
Toward Smart and Cooperative Edge Caching for
5G Networks: A Deep Learning Based Approach

Haitian Pang∗†, Jiangchuan Liu†, Xiaoyi Fan†, Lifeng Sun∗
∗ Tsinghua National Laboratory for Information Science and Technology, and

Department of Computer Science and Technology, Tsinghua University, Beijing, China
† School of Computer Science,Simon Fraser University, Burnaby, BC, Canada

Email: {pht14@mails., sunlf@}tsinghua.edu.cn, {jcliu, xiaoyif}@sfu.ca

Abstract—The emerging 5G mobile networking promises ultra-
high network bandwidth and ultra-low communication latency
(<1ms), benefiting a wide range of applications, including live
video streaming, online gaming, virtual and augmented reality,
and Vehicle-to-X, to name but a few. The backbone Internet,
however, does not keep up, particularly in latency (>100ms),
due to its store-and-forward design and the physical barrier
from signal propagation speed, not to mention congestion that
frequently happens. Caching is known to be effective to bridge
the speed gap, which has become a critical component in the
5G deployment as well. Besides storage, 5G base stations (BSs)
will also be powered with strong computing modules, offering
mobile edge computing (MEC) capability. This paper explores
the potentials of edge computing towards improving the cache
performance, and we envision a learning-based framework that
facilitates smart caching beyond simple frequency- and time-
based replace strategies and cooperation among base stations.
Within this framework, we develop DeepCache, a deep-learning-
based solution to understand the request patterns in individual
base stations and accordingly make intelligent cache decisions.
Using mobile video, one of the most popular applications with
high traffic demand, as a case, we further develop a coop-
eration strategy for nearby base stations to collectively serve
user requests. Experimental results on real-world dataset show
that using the collaborative DeepCache algorithm, the overall
transmission delay is reduced by 14%∼22%, with a backhaul
data traffic saving of 15%∼23%.

Index Terms—5G Networks, Mobile Edge Computing, Collab-
orative Caching, Deep Learning.

I. INTRODUCTION

The 5G wireless network is designed to increase the ca-
pacity of cellular networks by means of more bandwidth,
larger scale of antennas, higher frequency reuse with net-
work densification etc. However, the network requirements for
applications in 5G networks is even increasing with higher
speed. The global mobile data traffic has grown 63% in 2016
and is predicted to increase another seven-fold by 2021 [1],
among which mobile video is predicted to account for 78%
mobile data traffic. The quality of individual video streams
is rapidly improving as well, with a majority of them have
become 1080p high resolution (HD) or even 4K Ultra HD
(UHD), posing significant challenges towards delivering high
Quality of Service (QoS) to video consumers. In this way,
we show the case study of mobile video caching in 5G
networks. While other emerging applications also require high

network performance: The Virtual Reality video streaming will
grow 11-fold by 2021, which requires both high throughput
(200Mbps∼) and low latency (∼10 ms). Self-driving vehicles
will be equipped with sensing, processing, and communication
abilities, and connected to the 5G network all the time.
Vehicles will require a large amount of data from the network,
e.g., transportation information, Augmented Reality navigation
streaming, and in-car entertainment.

However, the backbone Internet does not keep up with
the higher application requirements in latency and bandwidth,
due to the store-and-forward design, the physical barrier from
signal propagation speed, as well as the frequently happened
congestion. Thus it is significant to envision a more sustainable
roadmap towards future networks. To this end, mobile edge
caching is of unprecedented importance in the 5G network to
provide better QoS for the novel applications in two aspects:
(1) Caching contents in the BSs can reduce the network latency
significantly, and most 5G applications like VR/AR and V2X
cannot bear the high delay in remote Internet delivery. (2)
Caching contents in the edge can reduce the data traffic in the
core network and save bandwidth for the Internet.

Edge caching in 5G networks is implemented by equipping
BSs with MEC servers, which can provide not only storage
capacity but also CPU/GPU computing for intelligent decision
making. Each BS can collect the local content requests in
real time, and then use the collected data to make intelligent
decisions about cache replacement with the aid of powerful
computing ability, including the support for deep learning.

