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Abstract

Learning a small number of genetic vari-
ants associated with multiple complex ge-
netic traits is of practical importance
and remains challenging due to the high-
dimensional nature of data. In this paper,
we proposed a two-graph guided multi-task
Lasso to address this issue with an empha-
sis on estimating subnetwork-to-subnetwork
associations in expression quantitative
trait loci (eQTL) mapping. The pro-
posed model can learn such subnetwork-
to-subnetwork associations and therefore
can be seen as a generalization of several
state-of-the-art multi-task feature selection
methods. Additionally, this model has a
nice property of allowing flexible structured
sparsity on both feature and label domains.
Simulation study shows the improved per-
formance of our model and a human eQTL
data set is analyzed to further demonstrate
the applications of the model.

1 Introduction

Recent advances in biotechnologies, including next
generation DNA and RNA sequencing, have re-
sulted in the generation of a large amount of ge-
nomic and transcriptomic data. One active research
area of integrating these genomic and transcriptomic
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datasets is to identify expression quantitative trait
loci (eQTLs) through eQTL mapping. eQTL map-
ping seeks for a set of statistically significant associa-
tions between genetic variants and gene expressions.
The challenge of eQTL mapping lies in the fact that
there are a large number of genetic variants and gene
expression traits, and hence the search space for po-
tential eQTLs is vast.

A widely used approach to detect eQTL associations
is to calculate pair-wise correlations of the genotypes
or intensities of genetic variants with the expression
profiles of genes in the neighborhood of these vari-
ants [1, 2]. However, this approach assumes that ge-
netic variants are independent and gene expressions
are not correlated. This assumption will inevitably
miss many complex yet observed cases where multi-
ple genetic variants jointly affect the co-expressions
of multiple genes, i.e., subnetwork-to-subnetwork as-
sociations. Moreover, given the large number of tests
performed using such pair-wise correlation analysis,
this approach is subject to the burden of multiple
test correction which may introduce false positive
associations.

In eQTL analysis, both the feature matrix and the
label matrix are usually high-dimensional, with the
number of features (i.e. genetic variants) and the
number of labels (i.e. gene expressions) significantly
larger than the number of samples. Therefore, the
problem of eQTL mapping can be formed to a classi-
cal feature selection problem and Lasso-based meth-
ods have therefore proposed. Kim and Xing [3] pre-
sented a graph-weighted fused Lasso approach to es-
timate genetic variants (e.g. SNPs) that perturb a
subset of highly correlated traits. Tree-guided group
Lasso [4] was formulated for multi-task regression
that utilizes structured sparsity to learn the asso-
ciations between genetic variants and groups of co-
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expressed genes. Another Lasso approach, adaptive
multi-task Lasso, was proposed to detect eQTL as-
sociations and this model considers the correlation
among traits while incorporating the priors on SNPs
such as regulatory features for these SNPs [5].

Nevertheless, none of these existing methods con-
sider a more general question: how multiple genetic
variants in a biological process or pathway, by form-
ing a subnetwork, jointly affect a subnetwork of mul-
tiple correlated traits; see Fig. 1(a) for an illustra-
tion. These subnetworks under investigation can
overlap and their sizes may vary. In this paper, we
formulate this subnetwork-to-subnetwork association
problem into a two-graph guided multi-task Lasso
model to capture the observation that multiple ge-
netic variants jointly affect correlated traits. More-
over, the proposed model allows overlapped subnet-
works in associations. This novel model has flexible
structured sparsity as illustrated in Fig. 1(b). On
the one hand, the model can induce sparsity on the
association coefficients; on the other hand, it can
bias the learned sparsity pattern to the prior net-
works in both label and feature domains. Therefore,
our proposed model can be viewed as a generaliza-
tion of several state-of-the-art multi-task feature se-
lection methods [3, 4, 5, 6] by utilizing prior infor-
mation on both feature and label graphs.

The rest of the paper is organized as follows. In Sec-
tion 2, the two-graph guided multi-task lasso model
is formulated and introduced. We then present a
coordinate-descent algorithm to obtain the numeric
estimates of the model in Section 3. In Section 4,
asymptotic properties of the proposed model are
studied. Simulations are carried out in Section 5
to show that our model outperforms several other
multi-task sparse learning models. A real eQTL data
is further analyzed as an example of the applications
of our model and results are presented in Section 6.
The paper is concluded in Section 7.

