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Abstract

Orthogonal frequency division multiple access (OFDMA), multiple–input multiple–

output (MIMO), and base station (BS) cooperation are the core techniques for the

next generation wireless communication systems. As the communication systems

evolve, both service providers and users are demanding not only high data rates, but

also energy efficiency and data security. As a result, it is necessary to design novel

resource allocation algorithms that meet these new needs. This dissertation develops

four resource allocation algorithms which are tailored for different design goals and

communication environments.

For systems employing the combination of OFDMA and decode-and-forward (D-

F) relaying technologies, we propose a novel resource allocation algorithm for secure

communication. The proposed algorithm takes into account artificial noise genera-

tion to combat a passive multiple antenna eavesdropper and the effects of imperfect

channel state information at the transmitter (CSIT).

Subsequently, we investigate the energy efficiency of OFDMA systems which al-

so provide communication security. We formulate the resource allocation algorithm

design as a non-convex optimization problem. By exploiting the properties of frac-

tional programming, the considered non-convex optimization problem is transformed

to an equivalent convex optimization problem with a tractable solution, which can

be obtained with an iterative algorithm.

Thirdly, we study resource allocation for energy efficient communication in OFD-
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Abstract

MA downlink networks with a large number of transmit antennas. Our proposed

resource allocation algorithm takes into account the circuit power consumption, im-

perfect CSIT, a minimum data rate requirement, and a maximum tolerable channel

outage probability.

Lastly, we propose a resource allocation algorithm for energy efficient communi-

cation in OFDMA downlink networks with cooperative BSs. The resource allocation

algorithm design problem is formulated as a non-convex optimization problem which

takes into account the circuit power consumption, the limited backhaul capacity, and

the minimum required data rate for joint BS zero-forcing beamforming (ZFBF) trans-

mission. By using the concept of perturbation function, we show that the duality gap

in the considered system is always zero under some general conditions, despite the

non-convexity of the primal problem. Thus, an efficient closed-form power allocation

solution for maximization of the energy efficiency of data transmission is derived.
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Chapter 1

Introduction

Energy efficiency, high data rates, and security are the main driving forces for the

evolution of wireless communication systems. Traditionally, these requirements have

been fulfilled by increasing both the transmit power and the bandwidth. However,

nowadays the radio spectrum available for wireless services is extremely scarce and

universal frequency reuse is a new trend to accommodate the increasing number of

users. In other words, increasing the transmission bandwidth will not always be an

option in the future. On the other hand, power consumption in cellular networks is

not only a financial burden to the service providers, but also one of the main sources

of greenhouse gas emission. Besides, due to the universal frequency reuse, strong co-

channel interference puts system designers in a dilemma since increasing the transmit

power may not be beneficial to the overall system performance. As a consequence,

a better system design for utilizing the limited resources is needed. Orthogonal

frequency multiple access (OFDMA), multiple-input multiple-output (MIMO), and

base station (BS) cooperation are considered viable solutions to achieve the aforemen-

tioned objectives [1]-[10]. Hence, we will provide a brief overview of these techniques

in this chapter.

This chapter is organized as follows. In Sections 1.1 and 1.2, we briefly review

resource allocation and corresponding optimization frameworks for wireless commu-

nication systems, respectively. In Sections 1.3 and 1.4, we introduce the concept of

cooperative communication and energy efficiency, respectively. In Section 1.5, we
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provide a brief review of physical (PHY) layer security. The contributions made in

this thesis are summarized in Section 1.6, and the thesis organization is provided in

Section 1.7.

1.1 Resource Allocation and Scheduling for

Wireless Communication Systems

Resource allocation is the concept of making the best use of limited resources based

on the available information. The four main resources that are limited in the physical

layer are: power, bandwidth, time, and space (if multiple antennas are used). For

facilitating the resource allocation process, channel state information (CSI) and/or

queue state information (QSI) are needed at the transmitter(s) [11, 12]. There are

different forms of CSI, which include instantaneous perfect CSI, instantaneous imper-

fect CSI, and statistical CSI. The CSI in multiuser systems can be interpreted as an

indicator which is used to differentiate between users based to their channel qualities.

In practice, the CSI is usually obtained via feedback from users in frequency division

duplex (FDD) systems or via uplink pilot measurements in time division duplex (T-

DD) systems. In any case, some implicit costs are incurred in collecting the CSI. On

the other hand, the QSI indicates the availability of data and the delay requirements

of each user. In each scheduling slot, the resource allocator updates the resource

allocation policy1 to provide some quality of service (QoS) guarantees to the users

at the least possible cost. In fact, a QoS requirement usually acts as a constraint in

the resource allocation process which generally decreases the degrees of freedom in

resource allocation. For instance, a minimum data rate requirement for a particular
1The validity of each resource allocation policy depends on the coherence time of the considered

channel which is related to the carrier frequency and the speed the of user(s).
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user will result in a performance degradation of the overall system. This is because

the resource allocator is forced to allocate more resources to that user for satisfying

the data rate requirement, regardless of his/her possibly poor channel quality.

1.2 Resource Allocation Optimization Framework

In this section, we introduce some classic problem formulations used in the literature

for resource allocation. A typical optimization problem usually consists of a utility

function used as an objective function, a set of constraints, and a set of optimization

variables. The utility function quantifies an abstract concept and provides a tangible

performance metric, i.e., it maps the satisfaction of user(s) into a real number. On

the other hand, the set of constraints is used to confine a feasible solution set. In gen-

eral, the constraints are defined according to some physical limitations or basic QoS

requirements in the system. We will discuss the details in the following subsections.

1.2.1 Utility Function-Based Optimization

In each scheduling slot, the resource allocator selects the users for the next trans-

mission frame and determines their power and rate allocation, cf. Figure 1.1, based

on the information available at the scheduler such as the CSI [13, 14, 15]. Ideally, a

resource allocator should exploit both the information from the physical (PHY) layer

and that from the layers above the medium access control (MAC) layer in order to

achieve the best possible performance. In the following, we briefly discuss two utility

functions commonly used for resource allocation purpose.

Maximum system throughput resource allocation: In most wireless ap-

plications, the aggregate data rate of users is the most important figure of merit

for evaluation of the system performance from the service provider’s point of view
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Figure 1.1: Timing diagram for resource allocation and scheduling in an FDD system.

[16, 17]. Considering a system with K users, the corresponding utility function can

be expressed as

UM-Thp(R1, . . . , RK) =
K∑
k=1

Rk, (1.1)

where Rk is the instantaneous data rate of user k ∈ {1, . . . , K} in the current time

slot. It is often assumed that data rate Rk is given by Shannon’s channel capacity

equation due to its monotonicity and physical meaning.

Weighted aggregate throughput scheduler : Although the maximum through-

put scheduler results in the optimal utilization of the system resources from a system

throughput point of view, it does not take into account fairness in the resource allo-

cation process. Users with poor channel conditions may suffer from starvation since

they are rarely selected for transmission which is undesirable from the users’ point

of view. Therefore, the weighted throughput scheduler [18, 19, 20] was proposed to
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resolve the fairness issue. The corresponding utility function can be expressed as

UW-Thp(R1, . . . , RK) =
K∑
k=1

wkRk, (1.2)

where wk ≥ 0 are positive constants provided by the upper layers, which allow the

resource allocator to give different priorities to different users and to enforce certain

notions of fairness.

1.2.2 QoS Measure

The increasing demand for high data rate wireless network services imposes great

challenges on resource allocation optimization since operators are required to satisfy

diverse QoS requirements for different applications. Different QoS measures have to

be incorporated in the problem formulation in order to overcome these challenges.

While many different QoS measures have been considered in the literature, we discuss

here a few important ones which will be used in the next chapters.

Minimum data rate requirement: The behaviour of the resource allocator

depends highly on the objective function. In some situation, such as under the

framework of aggregate transmitted power minimization, a low data rate may be

the best option from a mathematical point of view. However, such a data rate

may be undesirable in practical systems since the basic required services cannot be

guaranteed. As a result, a minimum data rate requirement is usually imposed in the

problem formulation, whenever there is a trade-off between the objective function

and the system throughput [21, 22, 23].

Frame error rate (FER) and outage probability: At the PHY layer, the

bit error rate (BER) is usually considered as performance measure. However, the

FER is more relevant from the MAC layer perspective, especially if retransmission
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is taken into consideration. In general, the FER is hard to calculate analytically

and typically results in complicated expressions which are not useful for resource

allocation and scheduling design. However, in slow fading channels, if strong forward

error correction codes are used for error protection (such as e.g. turbo codes or low

density parity check codes), the outage probability is a good approximation for the

FER [24, 25]. This connection between the outage probability and the FER can be

exploited to arrive at a simple resource allocation algorithm.

1.2.3 Resource Allocation in OFDMA Systems

In this section, we review an advanced wireless communication technology - OFDMA.

OFDMA is already employed in several high speed wireless communication network

standards including IEEE 802.22 Wireless Regional Area Networks (WRANs), IEEE

802.16 Worldwide Interoperability for Microwave Access (WiMAX), and Long Term

Evolution (LTE). In OFDMA, a wide-band frequency spectrum is divided into many

orthogonal narrowband subcarriers [26, 27] and data streams from different users

are multiplexed on different subcarriers, cf. Figures 1.2 and 1.3, according to some

utility function such as (1.1) and (1.2). On the other hand, in an OFDMA system, the

fading coefficients of different subcarriers are likely independent for different users.

This phenomenon is known as multiuser diversity (MUD) [28]. As a result, maximum

system spectral efficiency can be achieved by selecting the best user for each subcarrier

and adapting the corresponding transmit power.

1.3 Cooperative Communication - Virtual MIMO

The degrees of freedom introduced by multiple antennas at the transmitters and re-

ceivers of wireless communication systems facilitate multiplexing gains and diversity
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Figure 1.4: A point-to-point MIMO communication system.

gains [28, 29]. A wireless point-to-point link with M transmit and N receive an-

tennas constitutes an M -by-N MIMO communication system, cf. Figure 1.4. The

ergodic capacity of an M -by-N MIMO fading channel increases practically linear-

ly with min{M,N} provided that the fading meets certain mild conditions [29, 30].

Hence, it is not surprising that MIMO has attracted a lot of research interest over the

past decade since it enables significant performance and throughput gains without

requiring extra transmit power and bandwidth. However, limitations on the number

of antennas that a wireless device is able to support as well as the significant signal

processing power and complexity required in MIMO transceivers limit the gains that

can be achieved in practice.

To overcome the limitations of traditional MIMO, the concept of cooperative com-

munication has recently been proposed for wireless networks such as fixed infrastruc-

ture cellular networks and wireless ad hoc networks. The basic idea of cooperative

communication is that the single antenna terminals of a multiuser system can share

their antennas and create a virtual MIMO communication system. Thereby, three

different types of cooperation may be distinguished, namely, user cooperation [31]-
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Figure 1.5: The upper half of the figure represents a one-way DF half-duplex relaying
system and the lower half illustrates a system with BS cooperation.

[33], BS cooperation [34]-[37], and relaying [38]-[43]. BS cooperation and relaying are

illustrated in Figure 1.5. There are different pros and cons for these three coopera-

tion schemes. Theoretically, user cooperation and BS cooperation are able to provide

huge performance gains, when compared with non-cooperative networks. However,

user cooperation requires sophisticated signaling control algorithms and BS cooper-

ation requires a strong backhaul connection for information exchange. On the other

hand, cooperative relaying with dedicated relays requires significantly less signaling

overhead and allows for low cost implementation. Nevertheless, a substantial spectral

efficiency loss is inherent to relaying systems due to the half-duplex constraint2.
2In general, a transceiver is unable to transmit and receive at the same time and frequency due

to strong self-interference. A simple solution is to separate the uplink and downlink channels into
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1.4 Energy Efficient Communication

Recently, green communication has received much attention in industry, academia,

and government. In fact, information and communication technology (ICT) devices

consume roughly 3% of the world wide energy supply and are responsible for 2% of

the global carbon dioxide (CO2) emission [44, 45]. The BSs and backhaul networks of

cellular communication networks consume approximately 60 billion kWh per year and

produce over a hundred million tons of CO2 world wide. These figures are projected

to double by the year 2020 if no further actions are taken. As a result, differen-

t stakeholders are cooperating with each other for reducing the CO2 emissions of

communication networks. For example, the European Commission has initiated a re-

search project, Energy Aware Radio and neTwork tecHnologies (EARTH) [46], which

investigates both the theoretical and practical achievable energy efficiency limits; the

target is to enhance the energy efficiency of mobile systems by at least a factor of

50% compared to the current systems.

In the literature, a large amount of work has been devoted to resource allocation

problems which aim to strike a balance between energy consumption and performance

in terms of spectral efficiency (bit/s/Hz) of wireless systems. Some novel approaches

developed for the physical layer, such as adaptive modulation and power control, have

been successfully implemented in practical systems, e.g. the third generation wide-

band code division multiple access system. Energy efficiency (bit/Joule) becomes a

new system performance measure when environmental issues are taken into consid-

erations. This may result in a dilemma for system designers as energy efficiency and

spectral efficiency are conflicting design goals. In the past decades, energy efficiency

has been studied from the information-theoretic perspective [47]-[49]. In an additive

orthogonal signaling dimensions which is known as half-duplex.
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white Gaussian noise (AWGN) channel, the maximum channel capacity C (bit/s) is

given by Shannon’s capacity formula:

C = W log2

(
1 +

P |h|2

N0W

)
, (1.3)

where P is the transmit power, W is the system bandwidth, N0 is the noise power

spectral density, and |h|2 is the instantaneous channel gain between the transmitter

and receiver. The traditional way to define energy efficiency (bit/Joule) is

ηEE =
W log2

(
1 + P |h|2

N0W

)
P

=
2C

N0(22C − 1)
. (1.4)

Observe from (1.4) that ηEE is a monotonic decreasing function of C, and hence the

maximum energy efficiency η∗EE occurs when C → 0 or P → 0 which yields

η∗EE = lim
C→0

2C

N0(22C − 1)
=

|h|2

ln(2)N0

. (1.5)

Figure 1.6(a) illustrates the monotonicity of energy efficiency in a single carrier sys-

tem. However, in practice, there is always a static circuit power consumption, PC ,

associated with the radiated power in the radio frequency (RF) [50, 51, 52]. Tak-

ing the circuit power consumption into consideration, the energy efficiency can be

rewritten as

ηEE =
W log2

(
1 + P |h|2

N0W

)
P + PC

. (1.6)

Interestingly, the introduction of PC transforms the energy efficiency-versus-SNR

curve from a monotonic decreasing function to a function with a bell shape with
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Figure 1.6: An illustration of energy efficiency (EE) versus signal-to-noise ratio (S-
NR) in Rayleigh fading channel. PC = 10 dB for the system with circuit power
consumption consideration.

respect to SNR, cf. Figure 1.6(b). In other words, transmission with an arbitrarily

low power, i.e., P → 0, may no longer be the best option for maximizing the energy
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efficiency for the case of PC > 0. As a result, there is a trade-off between the total

transmitted power and the maximum energy efficiency which should be taken into

account for resource allocation algorithm design.

1.5 PHY Layer Security

Communication via different media has become an indispensable part of our daily life

and security is an important issue in all communication applications. Along with the

rapid development of wireless communication networks, wireless security becomes a

critical concern [53, 54]. In a wireless network, eavesdropping is facilitated by the

broadcast nature of the wireless medium. Traditionally, secrecy communication has

relied on cryptographic encryption algorithms adopted in the application layer which

requires that some form of information (key) has been shared between the legitimate

entities [55]. Besides, these algorithms tend to ignore the behavior of the communi-

cation channels and assume error free communication between the legitimate entities.

However, for many wireless scenarios, cryptographic encryption is impossible due to a

lack of trusted third party administrators for key distribution and/or a prohibitively

high complexity in messages decryption. Furthermore, error free communication can-

not be always guaranteed in non-deterministic wireless channels [56, 57]. The special

characteristics of wireless channels require innovative designs to ensure wireless secu-

rity. In response to the shortcomings of cryptographic encryption, a natural question

is: Is it possible to provide perfectly secure communication by taking advantage of

the characteristics of PHY communication channels? Indeed, this form of security

is referred to as information-theoretic security/PHY layer security [58]-[61] and was

first studied by Wyner [62] for the classic wire-tap channel, cf. Figure 1.7. Wyner

showed that a source (Alice) and a destination (Bob) can exchange perfectly secure
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Figure 1.7: A general wire-tap channel

messages with a non-zero rate if the desired receiver enjoys better channel conditions

than the passive eavesdropper (Eve). Unfortunately, this condition may not hold for

wireless fading channels. In particular, Eve has a better average channel gain than

Bob if she is closer to the transmitter than Bob. As a result, perfectly secure com-

munication seems to be impossible under such scenario. Nevertheless, by exploiting

the extra degrees of freedom in multiple antennas systems, secure communication is

still possible if artificial noise is injected, cf. Chapter 2.

1.6 Contributions of the Thesis

This thesis considers energy efficient and secure resource allocation algorithm designs

for cellular systems that may find application in several current or upcoming wireless

communication standards. The main contributions of this thesis are listed in the

following.

1. We propose a resource allocation and scheduling algorithm for OFDMA DF

relaying systems, where a multiple antenna eavesdropper, artificial noise gener-
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ation for secure communication, and the negative effect of imperfect CSIT are

taken into consideration. An efficient iterative and distributed resource alloca-

tion algorithm with closed-form power, secrecy data rate, packet data rate, and

subcarrier allocation is derived by dual decomposition and requires only local

CSI at each relay. Simulation results not only show that the performance of the

proposed algorithm converges to the optimal performance within a small num-

ber of iterations, but also demonstrate the achievable secrecy outage capacity

when the eavesdropper is closer to the BS/relay than the desired users.

2. We formulate the resource allocation for energy efficient OFDMA systems as a

mixed non-convex and combinatorial optimization problem, in which a multi-

ple antenna eavesdropper, dynamic circuit power consumption, artificial noise

injection for secure communication, and secrecy data rate requirements were

taken into consideration. By exploiting the properties of fractional program-

ming, the considered problem is transformed to an equivalent convex problem

with a tractable solution. An efficient iterative resource allocation algorithm

with closed-form power, secrecy data rate, and subcarrier allocation is derived

by dual decomposition for maximization of the number of securely delivered

bit-per-Joule. Simulation results demonstrate the fast convergence of the pro-

posed algorithm in achieving the maximum energy efficiency of the considered

system in the presence of a multiple antenna eavesdropper.

3. We propose an iterative resource allocation algorithm which maximizes the

energy efficiency of an OFDMA communication system with a large number of

BS antennas. Simulation results not only show that the proposed algorithm

converges to the optimal solution within a small number of iterations, but

demonstrate also the trade-off between energy efficiency and the number of
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transmit antennas: The use of a large number of antennas is always beneficial

for the system outage capacity, even if the CSIT is imperfect. However, an

exceedingly large number of antennas may not be a cost effective solution for

improving the system performance, at least not from an energy efficiency point

of view.

4. We propose an iterative resource allocation algorithm for energy efficiency max-

imization in multi-cell OFDMA networks with joint BS zero-forcing beamform-

ing (ZFBF) transmission. Although the considered problem is a non-convex

and combinatorial optimization problem, we demonstrate that when the num-

ber of subcarriers is sufficiently large, the duality gap is practically zero despite

the non-convexity of the primal problem. As a result, an efficient closed-form

power allocation is obtained in each iteration via dual decomposition. Simula-

tion results show that the performance gain due to joint BS transmission can

be limited by the backhaul capacity. Yet, an exceeding large backhaul capacity

may not enhance the system throughput since the performance bottleneck can

also be the wireless link capacity.

1.7 Organization of the Thesis

In the following, we provide a brief overview of the remainder of this thesis.

In Chapter 2, we formulate an optimization problem for secure resource allocation

and scheduling in OFDMA half-duplex DF relay-assisted networks. Our problem

formulation takes into account artificial noise generation to combat a passive multiple

antenna eavesdropper and the effects of imperfect CSIT in slow fading. The packet

data rate, secrecy data rate, power, and subcarrier allocation policies are optimized
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to maximize the average secrecy outage capacity (bit/s/Hz securely and successfully

delivered to the users via relays). Simulation results illustrate that our proposed

distributed iterative algorithm guarantees a non-zero secrecy data rate for given target

secrecy outage and channel outage probability requirements.

In Chapter 3, resource allocation for energy efficient secure communication in an

OFDMA downlink network is studied. The considered problem is modeled as a non-

convex optimization problem which takes into account the sum rate dependent circuit

power consumption, a multiple antenna eavesdropper, artificial noise generation, and

different QoS requirements including a minimum required secrecy sum rate and a

maximum tolerable secrecy outage probability. The power, secrecy data rate, and

subcarrier allocation policies are optimized for maximization of the energy efficiency

of secure data transmission (bit/Joule securely delivered to the users). The considered

non-convex optimization problem is transformed to a convex optimization problem

by exploiting the properties of fractional programming which results in an efficient

iterative resource allocation algorithm. In each iteration, the transformed problem is

solved by using dual decomposition. Simulation results illustrate that the proposed

iterative resource allocation algorithm maximizes the system energy efficiency and

guarantees a non-zero secrecy data rate for the desired users within a small number

of iterations.

In Chapter 4, resource allocation for energy efficient communication in an OFD-

MA downlink network with a large number of transmit antennas is studied. The

considered problem is modeled as a non-convex optimization problem which takes

into account the circuit power consumption, imperfect CSIT, and different QoS re-

quirements including a minimum required data rate and a maximum tolerable channel

outage probability. The power allocation, data rate adaptation, antenna allocation,

17
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and subcarrier allocation policies are optimized for maximization of the energy effi-

ciency of data transmission (bit/Joule delivered to the users) via an iterative algo-

rithm. Simulation results illustrate the fast convergence of the proposed algorithm

and demonstrate the trade-off between energy efficiency and the number of transmit

antennas.