In the 5G network, interconnected MEC servers enable edge
caching to be implemented in a cooperative and intelligent
way. Specifically, all the BSs form a mesh network via the
wired network. Upon request, the desired content can be de-
livered with the short-range communications between the BSs
and users directly. In this way, the transmission delay can be
reduced significantly and the network bandwidth can be saved.
The challenges for such cooperative edge caching system is
how to deploy intelligent caching replacement algorithm and
how to design an efficient cooperation mechanism among BSs.

Most of today’s caching systems rely on such rule-based
cache replacement algorithms as FIFO, Least Recently Used
(LRU), Least Frequently Used (LFU), or their variants [2]–
[4]. These algorithms follow simplified rules and are easy to

MEC server Manufacturer Storage (GB) CPU GPU
Jetson TX2 NVIDIA 32 Quad ARM A57 NVIDIA Pascal

HyperFlex Edge Cisco 128 Intel Xeon /
Edge Cloud Intel 16∼64 Intel Xeon /

Power S822LC IBM 32∼1024 Power 8 NVIDIA Tesla P100
TABLE I: Examples of real-world MEC servers.

implement in reality, but the fixed rules can hardly adapt to
the dynamic content access patterns. With the advancement in
data analytics, forecast-based cache replacement algorithms
have recently been suggested [5]. A well-trained model with
proper feature engineering can achieve high hit ratio. Yet it
heavily depends on the specific data for training and is hardly
adaptive. A more intelligent cache replacement algorithm is
expected for higher cache efficiency.

Many previous works focus on the cooperation mecha-
nisms for the 5G wireless network, while they often refer
to the literature for the cache placement algorithm. Some
works modeled the content popularity as Zipf distribution
and required popularity estimation methods, some other works
adopted simple replacement algorithms, e.g., LRU, LFU as the
basis. This makes the cooperation mechanism lightly coupled
with the cache placement problem. In addition, once the cache
placement algorithm makes wrong estimations or replacement
decisions, the cooperation mechanism will achieve poor per-
formance. In this way, a better solution is to use a joint
framework to incorporate both the cache replacement and the
corresponding cooperation mechanism.

In this paper, we propose DeepCache, an efficient deep-
learning-based cache replacement strategy for the edge net-
work, which learns the caching strategy automatically from
the request sequence in real-time. Given the dynamics of video
access patterns in both short- and long-terms, DeepCache em-
ploys a deep LSTM network [6], an advanced neural network
architecture with memory to characterize the sequential pat-
tern. Moreover, in order to apply DeepCache to the cooperative
caching scenario, we introduce a cooperation mechanism for
the DeepCache algorithm. With accurate content popularity
predicted by DeepCache, we further consider the effect on the
mobile edge network when replacing a content. We perform
the experiment on a large scale real-world mobile video
request dataset. Experiment results show that the proposed
cooperative caching algorithm can reduce the transmission
delay by 14%∼22%, and save 15%∼23% backhaul data traffic.

The remainder of the paper is organized as follows. The
system architecture is introduced in Section II. The design
of DeepCache and the corresponding cooperation mechanism
are provided in Section III and IV, respectively. Experimental
results are provided in Section V. We conclude the paper in
Section VI.

II. SYSTEM ARCHITECTURE

We consider a general 5G network scenario, as depicted
in Fig. 1. The base stations are equipped with MEC servers,
which can be used to cache and deliver frequently requested

Virtual Reality, Gaming, IoT, Car, Smart Home

Remote Server

Coordinator Server

Base Station

MEC Server

Fig. 1: Framework of Cooperative edge caching system.

contents. In order to further understand the MEC servers,
we provide the parameters of some MEC servers as CPU,
GPU, and storage in Table I. We find the storage sizes of
the MEC servers range from 16GB to 1024GB, which can be
used to cache popular contents and is believed to increase in
the future. Along with sufficient cache space, the computing
ability can satisfy intelligent deep learning computation as
high-performance CPUs and GPUs are enabled. Especially,
NVIDIA Jetson TX2 is an MEC server designed for artificial
intelligence in the edge1. In this way, MEC servers make
cooperative edge caching a reality as the powerful computation
(including support for deep learning) and large storage size.

