pairs, the 3 subsets are combined into 3

pairs, i.e., D1/D2∪D3; D2/D1∪D3; D3/D2∪D1. This process is called

extracting pair-wise features. Then a border-based algorithm is used

to identify the JEPs for each pair.

• JEPs with largest support (the most expressive JEPs) are collected by

taking the union of the left bounds of the borders for each pair.

• When a test example is given, the classifier calculates the collective

impacts in favor of 3 classes respectively, then the class with the largest

collective impact is assigned to the test example.

The border-based representation of rules and the border manipulation

algorithm are the distinct features of emerging patterns. Classifiers based

on EPs are novel and fundamentally different from classic association rule

mining. JEP classifier has been found very accurate: in 25 data sets where

results of CBA and C4.5 are available, JEP outperforms both of them on 15

data sets; CBA wins on 5, C4.5 wins on 5. JEP classifiers also performs well

on unbalanced data sets where the main class of interest is in minority. It

scales up on data volume and dimensionality [LDR00].

Other classifiers based on emerging patterns is the CAEP classifier (classi-

fication by aggregating emerging patterns), which uses EPs with finite growth

32

rates rather than JEPs. CAEP is considered complementary to JEPs, and is

discussed in [DL99].

2.3.3 Contrast Set

Contrast set is a term proposed by Bay and Pazzarni. A contrast set is a

conjunction of attribute-value pairs (similar to itemsets in association rule)

defined on groups(classes). The task of mining contrast sets is to find all

contrast sets whose support differs meaningfully across groups[BP01]. That

is:

|P (X|y = ci)− P (X|y = cj)| > δ; i 6= j

where X is the contrast set, y is the class variable, δ is a user defined threshold

of minimum support difference. The discovery of contrast sets allows us to

ask questions such as ”what are the differences between people with Ph.D.

and bachelor degrees?”.

Bay and Pazzarni designed a complete mining algorithm called STUCCO

to search for contrast sets. STUCCO operates through a combination of

search and summarization. In the search stage, a set enumeration tree is

constructed. STUCCO searches the tree in a level wise manner. For each

set, STUCCO counts its support to determine whether it should be pruned

or not. STUCCO also keeps careful track of a number of statistical tests

made to check if a contrast set is significant[BP99]. In the summarization

stage, STUCCO uses a filter algorithm to show user only a portion of the

contrast sets discovered. The most general sets (those contain only single

item) are shown first, then more complicated conjunctions. For example,

it starts showing single sets: set1 : sex = male, set2 : school = ECE,

33

set3 : GPA > 4; it then shows: set4 : sex = male∧school = ECE; at last it

shows: set5 : sex = female ∧ school = ECE ∧GPA > 4. The conjunctions

are only shown if their frequencies could not be predicted from the subsets

using a log-linear model[BP01].

The concept of contrast set differs from both classification and associ-

ation. It brings out the problem of detecting differences across groups or

trends if the groups are temporal. STUCCO employs sophisticated statisti-

cal hypothesis testing in its search to find significant and insightful contrast

sets. However, the “insightfulness” of a rule is extremely subjective. As a re-

sult, there is no apparent way to evaluate and benchmark patterns discovered

by contrast set mining.

2.4 Summary

The reviews presented here concentrate on the fields of classification and

association rule mining. We provided both basic definitions and algorithms

for each task. The learning systems being described can be summarized into

three groups:

• Classical algorithms that usually serve as benchmark for new meth-

ods emerged recently. For classification, such algorithms include C4.5

decision tree classifier, K-nearest neighbor lazy learner, backpropoga-

tion neural net and naive bayes classifier. For association rule mining,

there are APRIORI algorithm and Max-Miner algorithm. These sys-

tems have been well studied in literature and widely applied in practice.

They represent the state-of-the-art in each of their fields.

34

• Extensions to standard methods described above. This includes classi-

fiers based on association rule mining concept. We presented two such

classifiers, the CBA classifier and the JEP classifier. They are accurate

classifiers constructed using new KDD patterns known as class based

association and emerging patterns respectively.

• We also include two non-standard learning systems in our review: the

1R decision tree learner and the contrast set mining algorithm. Holte’s

1R decision tree is a successful example of classifiers designed using the

simplicity first methodology. Bay et.al. bring forward the concept of

detecting differences cross contrasting classes. They stress two essential

elements on which our research is based. More precisely, our treatment

learning is a system that takes the simplicity first methodology to iden-

tify class differences.

The review has shown how the standard learners work in classification

and association rule mining. In the following thesis, we will introduce our

own approach to learning. We will compare it to some of related systems

within this framework.

35

Chapter 3

Treatment Learning and The

TAR2 Treatment Learner

3.1 The Narrow Funnel Effect

Improving both accuracy and simplicity is one of the goals of machine learn-

ing research. There are always tradeoffs between the two criteria, yet we

have seen in history that the pursuit of high accuracy has attracted domi-

nant attention. This research methodology encourages learning systems to

search in very large hypothesis space containing, among other things, very

complex hypotheses. However, when is just enough learning enough? Are

complex hypotheses always necessary with respect to accuracy?

There are in literature some indications that many domains lack complex

relationships. In other words, a small number of critical variables control the

remaining others within a system. As a result, these domains can be “easy

to learn” using lightweight approaches and can be adequately described by

36

simple models. For example:

• In the experimental comparison of symbolic and neural learning al-

gorithms, Shavlik et.al. investigated sensitivity of the algorithms to

the number of features. They observe that randomly dropping half

the features only slightly impairs performance of perceptron, ID3 and

backpropagation. For some cases, performance even improves when

a small number of features are dropped. They were surprised to no-

tice the apparent redundancies in several domains and concluded that

extra features could degrade inductive learning algorithms [SMT91].

Another result of their experiments is how well the simple perceptron

algorithm (the simplest neural network) performs. Despite its inher-

ent limitations, the accuracy of perceptron is hardly distinguishable on

most datasets from the more complicated learning algorithms [SMT91].

• In decision tree classification, Holte reports the results of experiments

measuring the performance of a very simple decision tree learner 1R

on 16 datasets commonly used in machine learning research [?]. The

1-level decision trees produced by 1R are only a few percentage points

less accurate than the more elaborated decision trees produced by C4

[Qui92]. He also examined whether or not the datasets used in his study

have been particularly engineered to make induction easy. The investi-

gation has shown that most of them are representatives of datasets in

practice.

• In data engineering, Kohave and John studied a specific feature sub-

set selection method. Their experiments show that, on 8 real world

datasets, an average 81% features can be ignored. Further, ignoring

37

those features doesn’t degrade the learner’s classification accuracy, on

the contrary, it results an average increase of 2.14% [KJ97] (see table

3.1).

dataset before after retain accuracy change
breast cancer 10 2.9 0.29% +0.14%
cleve 13 2.6 0.2% +5.89%
crx 15 2.9 0.19% +4.49%
DNA 180 11 0.06% +3.63%
horse-colic 22 2.8 0.13% +1.63%
Pima 8 1 0.13% +0.79%
sick-euthyroid 25 4 0.16% +0.38%
soybean 35 12.7 0.36% +0.15%
average 38.5 4.99 0.19% +2.14%

Table 3.1: Feature subset selection results from Kohavi and John, [KJ97]

In summary, the above experiments are saying that within a very large

space of attributes, there are a few key values that matter most. A similar

effect has been seen outside the machine learning literature. For example, in

an application of satisfiability algorithms to scheduling problems, Crawford

and Baker [CB94] compared TABLEAU, a depth-first search backtracking

algorithm, to ISAMP, a randomised sampling algorithm. Both algorithms

assign a value to one variable, then infer some consequences with forward

checking. After the checking, if a contradiction was detected, TABLEAU

backtracks while ISAMP simply starts over and re-assigns other variables

randomly (giving up after MAX-TRIES number of times). Otherwise, they

continue looping till all variables are assigned. Table 3.2 shows the rela-

tive performance of the two algorithms on a suite of scheduling problems

based on real-world parameters. Surprisingly, ISAMP took less time than

38

TABLEAU: ISAMP:
full search partial, random search

% Success Time (sec) % Success Time (sec) Tries
A 90 255.4 100 10 7
B 100 104.8 100 13 15
C 70 79.2 100 11 13
D 100 90.6 100 21 45
E 80 66.3 100 19 52
F 100 81.7 100 68 252

Table 3.2: Average performance of TABLEAU vs ISAMP on 6 scheduling
problems (A..F) with different levels of constraints and bottlenecks. From
[CB94].

TABLEAU to reach more scheduling solutions using just a small number of

TRIES. Crawford and Baker offer a speculation why ISAMP was so successful:

the variables in scheduling problems can be grouped into control variables

that define a solution and dependent variables whose values are derived from

the control variables [CB94]. They further hypothesized that the solutions

are not uniformly distributed throughout the search space. The depth-first

search sometimes wonders into the deserts containing no solutions by making

an early unlucky choice. On the other hand, randomized sampling effectively

searches in a smaller space since it restarts on every contradiction [CB94].

Systems containing such features are not difficult to find solutions and a few

key tests are sufficient to set the control variables.

We call this class of phenomena narrow funnel effect, the metaphor being

that within the decision space, all pathways connecting inputs to desired goal

run down the same narrow funnel [MENW99]. The core intuition in this term

is that: what happens in the total space of a system can be controlled by a

small critical region. Where the narrow funnel exists, the space of options

39

within a large space reduces to just the range of a few variables within the

narrow funnel. Machine learning in such domains could be very simple: an

adequate theory needs only comment on assignments to the variables inside

the funnel. By definition, any reasoning pathway to goals must pass through

the funnel if it exists. Hence, one way to find the funnel is to find input

variables that are associated with desired goals. Treatment learning is a ma-

chine learning method aims at seeking funnel variables. It is designed using

the “simplicity first” methodology: treatment leaner searches through a rel-

atively small space containing only simple hypothesis. Treatment learning is

both a test and an application of narrow funnel effect. In domains contain-

ing narrow funnels, treatment learner will find them and generate very small,

simple theories that are easier to understand. A unsatisfactory simple the-

ory learnt by treatment learner suggests that the domain contains complex

relations, hence other, more elaborate learning scheme should be tried.

3.2 Treatment Learning

In the context of data mining, treatment learning mines minimal contrast

set with weighted classes. Conceptually, a treatment RX is a conjunction of

attribute-value pairs. Given a classified data set, treatment learner seeks a

treatment RX that returns a subset of the training set D′ ⊆ D with higher

frequency of preferred classes and lower frequency of undesired classes than

in D. Here, D′ contains all examples that don’t contradict the treatment;

i.e. D′ = {D ∩RX}. In the following sections, we discuss treatment learning

by provide the implementation details of a specific learner TAR2.

40

3.2.1 Problem Specification: Input/Output

TAR2 takes classified data sets such as the one shown in figure 3.1:

occupation age city gender salary
sales 45 Calgary male medium
engineer 29 Toronto male medium
cashier 22 Victoria female low
manager 42 Vancouver male high
...

Figure 3.1: A example data set.

The sample data set contains 4 attributes, among which 3 take categori-

cal values, 1 (e.g. age) takes continuous values. The class label takes on

categorical values from set {low,medium, high}.
Before showing the output form, we state the following assumptions and

concepts:

Assumption There exists a partial ordering among the classes, where one

class is considered superior than the others and referred to as the best

class. Similarly, there exists a worst class which is the least desirable. A

scoring function returns weights for each class, denoted by Score(class).

The scoring function models the domain-specific view of the relative

merits of the classes.

Definition Let A1, A2, ...Ak be a set of k attributes. Each Ai takes on

values from the set {Vi1, Vi2, ...Vim}(continuous values are discretized

before process). A treatment RX is a conjunction of attribute-value

pairs that have different levels of confidence with respect to each class.

41

Definition The confidence of a treatment Rx with respect to a particular

class C is the conditional probability of that class given the treatment

is true.i.e.,

confidence(Rx w.r.t. C) = P (C|Rx)

=
#of examples where C & Rx are true

#of examples where Rx is true

The general rule form of the output is:

R IF Rx : Attr1 = Va1 ∧Attr2 = Va2 ∧ ...
THEN class(Ci) : confidence(Rx w.r.t. Ci)

where R is a set of rules containing treatments that have significant higher

confidence in best class and significant lower confidence in worst class com-

pared to the raw data set. (Note that the best and the worst class is defined

by the scoring function according to the user’s preference.) The number of

pairs appeared in the conditional of a treatment(i.e., in the IF statement)

is called the treatment size. When applying the treatment, it constrains the

original data set so that only a subset of examples in which the treatment

holds is returned. This subset is referred to as treated. The rule set indicates

an improvement in class distribution in the treated subset. For the example

data set shown above, the output could be:

R1 IF occupation =′′ manager′′

THEN salary=”low”:0
salary=”medium”:20%
salary=”high”:80%

Rule R1 returns a treatment of size 1: occupation =′′ manager′′. The change

of class distribution caused by this treatment is visualized in figure 3.2. Rule

R1 is also called a controller rule as it favors the best class. Rules that favor

worst class are called monitor rules, which point out things we want to avoid.

42

base line after treatment
class distribution (occupation=manager)

0

1

0 1 2 3 4
0

1

0 1 2 3 4

Figure 3.2: class distribution seen in the original salary data set and the subset
after applying the treatment [occupation=manager]. Three bars correspond to 3
classes (”low”,”medium”,”high”) respectively. Height of each bar indicates the
percentage of examples fallen into that class. The original data set contains 100
examples while the treated subset contains only 25.

Treatment Assessment

We use the notion of lift to numerically evaluate the merit of each treatment.

Definition The worth of a dataset D in terms of class distribution is defined

as a weighted probability sum across all classes in the dataset:

worth(D) =
∑

classes

Score(Ci) ∗ P (Ci)

Definition The lift of a treatment Rx is the ratio of the worth of the treated

subset to the worth of the baseline dataset D. i.e.,

lift(Rx) =
worth(D ∧Rx)

worth(D)

where (D ∧ Rx) is the treated subset, i.e., in which Rx is true for all

the examples.

Note that if lift(Rx) > 1 indicates an improvement of the class distribution.

The goal of treatment learning is to find treatments that generate a large

lift. The notion of lift distinguishes a treatment from decision rules. Take

43

rule R1 for example: treatment occupation = ”manager” does not implies

salary = ”high”. It actually means: in the subset where the treatment oc-

cupation = ”manager” is true , the percentage of examples whose salary =

”high” is much higher than those in the original data set while the percent-

age of examples whose salary = ”low” is significantly lower. In other words,

treatments are constrains that change the original class distribution in the

resulting subset. Class distribution favors the better classes after applying

controller rules.

3.2.2 The Algorithm

Treatment learning involves a combination of search and attribute utility

estimation. It produces item ranking which demonstrates the relative merit

of individual attribute-value pair for changing the class distribution.

Discretization

TAR2 accepts both categorical and continuous attributes. Internally, it treats

all the attributes uniformly. For a categorical attribute, all the possible

values are mapped to a set of consecutive positive integers. For a continuous

attribute, its value range is discretized into intervals, and the intervals are

then mapped to consecutive positive integers. With these mappings, a data

example is treated as a set of (attribute, integer-value) pairs (also called

items) along with a class label.

TAR2 uses Equal Width Interval Binning to discretize continuous at-

tributes [DKS95]. In this procedure, TAR2 first sorts the observed values

of a continuous attribute, and then divides them into k equally sized bins,

44

where k is a configurable parameter.

Confidence1 Measure

TAR2’s core strategy is the confidence1 measure. With ordered classes,

TAR2 associates each class with a score(weight). The highest scoring class

is the best class Cbest, others are non-best classes Cj, (j 6= best). The Scoring

function could be customized to reflect user preference. Let:

• a.r: attribute a takes value r. (if a is a continuous attribute, r denotes

one of its possible ranges.)

• |a.r|: the number of examples whose attribute a takes value r

• |a.r, Cbest|: the number of examples whose attribute a takes value r and

belong to class Cbest.

• |a.r, Cj|: the number of examples whose attribute a takes value r and

belong to class Cj, where j 6= best.

• S(Cbest), S(Cj): Score of class Cbest and Cj respectively, returned by

the scoring function.

The confidence1 measure Ma.r for an attribute value pair a.r is:

Ma.r=

∑
j(S(Cbest)− S(Cj))(|a.r, Cbest| − |a.r, Cj|)

|a.r|

The attributes in our ”salary” example has a confidence1 histogram shown

in figure 3.3

confidence1 is a heuristic that measures the weighted difference of an

item’s confidence on non-best classes with respect to the best class. It differs

significantly from the standard association rule confidece definition:

45

0
1
2
3

-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

Figure 3.3: confidence1 histogram seen in ”salary” data. Each bar denotes a
particular M value. Height of each bar indicates how many attribute value pairs
have that M value

1. it only studies an single item at a time (hence the name confidence1).

2. it focuses on the confidence difference of an item between classes than

the item’s confidence value itself.

3. it weights the difference according to the comparative score of each

class.

