
MMT: A Matlab Library for Multi-task Learning

Xing Xu @ TTIC

April 27, 2012

Contents

1 Multi-task Learning 2
1.1 lasso . 2
1.2 multi-task lasso . 3
1.3 graph guided multi-task . 3

2 Algorithm 3

3 Features 5
3.1 Fast . 5
3.2 Scalable . 6

4 Install 6
4.1 Preparation . 6
4.2 Installation . 6

5 Usage 6
5.1 Add MMT to path . 6
5.2 A One-Station Experience . 7
5.3 Run lasso . 7
5.4 Run multi-task lasso . 8
5.5 Run graph guided multi-task 8
5.6 Cross-validation . 8
5.7 Visualization . 9

6 Future direction 9

7 Reference 9

1

1 Multi-task Learning

Multi-task learning is a machine learning problem with a wide range of
applications, including conjoint analysis in marketing science and matrix
completion in recommendation systems. The idea of multi-task learning is
instead of learning machine learning problems seperately, one can construct
algorithm to do multiple learning tasks simutaenously in order to share
information among similar learning tasks, it is especially useful when we
only have few samples for each task. This library includes three popular
methods to deal with multi-task scenarios, which are lasso, multi-task lasso
(group lasso) and graph guided multi-task lasso.

Here first introduce the notations, we have n samples stacked to a n by
J observation matrix, with each row represents a sample and each column
is a feature. We use Bi denotes the i-th column of matrix B, while Bj is the
j-th row of B. Y is a n by K label matrix, with K be the number of tasks.

In this library, we assume a linear model underlying the data we ob-
served, that is, for each task t ∈ {1 . . .K}, we have

Yt = XBt + ε

or equivalently
Y = XB + ε

where ε is a relatively small gaussian noise, we want to estimate association
matrix B from X and Y . One natural way to solve this without any futher
assumptions is by least squares

B̂ = arg min
B
‖Y −XB‖22

Three models we provide are as follows:

1.1 lasso

Modern machine learning applications are typically in high dimensions,
which means the number of samples we have is significantly smaller than
the number of features, we have to do feature selection, otherwise it would
be easily get overfitting and so that the model we learned has a bad gener-
alizaion ability. A classic way to do is by adding an `1 term, which is the
convex surrogate of ell0 penalty. Lasso estimated B̂ is sparse, which means
only a small number of positions in B̂ will be nonzero.

B̂ = arg min
B
‖Y −XB‖22 + λ‖B‖1

2

1.2 multi-task lasso

The lasso method actually doesn’t use any shared information between tasks.
Here the multi-task lasso assumes a small common subset of features among
all tasks, this is done by adding an `2,1 term, which makes B̂ has a lot of
rows of zeros.

B̂ = arg min
B
‖Y −XB‖22 + λ‖B‖2,1

or its group lasso form

B̂ = arg min
B
‖Y −XB‖22 + λ

∑
i

Bgi

1.3 graph guided multi-task

In real applications, we might have further prior informations about features
and tasks in the form of a feature graph and a task graph. A feature (task)
graph is a graph of features (tasks), with an edge connect two feature (task)
nodes if these two features (tasks) are essentially similar. G1 = (V1, E1) is
the graph on the features, while G2 = (V2, E2) is the graph of tasks. Then
connected features and tasks are fused together.

B̂ = arg min
B
‖Y −XB‖22 + λ‖B‖1 + γ1

∑
(i,j)∈E1

‖Bi −Bj‖1 + γ2
∑

(i,j)∈E2

‖Bi −Bj‖1

All the regularization parameters above (λ, γ1, γ2) are chosen by cross vali-
dation.