In Chapter 5, we study resource allocation for energy efficient communication

in multi-cell OFDMA downlink networks with cooperative BSs. We formulate the

resource allocation problem as a non-convex optimization problem which takes into

account the circuit power consumption, the limited backhaul capacity, and the mini-

mum required data rate for joint BS ZFBF transmission. By exploiting the properties

of fractional programming, the considered non-convex optimization problem in frac-

tional form is transformed into an equivalent optimization problem in subtractive for-

m, which enables the derivation of an efficient iterative resource allocation algorithm.

In each iteration, a low complexity suboptimal semi-orthogonal user selection policy

is computed. Besides, by using the concept of perturbation function, we show that

the duality gap of the resulting power allocation problem is zero under some general

conditions, despite the non-convexity of the primal problem. Thus, dual decomposi-

tion can be used in each iteration to derive an efficient closed-form power allocation

solution for maximization of the energy efficiency of data transmission (bit/Joule

delivered to the users). Simulations are used to unveil the trade-off between energy

efficiency, network capacity, and backhaul capacity.

Finally, Chapter 6 summarizes the contributions of this thesis and outlines areas

of future research.

Appendix A summarizes some tools and theories from convex optimization which

used frequently in the thesis. Appendices B - G contain the proofs of the propositions,
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claims, lemmas, and theorems used in this thesis.
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Chapter 2

Secure Resource Allocation and

Scheduling for OFDMA

Decode-and-Forward Relay Networks

2.1 Introduction

Recently, a large amount of work has been devoted to information-theoretic PHY

layer security [62]-[72], as a complement to the traditional cryptographic encryption

adopted in the application layer. The pioneering work on PHY layer security by

Wyner [62] showed that a source and a destination can exchange perfectly secure

messages with a non-zero rate if the desired receiver enjoys better channel condi-

tions than the passive eavesdropper(s). In [63], [64], and [65], resource allocation

in multi-carrier systems with PHY layer security considerations was studied for the

case of a single-user system, a two-user system, and a multi-user system, respectively.

On the other hand, power allocation for systems employing cooperative jamming en-

abled by amplify-and-forward (AF) and DF relays was investigated in [66] and [67],

respectively. In these works, the CSI of the eavesdroppers is assumed to be known

at the BS such that secure communication can be guaranteed. Yet, eavesdroppers

are usually passive and silent in order to hide their existence. Thus, the CSI of the
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eavesdroppers cannot be measured at the BS by estimating handshaking signals or

be obtained via feedback from the eavesdroppers. On the other hand, secure commu-

nication systems employing multiple antenna have been proposed for the case where

the eavesdropper’s CSI is not available. By exploiting the extra degrees of freedom

in a multiple antennas system, artificial noise or interference is injected into the null

space of the desired users to degrade the channels of the eavesdroppers. In [68] and

[69], the authors studied the power allocation problem for maximizing the ergodic

secrecy capacity in single-user single-carrier systems with artificial noise generation

assuming the CSI of the eavesdropper is perfectly known at the BS. However, the

assumption of ergodic channels cannot be justified for delay sensitive applications in

practice since the transmitted packets of these applications experience quasi-static

fading. Hence, a secrecy outage [70, Chapter 5] occurs whenever the scheduled se-

crecy data rate exceeds the secrecy capacity between the BS and the eavesdroppers,

which introduces a QoS concern for secrecy. In [71] and [72], under the assumption of

perfect CSI of the desired users, the authors proposed resource allocation algorithm-

s with secrecy QoS consideration in multi-carrier single-hop and two-hop systems,

respectively. Yet, the CSI of the desired users may be outdated at the transmitter

even if the users are moving with pedestrian speeds. The imperfect CSIT introduces

two kinds of performance degradation which have not been taken into account in

[63]-[72]. First, in quasi-static fading without perfect CSIT, the transmitted packet

is corrupted whenever the transmit data rate exceeds the channel capacity between

the active legitimate transceivers even of channel capacity achieving codes are used

for error protection, i.e., a channel outage occurs [28, Chapter 5.4]. Second, with

imperfect user CSIT, the artificial noise not only interferes the eavesdropper but al-

so the desired users since their null space information is inaccurate. Therefore, in
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Mobile

Base Station
Passive eavesdropper

Relay

Relay

Relay

Mobile

MobileMobile

Mobile

Mobile

Mobile

Mobile Mobile Mobile

Figure 2.1: An illustration of a downlink OFDMA DF relay network. There are one
BS and M = 3 DF relays with NT = 4 antennas, K = 10 desired users equipped
with a single antenna, and one eavesdropper with NE = 2 antennas. For an effective
eavesdropping, the eavesdropper chooses a location closer to either the BS or a relay
than all the desired users.

this chapter, a distributed resource allocation algorithm for OFDMA DF relay net-

works is proposed which takes into account secrecy outage, channel outage, and the

potentially negative effects of artificial noise generation.

2.2 OFDMA Downlink Network Model

2.2.1 Channel Model

We consider a downlink OFDMA network which consists of a BS with NT antennas,

M DF relays with NT antennas each, an eavesdropper3 with NE antennas, and K

mobile users equipped with a single antenna, cf. Figure 2.1. A single cell with two

ring-shaped boundary regions is studied. The region between the inner boundary

and the outer boundary is divided into M sectors of equal size as shown in Figure

2.1 and each user is assigned to only one relay according to some predefined criteria
3An eavesdropper with NE antennas is equivalent to multiple eavesdroppers with a total of NE

antennas which are connected to a joint processing unit.
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such as average SNR. Users in all sectors are competing for resources with each other.

We assume that there is no direct transmission between the BS and the mobile users

due to heavy blockage and long distance transmission. We also assume that the

resource allocation for relay assisted users (located between the inner and the outer

boundaries) and non-relay assisted users (located inside the inner boundary) is done

separately. Both the BS and the relays adopt MIMO-beamforming (BF) to enhance

the system performance. We assume that NT > NE to enable secure communication.

The eavesdropper is passive and its goal is to decode the information transmitted by

the BS without causing interference to the communication channels.

The impulse responses of all channels are assumed to be time-invariant (slow

fading). We consider an OFDMA DF relay assisted system with nF subcarriers. The

received symbols in the first time slot at relay m ∈ {1, . . . ,M} for user k ∈ {1, . . . , K}

and the eavesdropper on subcarrier i ∈ {1, . . . , nF} are given by, respectively,

yBRm [i] = HBRm [i]xk[i] + nRm [i] and (2.1)

yBE[i] = GBE[i]xk[i] + e1[i], (2.2)

where xk[i] ∈ CNT×1 denotes the transmitted symbol vector. HBRm [i] ∈ CNT×NT

denotes the channel matrix between the BS and relay m on subcarrier i and GBE[i] ∈

CNE×NT is the channel matrix between the BS and the eavesdropper on subcarrier i.

Both variables, HBRm [i] and GBE[i], include the effects of path loss and multipath

fading. nRm [i] ∈ CNT×1 and e1[i] ∈ CNE×1 are the AWGN in subcarrier i at relay m

and the eavesdropper in the first time slot, respectively. Each entry in both vectors

has distribution CN (0, N0), where N0 is the noise variance. In the second time slot,

relay m decodes message xk[i] and re-encodes the message as qRm,k[i] ∈ CNT×1. Then,

relay m forwards the re-encoded message qRm,k[i] to user k. Therefore, the signals
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received at user k and the eavesdropper on subcarrier i from relay m are given by,

respectively,

yRm,k[i] = hRm,k[i]qRm,k[i] + nk[i] and (2.3)

yRm,E[i] = GRm,E[i]qRm,k[i] + e2[i]. (2.4)

hRm,k[i] ∈ C1×NT and GRm,E[i] ∈ CNE×NT denote the channel matrices from relay m

to users k and from relay m to the eavesdropper on subcarrier i, respectively. nk[i] ∈

C1×1 and e2[i] ∈ CNE×1 are the AWGN in subcarrier i at user k and the eavesdropper

in the second time slot, respectively. For the sake of notational simplicity and without

loss of generality, a normalized noise variance of N0 = 1 is assumed for all receivers

in the following.

2.2.2 Channel State Information

The resource allocation and scheduling problem presented in the next section can

be solved either centrally at the BS or in a distributed fashion. For the centralized

solution, the BS requires the CSI of all BS-to-relay and relay-to-user links at the

beginning of each scheduling slot. In contrast, for the distributed solution the relays

only require the CSI of their own BS-to-relay and relay-to-user links, whereas the BS

does not need any CSI. We assume a FDD system where the CSI of the relay-to-

user links is obtained through feedback from the users to the relays at the beginning

of each scheduling slot, while the CSI of the BS-to-relay links can be obtained at

the relays either in the handshaking phase or from a previous transmission. In the

following, since path loss is a slowly varying random process which changes on the

order of seconds, we assume that the path loss can be estimated perfectly. For the
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multipath fading, we take into account the different natures of the BS-to-relay and

the relay-to-user links. In particular, since both the BS and the relays are static,

the BS-to-relay links are assumed to be time-invariant. Thus, the BS-to-relay fading

gains HBRm [i], m ∈ {1, . . . ,M}, i ∈ {1, . . . , nF}, can be reliably estimated at the

relays with negligible estimation error. Therefore, we can assume perfect CSIT for

the BS-to-relay links. On the other hand, although we also assume that the users can

obtain perfect estimates of the relay-to-user fading gains hRm,k[i], m ∈ {1, . . . ,M},

k ∈ {1, . . . , K} for signal detection purpose, the corresponding CSI may be outdated

at the relays (for the distributed solution) and at the BS (for the centralized solution)

because of the mobility of the users and the feedback delay. To capture this effect,

we model the multipath fading CSIT of the link between user k and relay m on

subcarrier i as

hRm,k[i] = ĥRm,k[i] + ∆hRm,k[i], (2.5)

where ĥRm,k[i] and ∆hRm,k[i] denote, respectively, the estimated CSI vector and the

CSIT error vector. ĥRm,k[i] and ∆hRm,k[i] are Gaussian random vectors and each

vector has independent and identically distributed (i.i.d.) elements. Besides, the

elements of vectors hRm,k[i], ĥRm,k[i], and ∆hRm,k[i] have zero means and variance

σ2
hRm,k

, σ2
hRm,k

− σ2
e , and σ2

e , respectively. Assuming a minimum mean square error

(MMSE) estimator, the CSI error vector and the actual CSI vector are mutually

uncorrelated [73, p.177].

On the other hand, the CSI of the eavesdropper is unavailable at both the BS

and the relays. Thus, in order to secure the desired wireless communication links,

artificial noise signals are generated at both the BS and the relays to degrade the

channels between the BS/relays and the eavesdropper.
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2.2.3 Artificial Noise Generation

The BS and relay m choose xk[i] and qRm,k[i] as the linear combination of the infor-

mation bearing signal and an artificial noise signal which can be presented as

xk[i] = bBRm,k[i]uk[i]
√
αBRm,k[i]PBRm,k[i]︸ ︷︷ ︸

Desired Signal

+ VBRm [i]v[i]︸ ︷︷ ︸
Artificial Noise

and (2.6)

qRm,k[i] = r̂Rm,k[i]uk[i]
√
αRm,k[i]PRm,k[i]︸ ︷︷ ︸

Desired Signal

+ WRm,k[i]w[i]︸ ︷︷ ︸
Artificial Noise

, (2.7)

respectively. uk[i] ∈ C1×1 is the information bearing signal, v[i] ∈ CNT−1×1 and w[i] ∈

CNT−1×1 are artificial noise vectors whose elements are i.i.d. complex Gaussian ran-

dom variables with variance σ2
v [i] and σ2

w[i], respectively. Since HBRm [i] and ĥRm,k[i]

are known at the BS and relay m, respectively, MIMO-BF can be used to maximize

the received SNR ratio at the desired receivers. The beamforming vectors adopted

at the BS and relay m, i.e, bBRm,k[i] ∈ CNT×1 and r̂Rm,k[i] ∈ CNT×1, are chosen to

be the eigenvectors corresponding to the maximum eigenvalue of H†
BRm

[i]HBRm [i]

and ĥ†
Rm,k[i]ĥRm,k[i], respectively. Furthermore, we define two orthogonal bases,

VBRm [i] ∈ CNT×NT−1 and WRm,k[i] ∈ CNT×NT−1, by using the remaining eigenvectors

of H†
BRm

[i]HBRm [i] and ĥ†
Rm,k[i]ĥRm,k[i], respectively. PBRm,k[i] represents the trans-

mit power at the BS on subcarrier i to relay m for serving user k. PRm,k[i] denotes

the transmit power at relay m on subcarrier i to user k. Variables 0 < αBRm,k[i] ≤ 1

and 0 < αRm,k[i] ≤ 1 are the fractions of power devoted to the information bearing

signal at the BS and relay m on subcarrier i for user k, respectively. Since the CSI of

the eavesdropper is unavailable at both the BS and the relays, the remaining powers

at the BS and relay m on subcarrier i are equally distributed across NT − 1 dimen-

sions for generating the artificial noises with variances σ2
v [i] =

(1−αBRm,k[i])PBRm,k[i]

NT−1
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and σ2
w[i] =

(1−αRm,k[i])PRm,k[i]

NT−1
, respectively. Hence, the received signals in (2.1) can

be rewritten as

yBRm [i] = HBRm [i]
(
bBRm,k[i]uk[i]

√
αBRm,k[i]PBRm,k[i]+VBRm [i]v[i]

)
+nRm [i],(2.8)

yBE[i] = GBE[i]
(
bBRm,k[i]uk[i]

√
αBRm,k[i]PBRm,k[i]+VBRm [i]v[i]

)
+e1[i]. (2.9)

In the second time slot, relay m eliminates the artificial noise by pre-processing the

received signal as

ỹBRm [i] = (HBRm [i]bBRm,k[i])
†yBRm [i]

=
√

αBRm,k[i]PBRm,k[i]λmaxBRm
[i]uk[i] + ñRm [i], (2.10)

where ñRm [i] = b†
BRm,k[i]H

†
BRm

[i]nRm [i] is AWGN which has the same distribution

as nRm [i] and λmaxBRm
[i] is the maximum eigenvalue of H†

BRm
[i]HBRm [i]. It can be

observed that the artificial noise signal generated at the BS does not interfere with

the desired signal at relay m due to the adopted pre-processing. On the other hand,

the signal received at user k and the eavesdropper on subcarrier i from relay m in

(2.3) and can be rewritten as

yRm,k[i] = hRm,k[i]
(
r̂Rm,k[i]uk[i]

√
αRm,k[i]PRm,k[i] +WRm,k[i]w[i]

)
+ nk[i] and(2.11)

yRm,E[i] = GRm,E[i]
(
r̂Rm,k[i]uk[i]

√
αRm,k[i]PRm,k[i] +WRm,k[i]w[i]

)
+ e2[i], (2.12)

respectively. Note that due to the imperfect CSIT at relay m, there is an artificial

noise leakage from the null space to the range space of user k on subcarrier i. The

negative effects of artificial noise generation with imperfect CSIT are demonstrated

in the next section via channel capacity equations and the concept of outages.
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2.3 Resource Allocation and Scheduling

2.3.1 Instantaneous Channel Capacity, Channel Outage, and

Secrecy Outage

Since we assume perfect CSIR, the instantaneous channel capacity between the BS

and relay m on subcarrier i is given by

CBRm,k[i] = log2

(
1 + αBRm,k[i]PBRm,k[i]λmaxBRm

[i]
)
. (2.13)

On the other hand, user k first estimates the effective channel hRm,k[i]̂rRm,k[i] for

coherent detection. Hence, the instantaneous channel capacity between relay m and

users k on subcarrier i is obtained as

CRm,k[i] = log2

(
1 +

αRm,k[i]PRm,k[i]∥hRm,k[i]̂rRm,k[i]∥2

1 + (1− αRm,k)PRm,k[i]σ2
e

)
. (2.14)

Thus, the channel capacity between the BS and user k via relay m on subcarrier i is

given by

Cm,k[i] =
1

2
min

{
CBRm,k[i], CRm,k[i]

}
, (2.15)

where the pre-log factor 1
2

is due to the two channel uses required for transmitting

one message.

In practice, the eavesdropper has to be close to either the BS or one of the relays

for effective eavesdropping. Thus, one of the signals received in the two time slots will

be much stronger than the other one making selection combining of the two received

signals at the eavesdropper near optimal. Besides, since we assume the BS and the
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relays do not have any CSI of the eavesdropper, we follow the approach in [68, 69] and

consider a capacity upper bound for the eavesdropper for resource allocation purposes

assuming the absence of thermal noise at the eavesdropper receiver. Therefore, the

capacity of the eavesdropper is upper bounded4 by

Cm,E[i] =
1

2
log2

(
1 + max{ΓB,E[i],ΓRm,E[i]}

)
, (2.16)

ΓB,E[i] =
αBRm,k[i](NT − 1)

1− αBRm,k[i]
g†
1[i](G1[i]G

†
1[i])

−1g1[i], (2.17)

ΓRm,E[i] =
αRm,k[i](NT − 1)

1− αRm,k[i]
g†
2[i](G2[i]G

†
2[i])

−1g2[i], (2.18)

where g1[i] = GBE[i]bBRm,k[i], G1[i] = GBE[i]VBRm [i], g2[i] = GRm,E[i]qRm,k[i], and

G2[i] = GRm,E[i]WRm,k[i]. We note that the proposed resource allocation algorithm

(see next section) can also be applied if other combining schemes such as optimal

maximum ratio combining (MRC) are used. (We substitute F−1
zc (·, i) in (2.22) by

the inverse cumulative distribution function (CDF) of the resultant MRC SIR.) The

maximum achievable secrecy data rate Rsec
m,k[i] of a perfectly secure communication

between the BS and user k on subcarrier i via relay m with outage consideration can

be expressed as

Rsec
m,k[i] × 1(Rdata

m,k [i] < Cm,k[i])× 1(Rdata
m,k [i]− Cm,E[i] > Rsec

m,k[i]). (2.19)

Rdata
m,k [i] denotes the actual packet data rate transmitted from the BS to user k via relay

m. The relationships between the variables in (2.19) are illustrated in Figure 2.2. In

the considered system, there are two types of outage measures. The first one is known

as channel outage [28, Section 5.4] which corresponds to the first indicator function in
4The upper bound is referring to the individual equations in (2.17) and (2.18) for which the

absence of thermal noise at the eavesdropper is assumed.
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Figure 2.2: An illustration of the relationship between packet data rate Rdata
m,k [i],

secrecy data rate Rsec
m,k[i], the capacity of the user channel, Cm,k[i], and the capacity

of the eavesdropper channel, Cm,E[i], for four possible cases.

(2.19). It occurs whenever the transmit data rate exceeds the instantaneous channel

capacity between two desired transceivers, i.e., Rdata
m,k [i] > Cm,k[i]. If Rdata

m,k [i] > Cm,k[i],

any transmitted packet is corrupted even if a channel capacity achieving code is

applied for error protection. Indeed, channel outage can be avoided by data rate

adaptation when the CSIT of the desired user channel can be perfectly obtained.

Yet, highly accurate CSIT is difficult to obtain if the users are not static. The

second type of outage is secrecy outage [70, Chapter 5] which corresponds to the

second indicator function in (2.19). If the CSI of all links (including the links of the

eavesdropper) are available at the BS, the resource allocator can set the target secrecy

data rate Rsec
m,k[i] to match the channel conditions [68], i.e., Rsec

m,k[i] < Rdata
m,k [i]−Cm,E[i]

and Rdata
m,k [i] > Cm,E[i], such that a packet with secrecy data rate Rsec

m,k[i] and data

rate Rdata
m,k [i] can be securely delivered and successfully decoded by the desired user.

However, here the eavesdropper is assumed to be passive and its CSI is not available

at the BS, i.e., Cm,E[i] is a random variable for the BS. Hence, a secrecy outage

occurs whenever the target secrecy data rate Rsec
m,k[i] exceeds the secrecy capacity,
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i.e., Rdata
m,k [i]− Cm,E[i].

In order to model the unreliability and the insecurity due to both channel outage

and secrecy outage, respectively, we consider the performance in terms of the average

secrecy outage capacity, which is defined as the total average bit/s/Hz securely and

successfully delivered to the K mobile users and is given by

Usec(P ,R,S)

=
M∑

m=1

∑
k∈Um

wk

nF∑
i=1

sm,k[i]

nF

×E
{
Rsec

m,k[i]×1
(
Rdata

m,k [i]− Cm,E[i] > Rsec
m,k[i]

)
1
(
Rdata

m,k [i] < Cm,k[i]
)}

=
M∑

m=1

∑
k∈Um

wk

nF∑
i=1

sm,k[i]

nF

{
Rsec

m,k[i]× Pr
[
Rdata

m,k [i]− Cm,E[i] > Rsec
m,k[i]

∣∣∣∆m,k[i]
]

× Pr
[
Rdata

m,k [i] < Cm,k[i]
∣∣∣∆m,k[i]

]}
. (2.20)

Here, P ,R, and S are the power, data rate (secrecy data rate and packet data rate),

and subcarrier allocation policies, respectively. Um denotes the set of users associated

with relay m. sm,k[i] ∈ {0, 1} is the subcarrier allocation indicator. wk is a positive

constant provided by the upper layers, which allows the resource allocator to give

different priorities to different users and to enforce certain notions of fairness. ∆m,k[i]

represents a pair of CSI vectors, namely the perfect CSI vector of the BS-to-relay m

link and the imperfect CSI vector of the relay m-to-user k channel on subcarrier i.