2 Model

Suppose K traits or labels are collected for n
subjects and we denote these measurements by
Yn×K . We further assume that each trait is po-
tentially associated with J genetic variants or fea-
tures. Specifically, the association model considered
here is the following multiple-input-multiple-output
(MIMO) linear system

Y = XB + E, (1)

where BJ×K = {b1, · · · ,bK} is the association coef-
ficient matrix denoting the connection strengths be-

tween traits and genetic variants and E is a Gaussian
white-noise term with constant variance σ2. Here,
X is an n × J matrix, where each row contains
quantitative measurements for the J genetic vari-
ants and each column contains n observations for
one genetic variant. For high-dimensional problems
where K and J are large, (1) is well-posed only if
certain regularization is introduced. In association
studies, sparsity is a reasonable assumption since we
expect only a small fraction of genetic variants are
associated with gene expressions. Thus, the associa-
tion study is reduced to a classical feature selection
problem. To this end, a standard multi-task lasso
proposed in [5]

minimizeB

K∑

k=1

‖yk −Xbk‖22 + λ
J∑

j=1

δj‖bj‖2,

(2)

where bk is the k-column of B representing the asso-
ciation coefficients of all genetic variants to the k-th
trait and bj is the j-th row of B meaning the as-
sociation strengths of the j-th genetic variant to all
traits.

Several extensions of the multi-task lasso model (2)
have been proposed in literature. For instance, the
graph guided multi-task lasso [3, 6] was designed in
the following way in association studies. Let G =
(V,E) be a graph where V is the set of vertices and
E is the set of edges; then the graph-guided multi-
task lasso is defined as the solution of

minimizeB

K∑

k=1

‖yk −Xbk‖22 + λ‖B‖1

+ γ
∑

em,l∈E

w(em,l)

J∑

j=1

|bjm − sign(rm,l)bjl|, (3)

where w(em,l) is a weight assigned to the edge em,l in
graph E and rm,l is the correlation between ym and
yl. Such a graph guided multi-task model (3) can
learn the associations between one particular genetic
variant and a group of traits. Alternatively, Kim and
Xing [4] leveraged the idea that a co-expressed set
of genes should share a larger common set of genetic
variants and thus proposed another one-to-many as-
sociation model, namely the tree guided lasso where
the tree structure can be user-specified or a hierar-
chical clustering tree on labels. Note that the tree
guided lasso is an extension of a group-lasso model.

In this paper, we consider a more general frame-
work that subsumes all aforementioned models as

2
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Figure 1: Illustrations of subnetwork-subnetwork associations and structured sparsity for modeling these
associations. (a) Subnetwork-subnetwork associations. Ellipses represent the subnetworks of feature and
label graphs, with green ones highlighting associated subnetworks. Green lines between feature and label
subnetworks represent identified associations. (b) Structured sparsity for modeling subnetwork-subnetwork
associations. Blue and red blocks represent positive and negative associations respectively.

special cases of the new model. We propose a multi-
task lasso model to learn eQTL mapping by incorpo-
rating structural information on both genetic vari-
ants and labels. Specifically, let G1 = (V1, E1) and
G2 = (V2, E2) be two graphs defined on labels and
features, respectively. Then the two-graph guided
multi-task lasso is defined as

minimizeB ‖Y −XB‖2F + λ‖B‖1
+ γ1 × pen1(E1, B) + γ2 × pen2(E2, B), (4)

where pen1 and pen2 are two penalty functions mea-
suring the discrepancy between the prior label and
feature graphs and the association pattern. Here,
we simultaneously consider two symmetric penalty
functions on features and labels. In particular, as
in [3], we design the penalty functions on the label
and feature graphs as in the following form

pen1(E1, B) =
∑

em,l∈E1

w(em,l)
J∑

j=1

|bjm − sign(rm,l)bjl|

pen2(E2, B) =
∑

ef,g∈E2

w(ef,g)

K∑

k=1

|bfk − sign(rf,g)bgk|,

(5)

where the weight w(·) in our simulation is simply
chosen as the absolute value of correlation. The
penalty above is closely related to that in fused
lasso [17]. In addition, our proposed model can be
viewed as a generalization of the fused lasso model
in the sense that fusion is dictated by the topology of
input graphs, rather than physical proximity. Other
penalty functions are also possible according to dif-
ferent problem settings. For the penalty functions in

(5), the optimization problem (4) can be efficiently
solved by a coordinate-descent algorithm as in [3]
where the objective function of (4) is transferred into
an equivalent differentiable function.