Reporting Treatments

After getting that confidence1 distribution, TAR2 explores subsets of items

whose confidence1 value are above a certain threshold using a depth-first

search. Each treatment is then evaluated by its lift. lift > 1 indicates an

improvement. TAR2 only reports treatments with lift(Rx) above a certain

threshold. Display of treatments takes the visualization form, as shown in

figure 3.2.

Cross Validation

Cross validation is a standard method for estimating generalization error

based on ”re-sampling”. TAR2 comes with a N-way cross validation facility

that allows user to divide the data into N subsets of approximately equal size,

with each subset’s class distribution as uniform as possible [Qui86]. TAR2 is

then run N times, in each run, one subset is used as the test set and the other

46

N-1 subsets are put together to form a training set. TAR2 learns treatments

from the training set and tests them on the test set. After the validation, N

output files and one summary file are generated, recording treatments learnt

from each run. In this procedure, each example appears exactly once in the

test set. N is commonly set to 10.

Configuration File

TAR2 encourages user’s interference of the learning process by providing a

configuration file for data processing. In that file, there are several optional

sections:

• NOW section: NOW specifies the current status of the data, i.e., only

attributes satisfying NOW criteria will be read in and processed by

TAR2. User could always use other tools to pre-process the dataset

instead of configuring the NOW section.

• CHANGES section: CHANGES represents some desired zone within

the data set that the user wishes to approach. Only attribute values

specified in CHANGES would appear in the treatments.

• SCORE section: SCORE encodes user’s preference of the classes. User

can assign a specific score (weight) to a class. Without the specifica-

tion, TAR2 scores the classes according to a default scoring function:

score(C) = 2n, where n is the order of the class C.

Those three sections restrict the data processing scope of the input dataset. A

little language is designed to specify attribute ranges in NOW and CHANGES

sections, for example:

47

Attribute1:true -- all possible values are acceptable

Attribute2:ignore -- none values are acceptable

Attribute3:a, b, c -- for categorical attribute, only values

a, b, c are acceptable

Attribute4:[-;10), [20;30], [50;-) -- for continuous attribute,

the acceptable ranges are: x<10 OR 20<=x<=30 OR x<=50

3.2.3 The TAR2 Software Package

Treatment learner TAR2 (current version 2.2) is coded in C and distributed

under the GNU free software license. The TAR2 (and TAR3, described later)

system is accessible online at: http://www.ece.ubc.ca/twiki/bin/view/

Softeng/TreatmentLearner. The system is a complete package including

the following contents:

• /bin: folder containing all executables

• /doc: folder containing the user manual and several related publica-

tions

• /src: folder containing all C source code

• /samples: folder containing sample data sets and corresponding output

files.

• readme.txt: file containing general information of the software

• COPYRITE.txt: file containing the GPL-2 copy policy

We have actively maintained the online distribution of the TAR2/TAR3 sys-

tem. The easy access from other researchers has encouraged a wide applica-

tion of treatment learning on various domains (described in chapter 6).

48

3.3 Case Study 1: Risk Assessment

This section presents a case study tot demonstrate how treatment learning

can benefit decision making when dealing with uncertainties.

3.3.1 Modelling

In the model-based requirements engineering (MBRE)1, models are built,

or borrowed (from previous projects), to assist in early life cycle decision

making. Often at requirements time, much is unknown about a project.

KC-1
ranges now changes

prec = 0..5 precedentness 0, 1
flex = 0..5 development flexibility 1, 2, 3, 4 1

Scale drivers resl = 0..5 architectural analysis or risk resolution 0, 1, 2 2
team = 0..5 team cohesion 1, 2 2
pmat = 0..5 process maturity 0, 1, 2, 3 3

rely = 0..4 required reliability 4
Product data = 1..4 database size 2

attributes cplx = 0..5 product complexity 4, 5
ruse = 1..5 level of reuse 1, 2, 3 3
docu = 0..4 documentation requirements 1, 2, 3 3

time = 2..5 execution time constraints ?
Platform attributes stor = 2..5 main memory storage 2, 3, 4 2

pvol = 1..4 platform volatility 1

acap = 0..4 analyst capability 1, 2 2
pcap = 0..4 programmer capability 2

Personnel attributes pcon = 0..4 programmer continuity 1, 2 2
aexp = 0..4 analyst experience 1, 2
pexp = 0..4 platform experience 2

ltex = 0..4 experience with language and tools 1, 2, 3 3
Project tool = 0..4 use of software tools 1, 2

attributes site = 0..5 multi-site development 2
sced = 0..4 time before delivery 0, 1, 2 2

Table 3.3: COCOMO-II parameters. Scale drivers are listed first. The cost drivers
are union of the product, platform, personnel, and project attributes. Last two
columns show values known within one NASA software project.

1This case study is published on the First International Workshop on Model-based
Requirements Engineering. http://www.bfsng.com/mbre01/

49

Table 3.3 shows a NASA software project KC-1 scored on the 22 pa-

rameters of the COCOMO-II software cost estimation model [ACDC+98].

The Madachy extension of COCOMO-II model allows one to estimate the

cost, effort and schedule when planning a new software development activ-

ity. Based on parameter values, the model generates STAFF and WORRIES

values. STAFF is the number of staff required to get person months of

work done in the recommended number of months: STAFF = person months
monthes

.

WORRIES is a numeric effort-risk index representing how concerned an ex-

perienced analyst might be about a particular software project. The column

labelled now in table 3.3 shows the current applicable parameter settings of

the KC-1 project. The analysts interviewed for this case study are uncertain

about some aspects of this project in requirement time. Where somewhat

uncertain, they used ranges; e.g. it was unclear if developers had ever seen

this kind of application before so prec = {0, 1}. When totally uncertain,

they just used a question mark; e.g. no knowledge about execution time

constraints was available so time =? = {2, 3, 4, 5} where {2, 3, 4, 5} is the

complete range of possible values for time. The column labelled changes in

table 3.3 shows eleven proposed changes to the current situation.

3.3.2 Simulation

We ran the model repeatedly with random selected parameter values from

their possible ranges shown in table 3.3’s now column. The model also takes

another argument SLOC (Source Lines Of Code) as input. Since some un-

certainty also existed in the size estimates, the SLOC was taken to be 75K,

100K, 125K. The model was run 30,000 times (10,000 times for each SLOC

50

Worries
Staff 0 7 14 21 28 35Totals
200
180
160
140

120 1 1 2

100 1 4 1 6

80 1 9 5 1 16

60 14 15 3 32

40 5 29 5 39

20 2 3 5

Totals 7 56 30 13 3 100

Figure 3.4: Simulation outputs using inputs
specified in KC-1 project.

Worries
Staff 0 7 14 21 28 35Totals
200
180
160
140
120
100
80

60 23 23

40 11 45 56

20 14 7 21

Totals 25 75 100

Figure 3.5: Re-simulation results after con-
straining the model using the treatment.

setting). Model computes and outputs the STAFF and WORRIES values to

assess each combination of parameter settings. Figure 3.4 shows the results

as a percentile matrix; i.e. it shows what percentage of the 30,000 runs falls

into a particular range. The percentiles matrix is color-coded: the darker

the cell, the larger the percentage of the runs falling in that cell. There is a

large variance in the simulation results.

3.3.3 Results and Validation

TAR2 was used to identify the critical changes capable of reducing both

STAFF level and WORRIES index about the project. We firstly configured

the configuration file so that TAR2 only explored the proposed changes listed

in table 3.3’s “changes” column. After running on the simulation dataset, it

gave a best treatment:

acap = 2 ∧ sced = 2 ∧ pmat = 1

51

• acap=2: using analysts with a middle-range of ability (fall between the

45th to 65th percentile);

• sced=2: ensuring that the project was at least in the upper-half of

CMM1, but don’t go to CMM process level 2.

• pmat=1: increasing the time to delivery to 100% of the time proposed

by the project- i.e. no pressure for an early delivery;

To validate the treatment, we used re-simulation. Re-simulation is a val-

idation method, by which the experimental results are feed back into the

model. Compared to cross validation, it is robust in that the result is as-

sessed through a outside device, eliminating the effect of training data (e.g.,

small data size or noisy data examples). In this case, the input values for

pmat,acap,sced were set as above, and the rest of the inputs were left random-

ized as before. After generated another 30k data, the constrained simulation

results are shown in figure 3.5. Compared to figure 3.4, it is evident that the

proposed treatment has greatly reduced the variance in the model’s behavior

and improved the mean values (decreased both the STAFF level and WOR-

RIES index). The three items found in the treatment are proved to be the

critical changes that could benefit the KC-1 project among all the possible

propositions.

3.4 Case Study 2: Requirement Optimiza-

tion

This example illustrates the application of treatment learning on requirement

optimization via an iterative learning cycle.

Planning for the optimal attainment of requirements is an important early

52

life cycle activity. Such planning is difficult when dealing with competing

requirements, limited resources, and the incompleteness of information avail-

able at requirements time. The pilot study discussed here is an evaluation of

a promising piece of research-quality spacecraft technology. The purpose of

the evaluation is to identify the risks that would arise in maturing this tech-

nology to flight readiness, and what mitigation could be identified to address

those risks in a cost-effective manner.

3.4.1 The Requirement Interaction Model

For the pilot study, NASA experts built a real-world model developed in the

Defect Detection and Prevention (DDP) framework [CFH01]. The model

is a network connecting 32 requirements, 69 risks and 99 mitigations. Risks

are quantitatively related to requirements, to indicate how much each risk,

should it occur, impacts each requirements. Mitigations are quantitatively

related to risks, to indicate how effectively each mitigation, should it be ap-

plied, reduces each risk. A set of mitigations achieves benefits, but incurs

costs. The main purpose of the model is to facilitate the judicious selection

of a set of mitigations, attaining requirements in a cost-effective manner.

This kind of requirements analysis seeks to maximize benefits (i.e., our cov-

erage of the requirements) while minimizing the costs of the risk mitigation

actions. Optimizing in this manner is complicated by the interactions inside

the model - a requirement may be impacted by multiple risks, a risk may

impact multiple requirements, an action may mitigate multiple risks, and a

risk may be mitigated by multiple actions.

53

3.4.2 The Iterative Learning Cycle

Requirements
Interaction Model

Treatment
Learner

Human experts

Critical decision
alternatives

Critical decision
selection

Data examples

.

iterative
cycle

Figure 3.6: The iterative cycle of Simulation/Summarization/Decision.

Our approach is to follow the iterative cycle of simulation, summarization

and decision shown in figure 3.6. The requirements interaction model is

used to grow dataset representing the space of options, treatment learner

summarizes the data and gives critical decision alternatives (e.g., the control

variables and their corresponding settings), the domain experts review the

alternatives and make final decisions. This way, experts make more effective

use of their skill and knowledge by focusing their attention on the relatively

small number of most critical decision alternatives. Repeating this cycle

leads the iterative approach to the optimal (or near optimal) decision within

the options space.

Baseline Simulation

The model was initially executed by selecting risk mitigations at random.

This generated 30,000 instances of combinations from the 99 risk mitiga-

54

tions actions. Each instance of the combinations was evaluated by the nu-

merical cost and benefit values automatically computed based on domain

data. The study needs to identify the optimal solutions that attain high

benefit(approximately 250) while remaining a relative low cost limit(around

$600,000). The option space is huge: 299 ≈ 1030 sets of decisions are to be

explored. Figure 3.7 shows the initial output of the cost-benefit distribu-

tion from the model. The wide spread dots indicate a large variance in the

possible cost and benefit ranges.

0

50

100

150

200

250

300

400,000 700,000 1,000,000

B
en

ef
it

Cost

Figure 3.7: Initial result from executing the model of pilot domain.

Combining Cost and Benefit Values

TAR2 takes dataset containing one single discrete class attribute. We must

combine the cost and benefit values into a single score before applying TAR2

on the simulation data. This domain-specific process was proceeded as fol-

lows:

• Partitioning cost value into 4 regions: below $600,000 (most desir-

able region); $600,000 to $649,999; $650,000 to $699,999; at or above

$700,000 (least desirable region).

55

score < $600K [$600K, $650K) [$650K, $700K) > $700K
high 25% 16 14 11 7

mid high 25% 15 12 8 4
mid low 25% 13 9 5 2

low 25% 10 6 3 1

Table 3.4: Balanced score combination of cost and benefit values

• Partitioning benefit value by subdividing it into quartiles, i.e., putting

the lowest 25% of the benefit figures into the lowest benefit range, the

next 25% into the next, etc.

• Ranking the 16 possible pairings of cost and benefit according to a

balanced scheme which yielded a combined score of “goodness”. The

scheme is shown in table 3.4.2.

Learning Iterations

We used TAR2 as a knowledge acquisition tool to summarize the simulation

dataset. After ran it on the examples, a set of treatments was discovered

and the best was selected by the domain experts. We then imposed the

treatments on the model, i.e., some mitigations were to be performed and

some were not; others were kept random. Simulating the constrained model

again gave us another example set. The whole process was repeated, each run

of TAR2 resulted in a new set of constraints, which were then imposed on the

model before the next simulation. After five iterations, TAR2 found 30 out

of 99 decisions (6 per run. 6 was the maximum size for which it successfully

terminated) that significantly effected the cost/benefit distribution. Figure

3.8 shows the model output following the 5th iteration. Compared to figure

3.7, the variation among the cost-benefit figures is relatively small. Since

56

the model represents human experts’ estimates, the computed cost-benefit

figures should not be misinterpreted to have high precision. At the point

where the figures are so tightly clustered, it is appropriate to stop.

0

50

100

150

200

250

300

400,000 700,000 1,000,000

B
en

ef
it

Cost

Figure 3.8: Result from executing the model of pilot domain when it was
constrained by treatments after the 5th iteration.

The entire series is shown in 3.9. The first percentile matrix (called round

0) summarizes figure 3.7. The round 4 corresponds to the dot plotting in

figure 3.8, in which a compact set of points concentrated at the upper end

of the benefit range (around 250), and at a cost of approximately $6000.

From round 0 to round 4, the variance was reduced and the mean values

improved.

3.4.3 Compared to Simulated Annealing

Parallel to treatment learning, a simulated annealing algorithm (SA) was

also applied to the same requirement analysis task [FM02b]. Simulated An-

nealing is a commonly used search algorithm for optimization problem. It

combines random selection and hill climbing to find global maxima. In par-

ticular, it does a random walk, choosing neighbors at random and deciding

57

round 0:

Cost
Benefit 400K 600K 800K1,000K Totals

250 6 15 5 26
200 1 22 27 4 54
150 1 6 5 1 13
100 3 3 6
50 1% 1

Totals 2 38 50 10 100

round 1:

Cost
Benefit 400K 600K 800K1,000K Totals

250 7 45 13 65
200 12 22 1 35
150
100
50

Totals 19 67 14 100

round 2:

Cost
Benefit 400K 600K 800K1,000K Totals

250 9 8 7 24
200 18 58 76
150
100
50

Totals 27 66 7 101

round 3:

Cost
Benefit 400K 600K 800K1,000K Totals

250 9 70 11 90
200 3 7 10
150
100
50

Totals 12 77 11 100

round 4:

Cost
Benefit 400K 600K 800K1,000K Totals

250 1 81 17 99
200 1 1
150
100
50

Totals 1 82 17 100

Figure 3.9: Percentile matrices showing four rounds of treatment learning for
the pilot study.

58

at random whether to visit that neighbor. The randomness is a function of

a “temperature” variable. When T = ∞, it chooses neighbors at random; in

the limit as T approaches zero, it chooses only neighbors that improve the

value. If the temperature is reduced slowly enough, this guarantees to find

the global optimal result.

550000

750000

950000

BaselineOne Two Three Four Five Final

Round

costs

tar2
sa

150

200

250

300

Baseline One Two Three Four Five Final

Round

benefits

tar2
sa

Figure 3.10: Comparison of TAR2 and simulated annealing.

Figure 3.10 compares TAR2 and simulated annealing. At each round X

(shown on the x-axis), simulated annealing or TAR2 was used to extract key

decisions from a log of runs of the model. A new log is generated, with the

inputs constrained to the key decisions found between round zero and round

X. Further rounds of learning continue until the observed changes on costs

and benefits stabilizes. The comparisons show that:

• As seen in Figure 3.10, simulated annealing and TAR2 terminate in

(nearly) the same cost-benefit zone.

• Simulated annealing did so using only 40% of the data needed by TAR2;

• However, while TAR2 proposed constraints on 33% of the mitigations,

each SA solution specifies whether a mitigation should be taken or not

59

for all 99 mitigations. Hence there was no apparent way to ascertain

which of them are the most critical decisions. This loses the main

advantage of TAR2; i.e. no drastic reduction in the space of options.

3.4.4 Discussion

The iterative treatment learning on the pilot study has successfully arrived at

a near-optimal attainment of requirements. By identifying only one-third of

the mitigations (30 out of 99), we are able to significantly narrow the widely

spread cost/benefit distribution.