2 Algorithm

A fast coordinate descent algorithm is adopted in this library. The objective
function with `1 penalty is non-differentiable and its optimization is achieved
by transforming it to a series of smooth functions that can be efficiently
minimized by the coordinate-descent algorithm. Specifically, our algorithm
works as follows. First, we consider the following constrained ridge-type

3

optimization

minimizeB,djk,d1jml,d2kfg ‖Y −XB‖2F + λ
J∑

j=1

K∑
k=1

b2jk
djk

+ γ1
∑

em,l∈E1

w2(em,l)

J∑
j=1

(bjm − sign(rm,l)bjl)
2

d1jml

+ γ2
∑

ef,g∈E2

w2(ef,g)

K∑
k=1

(bfk − sign(rf,g)bgk)2

d2kfg
,

subject to∑
j,k

djk = 1,
∑

em,l∈E1,j

d1jml = 1,

∑
ef,g∈E2,k

d2kfg = 1, djk, d1jml, d2kfg ≥ 0.

This can be analytically solved via its Lagrangian form. For an initial value
ofB, we optimize over djk, d1jml, d2kfg by setting their corresponding deriva-
tives to zeros; hence we obtain

djk =
|bjk|∑

j′,k′ |bj′k′ |
,

d1jml =
w(em,l)|bjm − sign(rm,l)bjl|∑

em′,l′∈E1,j′
w(em′,l′)|bj′m′ − sign(rm′,l′)bj′l′ |

,

d2kfg =
w(ef,g)|bfk − sign(rf,g)bgk|∑

ef ′,g′∈E2,k′
w(ef ′,g′)|bf ′k′ − sign(rf ′,g′)bg′k′ |

.

4

Then conditioning on the current estimate of djk, d1jml, d2kfg, we optimize
over B. The solution of this minimization can be found as

bjk =
{ n∑

i=1

xij(yik −
∑
j′ 6=j

xij′bj′k)

+ γ1
∑

em,k∈E1

w2(em,k)
bjmsign(rm,k)

d1jmk
+ γ1

∑
ek,l∈E1

w2(ek,l)
bjlsign(rk,l)

d1jkl

+ γ2
∑

ef,j∈E2

w2(ef,j)
bfksign(rf,j)

d2kfj
+ γ2

∑
ej,g∈E2

w2(ej,g)
bgksign(rj,g)

d2kjg

}
/{ n∑

i=1

x2ij +
λ

djk

+ γ1
∑

em,k∈E1

w2(em,k)

d1jmk
+ γ1

∑
ek,l∈E1

w2(ek,l)

d1jkl

+ γ2
∑

ef,j∈E2

w2(ef,j)

d2kfj
+ γ2

∑
ej,g∈E2

w2(ej,g)

d2kjg

}
.

These two steps alternate until
∥∥B(t+1) −B(t)

∥∥
1
≤ ε for some small

ε > 0.
Tuning parameters λ, γ1, γ2 are determined by K-fold cross-validations

(CVs). Since an exhaustive search of the optimal triplet on a three-dimensional
lattice is computationally infeasible for large-scale multi-task learning prob-
lems, we adopt a gradient-descent approach to iteratively update (λ, γ1, γ2).
In particular, three line searches in the descent direction of minimizing the
current CV error are sequentially applied to each component in (λ, γ1, γ2)
while holding the other two components. The coordinate gradients for the
three components are approximated by their finite differences.

3 Features

3.1 Fast

The program is faster than its competitive methods such as subgradient
descent.

5

3.2 Scalable

The matlab library uses C/mex programs to accelerate computation and to
make it scalable. It has been heavily tested on matrices as large as 104×104.
See first several lines of each file for a detailed description.

4 Install

4.1 Preparation

Make sure the following things are done before installation:

1. You have a MATLAB software installed on your computer.

2. You have a C compiler that is compatible with your MATLAB ver-
sion. To see which compiler fits your MATLAB, visit http://www.

mathworks.com/support/sysreq/previous_releases.html

3. Your MATLAB is correctly configured to build MEX files. To do this,
run ”mex -setup” from the MATLAB command prompt and select a
compatible C compiler you would like to use to compile the code.

4.2 Installation

To install this library, first unzip and move all source codes (.m and .c files)
to a desired folder(make sure you have the rights to do this), for example,
/lib/MMT/. Then put the following commands in MATLAB:

cd /lib/MMT;
mex grouplasso CD.c;
mex mtlasso2G CD.c;

You are done and Let’s begin to enjoy the library!