3 Algorithm

The objective function in (4) is non-differentiable
and its optimization is achieved by transforming it
to a series of smooth functions that can be efficiently
minimized by the coordinate-descent algorithm [3].
Specifically, our algorithm works as follows. First,
we consider the following constrained ridge-type op-
timization

minimizeB,djk,d1jml,d2kfg
‖Y −XB‖2F

+ λ

J∑

j=1

K∑

k=1

b2jk
djk

+ γ1
∑

em,l∈E1

w2(em,l)

J∑

j=1

(bjm − sign(rm,l)bjl)
2

d1jml

+ γ2
∑

ef,g∈E2

w2(ef,g)

K∑

k=1

(bfk − sign(rf,g)bgk)
2

d2kfg
,

(6)

subject to
∑

j,k

djk = 1,
∑

em,l∈E1,j

d1jml = 1,

∑

ef,g∈E2,k

d2kfg = 1, djk, d1jml, d2kfg ≥ 0.

3
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This can be analytically solved via its Lagrangian
form. For an initial value of B, we optimize (6)
over djk, d1jml, d2kfg by setting their corresponding
derivatives to zeros; hence we obtain

djk =
|bjk|∑

j′,k′ |bj′k′ | , (7)

d1jml =
w(em,l)|bjm − sign(rm,l)bjl|∑

em′,l′∈E1,j′
w(em′,l′)|bj′m′ − sign(rm′,l′)bj′l′ |

,

(8)

d2kfg =
w(ef,g)|bfk − sign(rf,g)bgk|∑

ef′,g′∈E2,k′ w(ef ′,g′)|bf ′k′ − sign(rf ′,g′)bg′k′ | .

(9)

Then conditioning on the current estimate of
djk, d1jml, d2kfg, we optimize over B. The solution
of this minimization can be found as

bjk =
{ n∑

i=1

xij(yik −
∑

j′ �=j

xij′bj′k)

+ γ1
∑

em,k∈E1

w2(em,k)
bjmsign(rm,k)

d1jmk

+ γ1
∑

ek,l∈E1

w2(ek,l)
bjlsign(rk,l)

d1jkl

+ γ2
∑

ef,j∈E2

w2(ef,j)
bfksign(rf,j)

d2kfj

+ γ2
∑

ej,g∈E2

w2(ej,g)
bgksign(rj,g)

d2kjg

}

/{ n∑

i=1

x2
ij +

λ

djk

+ γ1
∑

em,k∈E1

w2(em,k)

d1jmk
+ γ1

∑

ek,l∈E1

w2(ek,l)

d1jkl

+ γ2
∑

ef,j∈E2

w2(ef,j)

d2kfj
+ γ2

∑

ej,g∈E2

w2(ej,g)

d2kjg

}
.

These two steps alternate until
∥∥B(t+1) −B(t)

∥∥
1
≤ ε

for some small ε > 0.

We remark that the coordinate-descent algorithm
can be seen as a concrete algorithm in the
majorization-minimization (MM) paradigm pro-
posed by [11]. Indeed, we observe that, (4) is equiv-
alent to a slightly modified Lagrangian version by

squaring each penalty terms

minimizeB ‖Y −XB‖2F + λ‖B‖21

+ γ1

⎛
⎝ ∑

em,l∈E1

w(em,l)
J∑

j=1

|bjm − sign(rm,l)bjl|

⎞
⎠

2

+ γ2

⎛
⎝ ∑

ef,g∈E2

w(ef,g)
K∑

k=1

|bfk − sign(rf,g)bgk|

⎞
⎠

2

.

(10)

Note that, for any w = (wi) such that ‖w‖1 = 1
and wi ≥ 0,

‖b‖1 =
∑

i

|bi| =
∑

i

√
wi

|bi|√
wi

≤ (
∑

i

wi)
1/2(

∑

i

b2i /wi)
1/2 = (

∑

i

b2i /wi)
1/2,

(11)

where we use the Cauchy-Schwarz inequality. The
chain inequalities in (11) holds trivially when some
elements of w are zeros (i.e. sparsity) since the
RHS equals to ∞. This implies that (6) is an up-
per envelop function of (4) over an arbitrary B.
Moreover, the equality of (11) is attained when
w = b/‖b‖1. Therefore, it follows that the update
equations, (7),(8),(9) for d, d1, d2 respectively, are
direct consequences of the monotonic descent prop-
erty of the MM algorithm.