This case study also demonstrated an incremental use of TAR2: At each

iteration, users are presented with list of treatments that have most impact on

a system. They select some of theses and the results are added to a growing

set of constraints for a model simulator. This approach has two advantages:

Firstly, it narrows down the solutions one step at a time, giving a clear

statement on which attributes are most important; Secondly, the domain

experts found this approach user-friendly, since it provided the opportunities

for them to inject their knowledge into the process, and allowed them to

focus on only a small number of the most critical alternatives.

3.5 Relation To Other Techniques

3.5.1 Extension to Standard Machine Learning

Treatment learning closely relates to both classification and association rule

mining, yet significantly differs from them. Classification analyzes the data

in order to construct one or a set of models, and attempts to predict the

class membership of new data examples. Standard classifier algorithms such

60

as C4.5 [Qui92] or CART [BFOS84] treat each class equally. Treatment

learning, however, mines descriptions that distinguish a target class from its

contrasting classes. It has a notion of class weighting. Such learners can

filter their learnt theories to emphasize the location of the good classes or bad

classes.

Some association rule learners such as MINWAL [CW98], explore weighted

learning in which some attributes are given a higher priority weighting that

others. This is a generalization of the association rule mining problem. In

this case, the APRIORI property of the support measure no longer exists

and can not be applied. [CW98] et.al., proposed two algorithms based on

the support bounds. Such weighted learning can focus the learning onto

issues that are of particular interest to some audience. Unlike association

rule mining where data contains no pre-defined classes, treatment learning

deals with multiple classes. The weights are associated with each class to

represent the level of user preference of that particular class. One approach

to directly use association rule mining algorithm to find treatments would be

to mine frequent itemset for each class separately and then combine them in a

post analysis. However, this is a poor idea as it won’t push confidence into the

search process thus lose the prune opportunity. Further, the resulting rules

are difficult to interpret because the rule learner does not enforce consistent

contrast [DB96] i.e., using the same attributes to separate classes.

Another difference between treatment learning and association rule min-

ing lies in the prune strategies they employ. Most association rule learners

use support based pruning to mine frequent itemsets first, and then use

confidence to construct association rules. Instead, treatment learner uses

61

confidence based pruning to shrink the search space. One problem with sup-

port based pruning is that most rules with high support are obvious and

well-known. It is the rules of low-support that provide interesting new in-

sights. The task of mining association rules without support requirement

was recently considered in [KW01] and [EC00]. With only the confidence

requirement available, [KW01] exploited a certain monotonicity of confi-

dence, called the universal-existential upward closure. This property yields

a level-wise candidate generation with a confidence-based pruning and was

implemented in a disk-based environment. Different from them, Cohen et.al.

[EC00] developed a family of algorithms for solving this problem, employing

a combination of random sampling and hashing techniques. However, a ma-

jor restriction in their work is that they only deal with pairs of columns. It

is not clear whether their techniques could be extended to the identification

of more complex rules.

3.5.2 Relation to Change Detecting Algorithms

Concurrent with our work, Bay and Pazzarni propose the concept of contrast

set [BP99]. Our work’s variant is to combine contrast sets with weighted

classes with minimality. That is, treatments can be viewed as the smallest

possible contrast sets that distinguish highly weighted classes from lowly

weighted classes. Further, the confidence1 heuristic aims at maximizing:

|P (y = c1|X)− P (y = c2|X)| (y is the class label, X is a itemset)

while contrast sets aims at maximizing:

|P (X|y = c1)− P (X|y = c2)|

62

Note that the two equations can be relate with Bayes Rule:

P (X|y) =
P (y|X) ∗ P (X)

P (y)

Thus we can always convert from one to the other. Although the forms can

be made equivalent, the difference is that the X that optimizes/maximizes

one equation is not necessarily the same as the X that is best for another.

Another promising change detecting method is the mining of emerging

patterns(EP), introduced by Dong and Li [DL99]. EPs are associated with

two datasets and are used to describe significant differences or trends between

the two datasets. EPs have been used to construct powerful classifiers, which

are more accurate than C4.5 and CBA [BLM] for many datasets [LDR00].

But there are several drawbacks with the EP approach. Firstly, their algo-

rithm must mine the data multiple times for different base supports. Sec-

ondly, it is not clear if the method can be extended to handle more than two

classes. Thirdly, there is a problem of displaying the large volume of results.

For example, on the Mushroom data set they found 299811 borders, each

representing about 218 sets. This is far too many results to show to an end

user. In fact, the result itself might be a source for further data mining in

order to provide understandable knowledge.

3.6 Conclusion

We have pointed out the repeated observation of the narrow funnel effect.

Although there is no conclusive proof of its existence, empirical evidences

suggest that narrow funnels are common. In domains containing narrow

funnels, a small number of variables are enough to control the others in the

63

option space.

We propose treatment learning as both a test and an application of the

narrow funnel effect. Treatment learning is a machine learning method for

finding items associated with desired classes. It uses confidence1 measure

to evaluate merit of individual items and output treatments that capture

difference between classes.

We conducted two case studies to explore this approach. In model-based

domains, our uncertainty about the domain or over the parts of the model

usually results in a wide spread of output possibility. However, when models

contain narrow funnels, there exist key decisions which can condense the pos-

sibility. In both studies, treatment learner has successfully identified funnel

variables that reduced the variance and improved the mean of values within

the output distribution.

64

Chapter 4

Algorithmic Evaluation and
Improvement

This chapter examines the algorithmic performance of TAR2 and present an

improved learner TAR3. Before introducing TAR3, we first offer some base-

line measurements on TAR2. In summary, while TAR2 is practical for many

datasets, there exists situations where its runtimes can grow exponentially.

TAR3 fixes this problem. On the datasets where TAR2 is exponential, TAR3

runs in linear time.

4.1 Algorithm Performance of TAR2

We have experimented TAR2 on many domains, some of which come from

the UCI machine learning data repository [CEC98], others come from real

world application domains. Table 4.1 reports TAR2 runtimes(sec) on 11 data

sets of different sizes. Experiments are conducted on a 333 MHz Windows

machine with 200MB of ram. It shows TAR2 is suitable for handling small

to medium sized data set. For example, the algorithm learnt treatments in

23 seconds from a dataset containing 250,000 examples: see the reachness2

65

domain in table 4.1.

domain #example #continous #discrete #class size(T) time(sec)
iris 150 4 0 3 1 < 1
wine 178 13 0 3 2 < 1
car 1,728 0 6 4 2 < 1
autompg 398 6 1 4 2 1
housing 506 13 0 4 2 1
pageblocks 5,473 10 0 5 2 2
circuit 35,228 0 18 10 4 4
cocomo 30,000 0 23 4 1 2
pilot 30,000 0 99 9 5 86
reacheness 25,000 4 9 4 2 3
reacheness2 250,000 4 9 4 1 23

Table 4.1: Runtimes for TAR2 on different domains. First 6 data sets come
from the UC Irvine machine learning data repository; “cocomo” comes from
the COCOMO software cost estimation model [MH01c]; “pilot” comes from
the NASA Jet Propulsion Laboratory [FM02a]; “reachness” and “reachness2”
come from other source [MH02].

4.1.1 Runtime vs. Data Size

To examine the runtime with respect to data size, we generated data set of

different sizes from the COCOMO risk estimation model [ACDC+98]. By

simulating the model, we generated data set of different size.

Figure 4.1 shows TAR2’s runtimes with respect to dataset size measured

in megabytes. Three curves correspond to three different treatment size

setting, treatment size equals 1,2,3 respectively. It can be seen that for a

fixed treatment size, runtimes are linear on dataset size. However, bigger

treatment size results in bigger slope, indicating a decrease in efficiency.

66

0

50

100

150

200

250

1 2 3 4 5 6 7 8

ru
nt

im
es

 (
se

cs
)

dataset size(Megabytes)

size(T)=1
size(T)=2
size(T)=3

Figure 4.1: Runtime vs dataset size. Datasets are generated from COCOMO risk
estimation model [ACDC+98].

4.1.2 Runtime vs. Treatment Size

Figure 4.2 reports one study where the size of the data set was held con-

stant(3MB), and the size of treatment(size(T)) was increased. The result is

a line on the logarithm Y-axis coordinate, showing that TAR2’s runtimes are

exponential on treatment size.

Recall that treatments are generated by exploring subsets of pairs whose

confidence1 value are greater than a threshold. For treatment size=r, if N

pairs occurring above the threshold, TAR2 will explore (N
r) such pairs. To

find treatments of different sizes, there are total

(N
1) + (N

2) + (N
3) . . . + (N

N−1) + (N
N) ≈ 2N

candidates to explore. We have used the value exclusion property of dataset

to preliminarily shrink the search space. value exclusion ensures that items

of the same attribute e.g. A1=a and A1=b can never be contained by the

same instance. Hence, it is unnecessary to produce candidates with more

67

1

10

100

1000

10000

1 1.5 2 2.5 3 3.5 4 4.5 5

ru
nt

im
es

 (
lo

g(
se

cs
))

treatment size

setup time
total time

Figure 4.2: Runtime vs treatment size. Data set size is fixed to 3MB. Datasets
are generated from COCOMO model. Note the Y-axis is the logarithm of the
runtime.

than one value for the same attribute. Even so, the search is still intractable

when N is large and will incur exponential runtime.

4.1.3 Runtime in Practice

The exponential impact of increasing treatment size demands small treat-

ments in application. We argue that this is not necessarily a reason to reject

TAR2. Firstly, if very large treatments are required, an iterative learning ap-

proach, such as described in the “pilot” case study in chapter 3, may suffice.

Secondly, one of the goals of treatment learning is to identify funnel vari-

ables. For domains containing narrow funnels, large treatments are not nec-

essary. Unsatisfactory output from TAR2 could be a good indication that

narrow funnels do not exist. In that case, more elaborate learning approach

must be applied. Among the domains we have explored using TAR2, narrow

funnels appear to be very common. Those domains exhibit the following

68

i: housing

0

2

4

6

8

10

-10 -6 -2 2 6 10 14 18 22

ii: pageblocks

0

4

8

12

16

20

-29 -21 -13 -5 3 11 19 27

iii: wine

0

5

10

15

20

-4 -2 0 2 4 6 8 10

iv: car

0

3

6

9

-13 -12 -11 -10 -9 -8 -7

v: pilot

0

30

60

90

120

-350-300-250-200-150-100 -50 0

vi: circuit

0

100

200

300

4 5 6 7 8 9

vii: reachness2

0

50

100

150

200

1 3 5 7 9 11 13

viii: cocomo

0

25

50

75

-13 -9 -5 -1 3 7

Figure 4.3: Confidence1 distributions seen in eight domains. Y-axis is the number of
times a particular confidence1 was seen. (i)-(iv) come from datasets taken from the UC
Irvine machine learning repository. (i)-(iv) were generated from other domains discussed
in this thesis.

property: a small number of variables exert large influence on the over-

all behavior of the system. Figure 4.3 shows the confidence1 distributions

seen in eight example datasets. We could observe a small right tail in all

the confidence1 distributions. As a result, TAR2 was able to find effective

treatments with treatmentSize < 6.

4.2 TAR3: The Improvement

Algorithmic analysis of TAR2 has shown that although it works well for many

datasets, there exists situations where the runtime can grow exponentially.

TAR3 is our solution to the problem. In summary, TAR3 uses a novel ran-

69

dom sample method of the confidence distribution to find treatments. One

drawback with such random sampling methods is that the resulting con-

clusions are unstable or fail to explore all the interesting parts of a theory.

We show below that, for TAR3, this is not the case. In fact, despite the

use of random sampling, TAR3 usually generates the same solutions as the

non-random search of TAR2.

4.2.1 Random Sampling

In TAR2, confidence1 measure (M) is a heuristic assessing the contribution

each attribute-value pair makes toward changing the class distribution. If

we think of confidence1 values as weights associated with attribute-value

pairs, those with larger weights have higher probability to be selected into

treatments than those with smaller weights. Let:

ai = attribute-value pair in the data set

Mi = confidence1 value associated with ai

What we need is to sample ai from a multinomial distribution with discrete

weights Mi. This strategy is employed in TAR3 and is done as follows:

1. Place ai in increasing order according to Mi.

2. Compute the CDF(Cumulative Distribution Function) value of Mi:

CDF (i) =

∑i
x=1 Mx∑N

x′=1 Mx′
(N = the total number of Mi)

3. Sample a uniform value u in the interval [0,1].

4. The sample is the least ai such that u < CDF (i)

70

The above process is repeated until we get a treatment Rx of a given size.

As a side effect, random sampling also eliminates the necessity to specify the

confidence1 threshold.

4.2.2 Treatment size

TAR2 requires treatment size be specified by the user as an input parameter.

Each run of TAR2 returns treatments of that fixed size. In TAR3, treatment

size is a uniform value sampled from the interval [1..maxTreatmentSize],

where maxTreatmentSize is the maximum treatment size user interested.

The upper bound of maxTreatmentSize is the total number of attributes

in the data set. This allows us to obtain treatments of different sizes in one

run. In practice, we found that maxTreatmentSize seldom exceeds half the

number of attributes – a strong empirical evidence for narrow funnel effects.

4.2.3 lift(Rx) evaluation

TAR2 evaluates a treatment candidate Rx by calculating lift(Rx). Treat-

ment Rx is qualified only if lift(Rx) > certain threshold. We eventually

abandoned this approach. Instead, treatment Rx is reported if and only if it

is among the top N treatments found whose lift(Rx) > 1 (lift(Rx) > 1 en-

sures the treatment indeed makes improvement on class distribution), where

N is the maximum number of treatments user wants.

4.2.4 lift(Rx) penalization

For treatment Rx, size(Rx) has noticeable impact on worth of the treated

data set (and hence lift(Rx)). Usually treatments of larger sizes tend to

71

achieve higher lift than those of smaller sizes. In the association rule min-

ing community, Ke Wang et.al. [WZH00] found that the confidence of a

rule holds a property known as the universal-existential upward closure. To

illustrate the property, consider the following association rules:

R1: Age.young → Salary.low

R2: Age.young, Gender.M → Salary.low

R3: Age.young, Gender.F → Salary.low

Suppose that R1 has confidence of 0.6, that is, 60% young people have low

salary. Since the condition Gender.M and Gender.F are exhaustive and mu-

tually exclusive, if one condition impacts confidence negatively, the other

must impact confidence positively. Consequently, at least one of R2 or R3

has at least as much confidence as R1. Also, if none of R2 and R3 is confi-

dent, then R1 must also be non-confident. This property indicates that long

rules tend to have high confidence than short rules.

In treatment learning, the evaluation criterion lift(Rx) is a function of the

treatment’s confidence with respect to classes. It exhibits a similar property.

Consider one extreme example where a dataset has total 5 attributes. A

treatment of size 5 might select only one example and this example belongs

to the best class. This treatment has the highest lift(Rx): on the class

distribution graph, 100% of examples(in this case, only 1 example) in the

treated subset belong to the best class. In other words, treatments of very

large size tend to have high lift values. However, they usually select so few

examples that lack statistical significance.

This problem is solved by introducing in the Best Class Support sup(Rx)

parameter. sup(Rx) is defined as ratio of examples belonging to the

72

best class in the treated set to those in the original set. i.e.,

sup(Rx) =
|Cbest, Rx|
|Cbest| =

P (Cbest|Rx)

P (Cbest)

minSup specifies the minimum sup(Rx) ratio a treatment Rx must achieve.

For instance, assuming a data set contains 500 examples, among which only

50 belong to the best class. With minSup = 80%, if applying a treatment

Rx results in a treated set containing 100 examples, among which 45 belong

to the best class. Then we have sup(Rx) = 45
50

= 90% > minSup, thus Rx

is considered qualified. In fact, Rx is a very good treatment, as it raises the

best class percentage from 50
500

= 10% to 45
100

= 45%.
In TAR3 implementation, we didn’t simply reject treatments that do not

meet the minSup. Instead, we use the minSup as a regularizer that penalizes
lift(Rx):

lift(Rx) =
worth(D ∧Rx)

worth(D)
∗ penalty

penalty =

{
1 (sup(Rx) ≥ minSup)
sup(Rx)
minSup (sup(Rx) < minSup)

Penalization ensures some potentially highly predictive treatments still be

reported even though their sup(Rx) are slightly below the threshold.

4.2.5 Stopping point

A theoretical drawback with any random search is that such random ex-

ploration can miss significant parts of the option space. TAR3 addresses

this issue by taking the following strategy: To generate N treatments, TAR3

makes multiple iterations. Each iteration, X new treatments are generated

and checked. Only qualified top N are remained in the treatment set. If the

current iteration doesn’t contribute any new treatments to the top N set, it

is called a failure iteration. The next iteration, more treatments (X+N) are

73

generated. The procedure stops after M failure runs in a row. In practice we

found that M=[5..10] was often sufficient to return stable results.

4.2.6 Usability

TAR3 was originally designed as an experiment in reducing certain expo-

nential time processing within TAR2. A happy side-effect is that TAR3 is

actually more user-friendly than TAR2. TAR2 requires the manipulation of

certain arcane parameters that must be fiddled with many times. On the

other hand, TAR3’s parameter set is much more succinct and, often, need

not be modified from run to run.