Applications like 4K streaming, virtual reality streaming,
cloud gaming, vehicle communication, and robot arm initiate
data requests via the BSs in the 5G network. If a request for
an uncached content is initiated, the data is delivered from the
remote server in the core network. Once the requested content
is cached in the BS, the content can be delivered to the user
from the local cache. In addition, if the requested content is
not cached in the local BS, but cached in a nearby BS, the
content can be delivered from the nearby BS. A coordinator
server is employed to collect the information from the edge
BSs, assign content retrieval routing, and decide the content
eviction. Hitting local cache or nearby cache can reduce the
transmission delay as well as the traffic over the network.

III. DEEPCACHE: DEEP LEARNING-BASED CACHE
ALGORITHM

We first introduce the deep neural network architecture, and
then design an approximate method for the model training.

1https://developer.nvidia.com/embedded-computing

A. Deep LSTM Network for Caching

Inspired by the recent success of deep LSTM [6] network
processing streaming data, we design a novel LSTM network
algorithm for content caching. Despite a large number of
neural network types in deep learning, we select the LSTM
as the network unit as it has the potential to address the
challenges for our problem: 1) the video content requests form
a time sequence naturally, while LSTM is especially good
at sequence modeling task. 2) LSTM’s sophisticated network
structure enable itself with strong representation ability from
raw data input, thus requires little data pre-processing. 3)
The memory structure inside LSTM can make full use of
the historical sequence information when making decisions or
predictions. 4) The LSTM network can be updated online to
capture the timely popularity of the contents.

The architecture of the proposed network has multiple
fully-connected LSTM layers, and one softmax layer which
outputs the prediction result. Specifically, the LSTM layers
take the historical sequence as input and output a vector x
with dimension C. Then, we output the vector x to a so f tmax
layer to calculate the probability for each content to arrive. The
softmax function is defined as follows:

softmaxi =
exi∑C

i′=1 ex
′
i

(1)

The full connection architecture enables the network to fully
exploit the inherent correlations among cells, hence represent
the complicated content request pattern better. In order to
achieve better performance, we explore two hyperparameters
in LSTM network: the number of hidden layers, and the
number of cells in each layer, both of which have potential to
influence the performance.

In the deep LSTM network, the content request sequence
can be naturally considered as the feature to predict which
content to evict when a content out of the local cache arrives.
Specifically, each content is represented as one-hot encoding.
We can train the model by feeding the “raw” request sequence
to the deep LSTM model in an online fashion. It gradually
learns to make better caching replacement decisions through
the online training process, in which the algorithm try to
achieve the optimal caching performance on the historical data.

B. Approximate Method for Model Training

Unlike most sequential learning tasks which predict the
next-step instance with the highest probability, whose ground
truth can be obtained when the next-step instance arrives,
we aim to decide which content to evict from the cache
space. Specifically, we want to find the content which is most
unlikely to arrive among the cached contents. In this problem,
challenges arise in two aspects: On one hand, it is hard to let
the neural network output which content should be evicted
directly, because this depends on the knowledge of which
contents are cached currently. On the other hand, the ground
truth for training cannot be obtained in the near future.

In order to meet the first challenge, we define caching
priority as the benefit of keeping a content in the cache,

… …

Training Sequence
Input Output

2 1 …3 23

1 2 3 C… …
1-1/N 1

1-(N-1)/N
1-2/N 1-3/N

… …
Softmax

Fig. 2: Input and Output in the training phase.

and calculate the caching priority of all the contents with
DeepCache. Then we rank the cached contents by the caching
priority score and evict the content with the lowest score.