Tuning parameters λ, γ1, γ2 are determined by K-
fold cross-validations (CVs). Since an exhaustive
search of the optimal triplet on a three-dimensional
lattice is computationally infeasible for large-scale
multi-task learning problems such as the eQTL map-
ping with a large number of genetic variants and
genes, we adopt a gradient-descent approach pro-
posed in [3] to iteratively update (λ, γ1, γ2). Partic-
ularly, three line searches in the descent direction of
minimizing the current CV error are sequentially ap-
plied to each component in (λ, γ1, γ2) while holding
the other two components. The coordinate gradi-
ents for the three components are approximated by
their finite differences. Therefore, the tuning pro-
cedure contains those alternating steps, where each
step corresponds to learn a multi-task Lasso pro-
posed in this paper.

4 Asymptotic Properties

In this section, we present the asymptotic properties
of the proposed model, where the sample size is large
enough. The number of genetic variants and traits

4
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are assumed to be fixed and we allow the number
of observations or the sample size n → ∞. We also
allow that λ, γ1, and γ2 depend on n; however, we
shall suppress this implicit dependency in the fol-
lowing notation. We now establish the asymptotic
normality of the proposed two-graph guided multi-
task lasso estimator.

Theorem 4.1. Assume n−1XTX → C for some
positive definite matrix C, λ/

√
n → λ0, γi/

√
n →

γ0i for i = 1, 2, rm,l
P→ cm,l for all m, l ∈

{1, · · · ,K}, and r′f,g
P→ c′f,g for all f, g ∈ {1, · · · , J}.

Let B̂n be the two-graph guided multi-task lasso es-
timator in (4). Then we have

√
n(B̂n −B)

d→ argmin(V ), (12)

with V : Rp×p → R as a random function defined by

V (U) = −2

K∑

k=1

ukTwk +

K∑

k=1

ukTCuk

+ λ0

J∑

j=1

K∑

k=1

[ujksign(bjk)I(bjk 	= 0) + |ujk|I(bjk = 0)]

+ γ01
∑

em,l∈E1

w(em,l)

J∑

j=1

[
(ujm − sign(cm,l)ujl)

× sign(bjm − sign(cm,l)bjl)I(bjm 	= sign(cm,l)bjl)
]

+ γ01
∑

em,l∈E1

w(em,l)

J∑

j=1

[
|ujm − sign(cm,l)ujl|

× I(bjm = sign(cm,l)bjl)
]

+ γ02
∑

ef,g∈E2

w(ef,g)

K∑

k=1

[
(ufk − sign(c′f,g)ugk)

× sign(bfk − sign(c′f,g)bgk)I(bfk 	= sign(c′f,g)bgk)
]

+ γ02
∑

ef,g∈E2

w(ef,g)

K∑

k=1

[
|ufk − sign(c′f,g)ugk|

× I(bfk = sign(c′f,g)bgk)
]

(13)

and wk ∼ N(0, σ2C) are i.i.d.random J-
dimensional vectors.

The theorem proof is relegated to the appendix and
it is an application of standard epi-convergence in
finite dimensions as used in [7].

An immediate consequence of Theorem 4.1 is that
when λ, γ1, γ2 all grow at appropriate rates as the
sample size increases, the proposed estimator con-

verges in probability to the true coefficient matrix.
Hence we have

Corollary 4.2. If max{λ, γ1, γ2} = o(
√
n), then B̂n

is a
√
n-consistent estimator of B.

5 Simulation Study

In this section, we carry out simulations to demon-
strate the performance of the proposed two-graph
guided multi-task Lasso (MTLasso 2G). We compare
our model, including a special case of our model,
the feature-graph guided multi-task Lasso (MTLasso
FG) which only contains the second penalty term
in (5), with state-of-the-art feature selection models
including: Lasso, multi-task/group lasso (MTLasso)
and label-graph guided multi-task Lasso (MTLasso
LG) [6, 3]. We remark that all of these models are
special cases of our proposed model by fixating par-
ticular penalty weight to zero. For example, setting
γ1 = γ2 = 0 yields the Lasso model. Hence, our
model is in fact a more flexible and general frame-
work for multi-task feature selection.