2.3.2 Optimization Problem Formulation

The optimal power allocation policy, P∗, data rate (secrecy data rate and packet data

rate) allocation policy, R∗, and subcarrier allocation policy, S∗, can be obtained from

Problem 2.1 (Optimization Problem Formulation)
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arg max
P,R,S,αBRm,k[i],αRm,k[i]

Usec(P ,R,S)

s.t. C1:Pr
[
Rdata

m,k [i] ≥ Cm,k[i]
∣∣∣∆m,k[i]

]
≤ ε, ∀k, i,

C2:Pr
[
Rsec

m,k[i] ≥ Rdata
m,k [i]− Cm,E[i]

∣∣∣∆m,k[i]
]
≤ δ,∀k, i,

C3:
M∑

m=1

∑
k∈Um

nF∑
i=1

PBRm,k[i]sm,k[i] ≤ PBT
,

C4:
∑
k∈Um

nF∑
i=1

PRm,k[i]sm,k[i] ≤ PRT
, ∀m,

C5:
M∑

m=1

∑
k∈Um

sm,k[i] ≤ 1, ∀i,

C6: sm,k[i] = {0, 1}, ∀i, k,m,

C7:PBRm,k[i], PRm,k[i] ≥ 0, ∀i, k,m,

C8: 0 < αBRm,k[i], αRm,k[i] ≤ 1, ∀i, k,m. (2.21)

Here, C1 represents the required data rate outage probability due to the imperfec-

t CSI of the relay-to-user channels. In C2, δ denotes the required secrecy outage

probability in the system. Note that C1 and C2 represent two QoS metrics for com-

munication reliability and communication security, respectively. C3 (C4) represents

the individual power constraint for the BS (relays) with maximum transmit power

PBT
(PRT

). Constraints C5 and C6 are imposed to guarantee that each subcarrier

will be used by one user only. C7 and C8 are the boundary constraints of the power

allocation variables.

Remark 2.1 The optimal amount of artificial noise strikes a balance between the

channel capacity and the secrecy capacity. When there is no power allocated to the

artificial noise generation, the channel capacity will be maximized since all the power

is allocated to the information bearing signal. However, a certain secrecy outage prob-
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ability cannot be guaranteed and the secrecy capacity decreases dramatically to zero

for most channel conditions. On the contrary, when nearly all the power is allocated

to the artificial noise generation, although the capacity of the eavesdropper channel

approaches zero, because of the imperfect CSIT, the excessive artificial noise will also

interfere with the desired user signal which decreases both the channel capacity and

the secrecy capacity. Besides, even with perfect CSIT, the channel capacity decreases

if we allocate more power to the artificial noise.

2.4 Solution of the Optimization Problem

2.4.1 Transformation of the Optimization Problem

For derivation of an efficient resource allocation algorithm, it is convenient to incorpo-

rate the channel outage constraint C1 and the secrecy outage probability constraint

C2 in (2.21) into the objective function. This is possible if the constraints in C1

and C2 are fulfilled with equality for the optimal solution. Thus, in the following

we replace the “≤"-signs in C1 and C2 by “="-signs and the resulting optimization

problem may be viewed as a restricted version of the original problem (2.21) since

the latter has a smaller feasible set. We are now ready to introduce the following

Lemma.

Lemma 2.1 (Equivalent Objective Function) For a given channel outage prob-

ability ε and a given secrecy outage probability δ in C1 and C2, respectively, the

equivalent secrecy data rate in high SNR on subcarrier i for user k via relay m is
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lower bounded by

Rsec
m,k[i] >

[
Rdata

m,k [i]−
1

2
log2

(
1 +

α∗
BRm,k[i]ΛE[i]

1− α∗
BRm,k[i]

)]+
,

where Rdata
m,k [i] =

min
{
log2

(
1 + ΓBRm,k[i]

)
, log2

(
1 + ΓRm,k[i]

)}
2

,

ΓBRm,k[i] = α∗
BRm,k[i]PBRm,k[i]λmaxBRm

[i],

ΓRm,k[i] =
α∗
BRm,k[i]PRm,k[i]F

−1
χ2

(ε, i)

1 + (1− α∗
BRm,k)PRm,k[i]σ2

e

,

ΛE[i] = (NT − 1)F−1
zc (δ, i),

α∗
BRm,k[i] = α∗

Rm,k[i]=
1√
ΛE[i]

, (2.22)

where F−1
zc (·, i) denotes the inverse function of Fzc(z, i) which is defined in the Ap-

pendix in (B.8), and F−1
χ2

(·, i) denotes the inverse CDF of a non-central chi-square

random variable with two degrees of freedom and non-centrality parameter ∥ĥRm,k[i]∥2.

Proof: Please refer to the Appendix B.

There are two important observations from the above lemma. First, the asymp-

totically optimal α∗
BRm,k[i] and α∗

Rm,k[i] in (2.22) suggests that in high SNR, the

optimal fraction of power devoted to the artificial noise only depends on the channel

statistic of the eavesdropper channel and the secrecy outage probability requiremen-

t. Second, the signal–to–interference–plus–noise ratio (SINR) of the eavesdropper,
α∗
Rm,k[i]

1−α∗
Rm,k[i]

ΛE[i], approaches a constant value at high SNR. More importantly, the S-

INR of the eavesdropper on each subcarrier is independent of the transmit power

variables in both hops, which simplifies the derivation of the optimal resource al-

location algorithm. This important observation will be verified in Section 2.5 via

simulation.
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By substituting (2.22) into (2.20), a modified objective function is obtained and

the considered problem becomes an NP-hard mixed combinatorial and convex opti-

mization problem, where the combinatorial nature comes from the binary constraints

in the subcarrier assignment. Therefore, we follow the approach in [74] and relax

constraint C6 in (2.21). In particular, we allow sm,k[i] to assume any real value be-

tween zero and one. Then, sm,k[i] can be interpreted as a time sharing factor for the

K users for utilizing subcarrier i. For facilitating the time sharing on each subcarrier,

we introduce two new variables and define them as P̃BRm,k[i] = PBRm,k[i]sm,k[i] and

P̃Rm,k[i] = PRm,k[i]sm,k[i]. These two variables are the actual transmit power of the

BS and relay m on subcarrier i for user k under the time-sharing assumption. Then,

we can transform Problem 2.1 in (2.21) into its epigraph form [75]:

Problem 2.2 (Transformed Optimization Problem)

max
P,R,S,zm,k[i]

M∑
m=1

∑
k∈Um

nF∑
i=1

wkzm,k[i]

s.t. C5, C7,

C3:
M∑

m=1

∑
k∈Um

nF∑
i=1

P̃BRm,k[i] ≤ PBT
,

C4:
∑
k∈Um

nF∑
i=1

P̃Rm,k[i] ≤ PRT
, ∀m,

C6: 0 ≤ sm,k[i] ≤ 1, ∀m, k, i,

C9:sm,k[i]R̃
1st
m,k[i]≥ zm,k[i],∀m, k, i,

C10:sm,k[i]R̃
2nd
m,k[i] ≥ zm,k[i], ∀m, k, i, (2.23)
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where

R̃1st
m,k[i] (2.24)

=
1

2

[
log2

(
1 + α∗

BRm,k[i]P̃BRm,k[i]λmaxBRm
[i]
)
− log2

(
1 +

α∗
BRm,k[i]ΛE[i]

1− α∗
BRm,k[i]

)]+
and

R̃2nd
m,k[i]

=
1

2

[
log2

(
1 +

α∗
Rm,k[i]P̃Rm,k[i]F

−1
χ2

(ε, i)

1 + (1− α∗
Rm,k)P̃Rm,k[i]σ2

e

)
− log2

(
1 +

α∗
Rm,k[i]ΛE[i]

1− α∗
Rm,k[i]

)]+
(2.25)

are the achievable secrecy data rate in the first and second hop, respectively. The

extra constraints C9 and C10 represent the hypograph [75] of the original optimization

problem in (2.21). Mathematically, the operators [·]+ in C9 and C10 in (2.23) destroy

the concavity of the problem. Nevertheless, as will be seen in the Karush Kuhn

Tucker (KKT) conditions in (2.35), those users with negative secrecy data rate will

not be considered in the subcarrier selection process, since, secure communication

cannot be guaranteed for those users. Therefore, we can remove the operators [·]+

from R̃1st
m,k[i] and R̃2nd

m,k[i] in (2.24), while preserving the concavity of the transformed

problem. On the other hand, the constant term 1
nF

was removed from the transformed

objective function for simplicity as it does not affect the values of the arguments which

maximize the objective function. Besides, C8 was also removed from the optimization

problem as the asymptotically optimal α∗
Rm,k[i] and α∗

BRm,k[i] in (2.22) always satisfy

the constraint. The extra constraints C9 and C10 represent the hypograph [75] of

the original optimization problem in (2.21). Now, the transformed problem is jointly

concave with respect to all optimization variables for P̃Rm,k → ∞, and under some

mild conditions [75], solving the dual problem is equivalent to solving the primal

problem.
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2.4.2 Dual Problem Formulation

In this subsection, we solve the resource allocation and scheduling optimization prob-

lem by solving its dual. For this purpose, we first need the Lagrangian function of

the primal problem. Upon rearranging terms, the Lagrangian can be written as

L(λ,β,γ,µ,ν,P ,R,S, zm,k[i])

=
M∑

m=1

∑
k∈Um

nF∑
i=1

(wk − (µm,k[i] + νm,k[i]))zm,k[i]− λ
( M∑

m=1

∑
k∈Um

nF∑
i=1

P̃BRm,k[i]− PBT

)
−

M∑
m=1

γm

( ∑
k∈Um

nF∑
i=1

P̃Rm,k[i]− PRT

)
−

M∑
m=1

∑
k∈Um

nF∑
i=1

β[i](sm,k[i]− 1)

+
M∑

m=1

∑
k∈Um

nF∑
i=1

sm,k[i]
(
µm,k[i]R̃

1st
m,k[i] + νm,k[i]R̃

2nd
m,k[i]

)
, (2.26)

where λ ≥ 0 is the Lagrange multiplier corresponding to the power constraint at the

BS. γ is the Lagrange multiplier vector corresponding to the individual relay power

constraints with elements γm ≥ 0, m ∈ {1, . . . , M}. β is the Lagrange multiplier

vector associated with the subcarrier usage constraints with elements β[i] ≥ 0, i ∈

{1, . . . , nF}. µ and ν are the Lagrange multiplier vectors for constraints C9 and C10

in (2.23) with elements µm,k[i] and νm,k[i]. The boundary constraints C6 and C7 will

be absorbed into the KKT conditions when deriving the optimal solution in Section

2.4.3.

Thus, the dual problem is given by

min
λ, β,γ,µ,ν,≥0

max
P,R,S,zm,k[i]

L(λ,β,γ,µ,ν,P ,R,S, zm,k[i]). (2.27)

In general, the above dual problem can be unbounded if zm,k[i] → ∞. Consider the
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parts of the dual function in the inner maximization which are related to zm,k[i]:

max
zm,k[i]

M∑
m=1

∑
k∈Um

nF∑
i=1

(wk − (µm,k[i] + νm,k[i]))zm,k[i]

=

 0 if µm,k[i] + νm,k[i] = wk

∞ otherwise
. (2.28)

In order to have a bounded dual function, the Lagrange multipliers µm,k[i] and νm,k[i]

must satisfy µm,k[i] + νm,k[i] = wk. Thus, the dual problem is simplified to

min
λ,β,γ,µ,≥0

max
P,R,S

L̃(λ,β,γ,µ,P ,R,S, zm,k[i]), (2.29)

where L̃(λ, β, γ, µ, P ,R,S) = L(λ,β, γ, µ, ν, P ,R,S, zm,k[i])|νm,k[i]=wk−µm,k[i].

Note that the auxiliary variables zm,k[i] vanish when we set νm,k[i] = wk − µm,k[i].

2.4.3 Dual Decomposition and Sub-Problem Solution

By dual decomposition, the dual problem is decomposed into two parts (nested loops):

the first part (inner loop) consists of M × nF sub-problems with identical structure;

the second part (outer loop) is the master dual problem. The dual problem can

be solved iteratively where in each iteration each relay solves nF local sub-problems

(inner loop) by utilizing the local CSI and exchanges some information with the BS

which solves the master problem (outer loop) with the gradient method.

The sub-problem to be solved by relay m is given by

max
P,R,S

L̃m(λ,β,γ,µ,P ,R,S) (2.30)
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for a fixed set of Lagrange multipliers where L̃m(λ,β,γ,µ,P ,R,S) =

∑
k∈Um

nF∑
i=1

sm,k[i]
(
µm,k[i]R̃

1st
m,k[i] + νm,k[i]R̃

2nd
m,k[i]

)
+ λPBT

+ γm,k[i]PRT

−
∑
k∈Um

nF∑
i=1

β[i]
(
sm,k[i]− 1

)
− λ
( ∑

k∈Um

nF∑
i=1

P̃BRm,k[i]
)
− γm

∑
k∈Um

nF∑
i=1

P̃Rm,k[i]. (2.31)

Note that the above sub-problem is the inner loop optimization in (2.29).

Using standard optimization techniques and the KKT conditions, the optimal

power allocation for both hops for user k via relay m on subcarrier i are obtained as

P ∗
BRm,k[i] =

[
µm,k[i]

(2 ln(2))λ
− 1

α∗
BRm,k[i]λmaxBRm

[i]

]+
, (2.32)

P ∗
Rm,k[i] =

[√
Ωm,k[i](Ωm,k[i]γm ln(2) + 2Ξm,k[i]νm,k[i])

2Ξm,k[i]
√
γm
√

ln(2)

−
2(1− α∗

Rm,k[i])σ
2
e + Ωm,k[i]

2Ξm,k[i]

]+
, (2.33)

where Ξm,k[i] = (1− α∗
Rm,k[i])σ

2
e

[
Ωm,k[i] + σ2

e(1− α∗
Rm,k[i])

]
and

Ωm,k[i] = F−1
χ2

(ε, i)α∗
Rm,k[i]. The optimal power allocations in (2.32) and (2.33) have

the form of multi-level water-filling. It can be observed that the dual variable µm,k[i]

affects the power allocation by changing the water-level, µm,k[i]

(2 ln(2))λ
, of user k for sat-

isfying constraint C9 in (2.23). On the other hand, the water level of each user in

(2.33) depends not only on his/her priority via νm,k[i], but also on the CSIT er-

ror statistic of the desired channel and the required channel outage probability, i.e.,

F−1
χ2

(ε, i)α∗
Rm,k[i].

In order to obtain the optimal subcarrier allocation, we take the derivative of the

sub-problem with respect to sm,k[i], which yields ∂L̃m(λ,β,γ,µ,P,R,S)
∂sm,k[i]

= Am,k[i] − β[i],

where Am,k[i] ≥ 0 is the marginal benefit [76] for allocating subcarrier i to user k via
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relay m and is given by Am,k[i] =

νm,k[i]

2

(
log2

(
1 + Γ∗

Rm,k[i]
)
−
Γ∗
Rm,k[i]/

(
ln(2)(1+Γ∗

Rm,k[i])
)

1 + σ2
eP

∗
Rm,k[i](1−α∗

Rm,k[i])
− log2

(
1 +

α∗
Rm,k[i]ΛE[i]

1− α∗
Rm,k[i]

))

+
µm,k[i]

2

(
log2

(
1 + Γ∗

BRm,k[i]
)
−

Γ∗
BRm,k[i]

ln(2)(1 + Γ∗
BRm,k[i])

− log2

(
1 +

α∗
BRm,k[i]ΛE[i]

1− α∗
BRm,k[i]

))

(2.34)

for α∗
BRm,k[i] = α∗

Rm,k[i], where Γ∗
BRm,k[i] = ΓBRm,k[i]

∣∣∣
PBRm,k[i]=P ∗

BRm,k[i]
and

Γ∗
Rm,k[i] = ΓRm,k[i]

∣∣∣
PRm,k[i]=P ∗

Rm,k[i]
. On the contrary, if a user has good channel con-

ditions with positive secrecy data rate on subcarrier i, he/she can provide a higher

marginal benefit to the system. Thus, the optimal subcarrier selection determined

by relay m on subcarrier i is given by

s∗m,k[i] =


1 if Am,k[i] = max

a,b
Aa,b[i] ≥ β[i] ≥ 0

0 otherwise
. (2.35)

The dual variable β[i] ≥ 0 acts as the global price in using subcarrier i in the system.

Only users who can provide large marginal benefits to the system are considered for

selection by the resource allocator. Am,k[i] ≥ 0 has the physical meaning that users

with negative secrecy data rate on subcarrier i are not selected as they can only

provide a negative marginal benefit to the system. Note that each subcarrier will be

used for serving only one user eventually. Finally, the optimal transmitted packet

data rate R∗data
m,k [i] and secrecy data rate R∗sec

m,k [i] are obtained by substituting (2.32),

(2.33) into the equivalent packet data rate and secrecy data rate in Lemma 2.1 for

the subcarrier with s∗m,k[i] = 1.

40



Chapter 2. Secure Resource Allocation and Scheduling for OFDMA DF Relay Networks

2.4.4 Solution of the Master Problem

For solving the master problem at the BS, each relay forwards the local resource allo-

cation policies (i.e., P ,R, and S) to the BS. Since the dual function is differentiable,

the gradient method can be used to solve the minimization of the master problem in

(2.27). The solution is given by

λ(t+ 1)=
[
λ(t)− ξ1(t)× (PBT

−
M∑

m=1

∑
k∈Um

nF∑
i=1

PBRm,k[i]sm,k[i])
]+
, (2.36)

γm(t+ 1)=
[
γm(t)− ξ2(t)× (PRT

−
∑
k∈Um

nF∑
i=1

PRm,k[i]sm,k[i])
]+
, ∀m, (2.37)

µm,k[i](t+ 1)=
[
µm,k[i](t)− ξ3(t)× sm,k[i](R̃

1st
m,k[i]− R̃2nd

m,k[i])
]+
Um,k[i]

, ∀m, k, i,(2.38)

β[i](t+ 1)=
[
β[i](t)− ξ4(t)× (1−

M∑
m=1

∑
k∈Um

nF∑
i=1

sm,k[i])
]+

,∀i, (2.39)

where t ≥ 0 is the iteration index and ξa(t), a ∈ {1, 2, 3, 4}, are positive step sizes.

νm,k[i] can be obtained from νm,k[i] =
[
wk − µm,k[i]

]+
. Um,k[i] in (2.38) denotes the

projection operator on the feasible set Um,k[i] = {µm,k[i]
∣∣∣0 ≤ µm,k[i] ≤ wk}. Since

the transformed problem is convex in nature, it is guaranteed that the algorithm

converges to the optimal solution if the chosen step sizes satisfy the general conditions

stated in [77, Section 1.2]. In summary, the master problem adjusts the water-levels

of (2.32) and (2.33) through the gradient update equations (2.36) and (2.37) until

the individual power constraints of the BS and the relays are satisfied, respectively.

Finally, (2.38) reduces the difference between the capacity of user k in the first and

second hops, which corresponds to the selection of the minimum capacity in (2.15).

We note that there is no intra-cell/inter-sector interference in the considered system

since the resource allocation algorithm is applied to the entire cell and all users in

all sectors are competing for resources. By combining (2.35) and (2.39), it can be
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NO

YES

Initial state:

Relays obtain CSI of BS-to-relay links 

and relay-to-user links. The BS 

initializes all Lagrange multipliers.

The BS broadcasts the Lagrange 

multipliers to all relays.

Relays feed back the subproblem 

solutions to the BS.

The BS transmits packets with 

optimal power, secrecy rate, packet 

data rate, and subcarrier allocation.

Each relay solves the subproblem in 

(2.30) based on its local CSI.

The BS updates the Lagrange 

multipliers using the gradient method

in (2.36)-(2.39). 

Convergence or maximum 

number of iterations reached?

Figure 2.3: A flow chart of the proposed iterative distributed resource allocation and
scheduling algorithm.

shown that, for the optimal solution, there is no time-sharing between the assigned

subcarriers. The overall distributed algorithm is illustrated in Figure 2.3.

2.5 Results

In this section, we evaluate the system performance using simulations. A cell is

modeled as two concentric ring-shaped discs where the outer boundary has a radius

of 1 km and the inner boundary a radius of 0.5 km, cf. Figure 2.1. The number of

subcarriers is nF = 128 with carrier center frequency 2.5 GHz, bandwidth B = 5 MHz,
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and wk = 1,∀k. Each subcarrier has a bandwidth of 39 kHz and a noise variance of

N0 = −128 dBm. The 3rd Generation Partnership Project (3GPP) path loss model

is used [78] with a reference distance of d0 = 35 m. There are M = 3 relay stations

in the cell which are equally distributed at the inner cell boundary for assisting the

transmission. The K desired users are uniformly distributed between 0.5 km and

the cell boundary at 1 km. We assume that the eavesdropper is located 35 m away

from the BS which represents an unfavorable scenario, since all the desired users are

farther away from the BS than the eavesdropper. The small scale fading coefficients

of the BS-to-user and BS-to-eavesdropper links are modeled as i.i.d. Rayleigh random

variables. On the other hand, a strong line of sight communication channel between

the BS and the relays is expected since they are placed in relatively high positions

in practice and the number of blockages between them are limited. Hence, the small

scale fading coefficients of the BS-to-relay links are modelled as i.i.d. Rician random

variables with Rician factor κ = 6 dB. The channel ESR is set to σ2
e

σ2
hRm,k

= 0.05,

unless further specified. The target secrecy outage probability and channel outage

probability are set to δ = 0.05 and ε = 0.05, respectively, unless further specified.

We assume that the maximum transmit power at each transmission device is PT ,

i.e., the BS and the relay have a maximum transmit power of PRT
= PBT

= PT .

The average secrecy outage capacity is obtained by counting the number of packets

securely delivered to and decoded by the users averaged over both the macroscopic

and microscopic fading.

2.5.1 Convergence of Distributed Iterative Algorithm

Figure 2.4 illustrates the evolution of the Lagrange multiplier λ of the distributed

iterative algorithm over time for different maximum transmit powers PT with K = 15
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Figure 2.4: Lagrange multiplier λ versus number of iterations with K = 15 users and
M = 3 relays for different transmit power levels. The BS and each relay are equipped
with NT = 9 antennas. There are NE = 2 receive antennas at the eavesdropper.

users and M = 3 relays. Both the BS and each relay have NT = 9 transmit antennas,

while the eavesdropper has NE = 2 receive antennas. Positive constant step sizes

ξ1(t), ξ2(t), ξ3(t), and ξ4(t), which were optimized for fast convergence, were adopted

in (2.36)-(2.39). The result in Figure 2.4 was averaged over 10000 independent adap-

tation processes. For the considered transmit power values, it can be observed that

the distributed iterative algorithm converges fast and typically achieves at least 95%

of the optimal value within 5 iterations.
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Figure 2.5: Average secrecy outage capacity versus transmit power for different num-
bers of transmit antennas NT . The eavesdropper is equipped with NE = 2 antennas
and is located 35 m from the BS.