We design an approximate method to cope with the second
challenge. The optimal strategy is to evict the content which
ranks last in order in the future [7]. However, the optimal
strategy relies on all the future information, which cannot be
obtained in reality. The most commonly used one-hot encoding
in prediction tasks is not applicable either, as it cannot reflect
the priority of the cached contents. In this way, we design a
method that uses a request sequence to approximate the ground
truth. Fig. 2 shows the training phase, where {s1, s2, ..., sM } is
the input sequence with length M , and {sM+1, sM+2, ..., sM+N }
is the output sequence of length N used to generate the
approximate caching priority, where si denotes the requested
content. We pay particular attention to the output sequence.
Inspired by the optimal strategy of content replacement, we
notice that the order of the future contents is an important
information. We first set the caching priority in the n-th order
as f (n), which is monotonously decreasing with n. This is
consistent with the fact that a content arriving in the near future
should be kept in the local cache. In addition, the number of
a content arriving is another important factor, as a content
being requested many times should be kept in the local cache.
Incorporating the influence of both the order and the number of
contents, the overall priority of content s is denoted as W (s):

W (s) =
∑

I (sM+n=s)

f (n), (2)

where I (x) = 1, when x is true. In summary, W (s) is the sum
weight of a content in all arrivals.

Generally speaking, the video request datasets can be di-
vided into two categories. In one category, the popularity of
video contents is highly time-variant, and the lifespan of a
content is short. For example, video contents like weekly TV
shows and TV series burst in views and die down soon. In
the other one, the popularity of video contents is stable, and
the lifespan of a content is long. For example, most movie

contents release long ago, and still attract the fans to watch.
In order to characterize the patterns of different video contents,
we provide a generalized formulation of f (n) for all possible
datasets as:

f (n) = 1 − (
n − 1

N
)α, α > 0, (3)

where α is a parameter that is different among datasets, and
N is the output length. In the example depicted in Fig. 2, we
set α = 1. The priority of content 1 is 1 − 1

N as it arrives
in the second order once. The priority of content 2 is 1 + 1

N
as it arrives in the first order (f (1) = 1) and the N-th order
(f (N) = 1

N), respectively. The formulation of f (n) has the
following properties: (1) it is monotonously decreasing with
n, (2) the descent rate can be adjusted by α.

After deriving the weights of all contents, we employ a
so f tmax function with W (s), s ∈ S as the input and the
output probability distribution is denoted as P(s), where S
is the content library. We train the DeepCache model in a
supervised learning framework, and define the loss function
as the cross-entropy error:

loss =
S∑
s=1

Pg (s) · log(P(s)), (4)

where Pg (s) is the approximate priority, and P(s) is the
predicted priority of content s. We take the derivative of
the loss function through back-propagation with respect to
all parameters and update the parameters with the stochastic
gradient descent.

IV. COOPERATIVE DEEPCACHE

The above mentioned DeepCache algorithm can achieve
efficient caching performance in individual MEC-enabled BS.
However, as all the BSs are deployed at the edge of the
network and connected with each other via the wired network,
contents can be delivered to a user from nearby BSs, which
can reduce the network delay and traffic potentially. In this
scenario, trying to seek the optimal performance on individual
BS may not result in the optimal result of the mobile edge
network. For example, if one content is popular and cached
in many BSs, caching redundancy will happen, as the users
can be served by nearby BSs with close quality. In this way,
a cooperation mechanism among base stations is expected to
solve the problem.

A. Problem Formulation

In this paper, we consider an edge network consisting of
B cache-enabled base stations, denoted as B = {1, 2, ..., B}.
Additionally, we denote the remote server as b = 0, and all the
potential servers (the remote server and the MEC servers) as
B∗ = B∪{0}. The network delay between arbitrary two servers
is measured and denoted as C(bi, bj),∀bi, bj ∈ B

∗. When bi =
bj , the network delay C(bi, bj) is zero. When bi and bj are
different servers, we need to measure the network delay. Note
that there exist methods to measure and estimate the network
delay between two servers [8], thus this is out of scope of this
paper. The contents are denoted as S = {1, 2, ..., S}. To describe

the cache placement, we define I (b, s) ∈ {0, 1}, ∀b ∈ B∗, s ∈ S
as the indicator on whether content s is cached in server b.
I (b, s) = 1 exists, if and only if content s is cached in base
station b. Note that I (0, s) = 1, ∀s ∈ S, as the remote server
stores all the contents. For simplicity, we denote the cache size
in each base station as K . We introduce Xb

ks
∈ {0, 1} denoting

whether base station b is the source server of requests for
content s in base station k. The popularity of content s in
base station b is defined as p(b, s).