5.1 Data Generation

We study the performances of various models with
a range of setups, each of which is represented by
(K, J, n). We are particularly interested in the sce-
narios where J � n and K � 1. We set the
three parameters (K, J, n) as K ∈ {10, 50}, J ∈
{100, 200, 300, 400, 500}, n = 50 and consider all
the 10 possible setups based on the combinations
of these parameters. For each setup, we generate 50
data sets and compare the averaged performances of
those aforementioned models on the generated data.

The simulation data is generated by considering
high correlations among genetic variants as seen in
real data. We first randomly sample feature and
label subnetworks as groups. The number of groups
sampled at features and labels should be equal so
that a series of one-to-one mappings between label
and feature groups can be determined by group
ranks. The association matrix B is set to be binary,
where

bjk =

{
1, k ∈ gt1 and j ∈ gt2
0, otherwise

.

gt1 represents the t-th group sampled from label do-
main and gt2 is the t-th group sampled from features.
Then, the input feature matrix X is a randomly
generated matrix multiplied by a covariate matrix
to make sure the features in the same group in G2

have relatively high correlations. The input label
5
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matrix Y is the product of X and B with an addi-
tive Gaussian noise as in (1). We remark that the
data simulation process is independent of our model.
Instead, the simulation data is generated consider-
ing highly correlated genetic variants as seen in the
real data.

5.2 Results

We compare the performance of various models with
the guidance of label and/or feature graphs, if ap-
plicable. Our goal here is evaluate the capability
of those models to correctly identify the association
patterns subject to erroneous or noisy prior graphs,
which we define as subnetwork pruning. Here, the
correlation graphs on labels (with cutoff 0.4) and fea-
tures (with cutoff 0.6) are used and the weights are
the absolute values of correlations. We consider the
performance measures in terms of the (vectorized)
�1-norm errors and the areas under the precision-
recall curve (AUCs). The precision-recall curve is
calculated by varying the cutoff parameter of the
thresholding procedure on the estimated coefficients
from all models in a post-hoc manner. Therefore,
this AUC measures the averaged performance of the
optimal model for detecting the sparse association
pattern. Our results on the estimation error and
AUC are shown in Fig. 2. Several observations can
be drawn here.

First, in terms of �1 estimation error, the proposed
two-graph guided multi-task Lasso (MTLasso 2G)
and feature-graph guided multi-task Lasso (MT-
Lasso FG) uniformly out-perform the label-graph
guided multi-task Lasso (MTLasso LG), standard
multi-task lasso (MTLasso), and the Lasso models.
Note that MTLasso errors are too large to plot and
thus skipped from Fig. 2(a) and Fig. 2(b). This re-
sult is in accordance with our intuition that, when
feature graph is larger than label graph (note that we
have K < J in our setup), more salient information
will be incorporated into the model and improve the
performance. The comparison between Fig. 2(a) and
Fig. 2(b) confirms our observation since the differ-
ence between MTLasso 2G/MTLasso FG and MT-
Lasso LG becomes smaller as K increases.

Second, from the plots of the PR-AUC Fig. 2(c) and
Fig. 2(d), we observe that the MTLasso 2G model
is the best among others, which suggests that MT-
Lasso 2G be more robust than MTLasso FG and
MTLasso LG. Therefore, the proposed MTLasso 2G
can be seen as a balanced feature selection method
where it combines the advantages of MTLasso FG
and MTLasso LG and improves upon both of them.

SLC4A11

RALY

SNX21

SNPH

ZNF341

PPDPF

Label SubnetworksFeature Subnetworks

RBL1

VAPBchr20:1508967-1534025

chr20:1509062-1542435

chr20:296370-299107

chr20:38450605-38458992

chr20:41162903-41163758

Figure 4: Examples of subnetwork-subnetwork asso-
ciations on a human eQTL dataset.

Third, we also examine the Mathews correlation co-
efficients (MCCs) of those models in Fig. 3 by fixing
a small threshold at

√
log(JK)/(NK). MCC mea-

sures the “correlation” between the estimated binary
pattern and the true pattern. The same conclusions
as the previous two observations can be made as seen
from Fig. 3(a,b).

Finally, we give an example of the actually estimated
patterns of B by those models, as illustrated in
Fig. 3(c). We can see that the MTLasso 2G achieves
the best performance since the other models have
more false negatives.