2.5.2 Average Secrecy Outage Capacity versus Transmit

Power and ESR

Figure 2.5 illustrates the average secrecy outage capacity and the throughput of the

eavesdropper versus the total transmit power for K = 15 users for different numbers

of transmit antennas NT at both the BS and the relays. The eavesdropper is equipped

with NE = 2 antennas. The number of iterations for the proposed iterative resource

allocation algorithm is 5 and 20. It can be seen that the performance difference
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between 5 iterations and 20 iterations is negligible which confirms the practicality

of our proposed iterative resource allocation algorithm. On the other hand, for a

better illustration of the effectiveness of the artificial noise generation, Figure 2.5

also includes the performance of the eavesdropper in terms of average throughput. As

observed in Lemma 2.1, the average throughput between the BS and the eavesdropper

does not scale with the transmit power in the high transmit power regime due to the

artificial noise introduced by the BS, despite the fact that the eavesdropper is located

closer to the BS than all the desired users. On the other hand, it can be observed

that although the imperfect CSI has a negative impact on the average secrecy outage

capacity due to the artificial noise leakage, the system performance scales with the

transmit power thanks to the proposed optimization technique. Besides, it can be

observed that an increasing number of transmit antennas NT benefits the desired

users in terms of average secrecy outage capacity. Yet, there is a diminishing return

when NT is large due to the channel hardening effect [28] in the desired channels. On

the contrary, the throughput of the eavesdropper is limited by artificial noise and the

performance gain achieved at the eavesdropper due to increasing NT is marginal.

Figure 2.6 illustrates the average secrecy outage capacity versus ESR σ2
e

σ2
hRm,k

for

K = 15 users with different numbers of receive antennas at the eavesdropper and

different numbers of transmit antennas at the BS and relays. The number of iter-

ations is set to 5. It can be observed that as the estimation error increases, the

system performance decreases since the CSI available for resource allocation becomes

less accurate, and the resource allocation has to be more conservative in order to

satisfy the outage requirements of the selected users. Besides, when NT is not signif-

icantly larger than NE, the average secrecy outage capacity is comparatively small

for moderate ESRs values. This is because the resource allocator shuts down some
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Figure 2.6: Average secrecy outage capacity versus ESR σ2
e

σ2
hRm,k

for different numbers

of transmit antennas NT and eavesdropper antennas NE.

subcarriers if the channel conditions of all the users are not good enough to guaran-

tee secure communication, which results in a low average system performance. On

the other hand, Figure 2.6 suggests that if the number of transmit antennas NT

is large enough compared to the number of eavesdropper receive antennas NE, e.g.

NT = 9 and NE = 2, the proposed resource allocation scheme is able to guarantee

an average secrecy outage capacity of 0.5 bit/s/Hz (corresponding to 2.5 Mbps for a

5 MHz bandwidth) even in high ESR (e.g. σ2
e

σ2
hRm,k

= 0.35, estimation error of 35%),

while satisfying both the channel outage and secrecy outage requirements.
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Figure 2.7: Average secrecy outage capacity versus the number of antennas NE em-
ployed at the eavesdropper for different ESR σ2
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and different secrecy outage

requirements δ. NT = 9 antennas at the BS and relays.

2.5.3 Average Secrecy Outage Capacity versus NE

Figure 2.7 depicts the average secrecy outage capacity versus the number of receive

antennas NE employed at the eavesdropper for different secrecy outage requirements

and ESRs. There are K = 15 users and NT = 9 transmit antennas at the BS and the

relays. The number of iterations for the iterative algorithm is 5. It can be observed

that the secrecy outage capacity decreases as NE increases, since more of the trans-

mitted power has to be devoted to the artificial noise generation for degrading the
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channels of the eavesdropper, which results in less transmit power for information

transmission. On the other hand, we observe that a more stringent secrecy outage

probability requirement does not necessarily lead to a higher average secrecy outage

capacity. This is because a larger fraction of power has to be allocated to the artificial

noise for degrading the channel of the eavesdropper and less power is available for in-

formation transmission. Yet, a less stringent secrecy outage probability requirement

may also lead to a unsatisfactory system performance since the eavesdropper has a

higher chance in decoding the desired information. As observed in Figure 2.7, there

exist an optimal secrecy outage requirement δ for each ESR value, which maximizes

the overall system performance. However, optimizing the value of δ in the physical

layer may require further information from the application layer (e.g. tolerable in-

formation leakage of a particular data type such as video or email), which is beyond

the scope of this thesis.

2.5.4 Average Secrecy Outage Capacity versus Number of

Users

Figure 2.8 depicts the average secrecy outage capacity versus the number of users for

different numbers of transmit antennas for PT = 43 dBm. The number of iterations

is 5. It can be observed that the average secrecy outage capacity grows with the

number of users since the proposed resource allocation and scheduling algorithm is

able to exploit MUD, despite the existence of the eavesdropper. However, for large

NT , the system performance scales with the number users slowly. Indeed, since a

large number of transmit antennas reduce channel fluctuations in the desired user

channel and cause channel hardening, they decrease the potentially achievable MUD

gain in the subcarrier allocation process. On the other hand, the performance of the
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Figure 2.8: Average secrecy outage capacity versus the number of desired users for
different numbers of transmit antennas NT at the BS with a total transmit power
PT = 43 dBm. The eavesdropper is equipped with NE = 2 antennas and is located
35 m away from the BS. The double arrows indicate the performance gain achieved
by an increasing number of transmit antennas NT .

eavesdropper does not scale with the number of users since the channels between the

eavesdropper and the desired users are generally uncorrelated.

Remark 2.2 Simulation results for when the eavesdropper is located close to a relay

are not shown since the resulting system performance is close to that of the consid-

ered case where the eavesdropper is located close to the BS. This is because when

the capacity upper bound of the eavesdropper in (2.16) is adopted for resource alloca-

tion, a large amount of artificial noise is generated to combat the eavesdropper which
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saturates the throughput of the eavesdropper, cf. Figure 2.5.

2.6 Conclusions

In this chapter, we formulated the resource allocation and scheduling design for OFD-

MA DF relaying systems as a non-convex and combinatorial optimization problem,

where a multiple antenna eavesdropper, artificial noise generation for secure commu-

nication, and the negative effect of imperfect CSIT were taken into consideration.

By relaxing the combinatorial subcarrier allocation constraints, the considered prob-

lem was transformed into a convex problem. An efficient iterative and distributed

resource allocation algorithm with closed-form power, secrecy data rate, packet data

rate, and subcarrier allocation requiring only local CSI at each relay was derived by

dual decomposition. Simulation results not only showed that the performance of the

proposed algorithm converges to the optimal performance within a small number of

iterations, but also demonstrated the achievable secrecy outage capacity when the

eavesdropper is closer to the BS/relay than the desired users.
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Chapter 3

Energy-Efficient Resource Allocation

for Secure OFDMA Systems

3.1 Introduction

In the previous chapter, we have introduced a novel resource allocation and scheduling

scheme for secure OFDMA cellular networks. However, this does not provide a

full picture of an efficient secure communication systems since energy efficiency was

not taken into account in the resource allocation process. Indeed, the increasing

interest in multimedia services has led to a tremendous demand for high data rate

communications with certain guaranteed QoS properties. This demand has significant

financial implications for service providers because of the rapidly increasing energy

consumption for achieving the required QoS. As a result, energy efficient system

designs, which adopt energy efficiency (bit-per-Joule) as the performance metric,

have recently received much attention in both industry and academia [79]-[83]. In

[79] and [80], power allocation algorithms for energy efficient multi-carrier systems

were studied assuming a static circuit power consumption. In [81] and [82], energy

efficient link adaptation for a sum rate-dependent dynamic circuit power consumption

was considered. However, if user selection and link adaptation are jointly optimized,

the algorithms proposed in [79]-[82] may no longer be applicable. In [83], a risk-return

model was proposed for energy-efficient power allocation in multi-carrier systems.
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Yet, the proposed algorithm is suboptimal and does not achieve the maximum energy

efficiency. Besides, the energy efficiencies of the systems in [62]-[72] are unknown and

the optimization of the amount of power devoted to artificial noise generation for

maximization of the energy efficiency remains an unsolved problem.

Motivated by the aforementioned observations, we formulate the resource allo-

cation problem for energy efficient secure communication in OFDMA systems with

artificial noise generation as an optimization problem. By exploiting the proper-

ties of fractional programming, the considered non-convex optimization problem is

transformed to an equivalent convex optimization problem with a tractable solution,

which can be obtained with an iterative algorithm. In each iteration, the transformed

problem is solved by using dual decomposition, and closed-form power, secrecy data

rate, and subcarrier allocation polices maximizing the energy efficiency are provided.

The proposed algorithm does not only converge fast to the optimal solution, but also

fulfills the secrecy outage tolerance requirements of the users.

3.2 OFDMA Downlink Network Model

In this section, we present the adopted channel and signal models.

3.2.1 Channel Model

We consider an OFDMA downlink network which consists of a BS with NT anten-

nas, an eavesdropper with NE antennas, and K mobile users equipped with a single

antenna, cf. Figure 3.1. We assume that NT > NE to enable secure communication.

The eavesdropper is passive and its goal is to decode the information transmitted by

the BS without causing interference to the communication channels. The impulse

responses of all channels are assumed to be time-invariant (slow fading). We consider
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Figure 3.1: Illustration of an OFDMA downlink network. There are one BS with
NT = 4 antennas, K = 9 desired users equipped with a single antenna, and one
eavesdropper with NE = 2 antennas. For an effective eavesdropping, the eavesdropper
chooses a location closer to the BS compared to the locations of all the desired users.

an OFDMA system with nF subcarriers. The received symbols at user k and the

eavesdropper on subcarrier i ∈ {1, . . . , nF} are given by, respectively,

yk[i] = hk[i]xk[i] + n[i] and yE[i] = G[i]xk[i] + e[i], (3.1)

where xk[i] ∈ CNT×1 denotes the transmitted symbol vector. hk[i] ∈ C1×NT is the

channel vector between the BS and user k on subcarrier i and G[i] ∈ CNE×NT is

the channel matrix between the BS and the eavesdropper on subcarrier i. Both

variables, hk[i] and G[i], include the effects of path loss and multipath fading. n[i]

is the AWGN in subcarrier i at user k with distribution CN (0, N0), where N0 is

the noise power spectral density. e[i] ∈ CNE×1 is the AWGN vector in subcarrier i

at the eavesdropper and each entry of e[i] has distribution CN (0, N0). We assume

that the CSI (path loss information and multipath fading) of the desired users is

perfectly known at the BS due the accurate channel measurements. On the other

hand, we assume that the BS knows only the number of antennas NE employed by
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the eavesdropper5 and the associated channel distribution with an unknown variance.

Since the CSI of the eavesdropper is unavailable at the BS, in order to secure the

desired wireless communication links, an artificial noise signal is generated at the BS

to degrade the channels between the BS and the eavesdropper.

Artificial Noise Generation: The BS chooses xk[i] as the linear combination of

the information bearing signal uk[i] and the artificial noise signal vk[i], i.e.,

xk[i] = bk[i]uk[i]︸ ︷︷ ︸
Desired Signal

+ Vk[i]vk[i]︸ ︷︷ ︸
Artificial Noise

, (3.2)

where vk[i] is a vector of i.i.d. complex Gaussian random variables with variance σ2
v [i].

Since hk[i] is known at the BS, without loss of generality, we define an orthogonal

basis Vk[i] for the null space of hk[i], such that hk[i]Vk[i]vk[i] = 0 and V†
k[i]Vk[i] = I,

where I is a (NT − 1)× (NT − 1) identity matrix. In other words, the artificial noise

signal does not interfere with the desired users. Without loss of generality, we define

the transmit power devoted to the information bearing signal for user k in subcarrier i

as pk[i]. Then, the SNR at user k is maximized by choosing bk[i] =
pk[i]h

†
k[i]

∥hk[i]∥
such that

the information bearing signal lies in the range space of hk[i]. Hence, the received

signals in (3.1) can be rewritten as

yk[i] = hk[i]bk[i]uk[i] + n[i] = pk[i]λmaxk [i]uk[i] + n[i] and (3.3)

yE[i] = G[i]bk[i]uk[i] +G[i]Vk[i]vk[i] + e[i], (3.4)

respectively, where λmaxk [i] is the maximum eigenvalue of h†
k[i]hk[i]. Suppose the

5Note that the number of antennas employed by the eavesdropper is equivalent to the eavesdrop-
ping capability of the eavesdropper. In practice, the BS may not know the number of eavesdropper
antennas. Hence, the BS may assume NE as NE = NT − 1 to ensure security by considering the
worst-case scenario.
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total transmit power on subcarrier i for user k is Pk[i]. We establish the following

relationships [69]:

Pk[i] = pk[i] + (NT − 1)σ2
v [i], pk[i] = αk[i]Pk[i], and

σ2
v [i] =

(1− αk[i])Pk[i]

NT − 1
, (3.5)

where 0 < αk[i] ≤ 1 represents the fraction of power devoted to the information

bearing signal on subcarrier i for user k.

3.3 Resource Allocation and Scheduling

In this section, we introduce the adopted system performance metric and formulate

the corresponding resource allocation problem. Since the adopted approach is based

on information theory, the buffers at the BS are assumed to be always full and there

are no empty scheduling slots due to an insufficient number of source packets at the

buffers.

3.3.1 Instantaneous Channel Capacity, Secrecy Outage, and

Energy Efficiency

In this subsection, we define the adopted system performance measure. Given perfect

CSI at the receiver, the maximum channel capacity between the BS and user k on

subcarrier i with subcarrier bandwidth W is given by

Ck[i] = W log2

(
1 +

pk[i]λmaxk [i]

N0W

)
. (3.6)
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Without loss of generality, we normalize the received symbols at the eavesdropper by

a factor ∥G[i]∥. Hence, the received symbols at the eavesdropper can be expressed

as

ỹE[i] =
yE[i]

∥G[i]∥
= G̃[i]xk[i] + G̃[i]Vk[i]vk[i] + ẽ[i], (3.7)

where G̃[i] = G[i]
∥G[i]∥ and ẽ[i] = e[i]

∥G[i]∥ . Note that the effect of the path loss between

the BS and the eavesdropper is now modeled as a position dependent noise vector

ẽ[i] with variance N0W
∥G[i]∥2 in each entry instead of position dependent channel gains

[68, 69]. We focus on the case of negligible eavesdropper noise, i.e., N0W
∥G[i]∥2 → 0, which

physically means that the eavesdropper is much closer to the BS than the desired

users. The capacity between the BS and the eavesdropper on subcarrier i under this

noiseless worst case scenario is given by

CE[i] = W log2 det
(
I+ pk[i]g1g

†
1[i](σ

2
v [i]G2[i]G

†
2[i])

−1
)

= W log2

(
1 +

αk[i](NT − 1)

1− αk[i]
g†
1[i](G2[i]G

†
2[i])

−1g1[i]
)
, (3.8)

where g1[i] = G̃[i]bk[i] and G2[i] = G̃[i]Vk[i].

Therefore, the maximum achievable secrecy capacity on subcarrier i is given by the

difference of the BS-to-user k channel capacity and the BS-to-eavesdropper channel

capacity [68], which can be expressed as

Csec,k[i] = (Ck[i]− CE[i]) 1(Ck[i] > CE[i]). (3.9)

If the CSI of the BS-to-eavesdropper link is available at the BS, the resource allocator

can set the target secrecy data rate Rk[i] and control the channel capacity Ck[i] to
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match the channel conditions via power adaptation, i.e., Rk[i] = Ck[i] − CE[i] and

Ck[i] > CE[i], such that secure communication is guaranteed for secrecy data rate

Rk[i]. However, here the eavesdropper is assumed to be passive and its CSI is not

available at the BS, i.e., CE[i] is a random variable for the BS. Hence, a secrecy outage

[70, Chapter 5] occurs whenever the target secrecy data rate Rk[i] exceeds the secrecy

capacity, despite the fact that we have considered the worst case scenario in (3.8). In

order to model the effect of secrecy outage, we consider the performance in terms of

the secrecy outage capacity rather than the ergodic capacity [28]. The average secrecy

outage capacity is defined as the total average number of bit/s securely delivered to

the K mobile users (averaged over multiple scheduling slots) and is given by

Usec(P ,R,S) =
K∑
k=1

wk

nF∑
i=1

sk[i]Rk[i]EG̃[i]

{
1
(
Ck[i]− CE[i] > Rk[i]

)}
=

K∑
k=1

wk

nF∑
i=1

sk[i]Rk[i] Pr
[
Rk[i] < Ck[i]− CE[i]

∣∣∣hk[i]
]
, (3.10)

where vector hk[i] represents the CSI between the BS and user k on subcarrier i. P,R,

and S are the power, secrecy data rate, and subcarrier allocation policies, respectively.

sk[i] ∈ {0, 1} is the subcarrier allocation indicator. wk is a positive constant provided

by the upper layers, which allows the resource allocator to give different priorities

to different users and to enforce certain notions of fairness. On the other hand,

for designing a resource allocation algorithm for energy efficient communication, it

is important to include the total power consumption in the optimization objective

function. Thus, we model the power dissipation in the system as the sum of one
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static term and two dynamic terms which can be expressed as [81, 82]

UTP (P,R,S) = PC +
K∑
k=1

nF∑
i=1

Pk[i]sk[i]︸ ︷︷ ︸
Power amplifier

+ δ

K∑
k=1

nF∑
i=1

sk[i]Rk[i]︸ ︷︷ ︸
Linear sum rate dependent power

,(3.11)

where PC is a static circuit power consumption of device electronics such as mixers,

filters, and digital-to-analog converters. The middle term in (3.11) denotes the power

consumption in the power amplifier. The last term6 in (3.11) represents a linear

sum rate dependent power dissipation, where the value of δ ≥ 0 reflects the relative

importance of this term.

The weighted energy efficiency of the considered secure system is defined as the

total average number of securely delivered bits/Joule (averaged over multiple schedul-

ing slots)

Ueff (P ,R,S) =
Usec(P ,R,S)
UTP (P ,R,S)

. (3.12)

6Depending on the definition of energy efficiency, the last term in (3.11) represents the back-end
processing power of the transmitter only, the receivers only, or both the transmitter and receivers.
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3.3.2 Optimization Problem Formulation

The optimal power allocation policy, P∗, secrecy data rate allocation policy, R∗, and

subcarrier allocation policy, S∗, can be obtained by solving

max
P,R,S,αk[i]

Ueff (P ,R,S)

s.t. C1:Pr
[
Rk[i] ≥ Ck[i]− CE[i]

∣∣∣hk[i]
]
≤ ε, ∀k, i,

C2:
K∑
k=1

nF∑
i=1

Pk[i]sk[i] ≤ Pt, C3:
K∑
k=1

nF∑
i=1

sk[i]Rk[i] ≥ r,

C4:
K∑
k=1

sk[i] ≤ 1, ∀i, C5: Pk[i] ≥ 0, ∀i, k,

C6: sk[i] = {0, 1}, ∀i, k, C7: 0 < αk[i] ≤ 1, ∀i, k. (3.13)

In C1, ε denotes the maximum tolerable secrecy outage probability, i.e., C1 is a

QoS metric for communication security. C2 is a transmit power constraint for the

BS. The value of Pt puts a limit on the power consumption of the power amplifier

to limit the amount of out-of-cell interference. C3 specifies the minimum system

secrecy outage capacity requirement r. Note that although variable r in C3 is not

an optimization variable in the formulation, a balance between energy efficiency and

aggregate system secrecy outage capacity can be struck by varying r. C4 and C6 are

imposed to guarantee that each subcarrier is used by one user only. C5 and C7 are

the boundary constraints for the power allocation variables.

3.4 Solution of the Optimization Problem

The objective function in (3.13) is a ratio of two concave functions which is a non-

convex function. In general, a brute force approach is required for obtaining a global
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optimal solution. However, such a method has exponential complexity with respect

to the numbers of subcarriers which is computationally infeasible even for small size

systems. In order to derive an efficient resource allocation algorithm, we introduce

the following transformation.

3.4.1 Transformation of the Objective Function

The fractional objective function in (3.12) can be classified as nonlinear fractional

program [84]. For the sake of notational simplicity, we define F as the set of feasible

solutions of the optimization problem in (3.13). Without loss of generality, we define

the maximum energy efficiency q∗ of the considered system as

q∗ =
Usec(P∗,R∗,S∗)

UTP (P∗,R∗,S∗)
= max

P,R,S,αk[i]

Usec(P ,R,S)
UTP (P ,R,S)

. (3.14)

We are now ready to introduce the following Theorem.

Theorem 3.1 The optimal resource allocation policies {P∗,R∗,S∗} ∈ F achieve the

maximum energy efficiency q∗ if and only if

max
P,R,S,αk[i]

Usec(P,R,S)− q∗UTP (P ,R,S)

= Usec(P∗,R∗,S∗)− q∗UTP (P∗,R∗,S∗) = 0, (3.15)

for Usec(P ,R,S) ≥ 0 and UTP (P ,R,S) > 0.

Proof: Please refer to Appendix C.

Theorem 3.1 reveals that for an optimization problem with an objective function

in fractional form, there exists an equivalent7 objective function in subtractive form,
7Here, “equivalent” means both problem formulations will lead to the same resource allocation

policies.
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e.g. Usec(P ,R,S)− q∗UTP (P ,R,S) in the considered case. As a result, we can focus

on the equivalent objective function in the rest of the chapter.

3.4.2 Iterative Algorithm for Energy Efficiency

Maximization

In the next section, we propose an iterative algorithm (known as the Dinkelbach

method [84]) for solving (3.13) with an equivalent objective function. The proposed

algorithm is summarized in Table 3.1 and the convergence to optimal energy efficiency

is guaranteed.

Proof: Please refer to the second part of Appendix C for the proof of conver-

gence.