5 Usage

5.1 Add MMT to path

Each time you open a new MATLAB session, run the following command
in MATLAB prompt to make sure the library is in the path so that you can
use it.

6

http://www.mathworks.com/support/sysreq/previous_releases.html
http://www.mathworks.com/support/sysreq/previous_releases.html

addpath(genpath('/lib/MMT/'));

5.2 A One-Station Experience

The file ”pilot.m” contains all typical uses of functions provided in the li-
brary. It first generate a synthetic dataset and then run the three multi-task
learning methods to estimate association matrix B, finally the results of all
three methods and the true association matrix are visualized in one figure.
To try it, just run

pilot

Figure 1: Figure by pilot.m

Above is a figure generated by ”pilot.m”. Here we begin to introduce usages
of each functions.

5.3 Run lasso

The lasso method has three required input (X, Y, lambda) and two optional
input (tol, max it), and ouputs estimated association matrix (B hat).

function B hat = lasso(X, Y, lambda, tol, max it)

7

% Input − X, observation matrix, size n by J
% Y, label matrix, size n by K
% lambda, ell 1 regularization parameter(>0)
% tol, convergence criterion
% max it, maximum iteration allowed
% Output − B hat, estimated coefficient matrix

5.4 Run multi-task lasso

The multi-task lasso method has the same input and output variables with
lasso.

function B = mtlasso(X, Y, lambda, tol, max it)

5.5 Run graph guided multi-task

The graph guided multi-task lasso has three required input (X, Y, lamb-
das) and four optional (G1, G2, tol, max it). Different from previous two
methods, graph guided multi-task has three regularization parameters, so
its lambdas is a length 3 vector. Also you can use any graph through G1 and
G2, both of which are a structure with G1.W(G2.W) be weights of edges,
G1.C(G2.C) is correlations on edges and G1.E(G2.E) indicate which two
nodes the edges connect to.

function B hat = mtlasso2G(X, Y, lambdas, G1, G2, tol, max it)
% Input − X, observation matrix, size n by J
% Y, label/task matrix, size n by K
% lambdas, a vector of three regularization parameters
% G1, information for the task graph
% G2, information for the feature graph
% tol, convergence criterion
% max it, maximum iteration allowed
% Output − B hat, estimated coefficient matrix

5.6 Cross-validation

A typical method to choose regularization parameters is cross-validation(CV).
Here the library provides a gradient descent based CV, the GDCV method
is implemented as a black box so you don’t need to care the details.

8

function [lambdas history] = GDCV(F, X, Y, lambdas, k, tol, ...
max it)

% Input − F, function handler to evaluate, e.g. lasso, mtlasso2G
% X, observation matrix, size n by J
% Y, label matrix, size n by K
% lambdas, initial values
% k, number of folds for cross−validation
% tol, allowed difference between two iterations, stop ...

otherwise
% max it, maximum number of iterations allowed
% Output − lambdas, optimization result
% history, trace histroy of parameters and errors

The last three input (k, tol, max it) are optional. Here the lambdas can be
vector of any size. history records trace of lambdas and CV errors.

5.7 Visualization

MATLAB has a spy function to visualize the sparsity pattern of a matirx,
but it only show whether one position is sparse. Here the library provides a
more conprehensive way to visualize a matrix.

function colorspy(M)
% Input − M, the matrix to visualize

6 Future direction

More methods for multi-task learning will be added to this library in the
near future, including the popular trace norm and max norm minimization
methods. Contact the author if you have any ideas, advices, or suggestions.
Thanks!

7 Reference

[1] X. Chen, X. Shi, X. Xu etc, A Two Graph Guided Multi-task Lasso
Approach for eQTL Mapping. Proceedings of AISTATS 2012, also Journal
of Machine Learning Research Volume 22.

9

	Multi-task Learning
	lasso
	multi-task lasso
	graph guided multi-task

	Algorithm
	Features
	Fast
	Scalable

	Install
	Preparation
	Installation

	Usage
	Add MMT to path
	A One-Station Experience
	Run lasso
	Run multi-task lasso
	Run graph guided multi-task
	Cross-validation
	Visualization

	Future direction
	Reference