Table 4.2 lists parameters required by TAR2 and TAR3 excluding those

common to both. The replacement of threshold parameters with upper-

bound ones makes parameter setting easier and more intuitive. While thresh-

olds are domain specific, upper-bounds are less sensitive. We normally use

default values or set them to some larger values, the controlling strategy

employed in TAR3’s random process(e.g., the stopping point) was able to

accommodate domains accordingly. Further, we no longer have to run it

several times to get treatments of different sizes.

TAR2 TAR3
1. M threshold 1. maxTreatmentNumber
2. worth threshold 2. maxRandomIterations
3. treatmentSize 3. maxTreatmentSize

Table 4.2: Different parameters required by TAR2 and TAR3.

74

4.3 Performance Improvement

4.3.1 Runtime In Different Domains

domain #example #continous #discrete #class maxSize(Rx) TAR2(sec) TAR3(sec)
iris 150 4 0 3 2 1 < 1
wine 178 13 0 3 2 1 < 1
car 1,728 0 6 4 4 3 < 1
autompg 398 6 1 4 4 3 < 1
housing 506 13 0 4 4 4 1
pageblocks 5,473 10 0 4 2 2 1
circuit 35,228 0 18 10 6 18 6
cocomo 30,000 0 23 4 3 104 28
pilot 30,000 0 99 9 7 2842 195
reacheness 25,000 4 9 3 4 28 4
reacheness2 250,000 4 9 4 4 293 42

Table 4.3: Runtimes for TAR3 on different domains (on a 333 MHz Windows
machine with 200MB of ram).

Table 4.3 compares TAR2 and TAR3 runtimes on the same datasets seen

in table 4.1. Column 6 lists the maximum treatment size returned by TAR3

on each domain. Column 7 lists TAR2’s runtimes with respect to maximum

treatment size. In domains where size(Rx) is small (e.g., the first 6 datasets),

TAR2’s runtimes are comparable to TAR3’s. However, when size(Rx) is

large(e.g. the pilot domain), TAR3 is significantly faster than TAR2 (195sec

vs 2842sec). The comparison shows that TAR3’s random sampling is able to

scale when TAR2’s exponential search becomes intractable.

4.3.2 Runtime vs. Data Size

Figure 4.4 and figure 4.5 report TAR3 runtimes with respect to the number

of attributes and the number of instances respectively. The datasets used

75

0

5

10

15

20

25

30

0 20 40 60 80 100

R
un

tim
e(

se
c)

Attributes (pilot data: 20K instances)

TAR3 Runtime vs. Attribute

Figure 4.4: Runtime vs attributes. Datasets come from the pilot domain

0

10

20

30

40

50

60

0 10 20 30 40 50 60

R
un

tim
e(

se
c)

Instances(K) (pilot data: 99 attributes)

TAR3 Runtime vs. Instance

Figure 4.5: Runtime vs instances. Datasets come from the pilot domain

in both experiments come from the pilot domain (discussed in chapter 3

76

case study 2) because of its high dimensionality. In figure 4.4, we kept the

number of instances to 20,000 and randomly chose 10, 20, 30, ... up to all

99 attributes for each trial. Similarly, in figure 4.5, the number of attributes

was kept constant (using total 99 attributes) while the number of instances

increased from 5,000 to 50,000. Curve in figure 4.4 fits a linear trend line

with r2 = 0.88361; curve in figure 4.5 fits a linear trend line with r2 = 0.9436.

In summary, TAR3’s runtime is linear in the size of training data.

4.3.3 Runtime vs. Treatment Size

Figure 4.6 shows TAR3 runtime with respect to treatment size. The datasets

used in this study are the same in the TAR2 runtime evaluation experiments

(77250 instances * 23 attributes). Normally, one run of TAR3 returns treat-

ments of different sizes. For this study we forced it to return only treatments

of fixed size each run. The runtime curve shown in figure 4.6 is no longer

exponential, in fact it fits a logarithmic trend line with r2 = 0.9441. Com-

pared to figure 4.2, TAR2 spent near 1000 seconds for treatments of size 5

while TAR3 only needs less than 100 seconds for treatments of size 8. It is

clear that TAR3’s algorithm runs much more efficiently.

4.4 Experiment Result Comparison

This study aims at examining TAR3’s stability in terms of the returned

treatments. We wanted to know whether and to what extent would the ran-

domness introduced in TAR3 effect its results. Our concern was that TAR3’s

random search would introduce an element of unreliability in the learnt the-

1r2 value is the square of the correlation coefficient

77

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8

R
un

tim
e(

se
c)

Treatment Size (cocomo data: 77250 * 23)

TAR3 Runtime vs. Treatment Size

Figure 4.6: Runtime vs instances. Datasets come from the cocomo domain

ories. However, this pre-experimental fear was not realized in practice. In

fact, TAR3 generates nearly the same treatments as TAR2.

Firstly, we ran TAR3 on a domain and recorded the size of the best treat-

ment returned. We then configured TAR2 so that it would return treatments

of that size on the same domain. We compare both the lift(Rx) and the

individual attribute-value pairs appeared in the best treatments returned by

TAR2 and TAR3 respectively. Table 4.4 lists the results from 10 domains.

In each domain, the best treatment returned by TAR3 has both the same

lift value and the same itemsets as returned by TAR2. (The notation [X..Y)

means a test of X <= attribute < Y). In other words, the best treatment

found by the two learners for each domain is identical. Table 4.5 compares

results from the more complex “pilot” domain, which contains 30k examples

and 99 attributes. TAR3 found a best treatment of size 10, whereas TAR2

78

can only handle a max size of 6. The larger treatment has higher lift value

than the short one, and the two treatments have 5 items in common. In

summary, for 10 out of 11 cases, TAR3 found identical treatments as TAR2.

For the remaining domain, TAR3 found a better treatment of larger size.

Baselined on TAR2, TAR3’s output is quite stable. We offer two explana-

tions:

• Treatment learning involves a combination of search and attribute merit

evaluation. Replacement of depth-first search with random sampling

only changes the search strategy, resulting an improvement in efficiency.

The treatment generation is still based on the underlying confidence1

distribution. Theoretically, as long as this evaluation process remains

untouched, the two learners should return the same results.

• To control the randomness introduced by the CDF sampling method,

we have designed the stopping point controlling strategy. The experi-

ments have shown that it is empirically effective for small to medium

sized datasets. However, for very large, high dimensional dataset,

TAR3 may return similar, yet not identical outcomes.

4.5 Case Study: The Pilot Domain Again

The above studies dealt with small to medium sized datasets. This section

describes an experiment with a very large dataset in which TAR3’s treat-

ments, while similar, were not identical.

We have discussed the “pilot” case in requirement optimization domain

(see chapter 3). To compare both the performance and experimental results,

79

domain attribute range TAR3 TAR2
petal width [1..1.6) x x

iris petal length [3.5..4.6) x x
lift: 1.71 1.71

attr11 [0.4874) x x
wine attr12 [1.27..1.78) x x

lift: 1.81 1.81
buying low x x

car safety high x x
lift: 2.21 2.21

cylinders [4..5) x x
auto-mpg horsepower [46..75) x x

weight [1613..2223) x x
lift: 1.97 1.97

rm [6.65..9.78) x x
housing ptration [12.6..15.9) x x

lift: 2.35 2.35
page-block blackand [493..46113] x x

height [9..804] x x
p black [0.052287) x x
eccen [0.007..2.889) x x
area [660..143993] x x

lift: 9.28 9.28
circ B3c ok x x

(30k examples) Sw2c off x x
Sw1c on x x

lift: 9.07 9.07
cocomo pcap [3..4] x x

(30k examples) ruse [1..2) x x
acap [3..4] x x
sced [3..4] x x

lift: 1.53 1.53
reachness orpMean [6..8) x x

(25k examples) andfMean 0.1 x x
noMean [0..8) x x

lift: 1.65 1.65
reachness2 orpMean [9..10] x x

(250k examples) noMean [0..8) x x
andfMean 0.1 x x

lift: 1.65 1.65

Table 4.4: Best treatment returned by TAR3 and TAR2 on various domains.

80

domain attribute range TAR3 TAR2 TAR3(best)
pilot P44 Y x

(50k examples) P317 N x
P755 N x x x
P1066 N x x x
P706 Y x x x
P688 Y x
P2160 x
P761 N x x x
P1065 N x
P690 Y x
P1069 N x
P2111 N x
P1971 Y x
P704 N x

lift: 5.93 5.84 8.16

Table 4.5: Best treatment returned by TAR3 and TAR2 on the pilot domain.

we ran TAR2 and TAR3 on the same “pilot” domain again. The model used

this time is a revised version of the original one, which contains fewer details.

The data set obtained after simulation has 58 attributes instead of 99. Each

example is also evaluated by a pair of cost and benefit figures. According

to the domain experts, we combined cost and benefit into a single attribute

using the same balanced scheme but with different dividing thresholds. The

combination resulted in 16 classes representing 16 levels of “goodness”.

Figure 4.5 shows the initial cost-benefit distribution from the baseline

simulation. The data points are widely spread across the possible cost and

benefit ranges. Further, most low cost points correspond to low benefit level

and high benefit points have high cost values. The desired low-cost high-

benefit points are very few: less than 3% of the entire data.

We followed the same incremental learning approach as discussed in the

last chapter, namely the following steps:

81

0

500

1000

1500

2000

2500

3000

3500

 0 1000000 2000000 3000000 4000000

B
en

ef
it

Cost($)

baseline

Figure 4.7: The cost-benefit distribution of the initial simulation from the
pilot domain.

1. Ran TAR2 and TAR3 on the baseline (initial simulation) data, and

generated two set of treatments.

2. The top ranked treatment was chosen from each treatment set. For the

purpose of comparison, we didn’t ask domain experts to examine the

individual treatments, we simply chose the top one.

3. We then imposed the 2 chosen treatments (1 from TAR2, 1 from TAR3)

on the model respectively; simulated it again and got another 2 sets of

data examples.

4. Step 1-3 were repeated until the resulting distribution was so tightly

clustered that domain experts agreed to stop.

82

0

500

1000

1500

2000

2500

3000

3500

 0 1000000 2000000 3000000 4000000

B
en

ef
it

Cost($)

TAR2 Final

Figure 4.8: The cost-benefit distribution from executing the model of pilot
domain when it was constrained after the 5th iteration of TAR2.

0

500

1000

1500

2000

2500

3000

3500

 0 1000000 2000000 3000000 4000000

B
en

ef
it

Cost($)

TAR3 Final

Figure 4.9: The cost-benefit distribution from executing the model of pilot
domain when it was constrained after the 4th iteration of TAR3.

4.5.1 Comparison of the Cost-Benefit Distribution

Figure 4.8 shows cost-benefit distribution after the 5th iteration of TAR2.

Compared to figure 4.5, the variation is relatively small. Most of the data

83

points are grouped at the upper-left corner of the graph, indicating a tight

cluster of low-cost high-benefit results. Figure 4.9 is the result from TAR3

experiments following the 4th iteration. The two graphs are visually the

same, indicating very similar results.

4.5.2 Comparison of the Best 3 Class Distribution

For a closer comparison, table 4.6 records the best 3 class distribution of each

round. The best 3 out of total 16 classes correspond to a region of desired

zone in which domain experts interested. TAR2 reaches the stopping point

after 5 rounds, fixing total 19 attributes; TAR3 reaches the stopping point

after 4 rounds, fixing total 20 attributes. At the stopping point, both TAR2

and TAR3 achieved a similar class distribution. Further learning didn’t offer

significant improvement (i.e., further distribution improvement is less than

5%).

TAR2 baseline run1 run2 run3 run4 run5
size(Rx) 0 4 4 4 4 3
Class14 3% 33% 68% 22% 7% 2%
Class15 0% 1% 7% 38% 19% 5%
Class16 0% 0% 4% 28% 74% 93%
Total 3% 34% 79% 88% 100% 100%
TAR3 baseline run1 run2 run3 run4 run5
size(T) 0 6 6 5 4 —–
Class14 3% 47% 50% 11% 0% —–
Class15 0% 2% 19% 27% 7% —–
Class16 0% 1% 13% 60% 93% —–
Total 3% 50% 82% 98% 100% —–

Table 4.6: Comparison of the best 3 class distributions for TAR2 and TAR3
experiments.

84

4.5.3 Comparison of Each Round

 500000

1000000

1500000

2000000

2500000

3000000

baseline One Two Three Four Five

C
os

t

Round

TAR2 Cost
TAR3 Cost

Figure 4.10: The mean and standard deviation of cost at each round.

At the beginning of this experiment, TAR2 and TAR3 started from the

same point (i.e. the first baseline data) and came up with different treat-

ments. They later followed their own path toward the final destination.

Figure 4.10 compares their performance on each round in terms of the mean

and standard deviation of the cost figure. Each round, TAR3 achieved lower

mean cost and smaller deviation, allowing it to reach the stopping point one

iteration earlier. Figure 4.11 compares the benefit figure. Again, TAR3’s

deviation is smaller at each round. It is interesting to notice the dip in the

TAR2 curve, which indicates a slowing down of the progress. But it eventu-

ally catches up in round 4 and round 5.

85

 500

 1000

 1500

 2000

 2500

 3000

baseline One Two Three Four Five

B
en

ef
it

Round

TAR2 Benefit
TAR3 Benefit

Figure 4.11: The mean and standard deviation of benefit at each round.

No. Attribute TAR2 TAR3 No. Attribute TAR2 TAR3
1 [P63=N] X X 12 [P1310=Y] X X
2 [P70=N] X X 13 [P529=N] X X
3 [P72=N] X X 14 [P544=N] X X
4 [P73=Y] X X 15 [P551=N] X X
5 [P74=N] X X 16 [P555=Y] X X
6 [P126=Y] X X 17 [P575=N] X
7 [P135=N] X X 18 [P960=N] X
8 [P137=N] X X 19 [P1047=N] X X
9 [P145=Y] X 20 [P1260=Y] X X
10 [P154=Y] X X 21 [P1287=N] X X
11 [P166=N] X X Total 19 20

Table 4.7: Comparison of the final treatments found by TAR2 and TAR3,
respectively.

4.5.4 Comparison of the Final Treatments

TAR2 gave a final treatment of size 19 after 5 iterations, TAR3’s final treat-

ment is of size 20 after 4 iterations. Although in each run, they gener-

86

ated quite different treatments, the combined final treatments are almost the

same. Table 4.7 compares the two final sets attribute by attribute, showing

that they have 18 items in common.

4.5.5 Comparison of Runtimes

The data size we used is 20, 000 examples × 58 attributes at each round.

Table 4.8 compares their runtimes. For reference reasons, column 3 and 5

list the size of best treatment found at that round. The average runtimes of

TAR3 is only 1
5

to 1
3

TAR2’s runtime. That is, TAR3 ran much faster even

with larger treatment size.

Round TAR2(sec) size(T) TAR3(sec) size(T) TAR3/TAR2
1 1243 4 320 6 25.8%
2 1170 4 348 6 29.7%
3 927 4 235 5 25.3%
4 650 4 126 4 19.4%
5 103 3 — — —

Table 4.8: Comparison of the runtimes of each round.

4.5.6 Summary

From the above case study, we have the following observations:

• In this domain, TAR3 achieved a better class distribution than TAR2

each run, and generated a slightly larger treatment.

• Their own path ended up with a similar yet not identical solution, both

in terms of the cost-benefit distribution and the treatment produced.

• TAR2 reached the same final distribution after more runs, but with

total less attributes fixed (i.e., the size of the final treatment is smaller

87

in TAR2’s case).

• In this domain, TAR3’s runtime is much shorter than TAR2, average

1
5

to 1
3

TAR2’s runtime.

4.6 Conclusion

The algorithmic evaluation on TAR2 pointed out situations where its run-

times can grow exponentially. Our solution to this problem is a better learner

TAR3. By adopting random sampling together with other strategies, TAR3

has made major improvement in algorithmic efficiency. Experiments have

shown that on the datasets where TAR2 is exponential, TAR3 runs in linear

time. We have also conducted extensive comparison to survey the stability

of TAR3’s treatments. It has been seen that TAR3 usually returns identi-

cal treatments as TAR2 on small to medium datasets. On high dimensional

dataset, TAR3 followed a faster path to goal. The resulting distribution is

better, while the final treatment is slightly different.

Specifically, the key idea to treatment learning is the confidence1 evalu-

ation of individual attributes. A different search strategy should not change

results but only affect efficiency. The sampling method brings in a certain

degree of randomness. Still, we have shown that the controlling method

we implemented is effective in practice. Given that confidence1 distribu-

tion represents the probability an item could be picked up in the treatment,

there could be other ways to control the random process: For example, some

functions could added to the distribution when computing the CDF value.