6 Human eQTL Dataset

To demonstrate an application of our proposed
model on real datasets, we apply our model to a
human eQTL data set.

6.1 Data

The human eQTL data set we utilize here includes
a set of genetic variants in the form of copy num-
ber variants (CNVs) from the latest data release of
the 1000 Genomes Project [8, 12], and gene expres-
sion profiles from the RNA sequencing data [16].
As an example, we pick chromosome 20, with 139
genotyped CNVs and 379 genes with expression data
in 51 samples from Yoruba in Ibadan Nigeria(YRI).
Our model can be run on any single chromosome
and the computational cost is reasonable.

Previously, co-expression networks have been con-
structed by thresholding gene correlations from ex-
pression profiles [14]. We used a similar strategy
to build a co-expression network on the labels of
our data. To capture the relationships among the
genetic variants, we used the same strategy to con-
struct a genetic network on the features of our data.
More specifically, both feature and label graphs are
constructed using

6
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Figure 2: Averaged �1 errors and areas under the precision-recall curve (AUCs) of Lasso, multi-task lasso
(MTLasso), label-graph guided MTLasso (MTLasso LG), feature-graph guided MTLasso (MTLasso FG),
and two-graph guided MTLasso (MTLasso 2G), with n = 50, K = 10, 50, and J = 100, 200, 300, 400, 500.
The distance between upper bar and lower bar equals to standard deviation.
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(c) An example estimation result of K = 10, J = 100

Figure 3: The Mathews correlation coefficients (MCCs) of various Lasso methods and an example of the
estimated patterns of B by these models, the threshold is set as

√
log(JK)/(NK).
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Figure 5: Venn diagram of associations found
by label-graph guided MTLasso (MTLasso LG),
feature-graph guided MTLasso (MTLasso FG), and
two-graph guided MTLasso (MTLasso 2G).

Euv =

{
corr(u, v), u, v ∈ Gi, u 	= v, |corr(u, v)| ≥ θ

0, otherwise
.

where u and v are two different nodes (features or la-
bels) and the edge between them Euv has the weight
of the correlation between them if the absolute value
of their correlation is above a cutoff θ. By setting θ
= 0.4, a gene co-expression network is constructed
as a label graph G1 and a feature graph on CNVs
G2 is constructed to capture the correlations among
CNVs. This step generates a feature graph with 144
edges and a label graph with 957 edges.

6.2 Results

Applying the proposed two-graph guided multi-task
model to analyze the human eQTL dataset, we
identify 532 novel associations between 49 CNVs
and the expression of 190 genes in a subnetwork-
to-subnetwork fashion. Fig. 4 demonstrates three
examples of the subnetwork-to-subnetwork associa-
tions in our results. In comparison to the models us-
ing only label (MTLasso LG) or feature graph (MT-
Lasso FG) on the same dataset, our two-graphmodel
MTLasso 2G (Fig. 5) selects those associations with
support from the other two models and thus might
remove some false positives.

Many of the genes whose expression profiles are
affected by CNVs in our results are disease asso-
ciated and/or have important biological functions.
For example, the first example of subnetwork-to-
subnetwork associations in Fig. 4 shows a scenario
that two CNVs namely “chr20:1508967-1534025“
and “chr20:1509062-1542435“, are jointly associ-
ated with the expression of two genes in a co-
expression subnetwork, RBL1 and VAPB. Both

genes have been identified as disease-associated
through genome-wide association studies. Particu-
larly, RBL1 has been extensively studied as a cancer
gene which is correlated to lung cancers [13]. The
mutation of VAPB has been shown to be associated
with myotrophic lateral sclerosis [15], breast cancer
[10], and many other common diseases like hyperten-
sion, coronary artery disease and diabetes [9]. The
observation, that the two CNVs are jointly associ-
ated with the expressions of these two genes simul-
taneously, might provide biological insights into the
mechanism of disease manifestation of these genes
and genetic variants.

7 Conclusions

In this paper, we propose a novel two-graph guided
multi-task lasso model that takes advantage of
the prior structures of features and labels for
subnetwork-subnetwork associtions in eQTL map-
ping. This new model is a generalization form of
previously proposed lasso models and thus subsumes
those models as special cases. Additionally, the
model is flexible with different types of features and
labels and is applicable (but not limited) to eQTL
mapping. For instance, our model can be applied to
identify a full panel of genetic variants (e.g. SNPs,
small insertions and deletions, and CNVs) that affect
diverse traits such as gene expression and epigenetic
profiles. Simulation study shows the nice perfor-
mance of our model and real data analysis provides
an example of its applications in eQTL mapping.