With the above definitions, we can formulate the problem
as the following Integer Linear Program (ILP):

min
∑
b∈B

∑
s∈S

p(b, s)Xb
ksC(k, b) (5)

s.t . Xb
ks ≤ I (b, s), ∀b, s, k; (6)

I (0, s) = 1, ∀s; (7)
B∑

b=0

Xb
ks = 1, ∀k, s; (8)

S∑
s=1

I (b, s) ≤ K, ∀b ∈ B. (9)

where constraint (6) indicates that users can retrieve a content
from a base station only if it is cached, constraint (7) indicates
that the remote server stores all the contents, constraint (8)
indicates that requests initiated from one base station should
be routed to one content source, and constraint (9) indicates
that the cached content number should be no more than the
cache size.

B. The Online Algorithm

In real-world scenarios, the user requests arrive one by
one in an online fashion. The online algorithm has to decide
which content to evict from the cache when a new content
request is initiated. The decision has to be made when the
new content arrives without the knowledge of the content
popularity. Recall that we computed the cache priority in the
DeepCache algorithm, which can be thought as the popularity
of the corresponding content. In this way, we design an online
cache algorithm based on DeepCache algorithm as follows.

A content request can be characterized by the initiated
base station and the requested content. Formally, we denote
Req(b, s) as the content request initiated from base station
b for content s. First, we introduce the content routing table.
The content request will be routed to the source server with the
lowest network delay. Formally, we define the source server
for content request s in base station b∗ as:

R(b∗, s) = arg min
b

C(b∗, b), ∀b ∈ {b|I (b, s) = 1}. (10)

The source servers are computed in the coordinator server, and
the coordinator server maintains a routing table dynamically
for each content in each base station.

When a new content request (not cached) in one base station
arrives, we need to decide which content should be evicted
from the cache based on both the content popularity and the
variation of the network routing table. The content popularity

can be represented with the cache priority calculated by the
DeepCache algorithm directly which is denoted as p†(b, s),
and we will introduce how to minimize the network delay via
analyzing the variation of the routing table as follows.

When a new content request snew arrives in base station
b∗, the content replacement is triggered. The cache priority
is computed in base station b∗ via the DeepCache algorithm
and transmitted to the coordinator server. Then, the coordinator
server computes the delay reduction of caching snew according
to the content routing table as follows:

Cache(b∗, snew) =
∑
b′∈B

[C(b′, R(b′, snew)) − C(b′, b∗)]+,

(11)
where [x]+ = max(x, 0). We can observe that when the
network delay between b′ and b∗ is lower than the delay
between b′ and R(b′, snew), the network delay can be reduced
when caching snew in base station b∗.

Similarly, we also need to compute the network delay of
evicting a currently cached content sc from base station b∗:

Evict(b∗, sc) =
∑
b′∈B

[
min

b∈{b |I (b,sc)=1}/b∗
C(b′, b) − C(b′, b∗)

]+.
(12)

We can observe that when the base station b∗ is the source of
sc in base station b′, the network delay will increase if sc is
evicted from base station b∗.

In this way, the network delay reduction of replacing sc
with snew in base station b∗ can be computed as follows:

Replace(b∗, sc, snew) =
Cache(b∗, snew)p(b∗, snew) − Evict(b∗, sc)p(b∗, sc) (13)

If Replace(b∗, sc, snew) ≤ 0, ∀sc ∈ {s |I (b∗, s) = 1}, i.e.,
replacing arbitrary content with the new requested content will
induce the network delay increasing, we do not replace the
current cached content. Otherwise, we will evict the content
with the maximum delay reduction, i.e.,

sc = arg max
s

Replace(b∗, s, snew), s ∈ {s |I (b∗, s) = 1}. (14)

Once the cache replacement happens, the routing table is
updated according to equation (10).