88

Chapter 5

Evaluation Of Treatment
Learning Through Feature
Subset Selection

5.1 Introduction

In previous chapters we have discussed that treatment learning is closely

related to yet significantly different from both classification and association

rule mining. This difference makes it not easy to directly compare treatment

learner to other learning schemes. For classification, the predictive accuracy

is of the main interest to most researchers. Therefore, classifiers are normally

evaluated by their classification accuracy on commonly used datasets. Asso-

ciation rule mining are formulated as solutions to the same problem, i.e., to

generate all association rules that have support and confidence greater than

a user-defined minimum support and minimum confidence respectively. As

a result, association rule miners are compared by their algorithmic perfor-

mance, such as efficiency and scalability. Treatment learning, however, does

not have a widely accepted assessment criterion. Treatments are neither

89

original
training set

test set

reduced
training set

feature
subset
selection

learning
algorithm

evaluation

classification model

estimated
accuracy

Figure 5.1: Feature subset selection as a pre-process prior to learning.

models that predict the class membership of unseen data examples nor com-

plete set of association rules that satisfy a certain conditions. To provide a

benchmark comparison with other learning methods, we approach treatment

learning in the framework of feature subset selection (FSS) technique.

In machine learning applications, real world datasets usually include irrel-

evant, redundant and noisy attributes. To achieve best possible performance,

a learning algorithm must select a relevant subset of features upon which to

focus its attention. Feature subset selection is the process of identifying and

removing as much of the irrelevant and redundant information as possible

[HH02]. As a data engineering technique, feature subset selection is gener-

ally considered a pre-process prior to learning. Figure 5.1 illustrates the usual

application approach. In the procedure, a feature subset selector takes in the

original training set and outputs one with reduced dimensionality. The learn-

ing algorithm then constructs classification model using the reduced training

set. The test set containing all attributes later evaluates the model and gives

estimated accuracy.

Feature subset selection benefits learning in the following ways:

90

1. It can drastically reduce the dimensionality of the data, thus allows the

learning algorithms to run faster in a smaller search space.

2. It helps the learner to ignore irrelevant, redundant and noisy features

and focus on only relevant, highly predictive ones to improve its per-

formance.

3. It results in more compact, easily understandable representation of the

underlying concept.

We believe, the success of feature subset selection improving learning is an

application of narrow funnel effect in the field of machine learning. For

domains containing narrow funnels, features inside the funnel are much more

important than those outside with respect to understanding the domain.

Consequently, ignoring features outside the funnel and concentrating on those

inside is sufficient, in some cases, beneficial to learning.

As discussed before, treatment learning is in fact a lightweight learning

approach dedicated to identifying funnel variables. This characteristic makes

it suitable for the feature subset selection task. The following sections de-

scribe an experimental evaluation of treatment learning in the framework of

feature subset selection. We conducted feature subset selection using treat-

ment learner and compared the result to conclusions seen in a recent state-

of-the-art survey of FSS methods (Hall and Holmes, [HH02]). For commonly

used machine learning datasets, our approach out-performs the standard FSS

methods by selecting the fewest features.

91

5.2 The Feature Subset Selection Experiment

5.2.1 Feature Subset Selection Methods

Most feature selection techniques involve a combination of search and at-

tribute utility estimation. Some of them use general characteristics of the

data to evaluate attributes (referred to as “filters”) while others evaluate

attributes by using accuracy estimates provided by the target learning algo-

rithm (referred to as “wrappers” [Koh96]). In either case, they produce at-

tribute ranking which demonstrates the relative merit of individual attribute

for the target learning algorithm.

Hall and Holmes [HH02] provided a survey of attribute selection methods.

It includes five major developments in attribute selection over the last decade

as well as a classical statistical technique for dimensionality reduction. Before

comparing our approach to those methods, we briefly describe them here.

Information Gain Attribute Ranking(IG)

Information Gain Attribute Ranking measures the entropy of the dataset

before and after observing a feature. The difference in the entropy, called

information gain [Qui92], gives a measure of the additional information about

the class gained because of that attribute. Detail on this method has been

explained in Chapter 2: Decision Tree Induction. This is one of the simplest

and fastest method for feature ranking [SJDM98].

Relief(RLF)

Relief is an instance based learning scheme [I.K94]. It first randomly samples

one example within the dataset. It then locates the nearest neighbor for that

92

example from the same and the opposite class. The values of the nearest

neighbor features are then compared to the sample and the feature scores

are maintained and updated based on this. The earliest Relief algorithm

could only handle two-class dataset. But it was later extend for multi-class

problems by finding nearest neighbors from each different class and weighting

their contributions according to each class’s prior probability [I.K94]. Relief

can also handle noisy data and other data anomalies by averaging the values

for K nearest neighbors instead of just one.

Principle Components Analysis(PCA)

Principal component analysis is a statistical technique that reduces the di-

mensionality of the data by transforming the original feature space. It

extracts the eigenvectors of the covariance matrix of the original features

[HH02]. The eigenvectors, called principle components, define a linear trans-

formation from the original feature space to a new uncorrelated space. Eigen-

vectors can be ranked according to the amount of variation in the original

data that they account for. The first few transformed attributes are con-

sidered to account for most of the variation in the data and are selected.

Principal components makes no use of the class attribute. It can only han-

dle numerous attributes. To handle k-valued categorical attribute, one must

first convert the attribute to k binary attributes, using “1” to denote the

occurrence of the k-th value, and “0” for all other values.

Correlation-based Feature Selection(CFS)

Correlation-based Feature Selection evaluates subsets of features [M.A98].

The technique relies on a heuristic merit calculation that assigns high scores

93

to subsets with features that are highly correlated with the class and poorly

correlated with each other. Merit can find the redundant features since they

will be highly correlated with the other features. Those features are ignorable

for classification as they will be poor predictors of any class. To do this CFS

informs a heuristic search for good subset of features via a correlation matrix.

Consistency-based Subset Evaluation(CBS)

Consistency-based Subset Evaluation is in fact a set of methods that use

class consistency as an evaluation metric. The specific CBS studied by Hall

and Holmes method finds the subset of features whose values divide the data

into subsets with high class consistency [HT91] [HR96].

Wrapper Subset Evaluation(WRP)

Kohavi and John [Koh96] wrapped a target learner in the selection procedure

to grow subsets of the available features from size 1. At each step in the

growth, the target learner was called to estimate the accuracy of the model

learned from the current subset. Subset grow was stopped when the addition

of new features did not improve the accuracy. In their experiments, average

83% of the features in a domain could be ignored with only a minimal loss of

accuracy. Wrapper tailors the search to specific target learners and usually

gives better results than filters. Its main problem is overfitting and the large

amounts of CPU time required.

94

5.2.2 The Methodology

Datasets

We used ten datasets included in Hall’s experiment, all of which are from the

UCI data repository [CEC98]. The datasets have a wide range of categorical

and numeric features. Their sizes vary from 148 to 2310 examples. Table 5.1

summarizes these datasets.

DATA SET INSTANCES NUMERIC NOMINAL CLASSES
anneal 898 6 32 5
breast-c 286 0 9 2
credit-g 1000 7 13 2
diabetes 768 8 0 2
horsecolic 368 7 15 2
ionosphere 351 34 0 2
lymph 148 3 15 4
segment 2310 19 0 7
soybean 683 0 35 19
Vote 435 0 16 2

Table 5.1: Datasets used in the benchmark experiment, all from UCI data
repository [CEC98].

Target Learning Algorithms

For each dataset in table 5.1, classification accuracy was averaged over 10-way

cross validation before and after attribute selection with respect to a target

learning algorithm. Both C4.5 decision tree learner and Naive Bayes classifier

were used to test the effectiveness of attribute selection. They are both

widely used algorithms representing two fundamentally different approaches

to learning. Introduction of them can be found in the “Literature Review”

chapter.

95

We used the WEKA (Waikato Environment for Knowledge Analysis) im-

plementation of C4.5 release 8 (called J4.8) and Naive Bayes. WEKA1 is

a powerful open-source Java-based machine learning workbench that brings

together many machine learning algorithms and tools under a common frame-

work with a friendly GUI [WF99].

Using Treatment Learner as Attribute Selector

To accomplish feature subset selection, we followed the following steps:

1. We ran a target learner on the original dataset and obtained the initial

classification accuracy by averaging over 10-way cross validation.

2. If a dataset has N classes, TAR2 was run on it N times, each time we

change the class ordering in a round robin manner, e.g., each class was

given the highest priority in turn. The attribute included in the top

treatment was recorded for each run.

3. After N runs, we took the union of the attribute obtained in each run

to get the final attribute subset of that dataset.

4. Ran the target learner on the reduced dataset containing only attributes

selected by TAR2. Accuracy was again obtained by averaging over cross

validation.

5. The above steps were repeated for each dataset and each target learner

(namely J4.8 and Naive Bayes).

96

J4.8 Naive Bayes
DataSet Original After TAR2 Diff Original After TAR2 Diff
anneal 98.2 98.2 0 86.6 84.3 -2.3
breast-c 75.2 75.2 0 74.1 75.2 1.1
credit-g 73.9 72.3 -1.6 75.9 74.3 -1.6
diabetes 74.5 72.8 -1.7 76 74.6 -1.4
horsecolic 85.3 81.5 -3.8 78.8 79.6 0.8
ionosphere 88.6 87.8 -0.8 82.9 87.5 4.6
lymph 76.4 74.3 -2.1 81.8 77.7 -4.1
segment 97.1 96.6 -0.5 79.8 86.3 6.5
soybean 92.4 93 0.6 92.7 93 0.3
vote 95.9 96.1 0.2 90.1 94.9 4.8

Average -0.97 Average 0.87

Table 5.2: Classification accuracy of J4.8 and Naive Bayes before and after
using TAR2 as attribute subset selector

5.2.3 The Results

Table 5.2 shows the classification accuracy on ten datasets before and after

attribute selection with J4.8 and Naive Bayes. In the J4.8 case, accuracy

decreases on six datasets, remains the same on two and increases on two,

average difference is a drop of 0.97%. In the Naive Bayes case, accuracy

decreases on four datasets and increases on six, average difference is a rise

of 0.87%. The largest accuracy drop is 4.05%, and the largest accuracy

improvement is 6.5%, all occurred when the target learner is Naive Bayes.

On average, accuracies change is less than 1%.

Table 5.3 compares the size (measured by the number of nodes) of decision

trees produced by J4.8 with and without attribute selection. After selection,

tree size increased on two datasets, remained the same on one and decreased

1Weka is freely available at http://www.cs.waikato.ac.nz/~ml

97

DATA-SET Before After Diff Diff
Before

anneal 47 55 8 17.02%
breast-c 6 6 0 0
credit-g 140 33 -107 -76.43%
diabetes 43 5 -38 -88.37%
horsecolic 6 3 -3 -50.00%
ionosphere 35 5 -30 -85.71%
lymph 34 11 -23 -67.65%
segment 77 81 4 5.19%
soybean 93 92 -1 -1.08%
vote 11 9 -2 -18.18%

Table 5.3: Size of trees (number of nodes) produced by J4.8 with and without
attribute selection

on the rest seven. For five datasets, the resulting trees are at least 50%

smaller than the original ones.

DATA-SET ORIG IG CFS CNS RLF WRP PC TAR2 TAR2
ORIG

anneal 38 16.6 21.3 15.5 20.4 18.2 36.4 7 18.4%
breast-c 9 4.4 4 6.6 6.9 3.98 4.4 2 22.2%
credit-g 20 7.8 6.7 8.1 9.1 7.7 3.9 5 25%
diabetes 8 3.2 3.4 3.6 3.9 3.8 5.9 1 12.5%
horsecolic 22 3.8 3.7 2.2 3.3 4.8 2.9 2 9.1%
ionosphere 34 12.2 6.9 9.3 8.7 7.2 10.2 2 5.9%
lymph 18 6.8 5.3 4 4.5 5.9 9.2 3 16.7%
segment 19 16.4 11.9 9.5 12.6 9.2 16.4 4 21.1%
soybean 35 29.5 23.7 35 32.4 19.2 30.2 16 45.7%
vote 16 11.6 9.6 6.5 10.6 8.6 11.2 6 37.5%

Table 5.4: Number of features selected for J4.8

Table 5.4 and 5.5 show the number of attributes selected by different se-

lection schemes for each target leaner respectively. Column 2 lists the original

number of attributes of each dataset, column 2-7 list the results of 6 stan-

98

DATA-SET ORIG IG CFS CNS RLF WRP PC TAR2 TAR2
ORIG

anneal 38 10.1 3.7 5.4 38.9 7.1 25.4 7 18.4%
breast-c 9 3.8 7.4 5.7 5.2 2.7 3.2 2 22.2%
credit-g 20 13.2 14.3 13.6 19.9 12.4 10.7 5 25%
diabetes 8 2.7 3.6 4 5.9 2.8 4.1 1 12.5%
horsecolic 22 5.8 4.1 3.9 22.8 5.8 6.2 2 9.1%
ionosphere 34 7.9 8.1 10.5 18.1 12.6 11.7 2 5.9%
lymph 18 16.6 13.1 14.3 15.3 15 13.1 3 16.7%
segment 19 11 11.1 5 15.2 7.9 9.2 4 21.1%
soybean 35 30.9 31.3 32.7 36 25.8 20.8 16 45.7%
vote 16 1 1.7 2.6 14.9 1 3 6 37.5%

Table 5.5: Number of features selected for Naive Bayes

dard methods seen in Hall and Holmes’ report [HH02]. In their experiment,

they used the target learner as part of the attribute subset evaluation and

averaged the result over ten 10-way cross validation. Consequently, those

methods gave different results with respect to different learners. Also as a

side effect, the number of attributes selected by those methods is not an in-

teger. Instead, TAR2’s attribute selection is completely independent of the

target learner, hence the number of attribute selected relies only on each

dataset itself. For decision tree learner, TAR2 selected fewest attributes for

all datasets while for the Naive Bayes, TAR2’s selections are the smallest in

eight out of ten datasets. In summary, TAR2 was the best overall feature

selection methods studied here; i.e. it found the smallest feature subsets and

those subsets resulted in minimal or no loss in classification accuracy.

99

5.3 Discussion

As mentioned earlier, feature subset selection techniques can be broadly cat-

egorized into “wrappers” and “filters” depending on their interaction with

the target learning algorithms. In Hall’s benchmark experiment [HH02] com-

paring six attribute selection methods, five of them are considered “filters”.

“Filters” accomplished dimensionality reduction following two steps:

• “Filters” produced ranked lists of attributes either unassisted or by

using a modified forward selection hill climbing search. This procedure

is independent of the target learner.

• Each ranked list was cross validated with respect to the current learner

to estimate the worth of the subset of the ranked attributes. That

is, cross validated on the training part of each dataset to estimate

the worth of the highest ranked attribute, the first two highest ranked

attributes, the first three highest ranked attributes and so on.

There exists a problem in step two: the evaluation procedure still relied on

the learner to make the final selection of attribute subsets, thus unavoidably

made any selector partially a “wrapper”. Because wrappers use the learner

in the search process to evaluate features, they generally give better results in

terms of classification accuracy. Unfortunately, the added computational cost

is inevitable: wrappers have to invoke the target learner for every attribute

subset considered during the search. Kohavi and John [KJ97] report that

their Wrapper method can take up to thousands of seconds to terminate.

Our treatment learner approach, on the other hand, takes a pure “filter”

approach. Both the search and evaluation relied on the data itself without

100

interference of the learning algorithm. As a result, the procedure is very fast:

the total runtime for any of the domains shown in the experiment is less than

ten seconds.

5.4 Conclusion

We have examined treatment learning in the framework of feature subset

selection for supervised classification. The result shows that: in general, our

approach can reduce the dimensionality drastically with minimal or no loss

in accuracy. In some cases, it helps to improve learner’s performance. We

also compared it to six standard feature subset selection methods. It has

been seen that features selected by TAR2 was nearly always smaller than

features selected by other methods.

This study is also a supportive piece of evidence of the narrow funnel

effect. The ten datasets on which we based our experiments were collected in

real world domains. They are neither synthesized nor particularly engineered

to make learning easy. Instead, they were representative of problems that

naturally arise in practice. In other words, narrow funnel effect is common in

practice. For those domains, a few attributes serve as good class indicators

and simple models are adequate to describe the underlying concept. The

study of using treatment learning as feature subset selector suggests that

treatment learning is an ideal approach to identify funnel variables should

the target domain contain any.

101

Chapter 6

Application Of Treatment
Learning

In the 21th century, we are deluged by data: transaction data, scientific data,

medical data and financial data. Unless we can process the mountain of in-

formation, we are likely to be buried by irrelevant data. Ironically, many data

mining tools try to generate intricate theories that are too overwhelming to

understand. For example, it is difficult to understand the prediction system

of a neural network merely by studying the net topology and individual node

weights. As another example, on the Mushroom data set (8124 examples,

22 attributes, 2 classes, available from UCI data repository [CEC98]), the

recent border-based Emerging Pattern mining algorithm found 299811 bor-

ders, each representing about 218 item sets [DL99]. Although the algorithm

is efficient enough to find that huge number of patterns in about 30 minutes,

this is far too many results to show to an end user. In fact, the result itself

might be a source for further data mining in order to provide understandable

knowledge. We believe that the essence of data mining does not (only) reside

on what patterns can be identified, or how efficient a miner can discover all

102

the patterns. Rather, it is the promise to benefit decision making that makes

data mining so extraordinary. The premise of treatment learning, and the

reason why we use it, is that

showing the differences between outcomes can be much clearer

than describing each separate outcome for an actionable decision.