We remark that the feature and label graphs im-
posed on our model are flexible as well. We show
that both graphs are constructed from examining
the correlations among genetic variants and among
co-expressed genes respectively. Nonetheless, other
biological networks can be overlaid on the features
or the labels. For example, we can use a protein-
protein interaction network on the genetic variants
as a feature graph to capture the interactions among
variants, and utilize a regulatory network on the
genes as a label graph. As long as these graphs
provide reasonable structures underlying the data,
our model can leverage structural priors to identify
novel subnetwork-to-subnetwork associations.
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Appendix: proofs

Proof of Theorem 4.1

Proof. Let B̂n minimize f(B) where f is objective
function defined in (4); then it follows that

√
n(B̂n−

B) minimizes Vn, where

Vn(U) =

K∑

k=1

n∑

i=1

⎡
⎣
(
eik −

ukTxi√
n

)2

− e2ik

⎤
⎦

+ λ
J∑

j=1

K∑

k=1

[∣∣∣∣bjk +
ujk√
n

∣∣∣∣− |bjk|
]

+ γ1
∑

em,l∈E1

w(em,l)

J∑

j=1

[
|bjm − sign(rm,l)bjl

+
ujm − sign(rm,l)ujl√

n
| − |bjm − sign(rm,l)bjl|

]

+ γ2
∑

ef,g∈E2

w(ef,g)

K∑

k=1

[
|bfk − sign(r′f,g)bgk

+
ufk − sign(r′f,g)ugk√

n
| − |bfk − sign(r′f,g)bgk|

]

with U = (u1, · · · ,uK). We now consider each
terms in Vn. Since K is fixed and n → ∞, by the
central limit theorem (CLT) and the assumptions
that {eik} are independent and n−1XTX → C, we
observe that

K∑

k=1

n∑

i=1

⎡
⎣
(
eik − ukTxi√

n

)2

− e2ik

⎤
⎦

=

K∑

k=1

[
−2ukTn−1/2

n∑

i=1

eikxi + ukTn−1
n∑

i=1

xix
T
i u

k

]

d→− 2

K∑

k=1

ukTwk +

K∑

k=1

ukTCuk,

where wk
iid∼ N(0, σ2C). For the second term, it is

obvious that

λ

J∑

j=1

K∑

k=1

[∣∣∣∣bjk +
ujk√
n

∣∣∣∣− |bjk|
]

→λ0

J∑

j=1

K∑

k=1

[ujksign(bjk)I(bjk 	= 0) + |ujk|I(bjk = 0)] .

For the third term, we similarly obtain that

γ1
∑

em,l∈E1

w(em,l)
J∑

j=1

[
|bjm − sign(rm,l)bjl

+
ujm − sign(rm,l)ujl√

n
| − |bjm − sign(rm,l)bjl|

]

P→γ01
∑

em,l∈E1

w(em,l)

J∑

j=1

[
(ujm − sign(cm,l)ujl)

× sign(bjm − sign(cm,l)bjl)I(bjm 	= sign(cm,l)bjl)
]

+ γ01
∑

em,l∈E1

w(em,l)

J∑

j=1

[
|ujm − sign(cm,l)ujl|

× I(bjm = sign(cm,l)bjl)
]
.

The last term has a similar limit as in the third
term. Combining all terms together and applying

Slutsky’s lemma, we therefore deduce that Vn(U)
d→

V (U), where V (U) is defined in (13). Since Vn is
convex and V has a unique minimum, the theorem
follows immediately from the finite-dimensional epi-
convergence result as in [7]; that is, argmin(Vn) =√
n(B̂n −B)

d→ argmin(V ).

Proof of Corollary 4.2

Proof. Condition max{λ, γ1, γ2} = o(
√
n) implies

that λ0 = γ01 = γ02 = 0 and therefore

V (U) = −2
K∑

k=1

ukTwk +
K∑

k=1

ukTCuk.

The last expression is separable in {uk} and hence
we can consider the minimizer for each column of U .
Then it is obvious that C−1wk minimizes

−2ukTwk + ukTCuk.

The proof is complete since C−1wk
iid∼ N(0, σ2C−1).
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