Note that the algorithm converges to the optimal solution with a superlinear

convergence rate and please refer to [85] for a detailed proof. As shown in Table 3.1,

in each iteration in the main loop, we solve the following optimization problem for a

given parameter q:

max
P,R,S

Usec(P,R,S)− qUTP (P,R,S)

s.t. C1, C2, C3, C4, C5, C6, C7. (3.16)

In the following, we derive the solution of the main loop problem (3.16) by dual

decomposition.

Solution of the Main Loop Problem

The main loop optimization problem in (3.16) is a mixed combinatorial and non-

convex problem. The combinatorial nature comes from the Boolean subcarrier as-
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Table 3.1: Iterative Resource Allocation Algorithm.

Algorithm 3.1 Iterative Resource Allocation Algorithm
1: Initialize the maximum number of iterations Lmax and the maximum tolerance ϵ
2: Set maximum energy efficiency q = 0 and iteration index n = 0
3: repeat {Main Loop}
4: Solve the inner loop problem in (3.16) for a given q and obtain resource allo-

cation policies {P ′,R′,S ′}
5: if Usec(P ′,R′,S ′)− qUTP (P ′,R′,S ′) < ϵ then
6: Convergence = true
7: return {P∗,R∗,S∗} = {P ′,R′,S ′} and q∗ = Usec(P ′,R′,S′)

UTP (P ′,R′,S′)

8: else
9: Set q = Usec(P ′,R′,S′)

UTP (P ′,R′,S′)
and n = n+ 1

10: Convergence = false
11: end if
12: until Convergence = true or n = Lmax

signment constraint C6, while the non-convexity comes from the secrecy outage con-

straint C1, since it is neither convex nor concave with respect to the optimization

variables. It is convenient to incorporate the outage requirement constraint C1 in

(3.13) into the objective function. This is possible if the constraint in C1 is fulfilled

with equality for the optimal solution. Thus, in the following we replace the “≤"-

sign in C1 by a “="-sign and the resulting optimization problem may be viewed as

a restricted version of the original problem (3.13) since it has a smaller feasible set8.

We are now ready to introduce the following proposition.

Proposition 3.1 (Equivalent Secrecy Data Rate) For a given outage probabil-

ity ε in C1, the equivalent secrecy data rate which incorporates the secrecy outage
8We can also adopt the chance constrained programming transformation in [86]. However, this

transformation introduces an additional search algorithm which may result in an unacceptable
complexity for the problem at hand.
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probability on subcarrier i for user k with optimal α∗
k[i] is given by

Rk[i] = W
[
log2

(
1 + Pk[i]Υk[i]

)
− log2

(
1 +

α∗
k[i]ΛE[i]

1− α∗
k[i]

)]+
, (3.17)

Υk[i] =
α∗
k[i]λmaxk [i]

N0W
, ΛE[i] = (NT − 1)F−1

zc (ε), α∗
k[i] =

1√
ΛE[i]

, (3.18)

where F−1
zc (ε) denotes the inverse function of Fzc(z) =

∑NE−1
n=0 (NT−1

n )zn

(1+z)NT−1 = ε.

Proof: Please refer to Appendix D.

From the above proposition, it can be observed that the SINR of the eavesdropper,

ΦE[i] =
α∗
k[i]ΛE [i]

1−α∗
k[i]

, approaches a constant value at high SNR. More importantly, the

SINR of the eavesdropper on each subcarrier is independent of the optimization

variables, which simplifies the derivation of the optimal resource allocation algorithm.

By substituting (3.17) into (3.16), a modified objective function, which incorpo-

rates the secrecy outage requirement, can be obtained for the main loop problem in

(3.16). To handle the combinatorial constraint C6, cf. (3.13), we follow the approach

in [74] and relax constraint C6. In particular, we allow sk[i] to be a real value be-

tween zero and one instead of a Boolean. Then, sk[i] can be interpreted as a time

sharing factor for the K users for utilizing subcarrier i. Although the relaxation of

the subcarrier allocation constraint is generally suboptimal, the authors in [87] an-

alytically show that the duality gap due to the relaxation becomes zero when the

number of subcarriers goes to infinity. Therefore, using the equivalent secrecy data

rate in Proposition 3.1, the auxiliary powers P̃k[i] = Pk[i]sk[i], and the continuous
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relaxation of C6, we can rewrite the problem in (3.16) for a given parameter q as

max
P,R,S

Ũsec(P ,R,S)− qŨTP (P ,R,S)

s.t. C4, C5,

C2:
K∑
k=1

nF∑
i=1

P̃k[i] ≤ Pt,

C3:
K∑
k=1

nF∑
i=1

sk[i]R̃k[i] ≥ r,

C6: 0 ≤ sk[i] ≤ 1, ∀i, k, (3.19)

where Ũsec(P ,R,S) = Usec(P ,R,S)
∣∣∣
Pk[i]=

P̃k[i]

sk[i]

, ŨTP (P ,R,S) = UTP (P ,R,S)
∣∣∣
Pk[i]=

P̃k[i]

sk[i]

,

and R̃k[i] = Rk[i]
∣∣∣
Pk[i]=

P̃k[i]

sk[i]

. Mathematically, the [·]+ operator in (3.17) destroys the

concavity of the objective function. Nevertheless, as will be seen in the KKT condi-

tions in (3.24), users with negative secrecy data rate will not be considered in the sub-

carrier selection process. Therefore, we can safely remove the [·]+ operator from vari-

able R̃k[i] and preserve the concavity of the transformed problem. Besides, C7 is re-

moved from the optimization problem as the asymptotically optimal α∗
k[i] in (3.18) al-

ways satisfies C7 for ΛE[i] ≫ 1. Besides, maxP,R,S Ũsec(P ,R,S)−qŨTP (P ,R,S) ≥

0 holds for any values of q updated by Dinkelbach method, cf. Proposition C.2 in Ap-

pendix C. Therefore, the transformed problem (3.19) is jointly concave with respect

to all optimization variables and under some mild conditions [75], it can be shown

that strong duality holds and the duality gap is equal to zero. In other words, solving

the dual problem is equivalent to solving the primal problem. Therefore, numerical

methods such as the interior-point method and the ellipsoid method can be used to

solve the transformed main loop problem in (3.19) and convergence to the optimal

solution in polynomial time is guaranteed. However, these numerical methods do
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not provide any useful system design insight such as the role of energy efficiency q

in the resource allocation process. Hence, in the following subsections, an iterative

algorithm for the transformed main loop problem in (3.19) will be derived based on

dual decomposition.

Dual Problem

In this subsection, we solve the main loop problem in (3.19) by solving its dual. For

this purpose, we first need the Lagrangian function of the primal problem. Upon

rearranging terms, the Lagrangian can be written as

L(µ, γ,β,P,R,S) =
K∑
k=1

(wk + γ)

nF∑
i=1

sk[i]R̃k[i]− µ
K∑
k=1

nF∑
i=1

P̃k[i] + µPt +

nF∑
i=1

β[i]

−q
(
PC +

K∑
k=1

nF∑
i=1

sk[i]δR̃k[i] +
K∑
k=1

nF∑
i=1

P̃k[i]
)
− γr −

K∑
k=1

nF∑
i=1

β[i]sk[i], (3.20)

where µ ≥ 0 and γ ≥ 0 are the Lagrange multipliers corresponding to the power

constraint and the secrecy outage capacity constraint, respectively. β is the Lagrange

multiplier vector associated with the subcarrier usage constraints with elements β[i] ≥

0, i ∈ {1, . . . , nF}. The boundary constraints C5 and C6 will be absorbed into the

KKT conditions when deriving the optimal solution in the following.

Thus, the dual problem of (3.19) is given by

min
µ,γ,β≥0

max
P,R,S

L(µ, γ,β,P ,R,S). (3.21)

In the following, we solve the above dual problem iteratively by decomposing it into

two layers: Layer 1 consists of nF subproblems with identical structure; Layer 2 is

the master dual problem to be solved with the gradient method.
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Dual Decomposition and Layer 1 Solution

By dual decomposition, the BS first solves the following Layer 1 subproblem

max
P,R,S

L(µ, γ,β,P ,R,S) (3.22)

for a fixed set of Lagrange multipliers and parameter q. Using standard optimiza-

tion techniques and the KKT conditions, the optimal power allocation for user k on

subcarrier i is obtained as

P̃ ∗
k [i] = sk[i]P

∗
k [i] = sk[i]

[
W (wk + γ − δq)

(ln(2))(µ+ q)
− N0W

λmaxk [i]α
∗
k[i]

]+
. (3.23)

The optimal power allocation has the form of multi-level water-filling. It can be

observed that the energy efficiency variable q ≥ 0 prevents energy inefficient trans-

mission by truncating the water-levels. There is also another interesting observation

in (3.23). Let us focus on the case of equal priority users without secrecy data rate

constraint, i.e., wk = 1 and γ = 0. If we require a certain energy efficiency q = qreq,

then (3.23) reveals a simple necessary condition9 for a non-zero feasible solution:

δqreq < 1.

In order to obtain the optimal subcarrier allocation, we take the derivative of the

subproblem with respect to sk[i] and set it to zero, which yields

∂L(µ, γ,β,P,R,S)
∂sk[i]

∣∣∣∣∣
Pk[i]=P ∗

k [i]

= Ak[i]− β[i] = 0, (3.24)

where Ak[i] ≥ 0 can be interpreted as the marginal benefit [76] for allocating subcar-
9Note that the KKT conditions provide both the necessary and sufficient conditions for the

“optimality” of a solution of the considered optimization problem. In contrast, δqreq < 1 provides a
necessary condition for a non-zero transmit power solution.
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rier i to user k and is given by

Ak[i] = W (wk + γ − δq)

(
log2

(
1 + P ∗

k [i]Υk[i]
)
− log2

(
1 +

α∗
k[i]ΛE[i]

1− α∗
k[i]

)
− P ∗

k [i]Υk[i]

(ln(2))(1 + P ∗
k [i]Υk[i])

)
. (3.25)

Ak[i] ≥ 0 has the physical meaning that users with negative data rate on subcarrier i

are not selected as they can only provide a negative marginal benefit to the system.

On the contrary, if a user has a larger weighting wk and enjoys good channel conditions

with positive data rate on subcarrier i, he/she can provide a higher marginal benefit

to the system. Thus, the optimal allocation of subcarrier i at the BS to user k is

given by

s∗k[i] =


1 if Ak[i] = max

j
Aj[i] and Aj[i] ≥ 0,

0 otherwise.
(3.26)

Note that each subcarrier will be used for serving only one user eventually. Finally, the

optimal secrecy data rate R∗
k[i] is obtained by substituting (3.23) into the equivalent

secrecy data rate in (3.17) for the subcarrier with s∗k[i] = 1.

Solution of Layer 2 Master Problem

The dual function is differentiable and, hence, the gradient method can be used to

solve the Layer 2 master problem in (3.21) which leads to

µ(t+ 1) =
[
µ(t)− ξ1(t)× (Pt −

K∑
k=1

nF∑
i=1

P̃k[i])
]+

, (3.27)

γ(t+ 1) =
[
γ(t)− ξ2(t)× (

K∑
k=1

nF∑
i=1

sk[i]R̃k[i]− r)
]+

, (3.28)
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where index t ≥ 0 is the iteration index and ξu(t), u ∈ {1, 2}, are positive step sizes.

Updating β[i] is not necessary as it has the same value for all users and does not

affect the subcarrier allocation in (3.26). Therefore, we can simply set β[i] = 0 in

each iteration. Since the transformed problem for a given parameter q is convex in

nature, it is guaranteed that the iteration between Layer 1 the Layer 2 converges to

the optimal solution of (3.19) in the main loop, if the chosen step sizes satisfy the

infinite travel condition [75, 88]. Then, the updated Lagrange multipliers in (3.27)

and (3.28) are used for solving the subproblems in (3.22) via updating the resource

allocation policies. This procedure between Layer 1 and Layer 2 is repeated until

convergence is achieved in each iteration of the main loop.

A summary of the overall algorithm is given in Table 3.1. In each iteration of

the main loop, we solve the main loop problem in (3.19) for a given parameter q,

cf. (3.17)-(3.28). Then, we update parameter q and use it for solving the main

loop problem in the next iteration. This procedure is repeated until the proposed

algorithm converges.

3.5 Results

In this section, we evaluate the system performance through simulations. A single cell

with a radius of 1 km is considered, cf. Figure 3.1. The number of subcarriers is nF =

128 with carrier center frequency 2.5 GHz, bandwidth B = 3 MHz, and wk = 1,∀k.

Each subcarrier has a bandwidth of 23.4 kHz and a noise variance of N0 = −130 dBm.

The 3GPP path loss model is used [78] with a reference distance of d0 = 35 m. The

K desired users are uniformly distributed between the reference distance and the cell

boundary at 1 km. We assume that the eavesdropper is located 35 m away from the

BS which represents an unfavourable scenario, since all the desired users are farther
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away from the BS than the eavesdropper. The small scale fading coefficients of the BS-

to-user and BS-to-eavesdropper links are modeled as i.i.d. Rayleigh random variables.

The target secrecy outage probability is set to ε = 0.01. The average secrecy outage

capacity is obtained by counting the number of packets securely delivered to and

decoded by the users averaged over both the macroscopic and microscopic fading.

Unless specified otherwise, we assume a static circuit power consumption of PC = 40

dBm [89], a sum rate dependent power consumption parameter δ = 0.1 mJ/bit, and a

secrecy data rate requirement of r = 2 of bit/s/Hz. Note that if the resource allocator

is unable to guarantee the required secrecy data rate in a time slot, we set the energy

efficiency in that particular time slot to zero to account for the corresponding failure.

3.5.1 Convergence of Iterative Algorithm

Figure 3.2 illustrates the evolution of the proposed iterative algorithm for different

numbers of transmit antennas NT and a maximum transmit power of Pt = 43 dBm

at the BS. The eavesdropper is equipped with NE = 2 receive antennas and the result

in Figure 3.2 was averaged over 10000 independent adaptation processes where each

adaptation process involves different realizations for the path loss and the multipath

fading. It can be observed that the iterative algorithm converges to the optimal value

within 5 iterations for all considered numbers of transmit antennas. In other words,

the maximum system energy efficiency can be achieved within a few iterations on

average with a superlinear convergence rate [85].
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Figure 3.2: Energy efficiency (bit-per-milli Joule) versus the number of iterations with
K = 15 users for different numbers of transmit antennas at the BS. The maximum
transmit power at the BS is Pt =43 dBm. The eavesdropper is equipped with NE = 2
antennas and is located 35 m from the BS.

3.5.2 Energy Efficiency and Average Secrecy Outage

Capacity versus Transmit Power

Figure 3.3 illustrates the energy efficiency versus the total transmit power for K = 15

users for different numbers of transmit antennas NT at the BS. The eavesdropper

is equipped with NE = 2 antennas. The number of iterations for the proposed

iterative resource allocation algorithm is 5 and 10. It can be seen that the performance

difference between 5 iterations and 10 iterations is negligible which confirms the
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Figure 3.3: Energy efficiency (bit-per-milli Joule) versus maximum transmit power,
Pt, for different numbers of transmit antennas NT . The eavesdropper is equipped
with NE = 2 antennas and is located 35 m from the BS.

practicality of our proposed iterative resource allocation algorithm. On the other

hand, it can be observed that an increasing number of transmit antennas NT benefits

the system in terms of energy efficiency. This is because less power is required for

maintaining a high receive SNR at the desired users, which results in energy savings.

Besides, when both the number of transmit antennas and the maximum transmit

power at the power amplifier are large enough, e.g. NT = 7 and Pt = 43 dBm, the

energy efficiency approaches a constant value, 1/δ, for δ > 0, since the dynamic power

consumption dominates the denominator in the energy efficiency equation in (3.12).
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Figure 3.3 also contains the energy efficiency of a baseline resource allocation scheme.

For the baseline scheme, we maximize the secrecy outage capacity (bit/s/Hz) with

constraints C1-C7 in (3.13), instead of the energy efficiency. The optimal resource

allocation polices for the baseline scheme can be obtained by using a similar approach

as in [90]. It can be observed that the proposed algorithm provides a significant

performance gain in terms of energy efficiency over the baseline scheme. This is

because the latter scheme uses excess power to increase the secrecy outage capacity

by sacrificing the system is energy efficiency, especially in the high transmit power

regime.

Figure 3.4 shows the average secrecy outage capacity versus maximum transmit

power Pt for K = 15 users and different numbers of transmit antennas at the B-

S. We compare the system performance of the proposed algorithm again with the

baseline scheme. The number of iterations in the proposed algorithm is set to 5. It

can be observed that the average secrecy outage capacity of the proposed algorithm

approaches a constant in the high transmit power regime, the value of which depends

on the number of transmit antennas. This is because the proposed algorithm clips

the transmit power at the BS in order to maximize the system energy efficiency. As

will be shown in Figure 3.5, the average transmit power of the proposed algorithm

remains static in the high transmit power regime. We note that, as expected, the

baseline scheme achieves a higher average secrecy outage capacity than the proposed

algorithm since the former scheme consumes all the available transmit power in all s-

cenarios. However, the superior secrecy outage capacity of the baseline scheme comes

at the expense of low energy efficiency. On the other hand, an increasing number of

antennas benefits the secrecy outage capacity because of an improved beamforming

gain. Yet, there is a diminishing return when NT is large due to the channel hardening
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Figure 3.4: Average secrecy outage capacity versus maximum transmit power, Pt,
for different numbers of transmit antennas NT . The eavesdropper is equipped with
NE = 2 antennas and is located 35 m from the BS.

effect [28] in the desired channels.

Figure 3.5 depicts the average total power consumption, i.e., E{UTP (P,R,S)},

versus maximum transmit power Pt for the proposed algorithm and the baseline

scheme. As can be observed, the proposed algorithm consumes much less power

than the baseline scheme, especially in the high transmit power regime. Besides, an

increasing number of transmit antennas results in less power consumption due to a

larger beamforming gain. Note that for Pt < 37 dBm, the proposed algorithm with

NT = 3 consumes the smallest power among all considered cases. This is because

74



Chapter 3. Energy-Efficient Resource Allocation for Secure OFDMA Systems

30 35 40 45 50 55 60
40

42

44

46

48

50

52

54

56

58

60

62

P
t
 (dBm)

A
ve

ra
ge

 to
ta

l p
ow

er
 c

on
su

m
pt

io
n 

(d
B

m
)

 

 

N
T
 = 3 

N
T
 = 3, baseline

N
T
 = 5

N
T
 = 5, baseline

N
T
 = 7

N
T
 = 7, baseline

N
T
 = 9

N
T
 = 9, baseline

Proposed algorithm

Power saving

Baseline

Figure 3.5: Average total power consumption versus maximum transmit power, Pt,
for different numbers of transmit antennas NT . The eavesdropper is equipped with
NE = 2 antennas and is located 35 m from the BS.

with fewer antennas the probability that the secrecy data rate requirement is met

is lower. Therefore, an extra energy saving is achieved when the transmitter is shut

down. However, this leads to both low energy efficiency and low secrecy data rate.
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Figure 3.6: Energy efficiency (bit-per-milli Joule) versus the number of users K for
different numbers of transmit antennas NT and a maximum transmit power of Pt = 22
dBm. The eavesdropper is equipped with NE = 2 antennas and is located 35 m from
the BS.

3.5.3 Energy Efficiency and Secrecy Outage Capacity versus

Number of Users

Figures 3.6 and 3.7 depict the energy efficiency and the average secrecy outage capac-

ity versus the number of users, respectively. Different numbers of transmit antennas,

different secrecy data rate requirements r, PT = 22 dBm, and 5 iterations are con-

sidered. It can be observed that both the energy efficiency and the average secrecy

outage capacity grow with the number of users since the proposed resource allocation

and scheduling algorithm is able to exploit MUD, despite the existence of the eaves-
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Figure 3.7: Average secrecy outage capacity versus the number of users K for different
numbers of transmit antennas NT and a maximum transmit power of Pt = 22 dBm.
The eavesdropper is equipped with NE = 2 antennas and is located 35 m from the
BS.

dropper. Besides, when the number of users is large, the energy efficiency eventually

approaches a constant which is similar to the case of high transmit power. Indeed, the

MUD introduces an extra power gain [28, Section 6.6] to the system which provides

further energy savings. On the contrary, the average secrecy outage capacity scales

with the number of users without an upper limit. Yet, for large NT , both the average

secrecy outage capacity and the energy efficiency scale with the number users slowly.

Indeed, since a large number of transmit antennas reduce channel fluctuations in the

desired user channel and cause channel hardening, the potentially achievable MUD
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gain in the subcarrier allocation process is decreased.

3.5.4 Energy Efficiency and Average Secrecy Outage

Capacity versus NE

Figures 3.8 and 3.9 illustrate, respectively, the energy efficiency and average secrecy

outage capacity versus the number of receive antennas NE employed at the eaves-

dropper for different dynamic circuit power constants δ and different static circuit

powers PC . There are K = 15 users and NT = 9 transmit antennas at the BS. The

number of iterations for the iterative algorithm is 5. It can be observed that both

the energy efficiency and secrecy outage capacity decrease as NE increases, since

more of the transmitted power has to be devoted to artificial noise generation for

degrading the channels of the eavesdropper, which leaves less power for information

transmission. In addition, the average secrecy outage capacity is insensitive to the

value of δ which suggests a constant secrecy data transmission rate when dynamic

power consumption is taken consideration. On the other hand, we observe that larger

values of δ and PC lead to a lower energy efficiency since more energy is consumed

in the circuit. Yet, a non-zero energy efficiency and average secrecy outage capacity

can still be achieved as long as NT > NE, despite the fact that the eavesdropper is

closer to the BS than the desired users. Interestingly, although a higher value of PC

results in a low energy efficiency, it increases the average secrecy outage capacity by

allowing a higher transmit power.

Remark 3.1 Note that in Figure 3.8, the energy efficiencies for the case of PC =

50 dBm and PC = 40 dBm cross at NE = 6. This is because we shut down the

power amplifier of the transmitter when the system cannot fulfill the secrecy data rate

requirement which impacts the energy efficiency curves.
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3.6 Conclusions

In this chapter, we formulated the resource allocation for energy efficient OFDMA

systems as a mixed non-convex and combinatorial optimization problem, in which a

multiple antenna eavesdropper, dynamic circuit power consumption, artificial noise

injection for secure communication, and secrecy data rate requirements were taken

into consideration. By exploiting the properties of fractional programming, the con-

sidered problem was transformed to an equivalent problem with a tractable solution.