Treatment learner quickly identifies the key factors that most change (or

influence) a situation instead of merely list the description of the current

situation.

This chapter shows examples of how others have integrated treatment

learning into various research frameworks to assist decision making ([DO02]

[Sm02] [MSCM02] [MRoS+02]). Please note that the applications were con-

ducted through a collaboration between the author of this thesis and other

researchers. The author provided implementation of treatment learner, user

manuals and actively maintained the download website. Other researchers

led investigations in the examples described here. We thank all the domain

experts for their knowledge and insights. It is this aggregate effort that fa-

cilitated the adoption of treatment learning, and led to rewarding research

discoveries in return.

6.1 Application Approach

In application domains, depending on what kind of knowledge we have, there

are two scenarios:

1. We have access to some historical data about a domain. Information

is hidden in the data and needs to be extracted.

103

2. A model expressing what is known within a domain is available. How-

ever, our knowledge about the model is usually incomplete: we may be

uncertain over parts of that model or uncertain about the domain itself.

Uncertainty takes the form of parameter ranges. Stochastic simulation

of the model with uncertain parameters results in an option space, or

a data cloud visually.

In the first scenario, Data mining + Validation + Decision is our general

approach. Using treatment learner as the data miner, we summarize and

extract knowledge from the data set to give new insights about the domain.

Other miners or algorithms might also be experimented for comparison pur-

poses. Validation takes the form of N-way cross validation to ensure stable

treatments.

In the second scenario where we have access to a domain model, Simu-

lation + Sensitivity Analysis + Decision is applied. Simulation is based on

both categorical and continuous values. Categorical simulations draw their

inputs from known operational profiles of system inputs. For continuous

variables, inputs are selected at random. In a sensitivity analysis, the key

factors that most influence a model are isolated. Also, recommended settings

for those key factors are generated. The settings can be validated by feed-

back and re-simulation. Before the sensitivity analysis can be performed,

there must exist a domain-specific evaluation function that can assess the

simulation records.

6.2 Feasibility of Agile Process

• Domain: assessment of software development paradigm

104

• Data Source: simulation through the Müller/Padberg model

• Goal: to assess the advantage of adopting the agile process based on

pair programming.

• Reference: “Should NASA embrace Agile Processes?” [Sm02]

• Collaborators: Menzies, Smith1, Hu (support role)

6.2.1 Agile Process and Pair Programming

Agile Process (AP) is an alternate paradigm to the conventional waterfall

approach to software development. It is a collection of software design prac-

tices and techniques that diverge from the heavily structured methodologies

in favor of a less structured, more adaptive approach [ea01]. AP values:

• Individuals and interactions over processes and tools;

• Working software over comprehensive documentation;

• Customer collaboration over contract negotiation;

• Responding to change over following a plan.

Among the broad and diverse AP movements, Kent Beck’s extreme pro-

gramming is one of the most popular AP approaches [Bec00]. According

to Beck, extreme programming has twelve key practices, among which pair

programming (PP) plays a key role. PP is the concept of two developers

working together at a single machine, designing and writing code coopera-

tively. PP proponents claim that by working in pairs, developers produce

code at a faster rate with fewer errors. But the idea of developer pairs leads

to two scenarios, each with their own issues:

1West Virginia University

105

• Pool: If additional developers are added to a project from a pool of

developers to create the more pairs, does the time/error advantage

outweigh the additional developer costs?

• NoPool: If additional developers are not available, and instead, the

current developers are divided into groups of two, then does the time/error

advantage outweigh the additional programming time resulting from

the fewer number of tasks that can be worked on at one time?

6.2.2 Müller/Padberg Model

To answer the above questions, Müller and Padberg derived a model to com-

pare the economics of PP with those of conventional methods [MP02]. Their

model calculated the Net Present Value (NPV) of the software project as a

general criterion to assess both programming methods. The NPV is calcu-

lated based on a series equations. Müller and Padberg used 8 fixed param-

eters and 4 parameters that they considered to be key features, for which

they systematically varied their values (Table 6.2.2). They used these values

to calculate the NPV for the conventional and the PP method, with each

of them in two situations: Pool - when the conventional method is using n

developers, the PP method is using n pairs, or 2n developers; and NoPool -

when the conventional method is using n developers, the PP method is using

n
2

pairs.

Their study found that PP is advantageous when the number of pairs

is equivalent to the number of developers (scenario Pool). In other words,

n developers are more efficient than n
2

pairs. They also found that PP is

advantageous in this situation under three conditions:

106

Parameter
PairSpeedAdvantage 10% 20% 30% 40% 50%
PairDefectAdvantage 5% 10% 15% 20% 25% 30%
DefectRemovalTime 5h 10h 15h
DiscountRate 0% 25% 50% 75% 100%

Table 6.1: Parameters systematically varied by Müller and Padberg

1. the project is of small to medium size (ProductSize is not large)

2. the project is of high quality (AssetV alue is high)

3. the need for a rapid time to market is present (DiscountRate is high)

6.2.3 Menzies/Smith Studies

The problem with Müller-Padberg economic model is that by only varying

4 parameters, a large number of the model’s attributes were left out. To

correct this, Menzies and Smith re-implemented the model for a wider range

exploration. Random values within appropriate ranges (see Table 6.2.3) were

generated for a larger set of attributes. In stead of the absolute NPV value,

they used the NPV ratio to compare the two methods:

RNPV =
Cost(PP)

Cost(Conventional)

when RNPV > 1, pair programming is at an advantage over conventional

approaches. They generated 10,000 examples from random simulation and

calculated their RNPV accordingly. TAR2 was then run through the data

looking for parameter ranges that lead to the largest RNPV value. Based on

different configurations, they conducted several groups of experiments:

107

Parameter Min Max
PairSpeedAdvantage 10% 50%
PairDefectAdvantage 5% 30%
DefectRemovalTime (hours) 5 15
DiscountRate 0% 100%
ProductSize (LOC) 10000 250000
DeveloperSalary ($) 45000 65000
ProjectLeaderSalary ($) 60000 90000
AssetValue ($) 200000 2000000
DeveloperProductivity (LOC/month) 100 500
NumberofDevelopers 4 20
DefectsPerKLOC 4 100
DefectsNotEliminated 10% 80%

Table 6.2: Parameters and ranges used by Smith and Menzies

Group 1

In study S1, TAR2 explored every attribute for both NoPool and Pool sce-

narios. This study found three attributes that had the greatest impact on the

ratio: PairSpeedAdvantage,PairDefectAdvantage and DefectRemovalT ime.

The result makes perfect sense since:

1. PairSpeedAdvantage and PairDefectAdvantage represent advantages

that PP has over conventional methods;

2. a high DefectRemovalT ime would result in conventional developers

working significantly more than developer pairs given the assumption

that conventional methods are more defect-prone.

Group 2

Considering the above three attributes may not be changeable in practice,

study S2 ignored them for other possible features. In S2/Pool three items

were found to be most important:

108

a

0

0.5

1

1.5

2

0 5000 10000

(P
ai

r/
co

nv
en

tio
na

l)
co

st

y values, sorted

baseline simulation

790

b c

0

0.5

1

1.5

2

0 5000 10000

(P
ai

r/
co

nv
en

tio
na

l)
co

st

y values, sorted

With max. developer productivity

1986

0

0.5

1

1.5

2

0 5000 10000

(P
ai

r/
co

nv
en

tio
na

l)
co

st

y values, sorted

With max. pair speed & defect advantage

3680

Figure 6.1: Raw data plots of a) completely random cases, b) cases with
DeveloperProductivity set to maximum (T1), and c) cases with PairSpeedAdvantage
and PairDefectAdvantage set to maximum (T2). The vertical line indicates the point
where PP is no longer advantageous

1. A high DiscountRate (> 0.42)

2. A small ProductSize (10,000 to 60,000 LOC)

3. A high AssetV alue (≈ $1.6M to $2.0M)

In S2/NoPool, no significant treatments were found, indicating that, when

a pool of developers is not present, PP does not have an advantage over

conventional methods. Both conclusions are consistent with Müller/Padberg

study described in section 6.2.2.

109

Group 3

To examine the effects of some particular attributes, two additional tests

were conducted:

• T1:DeveloperProductivity was set to the maximum value, 500 LOC/month,

to see the distribution when developers are being the most productive.

• T2: PairSpeedAdvantage and PairDefectAdvantage were set to their

maximum values, 50% and 30% respectively, to see the distribution

when pairs are operating at their greatest rate of advantage over indi-

viduals.

Results of these tests are shown in Figure 6.1. The vertical line in each

plotting indicates the point where PP is no longer advantageous. In the

baseline graph (Figure 6.1.a), PP is advantageous in only 8% examples. This

low percentage increases to 20% When DeveloperProductivity was set to

maximum (Figure 6.1.b). However, even when the two attributes that most

favor PP are at their highest values, the greatest PP advantage percentage

we’ve found is only 37%.

6.2.4 Discussion

By exploring a wide range of model simulation and summarizing using treat-

ment learner, Menzies and Smith found pair programming only advantageous

over conventional methods in a relatively small and specialized set of cases;

i.e. when: a)the project is relatively small; b) an abundance of developers

exists; and c)a rapid development time is demanded.

However, their results, showing consistency with the Müller/Padberg

110

study, does not conclude the infeasibility of AP in practice. Rather, it in-

dicates that a convincing case for AP cannot be based on the only factors

encoded in this model. Other possible factors could include (e.g.) increased

performance in rapid changing environments, decreased cost due to conven-

tional requirements reworking to accommodate changes, or AP methods that

do not rely on pair programming.

6.3 Software Metrics

• Domain: project quality analysis using software metrics

• Data Source: software metrics collected on NASA KC2 project.

• Goal: to identify metrics that are superior error predictors

• Reference: “Metrics That Matter” [MSCM02]

• Collaborators: Menzies, Di Stefano, Chapman, McGill2, Hu (support

role)

6.3.1 Background

Software metrics are attributes of software which can describe numerous

things, including, but not limited to, complexity, effort, quality and reliabil-

ity. Aiming at improving NASA’s mission software regardless of the source,

the NASA Independent Verification and Validation (IV&V) Facility creates

and maintains a master repository of software metrics. Metrics are collected

by reviewing requirements, code, and test results from NASA’s most critical

projects. A primary purpose of the repository is to identify early life cycle

measures which may predict for error prone software modules. Figure 6.3

2West Virginia University

111

Metric Type Metric Definiton
McCabe v(G) Cyclomatic Complexity

ev(G) Essential Complexity
iv(G) Design Complexity
LOC Lines of Code

Halstead N Length
V Volume
L Level
D Difficulty
I Intelligent Content
E Effort
B Error Estimate
T Programming Time

Line Count LOCode Lines of Code
LOComment Lines of Comment
LOBlank Lines of Blank
LOCodeAndComment Lines of Code and Comment

Operator/Operand UniqOp Unique Operators
UniqOpnd Unique Operands
TotalOp Total Operators
TotalOpnd Total Operands

Branch BranchCount Total Branch Count

Table 6.3: Metric Groups.

outlines metrics being extensively used in NASA IV&V and in the study

discussed here. Among them the McCabe complexity metrics [McC76] and

Halstead metrics [Hal77] are two most popular ones that are used as a basis

for predicting code errors.

6.3.2 The Experiment

NASA project KC2 is a C++ program containing over 3000 modules.3 Among

them, 521 modules were built by NASA developers and others are Commer-

cial Off The Shelf software. Of those 521 modules, 106 were found to have

various numbers of errors, ranging from 1 to 13. Software metrics informa-

tion is gathered on the project especially the 512 modules to analyze the

software quality. To isolate key metrics that predict for more/less errors,

3A module, for the purposes of our tests, is the equivalent of a C function.

112

Stefano et.al. divided the 512 modules into two groups according to their

error rating: the 20% of modules with errors and the 80% of modules without

errors. Thus, data set for our analysis contains 512 examples classified into

two categories.

After performing treatment learning and 10-way cross validation on our

data set, they found 2 best treatments, i.e., the best error indicators: the

metrics indicating the least error was:

L > 0.35

and the metrics indicating most error was:

LOC > 118

The effects of these treatments are shown in Figure 6.2, along with the

results from the customary McCabe metrics v(G) > 10 and ev(G) > 4. At

the top of Figure 6.2 is the baseline class distribution. Compared to the base-

line, v(G) > 10 and ev(G) > 4 are both good error indicators, in that they

significantly alter the distribution from the baseline. It is interesting to note

that ev(G) actually performs better for KC2 than the more widely used v(G),

altering the baseline distribution by an additional 5%. However, neither of

them are the strongest metrics to be using, since LOC and L (Halstead’s

Program Level) both have much better distributions. With a distribution of

97% error-free modules to 3% error-prone, L > 0.35 is actually a very strong

one in this domain. For comparison purposes, a curve fitting algorithm was

also applied to each metric. If it is correlated to the error rate, the R2 value

should be high (≥ 0.8). The first column of figure 6.2 includes the regres-

113

Defect frequency in 521 modules: Defect baseline: KEY:

0

2

4

6

8

10

12

14

0 100 200 300 400 500 600

de
fe

ct
s

pe
r

m
od

ul
e

defect values, sorted 0

33

66

99

20

80

defects > 0

defects = 0.
v(G) : R2 = 0.4325 when v(G) > 10

0

5

10

15

1 10 100

E
rr

or
s

pe
r

m
od

ul
e

v(G) 0
33
66
99 70

30

ev(G) : R2 = 0.3003 when ev(G) > 4

0

5

10

15

1 10 100

E
rr

or
s

pe
r

m
od

ul
e

ev(G) 0
33
66
99 75

25

LOC : R2 = 0.4865 when LOC < 44 when LOC > 118

0

5

10

15

1 10 100 1000

E
rr

or
s

pe
r

m
od

ul
e

LOC 0
33
66
99

8

92

0
33
66
99 81

17

L : R2 = 0.0685 when L > 0.35

0

5

10

15

0.001 0.01 0.1 1

E
rr

or
s

pe
r

m
od

ul
e

L 0
33
66
99

3

97

Figure 6.2: Results

sion curves4. In this particular project, none of the attributes were highly

correlated to error rates. The strongest indicator L was the least correlated

attribute (R2 = 0.0685). This is a good indication that simplistic regression

is ineffectual in finding decent error-predicting attributes. In summary, the

study has shown three things which hold true in this particular domain:

• McCabe complexity metrics are not bad error-predictors, but others

4R is the correlation between output and input variables while R2 is the coefficient of
determination. R2 represents the proportion of variability of the outputs that is accounted
for by the inputs. Normally, R2 is a measure of fit of a trend to a data series.

114

are better.

• LOC, a relatively cheap and easy-to-collect metric, is one of the best

all-around error predictors.

• The least correlated metric, L, turned out to be the strongest error-free

code indicator.

6.3.3 Discussion

This study uses treatment learner to seek best error-predict metrics on a

particular software project. Given the complexity of correlations between

metrics and module quality, treatment learner successfully found superior

predictors while liner regression failed. Based on the results, it is obvious

that good error predictors are project specific.

It is interesting to note that although McCabe complexity metrics are

usually considered the most popular metrics, the experiment result shows

that the cheap and easy to collect LOC metric performs exceptionally well as

both a selector for error-prone and error-free modules. It has been suggested

by other researchers that LOC may be a better metric to use when evaluating

for error-prone code; the most notable example of this is Martin Shepperd’s

research [SI94]. Shepperd claimed that

...[Cyclomatic Complexity] is based upon poor theoretical foun-

dations and an inadequate model of software development. The

argument that the metric provides the developer with a useful

engineering approximation is not borne out by the empirical ev-

idence. Furthermore, it would appear that for a large class of

software it is no more than a proxy for, and in many cases out-

115

performed by, lines of code (LOC).

This case study provided strong supportive evidences to Shepperd’s opinion

that v(G) is often outperformed by LOC.

6.4 Software Inspection Policies

• Domain: study of software inspection policies

• Data Source: simulation through SE model

• Goal: to find the best inspection policy for a particular software de-

velopment organization.

• Reference: “Model-based Tests of Truisms” [MRoS+02]

• Collaborators: Menzies, Raffo5, Hu

6.4.1 Modelling and Simulation

Software process modelling is a technique for understanding the interactions

within a software development. The software process model used in this study

was in two parts: a state-based simulation model built using the Statemate

Magnum tool by i-Logix 6; and a discrete event model using the Extend Sim-

ulation Language 7 [MRoS+02]. This particular model has been extensively

tuned and validated to a leading software development firm. It can accurately

predict the impact of process changes. For example, for one very complex

sub-system, the model predicted that development would take approximately

5Portland State University
6Statemate and I-Logix are registered trademarks of I-Logix Inc. (3 Riverside Drive;

Andover, Massachusetts 01810 USA).
7Extend and Imagine That are registered trademarks r of Imagine That, Inc. (6830

Via Del Oro, Suite 230, San Jose, California, 95119 USA).