C. Complexity Analysis

Recall that B denotes the number of base stations, and K
denotes the cache size in each base station. Cache(b∗, snew) is
computed once and has a complexity of O(B). When deciding
which content to evict, Replace(b, s′, s) is executed K times,
and the complexity of computing Replace(b, s′, s) is O(B2).
Therefore, the overall complexity of executing the cooperative
mechanism is O(K +K B2). In real-world scenarios, the value
of K is usually small, while the content number S is large.
Note that the complexity of the cooperation algorithm is
independent of the content number, i.e., when the content
number becomes larger, the complexity of the algorithm will
not grow.

Algorithm 1: Online Cooperation Mechanism
Input: Network Delay Table C(bi, bj), Content Routing

Table R(b, s), the content priority p(b, s)
computed by DeepCache, and the Content
Request Req(b, s).

Output: The cache replacement scheme.
1 MaxV alue = 0
2 EvictContent = φ
3 1. Calculate Replacement Scheme:
4 Calculate Cache(b, s) based on equation (11).
5 for s′ = {s |I (b, s) = 1} do
6 Calculate Replace(b, s′, s) based on equation (13).
7 if Replace(b, s′, s)>MaxValue then
8 MaxValue = Replace(b, s′, s)
9 EvictContent = s′

10 2. Perform Replacement and Update Routing Table:
11 if EvictContent , φ then
12 Replace EvictContent with s.
13 for s′ = {s, EvictContent} do
14 for b′ = B do
15 Update R(b′, s′) based on equation (10).

V. EXPERIMENT RESULTS

We provide a mobile video request dataset to compare
and evaluate algorithms with the state-of-the-art. We evaluate
the performance of DeepCache on individual BS, and further
evaluate the cooperative DeepCache algorithm in the edge
network. We choose the following algorithms as baselines:
LRU, LFU, LFUDA, Popcaching [9], and optimal [7].

A. The Mobile Video Request Dataset in Edge Network

We collected the mobile video request dataset from iQiYi2.
How users view videos in the mobile video streaming app
has been recorded. The dataset spans 2 weeks and covers 2
million users watching 0.3 million unique videos in Beijing. In
each trace item, the following information is recorded: (1) The
device identifier, which is unique for different devices and can
be used to track users; (2) The timestamp when the user starts
to watch the video; (3) The location where the user watches
the video collected from the device’s built-in GPS function;
(4) The title of the video, which is unique for different videos.

In order to investigate the content cache in the edge network,
we jointly utilize the iQiYi dataset and the base station dataset.
The base station dataset contains the locations and IDs of over
70 thousand base stations in Beijing. With the knowledge of
the location and signal radius of a base station, we can map
the user requests to the corresponding base station.

B. Parameter Settings

As the average video size in the dataset is about 1GB, we
simply set the size of all videos as 1GB. Recall that the storage

2http://www.iqiyi.com/

20 40 60 80 100
0.8

0.82

0.84

0.86

0.88

0.9

0.92

Cache Size

C
a
c
h
e
 H

it
 R

a
te

CoDeepCache

DeepCache

POP−UPP

LRU

LFUDA

OPT

(a) Cache hit rate with cache sizes.

20 40 60 80 100
1.5

2

2.5

3

3.5
x 10

5

Cache Size

B
a
c
k
h
a
u
l
N

e
tw

o
rk

 L
o
a
d
 (

G
B

)

CoDeepCache

DeepCache

POP−UPP

LRU

LFUDA

OPT

(b) Backhaul network traffic with cache sizes.

20 40 60 80 100
0

20

40

60

80

Cache Size

A
v
e
ra

g
e
 D

e
la

y
 (

m
s
)

CoDeepCache

DeepCache

POP−UPP

LRU

LFUDA

OPT

(c) Average transmission delay with cache sizes.

Fig. 3: Performance comparison with different cache sizes in the cooperative edge network.

size of the MEC servers is quite varied in Table I, we discuss
the cache size from 10GB to 100GB. Without additional
mention, the default parameter settings in DeepCache are as
follows: We set the default network layer as 2, and the cell
number in each layer as 16. We further set the default input
length as 5. With careful tuning, we set α as 0.1, and the
default output length to calculate the label as 200.