An efficient iterative resource allocation algorithm with closed-form power, secrecy

data rate, and subcarrier allocation was derived by dual decomposition for maxi-

mization of the number of securely delivered bit-per-Joule. Simulation results not

only showed that the proposed algorithm converges to the optimal solution within a

small number of iterations, but also demonstrated the achievable maximum energy

efficiency in the presence of a multiple antenna eavesdropper.
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Chapter 4

Energy-Efficient Resource Allocation

in OFDMA Systems with Large

Numbers of Base Station Antennas

4.1 Introduction

In the previous two chapters, we have proposed two novel resource allocation algo-

rithms for secure OFDMA communications under different scenarios. As mentioned

in the introductory chapter, resource allocation tries to make the best use of the

available degrees of freedom in a system. Starting from this chapter, we exploit

the spatial degrees of freedom via MIMO. It is well known that MIMO technology

provides extra degrees of freedom which facilitate multiplexing gains and diversity

gains. It can be shown that the ergodic capacity of a MIMO fading channel increases

practically linearly with the minimum of the number of transmit and receive anten-

nas [28, 30]. Hence, it is not surprising that MIMO has attracted a lot of research

interest over the past decade since it enables significant performance enhancement

without requiring additional transmit power and bandwidth resources. However, the

complexity of MIMO receivers limits the gains that can be achieved in practice, e-

specially for handheld devices. An alternative is multiuser MIMO [91, 92] where a
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transmitter with a large number of antennas serves multiple single antenna users. In

[91], the authors investigated the uplink sum capacity (bit-per-second-per-Hertz) of

cellular networks assuming unlimited numbers of antennas at both the BS and the

users. In [92], high throughputs for both the uplink and the downlink were shown

for a time-division duplex multi-cell system which employed multiple BSs equipped

with large numbers of antennas. In [91, 92], substantial capacity gains and better

interference management capabilities were observed for MIMO, compared to single

antenna systems.

On the other hand, the combination of MIMO and OFDMA is considered a viable

solution for achieving very high data rates communication [93]-[95]. In fact, the data

rate improvement due to multiple antennas is unlimited if we allow the numbers

of antennas employed at both the transmitter and the receiver to grow10. Yet, the

advantages of MIMO and OFDMA do not come for free. They have significant

financial implications for service providers due to the rapidly increasing cost for energy

consumption in circuitries, which is often overlooked in the literature. Besides, all of

these works [93]-[95] assume that perfect global CSI of all links is available at the BS.

Hence, the power allocation can be done optimally and channel outage [28] can be

avoided by data rate adaptation. However, in practice, CSIT is hardly perfect due to

the mobility of users and/or estimation errors. Thus, channel outages occur with a

non-zero probability and maximum tolerable outage probability requirements should

be taken into consideration. Furthermore, if user selection and link adaptation are

jointly optimized in MIMO-OFDMA systems, the energy efficient resource allocation

algorithms proposed in [79]-[83], which were designed for perfect CSIT and a single

user, are no longer applicable. In addition, a fixed number of active antennas has
10This statement is true if the number of scatters is large enough and all the antennas are uncor-

related.
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been assumed to be used for transmission in the existing literature, e.g. [79]-[83]. In

other words, the optimal number of active antennas used for transmission has not

been investigated, at least not from an energy efficiency point of view.

Motivated by the aforementioned observations, in this chapter, we formulate the

resource allocation problem for energy efficient communication in OFDMA systems

with a large number of antennas and imperfect CSIT as an optimization problem.

By exploiting the properties of fractional programming, the considered non-convex

optimization problem in fractional form is transformed into an equivalent optimiza-

tion problem in subtractive form with a tractable solution, which can be computed

with an iterative algorithm. Because of the large numbers of antennas, the iterative

algorithm requires only path loss and shadowing information. In other words, the

BS updates the resource allocation policies based on the realizations of path loss

and shadowing, which only change in the order of seconds. In each iteration, the

transformed objective function is further lower bounded by a concave function which

can be maximized by using dual decomposition. As a result, closed-form power, da-

ta rate, antenna, and subcarrier allocation policies are obtained for maximizing the

energy efficiency.

4.2 OFDMA Downlink Network Model

In this section, we present the adopted OFDMA downlink network channel models.

4.2.1 Channel Model

We consider an OFDMA network which consists of a BS with multiple antennas

and K mobile users equipped with a single antenna, cf. Figure 4.1. The impulse

responses of all channels are assumed to be time-invariant (slow fading). There
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Mobile

Mobile
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Mobile
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MobileMobile

Figure 4.1: Illustration of an OFDMA downlink network. There are one BS with a
large number of antennas and K = 9 desired users equipped with a single antenna.

are nF subcarriers in each OFDM symbol. The downlink received symbol at user

k ∈ {1, . . . , K} on subcarrier i ∈ {1, . . . , nF} is given by

yi,k =
√
Pi,klkgkh

T
i,k f̂i,kxi,k +

∑
j ̸=k

hT
i,k f̂i,jxi,j

√
Pi,jlkgksi,j︸ ︷︷ ︸

Subcarrier reuse interference

+zi,k, (4.1)

where xi,k and f̂i,k ∈ CNTi,k
×1 are the transmitted data symbol and the precoding

vector used by the BS to transmit to user k on subcarrier i, respectively. NTi,k
is the

number of active antennas allocated to user k on subcarrier i for transmission. Pi,k is

the transmit power for the link from the BS to user k in subcarrier i. si,j ∈ {0, 1} is

the subcarrier allocation indicator in subcarrier i for user j. hi,k ∈ CNTi,k
×1 contains

the small scale fading coefficients between the BS and user k on subcarrier i. lk and
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gk represent the path loss and the shadowing between the BS and user k, respectively.

zi,k is the AWGN in subcarrier i at user k with distribution CN (0, N0), where N0 is

the noise power spectral density.

4.2.2 Channel State Information

In the following, since path loss and shadowing are slowly varying random processes

which both change on the order of seconds for low mobility users, we assume that the

path loss and shadowing coefficients can be estimated perfectly. For the multipath

fading, we assume that the users can obtain perfect estimates of the BS-to-user fading

gains h†
i,k f̂i,k ∈ C1×1, i ∈ {1, . . . , nF}, k ∈ {1, . . . , K} for signal detection purpose.

However, the corresponding CSIT, i.e., hi,k ∈ CNTi,k
×1 may be outdated/inaccurate

at the BS because of the mobility of the users or errors in uplink channel estimation.

To capture this effect, we model the multipath fading CSIT of the link between the

BS and user k on subcarrier i as

hi,k = ĥi,k +∆hi,k, (4.2)

where ĥi,k and ∆hi,k denote the estimated CSIT vector and the CSIT error vector,

respectively. ĥi,k and ∆hi,k are Gaussian random vectors and each vector has i.i.d.

elements. Besides, the elements of vectors hi,k, ĥi,k, and ∆hi,k have zero means and

normalized variances of 1, 1−σ2
e , and σ2

e , respectively. Assuming an MMSE estimator,

the CSIT error vector and the actual CSIT vector are mutually uncorrelated.
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4.3 Resource Allocation

In this section, we introduce the adopted system performance metric and formulate

the corresponding resource allocation problem.

4.3.1 Instantaneous Channel Capacity and Outage Capacity

In this subsection, we define the adopted system performance measure. Given perfect

CSI at the receiver, the maximum channel capacity between the BS and user k on

subcarrier i with subcarrier bandwidth W is given by

Ci,k = W log2

(
1 + Γi,k

)
and Γi,k =

Pi,klkgk f̂
†
i,khi,kh

†
i,k f̂i,k

WN0 +
∑

j ̸=k f̂
†
i,jhi,kh

†
i,k f̂i,jPi,jsi,jlkgk

, (4.3)

where Γi,k is the received SINR at user k on subcarrier i. The beamforming vector

adopted at the BS is chosen to be the eigenvector corresponding to the maximum

eigenvalue of ĥi,kĥ
†
i,k, i.e, f̂i,k =

ĥi,k

∥ĥi,k∥
, which is known as maximum ratio transmission

(MRT). Note that ZFBF is not considered in this system model since it requires

the inversion of an NTi,k
× NTi,k

matrix on each subcarrier for each user, which is

computational expensive for large NTi,k
, nF , and K.

In most existing resource allocation designs, the system performance is measured

in terms of ergodic capacity. This is a meaningful measure when the resource allocator

has perfect CSIT or the channels are fast fading (ergodic realizations of CSI within

the encoding frame) such that an arbitrarily small decoding error probability can be

achieved as long as the channel error correction code is strong enough. Yet, when

the resource allocator has imperfect CSIT in slow fading, a packet outage occurs

whenever the transmit data rate exceeds the instantaneous channel capacity despite

the use of channel capacity achieving codes for error protection. In order to model
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the effect of packet errors, we adopt the outage capacity [28] as performance measure.

The average weighted system outage capacity is defined as the total average number

of bit/s successfully delivered to the K mobile users and is given by U(P ,A,R,S) =

K∑
k=1

wk

nF∑
i=1

si,kE
{
Ri,k × 1

(
Ri,k ≤ Ci,k

)}
=

K∑
k=1

wk

nF∑
i=1

si,kRi,k Pr
[
Ri,k ≤ Ci,k

]
,(4.4)

where P,A,R, and S are the power, antenna, data rate, and subcarrier allocation

policies, respectively. Ri,k is the scheduled data rate for user k on subcarrier i.

0 ≤ wk ≤ 1 is a positive constant provided by the upper layers, which allows the

resource allocator to give different priorities to different users and to enforce certain

notions of fairness. On the other hand, for designing an energy efficient resource allo-

cation algorithm, the total power consumption has to be included in the optimization

objective function. Thus, we model the power dissipation, UTP (P ,A,R,S), in the

system as the sum of two dynamic terms and one static term [96]:

UTP (P ,A,R,S) = max
i,k

{si,k ×NTi,k
} × PC︸ ︷︷ ︸

Circuit power consumption of all antennas at the BS

+
K∑
k=1

nF∑
i=1

ρPi,ksi,k︸ ︷︷ ︸
BS power amplifier

+P0, (4.5)

where PC is the constant circuit power consumption per antenna which includes the

power dissipations in the transmit filter, mixer, frequency synthesizer, and digital-

to-analog converter which is independent of the actual transmitted power. In the

considered system, we assume that there are a maximum number antennas, Nmax,

at the BS. However, we only activate some of them for the sake of energy efficient
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communication11. Note that the physical meaning of the term max
i,k

{si,k ×NTi,k
}

is that an antenna is activated and consumes power even it is used only by some

of the users on some of the subcarriers. ρ ≥ 1 is a constant which accounts for

the inefficiency of the power amplifier. For example, if ρ = 5, for every 10 Watts

of radiated power in the RF, 50 Watts are consumed in the power amplifier and

the power efficiency is 1
ρ
= 1

5
= 20%. P0 is the basic power consumed at the BS

independent of the number of transmit antennas. Unlike the power dissipation model

used in (3.11) in Chapter 3, the model adopted in here includes the power efficiency

of the power amplifier and also the power consumption per antenna.

Hence, the weighted energy efficiency of the considered system is defined as the

total average number of bit/Joule successfully delivered to the users which is given

by

Ueff (P ,A,R,S) =
U(P ,A,R,S)

UTP (P ,A,R,S)
. (4.6)

4.3.2 Optimization Problem Formulation

The optimal power allocation policy, P∗, antenna allocation policy, A∗, data rate

adaption policy, R∗, and subcarrier allocation policy, S∗, can be obtained by solving

max
P,A,R,S,

Ueff (P ,A,R,S) (4.7)

s.t. C1:
K∑
k=1

nF∑
i=1

si,kRi,k ≥ r, C2:
K∑
k=1

nF∑
i=1

Pi,ksi,k ≤ PT ,

C3:Pr
(
Ci,k < Ri,k

)
≤ ε, ∀i, k, C4: Pi,k ≥ 0, ∀i, k,

C5: si,k = {0, 1}, ∀i, k, C6: NTi,k
= {1, 2, 3, . . . , Nmax}, NTi,k

∈ Z+ ∀i, k.
11The optimal number of active antennas will be found in next section based on optimization.
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C1 specifies the minimum system data rate requirement r. C2 is a transmit power

constraint for the BS in the downlink. The value of PT in C2 puts a limit on the

amount of out-of-cell interference in the downlink. C3 specifies the channel outage

probability requirement ε. Note that the number of active antennas is an optimization

variable in the considered problem. Hence, the imperfect CSI of the multipath fading

can only be acquired by the BS after the resource allocator has decided on the number

of active antennas. Therefore, the outage probability conditional on the multipath

fading, which is commonly used in the literature, cannot be adopted in C3. C5 is a

combinatorial constraint on the subcarrier assignment. Furthermore, C5 implicitly

imposes a fairness constraint, since no user can dominate the subcarrier reuse process.

In other words, selected users are not allowed to multiplex different messages on the

same subcarrier, since a sophisticated receiver would be required at each user, such

as a successive interference cancellation (SIC) receiver, to recover more than one

messages. Besides, the weaker users have a higher chance of being selected for reusing

a subcarrier. C4 is the boundary constraint for the power allocation variables. C6 is

the combinatorial constraint on the number of antennas.

4.4 Solution of the Optimization Problem

The objective function in (4.7) is a non-convex function. In general, a brute force

approach is required for obtaining a global optimal solution. However, such a method

has exponential complexity with respect to the number of subcarriers which is com-

putationally infeasible even for small size systems. In order to obtain an efficient

resource allocation algorithm, we introduce the following transformation.
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4.4.1 Problem Transformation

The fractional objective function in (4.6) can be classified as a nonlinear fractional

program [84]. For the sake of notational simplicity, we define F as the set of feasible

solutions of the optimization problem in (4.7). Without loss of generality, we define

the maximum energy efficiency q∗ of the considered system as

q∗ =
U(P∗,A∗,R∗,S∗)

UTP (P∗,A∗,R∗,S∗)
= max

P,A,R,S

U(P ,A,R,S)
UTP (P ,A,R,S)

, ∀{P ,A,R,S} ∈ F . (4.8)

By Theorem 3.1 in Chapter 3, the maximum energy efficiency q∗ is achieved if and

only if

max
P,A,R,S

U(P ,A,R,S)− q∗UTP (P ,A,R,S)

= U(P∗,A∗,R∗,S∗)− q∗UTP (P∗,A∗,R∗,S∗) = 0, (4.9)

for U(P ,A,R,S) ≥ 0 and UTP (P ,A,R,S) > 0.

Theorem 3.1 reveals that for an optimization problem with an objective function in

fractional form, there exists an equivalent12 objective function in subtractive form,

e.g. U(P ,A,R,S) − q∗UTP (P ,A,R,S) in the considered case. As a result, we can

focus on the equivalent objective function in the rest of the chapter.

4.4.2 Iterative Algorithm for Energy Efficiency

Maximization

In this section, we propose an iterative algorithm (known as the Dinkelbach method

[84]) for solving (4.7) with an equivalent objective function. The proposed algorithm
12Here, “equivalent” means both problem formulations will lead to the same resource allocation

policies.
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Table 4.1: Iterative Resource Allocation Algorithm.

Algorithm 4.1 Iterative Resource Allocation Algorithm
1: Initialize the maximum number of iterations Lmax and the maximum tolerance ϵ
2: Set maximum energy efficiency q = 0 and iteration index n = 0
3: repeat {Main Loop}
4: Solve the inner loop problem in (4.10) for a given q and obtain resource allo-

cation policies {P ′,A′,R′,S ′}
5: if U(P ′,A′,R′,S ′)− qUTP (P ′,A′,R′,S ′) < ϵ then
6: Convergence = true
7: return {P∗,A∗,R∗,S∗} = {P ′,A′,R′,S ′} and q∗ = U(P ′,A′,R′,S′)

UTP (P ′,A′,R′,S′)

8: else
9: Set q = U(P ′,A′,R′,S′)

UTP (P ′,A′,R′,S′)
and n = n+ 1

10: Convergence = false
11: end if
12: until Convergence = true or n = Lmax

is summarized in Table 4.1 and the convergence to the optimal energy efficiency is

guaranteed.

Note that the algorithm converges to the optimal solution with a superlinear

convergence rate and please refer to [85] for a detailed proof of the rate of convergence.

As shown in Table 4.1, in each iteration in the main loop (line 4 in Table 4.1), we

solve the following optimization problem for a given parameter q:

max
P,A,R,S

U(P ,A,R,S)− qUTP (P ,A,R,S)

s.t. C1, C2, C3, C4, C5, C6. (4.10)

In the following, we derive the solution of the main loop problem (4.10) by dual

decomposition.
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Sub-Optimal Solution of the Main Loop Problem

The transformed problem is a mixed combinatorial and non-convex optimization

problem. The combinatorial nature comes from the integer constraint for both sub-

carrier allocation and antenna allocation while the non-convexity is due to the fol-

lowing properties: First, the multiuser interference due to subcarrier reuse appears

in the denominator of the capacity equation in (4.3) which couples the power alloca-

tion variables. Second, the outage probability requirement in C3 is neither concave

nor convex with respect to the optimization variables. Furthermore, the probability

distribution of the SINR in (4.3) is coupled with the optimization variables which

makes the resource allocation algorithm design untractable. In order to derive an ef-

ficient resource allocation algorithm, we introduce the following proposition by taking

advantage of the large numbers of antennas.

Proposition 4.1 (Equivalent Data Rate) For a given outage probability ε in C3,

the equivalent data rate which incorporates the outage probability on subcarrier i for

user k is given by

Ri,k = (1− ε)W log2

(
1 +

Pi,klkgkNTi,k
(1− σ2

e)(1− δ)

WN0 +
∑

j ̸=k(
2
ε
)Pi,jsi,jlkgk

)
, , (4.11)

where 0 < δ < 1 is a constant back-off factor. Note that NTi,k
≥ ⌈Nth⌉ and ⌈Nth⌉ is

the solution of (E.6) in Appendix E which indicates the minimum number of antennas

required for Proposition 4.1 to hold.

Proof: Please refer to Appendix E for a proof of Proposition 4.1 and the meaning

of δ.

The next step in solving the considered problem is to handle the inter-user inter-

ference on each subcarrier. To this end, we introduce an additional constraint C7 to
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the original problem which is given by

C7:
∑
j ̸=k

(
2

ε
)Pi,jsi,jlkgk ≤ I, ∀k, i. (4.12)

C7 can be interpreted as the maximum inter-user interference temperature [97] (tol-

erable interference level) in each subcarrier. By varying13 the value of I, the resource

allocator is able to control the amount of interference in each subcarrier to improve

the system performance. Furthermore, by substituting
∑

j ̸=k(
2
ε
)Pi,jsi,jlkgk in (4.11)

by I, the inter-user interference can be decoupled from the objective function, which

facilitates the design of an efficient resource allocation algorithm. Then, the sched-

uled data rate between the BS and user k on subcarrier i can be lower bounded

by

Ri,k = W log2

(
1 +

Pi,klkgkNTi,k
(1− σ2

e)(1− δ)

WN0 + I

)
> W log2

( Pi,klkgk
WN0 + I

)
+W log2

(
NTi,k

(1− σ2
e)(1− δ)

)
. (4.13)

By substituting (4.13) into (4.10), a modified objective function, which incorporates

the channel outage requirement, can be obtained for the main loop problem in (4.10).

Indeed, it can be observed that the scheduled data rate for user k on subcarrier i

in (4.13) depends only on the path loss and shadowing information of user k due to

the large numbers of antennas. In other words, we expect that the optimal resource

allocation policy will be the same for all subcarriers of user k.

To handle the combinatorial constraints C5 and C6, cf. (4.7), we follow the

approach in [74] and relax constraints C5 and C6. In particular, we allow si,k to be
13The maximum inter-user interference temperature variable I is not an optimization variable in

the proposed framework. However, a suitable value of I can be found via simulation in an off-line
manner.
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a real value between zero and one instead of a Boolean, while NTi,k
can be a positive

real value. Then, si,k can be interpreted as a time sharing factor for the K users

for utilizing subcarrier i. Although the relaxations of NTi,k
and si,k are generally

sub-optimal, they facilitate the design of an efficient resource allocation algorithm.

Therefore, using the equivalent data rate in Proposition 4.1, the auxiliary time-shared

powers P̃i,k = Pi,ksi,k, the auxiliary time-shared antenna, ÑTi,k
= NTi,k

si,k, and the

continuous relaxation of both C5 and C6, we can rewrite the problem in (4.10) for a

given parameter q as

max
P,A,R,S

Ũ(P ,A,R,S)− qŨTP (P ,A,R,S)

s.t. C4,

C1:
K∑
k=1

nF∑
i=1

si,kR̃i,k ≥ r, C2:
K∑
k=1

nF∑
i=1

P̃i,k ≤ PT ,

C5: 0 ≤ si,k ≤ 1, ∀i, k,

C6: Nmax ≥ ÑTi,k
≥
⌈
Ñth

⌉
, ∀i, k, C7:

∑
j ̸=k

(
2

ε
)P̃i,jsi,jlkgk ≤ I, ∀i, k, (4.14)

where Ũ(P ,A,R,S) = U(P ,A,R,S)
∣∣∣
Pi,k=

P̃i,k
si,k

,NTi,k
=

ÑTi,k
si,k

, ŨTP (P ,A,R,S)

= UTP (P,A,R,S)
∣∣∣
Pi,k=

P̃i,k
si,k

,NTi,k
=

ÑTi,k
si,k

, and R̃i,k = Ri,k

∣∣∣
Pi,k=

P̃i,k
si,k

,NTi,k
=

ÑTi,k
si,k

.