116

double the normal development schedule. This result was initially ignored by

management as it was too long. However, months later, it was found that the

model predictions corresponded quite accurately with this company’s actual

experience.

The model captures the phases of the company’s software development

process as well as the defect inspections being carried out at each phase. Each

inspection is characterized by the number of staff involved which is a number

drawn from distributions known to the model. There are four inspection

policies:

1. do nothing;

2. do the companies current informal inspection method;

3. do a somewhat more-structured inspection process;

4. do a full formal inspection of the kind originally advocated by Micheal

Fagan [Fag86].

These inspections can be conducted at various stages of the life cycle during

1. the initial functional specification;

2. after the high level design;

3. after the low level design;

4. or after the code is written.

After the number of staff involved in the inspections and the inspection pol-

icy at each stage are determined, the model predicts three main performance

measures of cost, quality, and schedule using multiple regression. The out-

put is assessed according to a domain-specific utility function. The utility

function quantizes local concerns about trade-offs between cost and duration

117

of the development process as well as the quality of the generated software.

As a result, the final output is a number of defects estimated to be remaining

in the software[Raf95].

6.4.2 Sensitivity Analysis

The model contains four phases of development and four inspection types at

each phase. Each configuration was executed 50 times, resulting in 50 ∗ 44 =

12800 runs. The utility value of each run was calculated using the utility

function and was further discretized into ten classes. The utilities are shown

sorted as the baseline plot of Figure 6.3. Note the huge range of output

values: 5,000 to 15,000.

5000

7500

10000

12500

15000

17500

0 4000 8000 12000

ut
ili

ty

best

baseline

Figure 6.3: Sorted utilities generated in case study 2.

After using TAR2 to explore the simulation data, The best treatment

found contains the following configuration:

• No functional specifications inspections;

• Full Fagan for low level design and code reviews.

118

• Baseline inspections for high level design; i.e. no change from current

practice;

Given this configuration, TAR2 gave the distribution of utility values seen

as the best plot of Figure 6.3. This preferred inspection policy increases the

mean utility values seen in the baseline curve by a factor of 1.35 while reduc-

ing the standard deviation of those utilities by a factor of 2.5. This treatment

was assessed via 10-way cross validation. The best plot of Figure 6.3 was ob-

served to be the average improvement seen under cross validation.

6.4.3 Discussion

When a decision tree learner was working on this complex domain, it gener-

ated a tree containing 7,206 nodes, which was far too large to understand. In-

stead of producing a tree, TAR2’s output only mentioned the best inspection

policy. Besides the succinct result, this study provides prescriptive guidance

by identifying the ranges to which certain input parameters (such as inspec-

tion efficiency) must be restricted in order to achieve desired levels of perfor-

mance. The paradigm of decisions = modelling + simulations+ sensitivity

gives us the ability to examine the conditions under which the performance of

a given system may be dramatically improved. Hence, it is optimistic to ex-

tend the current study to assessing standard automated software engineering

methods.

6.5 Testability of Finite-State Models

• Domain: testability analysis of Finite-State Models

119

• Data Source: testability data gathered by a partial random search

over FSMs

• Goal: identifies attributes that characterize easiest-to-test FSM mod-

els, therefore helping to understand what makes the FSM more or less

testable.

• Reference: “What Makes Finite-State Models more (or less) Testable”

[DO02]

• Collaborators: Menzies, Owen8, Hu

6.5.1 FSM and Testability

Software systems with individual concurrent processes are often modelled

as composite communicating Finite State Machines representing all possible

interleavings within the system. Using a model mutator, Menzies, Owen

and Cukic generated over 15,000 FSM models semi-randomly. Each FSM

had parameter values drawn at random from possible ranges. The model

parameters were selected to ensure that the ranges cover FSMs from real-

world, and several sanity checks were imposed to block the generation of

bizarre FSMs [MOC02]. Examples of sanity checks included things like each

variable needed at least two settings and a FSM needed at least two states

per machine.

A type of direct AND-OR graph could represent all possible interleavings

of the individual FSMs in the original system [DO02]. In this representation,

testing can be done by searching the AND-OR graph. Figure 6.4 illustrates

our executable definition of testability. Given some input, if the number of

8West Virginia University

120

Time

Easier to test

Easy to test

Difficult to test

U
ni

qu
e

N
od

es
 F

ou
nd

Figure 6.4: Intuitive testability interpretation of search results

unique outputs found as a result of that input rises quickly to a level plateau,

a small number of tests will likely find everything it would be possible to find.

Such a FSM represents a program that is easy to test. If the search never

reaches a plateau, then even after many tests more tests might still give new

information, so the program is very difficult to test. Menzies et.al, have built

an inference engine to process the 15,000 generated FSMs. The testability

was assessed via the percentage of FSM nodes reached in each run. This

engine is nondeterministic in that, when there are two or more contradictory

nodes to be added to the output set, the choice of which node to add is

random.

6.5.2 Summarizing the Search

After searching over 15,000 semi-randomly generated models, the time-to-

plateau parameter was calculated for each model. The result shows that

plateaus were reached quickly for nearly all models, regardless of plateau

height. If some method can increase the plateau height, that method would

have increased the chances the odds of finding unique outputs. So the key

121

0

500

1000

1500

2000

2500

3000

3500

0 20 40 60 80 100

N
um

be
r

of
 G

ra
ph

s

Percentage of Graph (unique OR-nodes) Reached

Figure 6.5: Plateau height results for 15,000 models. Average plateau
height=69.39%

distinction, in terms of testability, is plateau height. Figure 6.5 shows a

summary of plateau height from the search data. The average plateau height

is 69.39%. The task is to analyze how FSM models yielding high search

plateaus are different from those yielding low search plateaus. Specifically,

what ranges of the attributes characterize the models with high plateaus?

After a series experiment with TAR2 on the search data, the treatments

are summarized in table 6.4. Each treatment contains 4 attributes. It is

interesting to notice that the three top parameters are low for both highly

testable graphs and those difficult to test. In the real world, they would

resemble the “risk factors” that polarize the outcome. For example, if some-

body spent all his money buying lottery tickets he would end up either rich

or poor, compared to his original situation. The bottom half of table 6.4

shows which attributes have the greatest affect on testability, given that the

top three are held low. They are state inputs, followed by message inputs and

message outputs. The result indicates that smaller FSMs are not necessarily

more testable. Larger, more complex FSMs are likely to fall in the middle-to-

122

←− Better Treatments
Machines lowest lowest lowest

(2–4)
States lowest lowest lowest

(4–49)
Transitions low low low

(0–109)
State Inputs high

(443–737)
Messages (not significant)
Message Inputs high

(389–647)
Message Outputs high

(432–719)

Worse Treatments −→
Machines lowest lowest lowest

(2–4)
States lowest lowest lowest

(4–49)
Transitions lowest lowest lowest

(0–54)
State Inputs lowest

(0–147)
Messages (not significant)
Message Inputs lowest

(0–129)
Message Outputs lowest

(0–143)

Table 6.4: Best and worst treatments learned by TAR2.

high testability range; and simpler FSMs are likely to be either very testable

or very difficult to test. It is the connectedness (the number of transition

inputs and outputs), not size that is most important for testability.

123

6.5.3 Applying Gained Knowledge

To verify the results, another 10,000 input models were generated by setting

the mutator’s parameters according to TAR2’s recommendation:

1. 2–5 FSMs.

2. 4–49 states.

3. 0–43 transitions.

4. 0–247 transition inputs that are states from other machines.

5. 0–10 unique consumable messages.

6. 0–229 transition inputs that are consumable messages.

7. 0–241 transition outputs that are consumable messages.

Figure 6.6 shows the search result of the new data. Compared to figure

6.5, the average plateau height was increased from 69.39% to 91.34%.

0

500

1000

1500

2000

2500

3000

3500

0 20 40 60 80 100

N
um

be
r

of
 G

ra
ph

s

Percentage of Graph (unique OR-nodes) Reached

Figure 6.6: Search data for input models generated according to TAR2’s
suggestions—average plateau height = 91.34%.

124

6.5.4 Discussion

In this example, learning is manifested in the process of data summariza-

tion and knowledge acquisition. In the case when testability is assessed via

plateau height, treatment learning enables the automatical learning of the

features that most effect FSM’s testability. Given the availability of an au-

tomatic testability assessment method, this approach is easy to generalize to

other representations and other definitions of testability. The model features

(parameters and their values) found by treatment learning could always be

fixed and tested, resulting a verifiable feedback.

Another possibility that arises from this work is that researchers can

identify design parameters that make nondeterministic FSM-based systems

more or less testable. For example, given two implementations of the same

requirement, researchers could favor the implementation that results in a

more testable system. In other words, it is possible to design for testability,

even for nondeterministic systems.

6.6 conclusion

The examples shown here have demonstrated, in real world domains, the ca-

pability and effectiveness of exploiting treatment learning. Treatment learner

seeks minimal summaries of large data sets and shows the differences between

outcomes. In model-based domains , the paradigm of decision = simulations

+ sensitivity analysis provides a fast and cheap way to assist decision making,

since it:

• reduces the cost of elaborate modelling. Essential information can be

125

extracted from even hastily built models containing much uncertainty.

• reduces the cost of extensive data collection. It is possible to grow

data in data starve domain by simulation, and harvest by sensitivity

analysis.

In data-present domains, the paradigm of decisions = data mining + valida-

tion proposes a novel and succinct KDD process to report contrasts between

classes that could make a difference.

We believe treatment learning has a general applicability, and by pre-

senting the few successful cases, we hope to stimulate wider interest in its

adoption.

126

Chapter 7

Conclusion

7.1 Main Contributions

In this thesis, we have proposed a new learning approach called treatment

learning. It addresses two central issues in data mining: (1) the understand-

ability of learnt theories; (2) how can the learnt theories benefit decision

making. We have studied this approach from the following four aspects:

• We have described the implementation detail of two treatment learners.

We have compared them through algorithmic performance analysis.

• We have demonstrated, through both UCI [CEC98] data experiments

and case studies, the effectiveness of using treatment learner to seek a

small number of control variables that constrain the option space to a

tight, near-optimal convergence.

• We have compared treatment learning with other learning schemes in

the framework of feature subset selection for supervised classification.

The results show that treatment learner selects smaller feature sub-

sets than most other methods with minimal or no loss in classification

127

accuracy.

• We have presented four real world applications of treatment learning,

both in model-based domains and in data-present domains. The ex-

amples suggest two general paradigms of using treatment learning to

assist decision making.

We list below the principal contributions of our research to the field of ma-

chine learning and data mining:

1. We introduce in the concept of treatment learning. Treatment learning

aims at mining a small number of control variables in a large option

space that can lead to better system behavior. It offers two distinguish-

ing features to the community:

• It produces minimal theories that are small, simple and easily

understandable from the target domain.

• It emphasizes on the interpretation of the learnt theory by human

experts to inspire decision making.

2. We designed and implemented a novel mining algorithm based on the

heuristic of Confidence1 measure.

3. We continuously work on the optimization of the initial design. The

latest implementation presents an algorithm that runs in linear time in

cases the original version runs exponentially.

4. We delivered a complete package of treatment learner and actively

maintained a free online distribution. This package has been used ex-

tensively by other researchers (see chapter 6).

128

5. We point out the non-trivial observation of narrow funnel effect and

provide treatment learning as both an evidence and an application.

6. We propose the use of treatment learner as feature subset selector and

present a benchmark comparison with other standard FSS techniques.

7. We successfully applied treatment learning to various research domains

and demonstrated the applicability of different approach.

7.2 Future Work

Our major topics of interest for future research are as follows:

1. Our current treatment learner uses a straightforward discretisation

method, namely the Equal Width Interval Binning [DKS95] to discretize

continuous attributes. This method divides the values into N intervals

where N is pre-specified by the user. In the future, we would like to

try other schemes such as the supervised discretisation developed by

Fayyad and Iraini [FK93]. It combines an entropy based splitting cri-

terion with a minimum description length stopping criterion. The best

cut point is the one that makes the subintervals as pure as possible, i.e.

where the information value is smallest. This splitting is essentially

the same as the one used by the C4.5 decision tree learner [Qui86].

In that case, the best split is where the information gain, defined as

the difference between the information value without the split and that

with the split, is largest. The discretisation is then applied recursively

to the two subintervals until it is time to stop. This method has an

129

advantage of not requiring the number of intervals to be pre-specified.

It is considered to be the state-of-the-art.

2. Based on our feature subset selection experiment, we are optimistic to

use treatment learner as a pre-processor prior to any target learners

for supervised classification. However, the current approach involves a

non-trivial procedure of alternating class ordering and combining the

result together. This process can be easily automated by adding a

wrapper around the learner. It will invoke the learner’s core procedure

for each class ordering and output the final set of selected features in-

stead of individual treatments. This will give us a permutation that

can be readily in use as feature subset selector. As a result, we’d like to

experiment with more datasets (especially ones with high dimensional-

ity) and different target classifiers to further explore the applicability

of using treatment learner as feature subset selector.

3. Treatment learner involves a combination of search and attribute utility

estimation. Adoption of different search techniques and estimation

schemes will result in many permutations. To try other estimation

schemes such as the information gain attribute ranking ,Relief [I.K94],

we need to modify them such that they can reflect the domain-specific

preference of classes (e.g., the weights of each class) since treatment

learning is a different task from classification. Another possibility to

the current confidence1 scheme would be to produce subset ranking

instead of individual attribute ranking. This way, treatment learner

operates more like standard association rule miners, in which APRIORI

130

property [AS94] could be exploited. Also, the increased search space

dictates more sophisticated search strategy such as simulated annealing

that evaluates the better nodes more times. One drawback of this

approach is that it assumes complex hypothesis and makes treatment

learner no longer a lightweight tool.

The first two ideas aim at enhancing some aspects of the existing treat-

ment learner. They are straightforward to realize with the current imple-

mentation. The third idea makes some radical changes to the core algorithm.

Most likely it will result in essentially different learners in the framework of

treatment learning. Nevertheless, in the future we would like to promote

both wider application of the current learner and some breakthroughs in the

concept of treatment learning.

131

References

[ACDC+98] C. Abts, B. Clark, S. Devnani-Chulani, E. Horowitz,

R. Madachy, D. Reifer, R. Selby, and B. Steece. COCOMO II

model definition manual. Technical report, Center for Software

Engineering, USC,, 1998. http://sunset.usc.edu/COCOMOII/

cocomox.html#downloads.

[Aha97] David W. Aha. AI review: Special Issue on Lazy Learning. 1997.

[AS94] Rakesh Agrawal and R. Srikant. Fast algorithm for mining asso-

ciation rules. In Proceedings of the 20th international conference

of VLDB, page 487-499, 1994.

[Bay98] R.J. Bayardo. Efficiently mining long patterns from database.

Proceedings of the 1998 ACM-SIGMOD International Confer-

ence on Management of Data, pp.85-93., 1998.

[Bec00] Kent Beck. Extreme Programming Explained: Embrace Change.

Addison Wesley, 2000.

[BFOS84] L. Breiman, J. Friedman, R. Olshen, and C Stone. Classification

and regression trees. 1984.

132

[BLM] W. Hsu B. Liu and Y. Ma. Integrating classification and as-

sociation rule mining. In Proceedings of KDD-98, New York,

Aug27-31,1998, pages 80–86.

[BP99] S.D. Bay and M.J. Pazzani. Detecting changes in categorical

data: Mining contrast sets. In Proceedings of the Fifth Interna-

tional Conference on Knowledge Discovery and Data Mining,

1999. Available from http://www.ics.uci.edu/~pazzani/

Publications/Publications.html.

[BP01] S.D. Bay and M.J. Pazzani. Detecting group differences: Mining

contrast sets. Data Mining and Knowledge Discovery, 5,213-

246, 2001.

[CB94] J. Crawford and A. Baker. Experimental results on the appli-

cation of satisfiability algorithms to scheduling problems. In

AAAI ’94, 1994.

[CEC98] C.Blake, E.Keogh, and C.J.Merz. Uci rpository of machine

learning databases, university of california, department of in-

formation oand computer science, irvine, ca, 1998.

[CFH01] S.L. Cornford, M.S. Feather, and K.A. Hicks. Ddp a tool for

life-cycle risk management. In IEEE Aerospace Conference, Big

Sky, Montana, pages 441–451, March 2001.

[CH67] T.M. Cover and P.E. Hart. Nearest neighbor pattern classifica-

tion. IEEE Transactions on Information Theory, 13, pp.21-27,

1967.

133

[CW98] C.H.Cheng C.H.Cai, Ada W.C.Fu and W.W.Kwong. Mining

association rules with weighted items. In In Proceedings of In-

ternational Database Engineering and Applications Symposium

(IDEAS 98), Aug 1998, 1998.

[DB96] J. Davies and D. Billman. Hierarchical categorization and the ef-

fects of contrast inconsistency in an unsupervised learning task.

In In Proceedings of the Eighteetnth Annual Conference of the

Congnitive Science Society, page 750, 1996.

[deM91] R.L. deMantaras. A distance-based attribute selection measure

for decision tree induction. Machine Learning,29,103-30, 1991.