C. Performance Comparison in the Edge Network

We conduct the performance comparison in the edge net-
work. We denote the cooperative DeepCache algorithm as
“CoDeepCache”. We also introduce a cooperative mechanism
as baseline based on User Preference Profiles (UPP). We
employ the POP algorithm to derive the UPP, i.e., “POP-UPP”.
Without addition mention, the default base station number is
set as 16, and the cache size is set as 10.

Fig. 3(a) shows that the CoDeepCache algorithm can
achieve the best cache hit rate compared with baselines among
all the cache sizes. The cache hit rate accounts for the local
cache hit as well as the cache hit from other base stations. As
the cache size gets larger, the cache hit rate is larger. We notice
that under the cooperative edge network scenario, the cache
hit rates of different algorithms are close. This happens as the
base stations in the edge network can be seen as one node
with large cache size. In this way, most of the user requests
can be served by some base station in the edge network.

We further investigate the backhaul network load under
different cache algorithms in Fig. 3(b). The backhaul network
load is due to the requests served by the remote server. With
the increase of the cache size, the backhaul network load
can be reduced dramatically. The CoDeepCache algorithm
can save 15%∼23% data traffic compared to POP-UPP, and
save 12%∼16% data traffic compared to DeepCache. Then we
investigate the average delay of a content request in Fig. 3(c).
The CoDeepCache algorithm achieves the lowest transmission
delay among all the cache sizes, and can reduce 14%∼ 22%
transmission delay compared to the POP-UPP algorithm.

VI. CONCLUSION

We design a framework for cooperative edge caching in
5G. We propose a deep-learning-based caching algorithm
DeepCache, which learns to make replacement decision by

memorizing the former request sequence with the built-in
memory cells. Then we design a cooperation mechanism for
DeepCache to satisfy the cooperative edge caching scenario.
Experiments on a large scale video dataset validates the effec-
tiveness of our algorithms, which can reduce the transmission
delay and the backhaul network load significantly.

ACKNOWLEDGEMENT

The work of Haitian Pang and Lifeng Sun was supported
by the National Natural Science Foundation of China (Grant
No. 61472204 and 61521002), Beijing Key Laboratory of
Networked Multimedia (Grant No. Z161100005016051), and
Alibaba Cooperation Funding. The work of Jiangchuan Liu
and Xiaoyi Fan was supported by an NSERC Engage Grant
and an NSERC Discovery Grant.

REFERENCES

[1] Cisco, “Cisco visual networking index: Global mobile data traffic forecast
update 20160201 white paper,” 2016.

[2] Q. Huang, K. Birman, R. van Renesse, W. Lloyd, S. Kumar, and H. C. Li,
“An analysis of facebook photo caching,” in Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Principles. ACM, 2013,
pp. 167–181.

[3] S. Podlipnig and L. Böszörmenyi, “A survey of web cache replacement
strategies,” ACM Computing Surveys (CSUR), vol. 35, no. 4, pp. 374–398,
2003.

[4] J. Wang, “A survey of web caching schemes for the internet,” ACM
SIGCOMM Computer Communication Review, vol. 29, no. 5, pp. 36–
46, 1999.

[5] G. Ma, Z. Wang, M. Zhang, J. Ye, M. Chen, and W. Zhu, “Understanding
performance of edge content caching for mobile video streaming,” IEEE
Journal on Selected Areas in Communications, vol. 35, no. 5, pp. 1076–
1089, 2017.

[6] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[7] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger, “Evaluation
techniques for storage hierarchies,” IBM Systems journal, vol. 9, no. 2,
pp. 78–117, 1970.

[8] J. Jiang, R. Das, G. Ananthanarayanan, P. A. Chou, V. Padmanabhan,
V. Sekar, E. Dominique, M. Goliszewski, D. Kukoleca, R. Vafin et al.,
“Via: Improving internet telephony call quality using predictive relay
selection,” in Proceedings of the 2016 conference on ACM SIGCOMM
2016 Conference. ACM, 2016, pp. 286–299.

[9] S. Li, J. Xu, M. Van Der Schaar, and W. Li, “Popularity-driven content
caching,” in Computer Communications, IEEE INFOCOM 2016-The 35th
Annual IEEE International Conference on. IEEE, 2016, pp. 1–9.