The transformed problem (4.14) is now jointly concave with respect to all opti-

mization variables, cf. Appendix F. Thus, under some mild conditions [75], it can be

shown that strong duality holds and the duality gap is equal to zero. In other words,

solving the dual problem is equivalent to solving the primal problem14.
14Note that if we solve (4.14) instead of (4.10) in each main loop iteration of Algorithm 4.1 in

Table 4.1, the algorithm converges to a lower bound of the maximum energy efficiency of (4.7).
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Dual Problem

In this subsection, we solve the main loop problem in (4.14) by solving its dual. For

this purpose, we first need the Lagrangian function of the primal problem. Upon

rearranging terms, the Lagrangian can be written as

L(µ, γ,β,θ,P ,A,R,S) =
K∑
k=1

(wk + γ)

nF∑
i=1

si,kR̃i,k − µ

K∑
k=1

nF∑
i=1

P̃i,k + µPT − γr

−q
(
max
i,k

{ÑTi,k
} × PC +

K∑
k=1

nF∑
i=1

ρP̃i,k + P0

)
−

K∑
k=1

nF∑
i=1

θi,k

(∑
j ̸=k

(
2

ε
)P̃i,jlkgk − I

)
, (4.15)

where µ ≥ 0 and γ ≥ 0 are the Lagrange multipliers corresponding to the power

constraint and the required minimum outage capacity constraint, respectively. θ

and β are the Lagrange multiplier vectors associated with the inter-user interference

temperature constraint C7 and subcarrier usage constraint C4 with elements θi,k ≥ 0

and βi ≥ 0, respectively. The boundary constraints C4, C5, and C6 will be absorbed

into the KKT conditions when deriving the optimal solution in the following. Thus,

the dual problem of (4.14) is given by

min
µ,γ,β,θ≥0

max
P,A,R,S

L(µ, γ,β,θ,P ,A,R,S). (4.16)

In the following, we solve the above dual problem iteratively by decomposing it into

two layers: Layer 1 consists of nF subproblems with identical structure; Layer 2 is

the master dual problem to be solved with the gradient method.
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Dual Decomposition and Layer 1 Solution

By dual decomposition, the BS first solves the following Layer 1 subproblem

max
P,A,R,S

L(µ, γ,β,θ,P ,A,R,S) (4.17)

for a fixed set of Lagrange multipliers and a given parameter q. Using standard

optimization techniques and the KKT conditions, the optimal power allocation for

user k on subcarrier i is obtained as

P̃ ∗
i,k = si,kP

∗
i,k = si,k

[
W (wk + γ)

(ln(2))(µ+ qρ+ Ωi,k)

]
, where Ωi,k =

∑
j ̸=k

θi,k(
2

ε
)ljgj (4.18)

represents the interference to the other users created by this power allocation. The

optimal power allocation has the form of multi-level water-filling. It can be observed

that the energy efficiency variable q ≥ 0 prevents energy inefficient transmission by

truncating the water-levels. On the contrary, a large value of Ωi,k results in a lower

water-level in the power allocation to reduce the interference caused to the other

users such that the constraint C7 in (4.14) is satisfied.

Similarly, the close-to-optimal15 number of activated antennas for user k on sub-

carrier i is given by

Ñ∗
Ti,k

= N∗
Ti,k

si,k =

[⌈W (max
k∈Ψi

wk + γ)

PC(
q
Φi
) ln(2)

⌉]Nmax

⌊Nth⌋

si,k, (4.19)

where Ψi denotes a selected user set for using subcarrier i and Φi =
∑

b∈Ψi
1(max

k∈Ψi

wk =

wb) counts the number of wk which have a value equal to max
k∈Ψi

wk for all selected users.

15Here, the sub-optimality is due to the floor and ceiling functions in (4.19) which are required
for fulfilling the combinatorial constraint in practice.
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If the data rate requirement constraint C1 in (4.7) is stringent, the dual variable γ is

large and forces the resource allocator to assign more antennas to all selected users,

cf. (4.19), for satisfying constraint C1. Besides, (4.19) reveals that all users will

eventually use the same number of antennas. This behavior can be explained by the

following example: Suppose user 1 and user 2 are using N1 and N2 antennas such

that N1 > N2. Yet, from user 2’s point of view, the cost for N1 −N2 extra antennas

has been paid by user 1 already. Therefore, since no extra cost has to be paid, user

2 is willing to use extra antennas until N2 = N1, since this will benefit the system

performance.

In order to obtain the optimal subcarrier allocation, we take the derivative of the

subproblem with respect to si,k, which yields ∂L(µ,γ,β,θ,P,A,R,S)
∂si,k

∣∣∣∣∣
Pi,k=P ∗

i,k,NTi,k
=N∗

Ti,k

=

Mi,k, where Mi,k ≥ 0 can be interpreted as the marginal benefit [76] for allocating

subcarrier i to user k and is given by

Mi,k = (1− ε)W (wk + γ)

(
log2

( P ∗
i,klkgk

WN0 + I

)
+ log2

(
N∗

Ti,k
(1− σ2

e)(1− δ)
)
− 2/ ln(2)

)
. (4.20)

Mi,k ≥ 0 has the physical meaning that users with negative scheduled data rate on

subcarrier i are not selected as they can only provide a negative marginal benefit to

the system.

On the contrary, if a user has a larger weight wk and enjoys good channel condi-

tions with positive data rate on subcarrier i, he/she can provide a higher marginal

benefit to the system. Thus, the optimal allocation of subcarrier i at the BS is based
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on the following criterion:

s∗i,k = 1 if Mi,k ≥ 0 and s∗i,k = 0 otherwise. (4.21)

As explained earlier, since the multipath fading has vanished because of the beam-

forming with a large number of antennas, all the subcarriers of user k experience the

same channel gain. Hence, the resource allocation policy for user k on subcarrier

i, i.e., (4.18)-(4.21), is identical to that of the other nF − 1 subcarriers of user k.

Indeed, (4.21) can be interpreted as a chunk-based subcarrier allocation. In other

words, if subcarrier i is allocated to user k, the other nF − 1 subcarriers should also

be allocated to user k since they provide the same marginal benefit. As a result, the

complexity in solving the Layer 1 problem is reduced by a factor of nF .

Finally, the optimal data rate allocation R∗
i,k is obtained by substituting (4.18)

and (4.19) into the equivalent data rate in (4.11) in Proposition 1 for the subcarriers

with si,k = 1.

Solution of Layer 2 Master Problem

The dual function is differentiable and, hence, the gradient method can be used to

solve the Layer 2 master problem in (4.16) which leads to

µ(m+ 1) =
[
µ(m)− ξ1(m)× (PT −

K∑
k=1

nF∑
i=1

P̃i,k)
]+

, (4.22)

γ(m+ 1) =
[
γ(m)− ξ2(m)× (

K∑
k=1

nF∑
i=1

si,kR̃i,k − r)
]+

, (4.23)

θi,k(m+ 1) =
[
θi,k(m)− ξ3(m)× (I −

∑
j ̸=k

(
2

ε
)Pi,jsi,jlkgk)

]+
∀i, k, (4.24)

98



Chapter 4. EE Resource Allocation in OFDMA Systems with Large Numbers of BS Antennas

where index m ≥ 0 is the iteration index and ξu(m), u ∈ {1, 2, 3}, are positive step

sizes. Since the transformed problem for a given parameter q is concave in nature, it

is guaranteed that the iteration between Layer 1 and Layer 2 converges to the optimal

solution of (4.14) in the main loop, if the chosen step sizes satisfy the infinite travel

condition [75, 88]. Then, the updated Lagrange multipliers in (4.22)-(4.24) are used

for solving the subproblems in (4.17) via updating the resource allocation policies.

Although equations (4.18)-(4.24) provide a solution for solving the main loop

problem (line 4, Table 4.1), (4.19) involves non-causal knowledge of the subcarrier

allocation process for all users. This can be easily resolved by the coordinate ascent

method [87, 77] with the previous derived solutions for Layer 1 and Layer 2. The

coordinate ascent method is outlined in Table 4.2. The coordinate ascent method for

solving (4.14) is implemented as two nested layers in Algorithm 4.2. In Table 4.2,

tmax and mmax are the maximum number of iterations for the two nested loops. Pt,

At, Rt, and St are the power allocation, antenna allocation, data rate adaptation,

and subcarrier allocation policies in the t-th iteration, respectively. Layer 1, i.e.,

line 4 to line 7, is solving the maximization in (4.16) by using the coordinate ascent

method for a given set of Lagrange multipliers. In particular, in line 5, we first keep

the subcarrier allocation fixed and optimize the power allocation policy and antenna

allocation policy. Then, in line 6, we use the optimized policies Pt+1, At+1, and

Rt+1 from line 5 to optimize the subcarrier allocation policy. Convergence of Layer

1 to the optimum point for a given set of Lagrange multipliers is ensured for convex

optimization problems [77]. On the other hand, Layer 2, i.e., line 3 to line 9, solves

the minimization in (4.16) by updating the Lagrange multipliers.

A summary of the overall algorithm is given in Table 4.1. In each iteration of

the main loop (line 3 in Table 4.1), we solve the main loop problem in (4.14) for
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Table 4.2: Coordinate Ascent Method.

Algorithm 4.2 Coordinate Ascent Method for Solving (4.14)
1: Set the iteration indices t = 0,m = 0, maximum number of iterations tmax,mmax

2: Initialize the Lagrange multipliers µ, γ, θi,k and resource allocation policies
{Pt,At,Rt,St} for t = 0

3: repeat {Layer 2}
4: repeat {Layer 1}
5: Solve the power allocation, antenna allocation, and data rate allocation by

using (4.18) and (4.19) for all subcarriers with subcarrier allocation policy
St. Assign the solutions to Pt+1, At+1, and Rt+1

6: Solve the subcarrier allocation for all subcarriers by using (4.21) together
with Pt+1, At+1, and Rt+1. Assign the solution to St+1; t = t+ 1

7: until Convergence= true or t = tmax

8: Update µ, γ, and θi,k by gradient method according to (4.22)-(4.24); m = m+1
9: until Convergence= true or m = mmax

10: return {Pt,At,Rt,St} as {P ′,A′,R′,S ′} to line 4 in Algorithm 4.1

a given parameter q by dual decomposition and the coordinate ascent method with

Algorithm 4.2. After obtaining the solution in the main loop, we update parameter

q and use it for solving the main loop problem in the next iteration. This procedure

is repeated until the proposed algorithm converges.

Note that the algorithm in Table 4.1 is only based on path loss and shadowing

information16, thanks to the large numbers of antennas. In other words, we only

execute the algorithm according to the coherence time of shadowing and path loss

which is in the order of seconds for low mobilities users.

4.5 Results

In this section, we evaluate the system performance through simulations. A single cell

with a radius of 1 km is considered, cf. Figure 4.1. The simulation parameters can be
16The calculation of power, data rate, antenna, and subcarrier allocations are based on the path

loss information and shadowing information. However, the computation of precoding vector f̂i,k =
ĥi,k

∥ĥi,k∥
requires multipath information.
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Table 4.3: System parameters
Cell radius 1 km
Reference distance d0 35 m
Users distribution Uniformly distributed between d0 and cell boundary
Small scale fading distribution Rayleigh fading with zero mean and unit variance
Carrier center frequency 2.5 GHz
Number of subcarriers nF 256
Total bandwidth 5 MHz
Subcarrier bandwidth 19.5 kHz
Noise power per subcarrier N0W −131 dBm
Channel path loss model 3GPP- Urban Micro
Lognormal shadowing Standard deviation of 8 dB
Circuit power per antenna PC 30 dBm [98]
Static circuit power consumption P0 40 dBm [89]
Minimum data rate requirement r 7 bit/s/Hz
Power amplifier (PA) power efficiency 1/ρ = 0.2

Constant back-off factor δ 0.3

CSIT error variance σ2
e (unless specified) 0.1

Outage probability requirement ε 0.1

Nth 33

Nmax 100

found in Table 4.3. In practice, the values of PC and P0 depend on the application-

specific integrated circuits (ASIC) and the implementation. The values of PC and P0

adopted in this chapter are for illustration purpose and are based on [98] and [89],

respectively. Note that if the resource allocator is unable to guarantee the minimum

data rate in a time slot, we set the energy efficiency and outage capacity in that

particular time slot to zero to account for the corresponding failure. On the other

hand, in the following results, the “number of iterations” is referring to the number

of iterations of Algorithm 4.1 in Table 4.1.
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Figure 4.2: The normalized performance of the proposed algorithm versus the maxi-
mum interference-temperature-to-noise ratio I

N0W
for different values of PT and dif-

ferent numbers of users. The y-axis is normalized by the performance of the optimal
algorithm.

4.5.1 Energy Efficiency versus Maximum Inter-user

Interference Temperature I

In this section, we focus on the impact of the value of I on the system performance.

As can be seen from (4.12) and (4.13), the multi-user interference temperature I,

which is the key for transforming the main loop problem in (4.14) into a convex

optimization problem, plays an important role in the proposed resource allocation
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algorithm. The value of I puts a limit on the subcarrier reuse by controlling the

amount of interference temperature17. For instance, by setting I = 0, each subcarrier

can be used by one user only. On the contrary, I ≫ 1 allows all users to transmit

simultaneously on the same subcarrier. Figure 4.2 shows the performance of the

proposed algorithm versus the value of I for different PT and different numbers of

users K. The y-axis is normalized by the close-to-optimal performance obtained by

solving the original non-convex problem (4.14) using iterative spectrum balancing

together with antenna constraint relaxation18, such that it illustrates the achievable

percentage of the performance of the reference scheme. The x-axis is the interference

temperature-to-noise ratio, i.e., I
N0W

. It can be seen that for a wide range of I
N0W

,

we can achieve around 95% of the optimal performance and enjoy the convexity of

the transformed problem. Furthermore, the choice of I is highly dependent on the

number of users. This is because a higher value of I
N0W

can be tolerated for a larger

number of users as the selected users can better cope with the co-channel interference

in each subcarrier due to MUD. On the other hand, as expected, the optimal value of

I is not sensitive to PT when PT is large, since the resource allocator clips the total

transmit power for energy efficiency maximization, cf. (4.18).

In the following simulations, a fixed value of I is chosen for the proposed algorithm

in each simulation point, such that we always achieve more than 95% of the average

performance of the optimal resource allocation algorithm.
17In practice, suitable values for I for implementing the proposed algorithm can be found in an

off-line manner.
18The upper bound is obtained by assuming perfect channel state information is available at the

base station. In addition, we remove constraints C3, C5, C6, and C7 from the optimization problem
in (4.14) for obtaining the upper bound performance. The resulting optimization problem can be
solved by using the Dinkelbach method and the spectrum balancing algorithm from [87]. Note that
the spectrum balancing algorithm is a close-to-optimal numerical method for solving non-convex
optimization problems in multicarrier systems. However, it converges slowly and is computational
infeasible for large size systems.
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Figure 4.3: Energy efficiency versus the number of iterations with K = 15 users
for different maximum transmit powers PT and channel estimation error variance
σ2
e = 0.1.

4.5.2 Convergence of Iterative Algorithm

Figure 4.3 illustrates the evolution of the proposed iterative algorithm for different

values of the maximum transmit power, PT , at the BS and K = 15 users. The results

in Figure 4.3 were averaged over 100000 independent adaptation processes where

each adaptation process involves different realizations of path loss, shadowing, and

multipath fading. It can be observed that the iterative algorithm converges to the

optimal value within 10 iterations for all considered numbers of transmit antennas.
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In other words, the maximum system energy efficiency can be achieved within a few

iterations.

4.5.3 Energy Efficiency and Average Outage Capacity versus

Transmit Power

Figure 4.4 illustrates the energy efficiency versus the total transmit power for K = 15

users. The number of iterations for the proposed iterative resource allocation algo-

rithm is 5 and 10. The performance difference between 5 iterations and 10 iterations

is negligible which confirms the practicality of our proposed iterative resource allo-

cation algorithm. It can be observed that when the maximum transmit power at

the power amplifier is large enough, e.g., PT ≥ 40 dBm, the energy efficiency of the

proposed algorithm approaches a constant value since the resource allocator is not

willing to consume more power or activate more antennas, when the maximum energy

efficiency is achieved. For comparison, Figure 4.4also contains the energy efficiency

of a baseline resource allocation scheme in which resource allocation is performed in

the same manner as in the proposed scheme, except that the number of transmit

antennas is fixed to NTi,k
= Nth, 40, 60, 80, ∀i, k, respectively. In other words, the

baseline scheme optimizes energy efficiency only in terms of resource allocation poli-

cies {P ,R,S}, while the proposed algorithm optimizes energy efficiency in terms of

resource allocation policies {P ,A,R,S}. It can be observed that activating a fixed

number of transmit antennas NTi,k
degrades the system performance in terms of ener-

gy efficiency. This is because in the baseline scheme, either more power is consumed

by the circuitries for operating the antennas or the number of antennas is not large

enough for satisfying the minimum data rate requirement. On the other hand, in the

high transmit power regime, the performance gain of the proposed algorithm over
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Figure 4.4: Energy efficiency versus maximum transmit power, PT , for different re-
source allocation algorithms with channel estimation error variance σ2

e = 0.1. The
minimum required number of antennas is Nth = 24.
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the baseline scheme with small NTi,k
is reduced. This is due to the fact that in the

high transmit power regime, the data rate requirement is satisfied because of the high

transmit power and the proposed algorithm tends to use the minimum number of an-

tennas. In fact, the circuit power required for activating an extra antenna is relatively

high, compared to the power consumed in the RF. Therefore, the proposed algorithm

activates a relatively small number of antennas in the high transmit power regime

and thus the performance gain due to antenna allocation becomes less significant.

Figure 4.5 shows the average outage capacity versus maximum transmit power PT

for K = 15 users. We compare the system performance of the proposed algorithm

again with the baseline resource allocator. The number of iterations in the proposed

algorithm is set to 5 and 10. It can be observed that the average outage capacity

of the proposed algorithm approaches a constant in the high transmit power regime.

This is because the proposed algorithm clips the transmit power at the BS in order

to maximize the system energy efficiency. We note that, as expected, the baseline

scheme resource allocator achieves a higher average outage capacity than the proposed

algorithm in the high transmit power regime for most cases (except for NTi,k
= Nth),

since the proposed algorithm tends to use a smaller number of antennas. However,

the superior average outage capacity of the baseline scheme comes at the expense

of low energy efficiencies. On the contrary, in the low transmit power regime, i.e.,

PT ≤ 25 dBm, the proposed algorithm has a higher average outage capacity than

the baseline scheme with NTi,k
≤ 60 since the baseline scheme is not able to meet

the data rate constraint due to insufficient numbers of antennas. On the other hand,

an increasing number of antennas in the baseline scheme benefits the average outage

capacity due to an improved beamforming gain. However, there is a diminishing

return when NTi,k
is large due to the channel hardening effect [28] in the desired
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Figure 4.5: Average outage capacity (bit/s/Hz) versus maximum transmit power,
PT , for different resource allocation algorithms, channel estimation error variance
σ2
e = 0.1, and K = 15 users.

channels.

Figure 4.6 depicts the average total power consumption, i.e., E{UTP (P,A,R,S)},

versus maximum transmit power PT for the proposed algorithm and the baseline

scheme for 10 iterations. In the regime of PT ≤ 30 dBm, the proposed algorithm

consumes more power than the baseline scheme with NTi,k
≤ 40. This is because more

antennas have to be activated for satisfying the data rate requirement. However,

as the maximum transmit power allowance PT increases, the proposed algorithm

gradually approaches a constant power consumption since neither further increasing
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Figure 4.6: Average total power consumption, E{UTP (P ,A,R,S)}, versus maximum
transmit power, PT , for different resource allocation algorithms, channel estimation
error variance σ2

e = 0.1, 10 iterations, and K = 15 users.

the transmit power nor activating more antennas benefits the system energy efficiency.

4.5.4 Energy Efficiency versus Number of Users

Figure 4.7 depicts the energy efficiency versus the number of users. Different CSIT

error variances σ2
e , PT = 46 dBm, and 10 iterations of the proposed algorithm are

considered. It can be observed that the energy efficiency grows with the number
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Figure 4.7: Energy efficiency (bit-per-Joule) versus the number of users K for different
resource allocation algorithms, different channel estimation error variances σ2

e , and a
maximum transmit power of PT = 46 dBm.

of users since the proposed resource allocation and scheduling algorithm is able to

exploit MUD. In general, MUD introduces an extra power gain [28, Chapter 6.6] to

the system which provides further energy savings. Indeed, since a large number of

transmit antennas reduces the multipath propagation fluctuations in each channel and

causes channel hardening, the potentially achievable MUD gain due to the multipath

channel vanishes. Yet, the MUD gain obtained from path loss and shadowing is still

beneficial for the system performance in terms of energy efficiency. For comparison,

Figure 4.7 also contains the energy efficiency of the baseline scheme mentioned in

110



Chapter 4. EE Resource Allocation in OFDMA Systems with Large Numbers of BS Antennas

Section 4.5.3 with NTi,k
= 60, ∀i, k. Figure 4.7 shows that although the baseline

scheme is able to exploit MUD, the performance of the proposed resource allocation

algorithm is superior to the baseline scheme in all considered scenarios, due to the

optimization of the number of antennas.

4.6 Conclusions

In this chapter, we formulated the resource allocation for energy efficient OFDMA

systems with a large number of antennas as a mixed non-convex and combinatori-

al optimization problem, in which circuit power consumption, minimum data rate

requirements, and outage probability constraints were taken into consideration. An

efficient iterative resource allocation algorithm with closed-form power adaption, an-

tenna allocation, data rate adaption, and subcarrier allocation was derived for max-

imization of the number of received bit-per-Joule at the users. Simulation results

did not only show that the proposed algorithm converges to the optimal solution

within a small number of iterations, but demonstrated also the trade-off between

energy efficiency and the number of transmit antennas: The use of a large number

of antennas is always beneficial for the system outage capacity, even if the CSIT is

imperfect. However, an exceedingly large number of antennas may not be a cost

effective solution for improving the system performance, at least not from an energy

efficiency point of view.
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Chapter 5

Energy-Efficient Resource Allocation

in Multi-Cell OFDMA Systems with

Limited Backhaul Capacity

5.1 Introduction

In the previous chapter, we have proposed a resource allocation algorithm for maxi-

mizing the energy efficiency of OFDMA systems with a large number of BS antennas.