[DH73] R. Duda and P. Hart. Pttern classification and scene analysis.

NewYork: John Wiley and Sons, 1973.

[D.H96] D.Heckerman. Bayesian networks for knowledge discover. Ad-

vances in Knowledge Discovery and Data Mining, pp.273-305.,

1996.

[DKS95] James Dougherty, Ron Kohavi, and Mehran Sahami. Supervised

and unsupervised discretization of continuous features. Interna-

tional Conference on Machine Learning, pp. 194-202., 1995.

[DL99] Guozhu Dong and Jinyan Li. Efficient mining of emerging pat-

terns: Discovering trends and differences. In Knowledge Dis-

covery and Data Mining, pages 43–52, 1999. Available from

citeseer.nj.nec.com/article/dong99efficient.html.

134

[DO02] Bojan Cukic David Owen, Tim Menzies. What makes finite-

state models more (or less) testable. Submitted to the 17th

IEEE international conference on automated software engineer-

ing., 2002.

[ea01] M. Beedle et. al. Manifesto for agile software development, 2001.

Available from http://www.agilemanifesto.org/.

[EC00] Shinji Fujiwara Aristides Gionis Piotr Indyk Rajeev Motwani

Jeffrey D. Ullman Cheng Yang Edith Cohen, Mayur Datar.

Finding interesting associations without support pruning. In

In ICDE, pages 189-499, Feb 2000, 2000.

[Fag86] M. Fagan. Advances in software inspections. IEEE Trans. on

Software Engineering, pages 744–751, July 1986.

[Fau94] L. Fausett. Fundamentals of Neural Networks. Architecutres,

Algorithms and Applications. Prenice Hall., 1994.

[FK93] U.M. Fayyad and K.B.Irani. Multi-interval discretisation of

continuous-valued attributes. in Proceedings of the Thirteenth

International Joint Conference on Artificial Intelligence. 1993,

pp. 1022-1027, 1993.

[FM02a] M. Feather and T. Menzies. Converging on the optimal at-

tainment of requirements. In In IEEE Joint Conference On

Requirements Engineering ICRE’02 and RE’02, 9-13th Septem-

ber, University of Essen, Germany, 2002., 2002. Available from

http://tim.menzies.com/pdf/02re02.pdf.

135

[FM02b] M.S. Feather and T. Menzies. Converging on the optimal at-

tainment of requirements. In IEEE Joint Conference On Re-

quirements Engineering ICRE’02 and RE’02, 9-13th Septem-

ber, University of Essen, Germany, 2002. Available from http:

//tim.menzies.com/pdf/02re02.pdf.

[Hal77] M.H. Halstead. Elements of Software Science. Elsevier, 1977.

[Hay99] S.S. Haykin. Neural networks: Acomprehensive foundation. Up-

per Saddle River, N.J.: Pretice Hall, 1999.

[HH02] Mark A. Hall and Geoffrey Holmes. Benchmarking attribute

selection techniques for discrete class data mining. IEEE trans-

actions on knowledge and data engineering, 2002.

[Hol] Robert C. Holte. Very Simple Classification Rules Perform Well

On Most Commonly Used Datasets, pages 63–91.

[Hop82] J.J. Hopfied. Neural networks and physical systems with emer-

gent collective computational abilities. Proceedings of the Na-

tional Academy of Sciences, USA (pp.2554-2558), 1982.

[HR96] H.Liu and R.Setiono. A probabilistic approach to feature se-

lection: A filter solution. in Proceedings of 13th International

Conference on Machine Learning, pp.319-327., 1996.

[HS66] Marin J. Hunt, E.B. and P.T. Stone. Experiments in induction.

New York: Academic Press, 1966.

136

[HS86] G.E. Hinton and T.J. Sejnowski. Learning and re-learning

in boltzmann machines. Parallel distributed processing,

vol.1,chap.7, 1986.

[HT91] H.Almuallim and T.G.Dietterich. Learning with many irrelevant

features. in Proceedings of the Ninth National Conference on

Artificial Intelligence, pp.547-552., 1991.

[I.K94] I.Kononenko. Estimating attributs: Analysis and extensions of

relief. in Proceedings of the Seventh European Conference on

Machine Learning, pp.171-182., 1994.

[JH01] Micheline Kamber Jiawei Han. Data Mining: Concepts and

Techniques. 2001.

[KJ97] Ron Kohavi and George H. John. Wrappers for feature subset

selection. Artificial Intelligence Volum 97, pages 273-324, 1997.

[Koh96] R. Kohavi. Scaling up the accuracy of naive-bayes classifiers:

A decision-tree hybrid. Proceedings of the second international

conference on knowledge discovery and data mining,pp202-207.,

1996.

[KW01] David Cheung Francis Chin Ke Wang, Yu He. Mining confident

rules without support requirement. In the 10th ACM Interna-

tional Conference on Information and Knowledge Management

(CIKM 2001), Atlanta, 2001.

[LDR00] Jinyan Li, Guozhu Dong, and Kotagiri Ramamohanarao. Mak-

ing use of the most expressive jumping emerging patterns for

137

classification. In Pacific-Asia Conference on Knowledge Dis-

covery and Data Mining, pages 220–232, 2000. Available from

citeseer.nj.nec.com/li00making.html.

[LK98] D.I. Lin and Z.M. Kedem. Pincer-search: A new algorithm

for discovering the maximum frequent set. Proceedings of the

6th International Conference on Extending Database Technol-

ogy, pp.105-119., 1998.

[M.A98] M.A.Hall. Correlation-based feature selection for machine learn-

ing. Ph.D. thesis, Dept. of Computer Science, University of

Waikato, Hamilton, New Zealand., 1998.

[McC76] T.J. McCabe. A complexity measure. IEEE Transactions on

Software Engineering, 2(4):308–320, December 1976.

[MCF+02] T. Menzies, E. Chiang, M. Feather, Y. Hu, and J.D. Kiper.

Condensing uncertainty via incremental treatment learning. In

Annals of Software Engineering, 2002. Available from http:

//tim.menzies.com/pdf/02itar2.pdf.

[MENW99] T.J. Menzies, S. Easterbrook, Bashar Nuseibeh, and Sam

Waugh. An empirical investigation of multiple viewpoint rea-

soning in requirements engineering. In RE ’99, 1999. Available

from http://tim.menzies.com/pdf/99re.pdf.

[MH01a] T. Menzies and Y. Hu. Constraining discussions in requirements

engineering. In First International Workshop on Model-based

138

Requirements Engineering, 2001. Available from http://tim.

menzies.com/pdf/01lesstalk.pdf.

[MH01b] T. Menzies and Y. Hu. Reusing models for requirements engi-

neering. In First International Workshop on Model-based Re-

quirements Engineering, 2001. Available from http://tim.

menzies.com/pdf/01reusere.pdf.

[MH01c] T. Menzies and Y. Hu. Reusing models for requirements en-

gineering. In Submitted to the first International Workshop on

Model-based Requirements Engineering, 2001. Available from

http://tim.menzies.com/pdf/01reusere.pdf.

[MH02] T. Menzies and Y. Hu. Agents in a wild world. In Book chapter,

submitted to Formal Approaches to Agent-Based Systems, 2002.

[Min89] J. Mingers. An empirical comparison of selection measures

fordecision-tree induction. 1989.

[MK01] T. Menzies and J.D. Kiper. How to argue less. In Submitted to

the ACM CIKM 2001: the Tenth International Conference on

Information and Knowledge Management, 2001. Available from

http://tim.menzies.com/pdf/01jane.pdf.

[MOC02] T. Menzies, D. Owen, and B. Cukic. Saturation effects in testing

of formal models. In ISSRE 2002, 2002. Available from http:

//tim.menzies.com/pdf/02sat.pdf.

[MP02] Matthias M. Mller and Frank Padberg. Extreme programming

from an engineering economics viewpoint. In Proceedings of the

139

Fourth International Workshop on Economics-Driven Software

Engineering Research (EDSER), 2002.

[MRoS+02] Tim Menzies, David Raffo, Siri on Setamanit, Ying Hu, and

Sina Tootoonian. Model-based tests of truisms. In Proceedings

of IEEE ASE 2002, 2002. Available from http://tim.menzies.

com/pdf/02truisms.pdf.

[MSCM02] Tim Menzies, Justin S. Di Stefano, Mike Chapman, and Ken

McGill. Metrics that matter. Submitted to the 27th Annual

IEEE/NASA Software Engineering Workshop., 2002.

[Qui86] R. Quinlan. Induction of decision trees. Machine Learning,

1:81–106, 1986.

[Qui88] J.R Quinlan. Decision trees and multi-valued attributes. Oxford,

UK:Oxford University Press, 1988.

[Qui92] R. Quinlan. C4.5: Programs for Machine Learning. Morgan

Kaufman, 1992. ISBN: 1558602380.

[Raf95] D.M. Raffo. Modeling software processes quantitatively and as-

sessing the impact of potential process changes of process per-

formance, 1995. Ph.D. thesis, Manufacturing and Operations

Systems, Carnegie Mellon University.

[RH97] Y. Dan Rubinstein and Trevor Hastie. Discriminative vs in-

formative learning. In Knowledge Discovery and Data Min-

ing, pages 49–53, 1997. Available from citeseer.nj.nec.com/

rubinstein97discriminative.html.

140

[Ros62] F. Rosenblatt. Principles of neurodynamics: Perceptrons andthe

theory of brain mechanisms. Washington D.C.:Spartan Books,

1962.

[Rym92] R. Rymon. Search through systematic set enumeration. In 3rd

International Conference on Principles of Knowledge Represen-

tation and Reasoning., 1992.

[SI94] M. Shepperd and D.C. Ince. A critique of three metrics. The

Journal of Systems and Software, 26(3):197–210, September

1994.

[SJDM98] S.Dumais, J.Platt, D.Heckerman, and M.Sahami. Inductive

learning algorithms and representations for text categorization.

in Proceedings of the International Conference on Information

and Knowledge Management, pp.148-155., 1998.

[Sm02] Jefferey Smith and Tim menzies. Should nasa embrace agile

processes? Submitted to the 27th Annual IEEE/NASA Software

Engineering Workshop., 2002.

[SMT91] J. Shavlik, R. Mooney, and G. Towell. Symbolic and neural

learning algorithms: An experimental comparison. Machine

Learning, 6(2): 111–143, 1991.

[TA93] Rakesh Agrawal T.Imeilinski and A.Swami. Mining association

rules between sets of items in large databases. In Proceedings

of the 1993 ACM SIGMOD Conference, Washington DC, USA,

1993.

141

[UPSS96] U.M.Fayyad, G. Piatetsky-Shapiro, and P. Smyth. Advances in

knowledge discovery and data mining, 1-34. AAAI/MIT Press,

1996.

[Web00] Geoffrey I. Webb. Efficient search for association rules. In Pro-

ceeding of KDD-2000 Boston, MA, 2000.

[WF99] I. H. Witten and E. Frank. Data Mining: Practical Ma-

chine Learning Tools and Techniques with Java Implementa-

tions. Morgan Kaufmann, 1999.

[WZH00] Ke Wang, Senqiang Zhou, and Yu He. Growing decision trees

on support-less association rules. In Knowledge Discovery and

Data Mining, pages 265–269, 2000.

[ZPOL97] M.J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li. New al-

gorithm for fast discovery of association rules. Proceedings of

the 3rd International Conference on Knowledge Discovery and

Data Mining, pp.283-286., 1997.

142

Appendix A

User Manual for TAR3
Treatment Learner

A.1 Getting TAR3

The TAR3 treatment learner is distributed under the GNU General Public

License and is freely available at the online distribution1. For installation,

simply download the newest TAR3 package (dispatchTAR3.zip) and unzip

it to your local computer. The whole package contains the following file

structure:

• /bin: folder where all the executables reside

• /doc: related publications and user manual

• /sample: sample data sets and their configuration files

• /source: C source code

1http://www.ece.ubc.ca/~yingh/

143

Table A.1: Parameters seen in the configuration file.

Name Meaning Default
granularity how many intervals should a continuous 3

attribute be divided
maxNumber maximum number of treatments wanted 30
minSize minimum treatment size expected in 1

a single treatment
maxSize maximum treatment size allowed in 5

a single treatment
randomTrials maximum random trials tried before stop 1
futileTrials number of successive futile trials to 5

be completed before stop
bestClass percentage of best class examples expected 50%

to be remained in the treated set

A.2 Configuration File

Table A.1 lists the parameters used in the configuration file (xx.cfg). Note

that the order of the parameters are not important, and if a parameter is

missing, TAR3 will take the default value as listed in table A.1.

TAR3 adopts a random sampling algorithm to draw treatments from the

underlying distribution. Parameter randomTrials and futileTrials are

part of the randomness control. Suppose we set:

maxNumber = 100

randomTrials = 50

futileTrials = 10

In each random trial, TAR3 generates a set of treatments and maintains

a list of 100 top ranked treatments. If a random trial doesn’t contribute

new treatments into that list (e.g., treatments generated in that trial have

144

lower rank than those already in the list), it is called a futile trial. The

process stops after completing 50 random trials or after 10 successive futile

trials are reached. Empirically, setting randomTrials between 30 to 60 and

futileTrials between 5 to 10 are usually sufficient to get stable treatments.

A.3 Name File

The .names file consists of a series of sections, each of which has restrictions

and format. Blank lines, spaces, and tabs may be used to make the file more

readable and have no significance. The vertical bar character(|) appearing

anywhere on a line causes the rest of that line to be ignored, and can be used

to incorporate comments in the file.

A.3.1 Name Restriction

1. A name cannot be the single character ”?”

2. The special characters comma(,), colon(:), vertical bar(|), and back-

slash have particular meanings and must be escaped (preceded by a

backslash character) if they appear in a name.

3. A period(.) may appear in a name provided it is not followed by a

space.

4. Embedded spaces are also permitted in a name, but multiple white-

space characters (spaces and tabs) are replaced by a single space.

145

A.3.2 Class Format

1. The first entry in the names file gives the class names, separated by

commas.

2. There must be at least two class names.

3. Classes are ordered from the domain-specific point of view, with the

worst first, the best last.

A.3.3 Attribute Format

1. An attribute entry begins with its name followed by a colon, and then

a specification of the values it can take.

2. continuous: indicates that the attribute has numeric values, either

integer or floating point.

3. A list of names separated by commas: indicates that the attribute has

discrete values and specifies them explicitly. The order of attribute

values is arbitrary.

A.3.4 Optional Sections

TAR2 takes the three sections as inputs to restrict the data processing scope

of a particular data set.

• NOW section: NOW specifies the current status of the data, i.e., only

those satisfy NOW criteria will be read in and processed. This data

pre-process could always be obtained by using other tools.

146

• CHANGES section: CHANGES represents some desired zone within

the data set that the user wishes to approach. Only attribute ranges

specified in CHANGES could appear in the treatments.

• SCORE section: SCORE encodes user’s preference of the classes. User

can assign a specific score (weight) to a class. Without user specifica-

tion, TAR3 scores the classes according to a default scoring function.

The above three sections are optional, but once they appear, their relative

order is important. e.g., CHANGES section must be after NOW section and

SCORE section must be the last.

A.3.5 Little Language

A little language is designed to specify attribute ranges in NOW and CHANGES

sections, for example:

• Attribute1:true:

all possible values are acceptable

• Attribute2:ignore:

none values are acceptable

• Attribute3:a, b, c:

for categorical attribute, only values a, b, c are acceptable

• Attribute4:[-;10), [20;30], [50;-):

for continuous attribute,the acceptable ranges are: x < 10 OR 20 <=

x <= 30 OR x <= 50

147

A.4 Command Line

Suppose the data set to use is c:/tar3/data/myDataset.data. The follow-

ing files are required to be placed into the same folder:

• data file: c:/tar3/data/myDataset.data

• name file: c:/tar3/data/myDataset.names

• configuration file: c:/tar3/data/myDataset.cfg

To invoke TAR3, issue the command: (suppose tar3.exe resides in c:/tar3/bin)

cd c:/tar3/data

c:/tar3/bin/tar3 myDataset

A.5 Cross-Validation

TAR3 also comes with a cross-validation facility (/bin/xval.exe). This

program is compatible with both TAR2(v2.2) and TAR3. To invoke it, use

one of the following three commands:

• xval tar2 fileName N:

N-way cross validation with tar2 on fileName.data

• xval tar3 fileName N:

N-way cross validation with tar3 on fileName.data

• xval -p fileName N:

perform file-split on fileName.data

148

The current directory must be the one where the data files reside. If tarX.exe

and xval.exe are in different folders from the current directory, full path

must be specified. For example, to perform 10-way cross validation on

myDataset.data, we issue the command:

cd c:/tar3/data

c:/tar3/bin/xval c:/tar3/bin/tar3 myDataset 10

xval.exe first splits the data file in to N .data file and N .test files, re-

sulting in:

XDF[0..N-1].data

XDF[0..N-1].test

Then it invokes tar2 or tar3 N times, generating N output files plus one

summary file. After done, it automatically delete XDF*.data and XDF*.test

149