The inherent degrees of freedom of multiple antennas provide a substantial perfor-

mance gain compared to single antenna systems. In practice, instead of using co-

located antennas at one BS, cooperative communication can also be used to exploit

the degrees of freedom in the spatial domain by using distributed single antennas

[99]-[104]. A particularly interesting cooperative communication approach is BS co-

operation for mitigation of strong multi-cell interference due to aggressive/universal

frequency reuse in the network [105]. Over the past decade, a number of interference

mitigation techniques have been proposed in the literature, including SIC and in-

terference nulling through multiple antennas, for alleviating the negative side-effects

of aggressive/universal frequency reuse [106]-[108]. Unfortunately, these techniques

may be too complex for low-power battery driven mobile receiver units. On the con-
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trary, BS cooperation, which is known as network MIMO, shifts the signal processing

burden to the BSs and provides a promising system performance [109]-[114]. In par-

ticular, all BSs share the CSI and data of the users through backhaul communication

links, which enables coordinated transmission. In [109], the sum-rate of multi-cell

ZFBF systems was studied under the assumption of the Wyner interference model

for a large number of users. In [110] and [111], the authors derived the optimal block

diagonalization precoding matrix and the optimal max-min beamformer in multi-cell

environments, respectively. However, the results in [109]-[111] are based on the ideal

backhaul assumption such that an unlimited amount of control signals, user channel

information, and precoding data can be exchanged. In practice, the backhaul capac-

ity can be limited due to the deployment costs of the backhaul links. Besides, if a

multi-carrier system is considered, the results in [109]-[111] which are valid for single-

carrier transmission, may no longer be applicable. Furthermore, numerous resource

allocation algorithms were designed for different system configurations by utilizing

only the local CSI in multicell systems, e.g. [112]-[114]. Yet, this kind of cooperation

may not be able to fully exploit the potential performance gains achievable by BS

cooperation, since the backhaul capacity is not fully utilized. On the other hand, user

assignment and BS assignment in multi-cell OFDMA systems with limited backhaul

capacity constraints were studied in [115] and [116], respectively. In [117], the au-

thors proposed a dynamic frequency allocation with fractional frequency reuse and

equal power allocation across all cooperating BSs. In all studies [109]-[117], a sub-

stantial capacity gain and better interference management are reported, compared

to non-cooperative systems. Yet, the advantages of BS cooperation do not come for

free. They have significant financial implications for service providers due to the high

power consumption in electronic circuitries, RF transmission, and data exchange via
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backhaul links. Thus, energy efficiency (bit-per-Joule) may be a better performance

metric compared to system capacity (bit-per-second-per-Hz) in evaluating the uti-

lization of resources [118]-[120]. However, energy efficiency in multi-cell systems with

limited backhaul has not been considered in the literature, e.g. [109]-[117], at least

not from resource allocation point of view.

In this chapter, we address the above issues. For this purpose, we formulate the

resource allocation problem for energy efficient communication in multi-cell OFDMA

systems with limited backhaul capacity as an optimization problem. By exploiting

the properties of fractional programming, the considered non-convex optimization

problem19 in fractional form is transformed into an equivalent optimization problem

in subtractive form with a tractable solution, which can be found with an iterative

algorithm. In each iteration, a low complexity user selection policy is computed.

Besides, we show that the duality gap for the resulting power allocation problem is

zero when the number of subcarriers is sufficiently large, despite the non-convexity of

the problem. As a result, dual decomposition is used to derive a closed-form power

allocation solution for maximization of the network energy efficiency.

5.2 Multi-Cell OFDMA Network Model

5.2.1 Multi-Cell System Model and Central Unit

We consider a multi-cell OFDMA network which consists of a total of M BSs and

K mobile users. All transceivers are equipped with a single antenna, cf. Figure 5.1.

We assume universal frequency reuse and the M BSs share a total bandwidth of B
19Non-convex optimization is a general terminology referring to an optimization problem neither

minimizing a convex function over convex sets, nor maximizing a concave function over concave
sets.
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= Backhaul connections with limited 

capacities for data exchange

= Backhaul connections for control signals

Figure 5.1: A multi-cell system with M = 3 cells with a fully connected backhaul
link topology. There are in total K = 27 users in the system. Each transceiver is
equipped with a single antenna.

Hertz. The global CSI is assumed to be perfectly known at a central unit and all

computations are performed in this unit. Based on the available CSI, the central

unit decides the resource allocation policy and broadcasts it to all BSs via backhaul

connections which are dedicated to control signals only. On the other hand, all

BSs are cooperating with each other by sharing the CSI and the data symbols of

all selected users via capacity limited backhaul communication links. Note that the

energy consumptions incurred by exchanging CSI and other overheads such as control

signals are not considered here since they are relatively insignificant compared to the

resources used for data exchange.
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5.2.2 OFDMA Channel Model

We consider an OFDMA system with nF subcarriers. The channel impulse response

is assumed to be time-invariant within each frame. Suppose user k ∈ {1, . . . , K} is

associated with BS m ∈ {1, . . . , M}. Let wk
Bm

(i) be the precoding coefficient used

by BS m to in subcarrier i ∈ {1, . . . , nF} for user k. Then, the transmitted signal

from BS m to all selected users on subcarrier i is given by

∑
k∈S(i)

xk
m(i) =

∑
k∈S(i)

wk
Bm

(i)
√

P k
Bm

(i)uk(i), (5.1)

where xk
m(i) = wk

Bm
(i)
√

P k
Bm

(i)uk(i) is the pre-coded signal transmitted from BS m

for user k on subcarrier i, P k
Bm

(i) is the transmit power for the link between BS m

and user k in subcarrier i, uk(i) is the transmitted information symbol for user k on

subcarrier i, and S(i) is the user set selected for using subcarrier i and the cardinality

of the set is |S(i)| ≤ M, ∀i.

The received signal from M BSs at user k on subcarrier i is given by

Y k(i) =

(
M∑
c=1

Hk
Bc
(i)wk

Bc
(i)
√

P k
Bc
(i)lkBc

)
uk(i) (5.2)

+
M∑

m=1

∑
j∈S(i)
j ̸=k

√
P j
Bm

(i)lkBm
Hk

Bm
(i)wj

Bm
(i)uj(i)

︸ ︷︷ ︸
Multiple Access Interference

+zk(i),

where lkBm
represents the path loss between BS m and user k, zk(i) is the AWGN in

subcarrier i at user k with zero mean and variance σ2
z , and Hk

Bm
(i) is the small scale

fading coefficient between BS m and user k in subcarrier i.
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5.2.3 Backhaul Model

In practice, the backhaul signal model depends on the specific implementation. For

instance, a digital subscriber line (DSL) and an optical fiber are able to deliver

high data rates by using orthogonal frequency division multiplexing (OFDM) and

wavelength division multiplexing (WDM), respectively. Yet, the media over which is

transmitted with both techniques are different. In order to provide a general model for

the backhaul, we do not assume a particular type/medium for the backhaul. Instead,

we focus on the backhaul capacity of the Nm outgoing backhaul connections of BS

m, i.e., RBmNm
. The value of Nm depends on the backhaul connection topology. For

instance, a fully connected topology in a 3-cell system, cf. Figure 5.1, requires Nm = 2

outgoing connections for each BS. Furthermore, we assume that each backhaul has a

fixed average power consumption of PBH .

5.3 Resource Allocation and Scheduling

5.3.1 Instantaneous Channel Capacity

In this subsection, we define the adopted system performance measure. Given perfect

CSI at the receiver, the maximum channel capacity between all the cooperating BSs

and user k on subcarrier i with subcarrier bandwidth B
nF

is given by

Ck(i) =
B
nF

log2

(
1 + Γk(i)

)
, (5.3)

Γk(i) =

∣∣∣∑M
c=1H

k
Bc
(i)wk

Bc
(i)
√

P k
Bc
(i)lkBc

∣∣∣2
σ2
z + Ik(i)

, (5.4)

Ik(i) =
∑
j∈S(i)
j ̸=k

∣∣∣ M∑
m=1

√
P j
Bm

(i)wj
Bm

(i)
√
lkBm

Hk
Bm

(i)
∣∣∣2, (5.5)
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where Γk(i) and Ik(i) are the received SINR and the received interference power at

user k on subcarrier i, respectively.

The weighted system capacity is defined as the total number of bits successfully

delivered to the K mobile users and is given by

U(P,W ,S) =
M∑

m=1

∑
k∈Am

αk

nF∑
i=1

sk(i)Ck(i), (5.6)

where P , W , and S are the power, precoding coefficient, and subcarrier allocation

policies, respectively. Am is the user admission set of BS m and sk(i) ∈ {0, 1} is the

subcarrier allocation indicator. 0 < αk ≤ 1 is a positive constant provided by the

upper layers, which allows the resource allocator to give different priorities to different

users and to enforce certain notions of fairness. On the other hand, for designing a

resource allocation algorithm for energy efficient communication, the total power

consumption should be included in the optimization objective function. Thus, we

model the power dissipation in the system as the sum of two static terms and one

dynamic term which can be expressed as

UTP (P ,W ,S) = PC ×M + δ × PBH +
M∑

m=1

K∑
k=1

nF∑
i=1

εP k
Bm

(i)|wk
Bm

(i)|2sk(i), (5.7)

where PC is the constant signal processing power required at each BS which in-

cludes the power dissipations in the transmit filter, mixer, frequency synthesizer,

and digital-to-analog converter, etc. PC × M represents the total signal processing

power consumed by the M BSs. The second term in (5.7) denotes the total power

dissipation in the backhaul links where δ is an integer variable which indicates the

number of backhaul links in the system. For instance, the topology considered in

Figure 5.1 requires δ =
∑M

m=1Nm = 6 backhaul connections. The last term in (5.7)
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represents the total power consumption in the power amplifiers of the M BSs. ε ≥ 1

is a constant which accounts for the inefficiency of the power amplifier. For example,

if ε = 5, it means that for every 10 Watts of power radiated in the RF, 50 Watts are

consumed in the power amplifier and the power efficiency is 1
ε
= 1

5
= 20%.

Hence, the weighted energy efficiency of the considered system is defined as the

total average number of bits/Joule

Ueff (P ,W ,S) =
U(P ,W ,S)

UTP (P ,W ,S)
. (5.8)

5.3.2 Optimization Problem Formulation

The optimal power allocation policy, P∗, precoding policy, W∗, and subcarrier allo-

cation policy, S∗, can be obtained by solving

max
P,W,S

Ueff (P,W ,S)

s.t. C1:
K∑
k=1

nF∑
i=1

|wk
Bm

(i)|2P k
Bm

(i)sk(i) ≤ PTm , ∀m,

C2:
M∑

m=1

K∑
k∈Am

nF∑
i=1

sk(i)Ck(i) ≥ Rmin,

C3:
K∑

k∈Am

nF∑
i=1

sk(i)Ck(i) ≤ Rmaxm = min{RBm1
, RBm2

, . . . , RBmNm
}, ∀m,

C4:
K∑
k=1

sk(i) ≤ M, ∀i, C5: sk(i) = {0, 1}, ∀i, k,

C6: P k
Bm

(i) ≥ 0, ∀i, k,m, (5.9)

where C1 is an individual power constraint of BS m. The value of PTm in C1 puts

a limit on the amount of interference generated to the non-cooperative cells in the

downlink. C2 specifies the minimum system data rate requirement Rmin. Note that
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although variable Rmin in C2 is not an optimization variable in this chapter, a balance

between energy efficiency and aggregate system capacity can be struck by varying

Rmin. Operator min{·} in C3 accounts for the fact that the system capacity con-

tributed by a BS is limited by the bottleneck backhaul capacity of that BS. Indeed,

C3 is a generalized constraint on the backhaul capacities which is applicable to differ-

ent topologies such as star connection topology [121, Chapter 1] and fully connected

topology20 [121, Chapter 4]. Besides, C3 puts a limit on the maximum data rate

transmission at each BS due to the limited backhaul capacities. If RBmaxm
→ ∞∀m,

then C3 is always satisfied automatically. i.e., the backhaul capacity is much larger

than the wireless link capacity. C4 is the subcarrier reuse constraint. C4 and C5

are imposed to guarantee that each subcarrier can be shared by M users, but each

user can only use a subcarrier once. In other words, selected users are not allowed

to multiplex different messages on the same subcarrier, since a sophisticated receiver

would be required at each user, such as an SIC receiver, to recover more than one

messages.

5.4 Solution of the Optimization Problem

The objective function in (5.9) is a ratio of two functions which generally results in a

non-convex function. Thus, a brute force approach is required for obtaining a global

optimal solution. However, such a method has exponential complexity with respect to

the numbers of subcarriers and the number of users which makes it computationally

infeasible even for small size systems. In order to derive an efficient resource allocation
20In a star connection topology, the network has a hub to convey messages. In other words, all the

message exchanges between BSs have to first pass through this hub. In a fully connected topology,
all BSs are connected to each other. As a result, a fully connected network does not require the
usage of switches/hubs.
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algorithm, we introduce the following transformation.

5.4.1 Transformation of the Objective Function

The objective function in (5.9) can be classified as nonlinear fractional program [84].

For the sake of notational simplicity, we define F as the set of feasible solutions of the

optimization problem in (5.9). Without loss of generality, we define the maximum

energy efficiency q∗ of the considered system as

q∗ =
U(P∗,W∗,S∗)

UTP (P∗,W∗,S∗)
= max

P,W,S

U(P ,W ,S)
UTP (P ,W ,S)

, ∀{P ,W ,S} ∈ F . (5.10)

By Theorem 3.1 in Chapter 3, the maximum energy efficiency q∗ is achieved if and

only if

max
P,W,S

U(P ,W ,S)− q∗UTP (P ,W ,S)

= U(P∗,W∗,S∗)− q∗UTP (P∗,W∗,S∗) = 0, (5.11)

for U(P ,W ,S) ≥ 0 and UTP (P ,W ,S) > 0.

By Theorem 3.1, for any optimization problem with an objective function in frac-

tional form, there exists an equivalent21 objective function in subtractive form, e.g.

U(P ,W ,S)−q∗UTP (P ,W ,S), in the considered case. As a result, we can focus on

the equivalent objective function in the rest of the chapter.
21Here, “equivalent” means that both problem formulations will lead to the same resource alloca-

tion policies.
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Table 5.1: Iterative Resource Allocation Algorithm.

Algorithm 5.1 Iterative Resource Allocation Algorithm
1: Initialize the maximum number of iterations Lmax and the maximum tolerance ϵ
2: Set maximum energy efficiency q = 0 and iteration index n = 0
3: repeat {Main Loop}
4: Solve the inner loop problem in (5.12) for a given q and obtain resource allo-

cation policies {P ′,W ′,S ′}
5: if U(P ′,W ′,S ′)− qUTP (P ′,W ′,S ′) < ϵ then
6: Convergence = true
7: return {P∗,W∗,S∗} = {P ′,W ′,S ′} and q∗ = U(P ′,W ′,S′)

UTP (P ′,W ′,S′)

8: else
9: Set q = U(P ′,W′,S′)

UTP (P ′,W′,S′)
and n = n+ 1

10: Convergence = false
11: end if
12: until Convergence = true or n = Lmax

5.4.2 Iterative Algorithm for Energy Efficiency

Maximization

In this section, we propose an iterative algorithm (known as the Dinkelbach method

[84]) for solving (5.9) with an equivalent objective function. The proposed algorithm

is summarized in Table 5.1 and the convergence to the optimal energy efficiency is

guaranteed.

Proof: Please refer to [84] for a proof of convergence.

As shown in Table 5.1, in each iteration in the main loop, we solve the following

optimization problem for a given parameter q:

max
P,W,S

U(P ,W ,S)− qUTP (P ,W ,S)

s.t. C1, C2, C3, C4, C5, C6. (5.12)
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Solution of the Main Loop Problem

The transformed problem is a mixed combinatorial and non-convex optimization

problem. The non-convex nature comes from the power allocation variables and pre-

coding coefficients. The multiuser interference appears in the denominator of the

SINR expression in (5.4) which couples the power allocation variables. On the other

hand, the combinatorial nature comes from the integer constraint for subcarrier allo-

cation. To obtain an optimal solution, an exhaustive search is needed with complexity∑M
g=1

(
K
g

)nF , which is computationally infeasible for K ≫ M . In order to derive an

efficient resource allocation algorithm, we solve the above problem in three steps. In

the first step, we employ a low complexity sub-optimal user selection scheme. Then,

in the second step, we calculate the ZFBF coefficients for a given selected user set of

S. In the final step, we optimize the transmit power at each BS for energy efficiency

maximization. We note that by fixing resource allocation policies {W ,S}, Algorithm

5.1 in Table 5.1 converges to a sub-optimal solution since only the power allocation

is optimized for energy efficiency maximization.

Step 1 (Semi-Orthogonal User Selection [122])

We propose an efficient user selection algorithm. Without loss of generality, we define

a row vector H⃗k
BS(i)=

[
Hk

B1
(i)
√

lkB1
Hk

B2
(i)
√

lkB2
. . . Hk

BM
(i)
√
lkBM

]
which represents

a super-channel vector between all BSs and user k with elements Hk
Bm

(i)
√
lkBm

, k ∈

{1, . . . , K}, m ∈ {1, . . . , M}, representing the channel coefficient between BS m

and user k on subcarrier i. Let S⊥(i) be a semi-orthogonal user set for subcarrier

i. Then, the adopted semi-orthogonal user selection procedure for each subcarrier is

summarized in Table 5.2. η in line 7 in Table 5.2 represents a threshold for measuring

orthogonality. Note that a user with a higher value of αk (priority) has a higher
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Table 5.2: Semi-Orthogonal User Selection Algorithm.

Algorithm 5.2 Semi-Orthogonal User Selection Algorithm
1: Initialize Tt = {1, . . . , K}, orthogonality parameter η, vector subspace Φ =

{ϕ⃗(1), . . . , ϕ⃗(t)}, iteration index t = 1, and S⊥(i) = ∅, where ϕ⃗(t) ∈ C1×M .
2: Update S⊥(i) → S⊥(i)

∪
π(t), π(t) = argmax

a∈Tt
∥H⃗a

BS(i)∥2, ϕ⃗(1) = H⃗
π(t)
BS (i), Tt+1 =

Tt/{π(t)}.
3: repeat
4: For each users k ∈ Tt, calculate a vector H⃗k

⊥(i) ∈ C1×M which is orthogonal to
Φ as

H⃗k
⊥(i) = H⃗k

BS(i)−
t−1∑
r=1

H⃗k
BS(i)ϕ⃗

†
(r)

∥ϕ⃗(r)∥2
ϕ⃗(r).

5: Update S⊥(i) → S⊥(i)
∪

π(t), π(t) = argmax
a∈Tt

∥H⃗a
⊥(i)∥2, ϕ⃗(t) = H⃗

π(t)
⊥ (i).

6: if |S⊥(i)| ≤ M , then
7: Calculate Tt+1 as

Tt+1 =

{
k ∈ Tt, k ̸= π(t),

|H⃗k
BS(i)ϕ⃗

†
(t)|

∥H⃗k
BS(i)∥∥ϕ⃗(t)∥

< η × αk

}
, t = t+ 1.

8: end if
9: until Tt = ∅ or |S⊥(i)| = M

chance of being selected. On the other hand, as η → 0, the selected users in the set

are increasingly orthogonal to each other. In other words, users associated with set

S⊥(i) cause less interference to other users in the set. Note that with the proposed

user selection scheme, the search space for each subcarrier decreases from
∑M

a=1

(
K
a

)
to 2KM and 2KM∑M

a=1 (
K
a)

≪ 1 for K ≫ M . Note that although the proposed algorithm

is suboptimal, it has been shown in [122] that the proposed scheme performs well in

combination with zero-forcing beamforming.
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Step 2 (Zero-Forcing Beamformimg)

A multi-cell network with full BS cooperation can be interpreted as a MIMO broad-

cast channel. It can be shown that dirty paper coding (DPC) is optimal in achiev-

ing the multiuser broadcast capacity region. However, DPC requires a very high

complexity which is considered impractical. On the contrary, although ZFBF is a

suboptimal precoding scheme, it is considered a practical solution, due to its linear

complexity and promising performance. Besides, it can be shown that the proposed

semi-orthogonal user selection algorithm together with ZFBF can achieve the same

asymptotic sum capacity performance as DPC [122]. Therefore, we focus on ZFBF

in the rest of the chapter.

If ZFBF is used for transmission, the capacity equation in (5.3) can be rewritten

as

Ck(i) =
B
nF

log2

(
1 + Γk(i)

)
where

Γk(i) =

∣∣∣∑M
c=1

√
lkBc

Hk
Bc
(i)wk

Bc
(i)
∣∣∣2P k

Bm
(i)

σ2
z

(5.13)

P k
Bm

(i) = P k
B1
(i) = P k

B2
(i) = . . . = P k

BM
(i) is an imposed constraint together with

ZFBF22. There are two reasons for imposing this constraint. First, it allows us to

separate the power allocation variables from the precoding coefficients. Second, it

simplifies the design of power control23. Let us consider the above scenario and

ZFBF precoding with the above assumption, then the total transmit power of the
22Indeed, the transmit power from BS m to user k on subcarrier i is P k

Bm
(i)|wk

Bm
(i)|2 instead of

P k
Bm

(i). So even if we enforce P k
Bm

(i) = P k
B1

(i) = P k
B2

(i) = . . . = P k
BM

(i), the actual transmit powers
to user k from M base stations (BSs) are not identical since in general |wk

B1
(i)|2 ̸= |wk

B2
(i)|2 ̸= . . . ̸=

|wk
BM

(i)|2.
23The above approach is commonly used in literature for decoupling the power allocation variables

from the precoding coefficients and for the design of simple yet efficient resource allocation algorithms
for multiple antenna systems.
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M BSs to user k on subcarrier i is given by
∑M

c=1 P
k
Bc
(i)|wk

Bc
(i)|2 = P k

Bm
(i), since∑M

c=1 |wk
Bc
(i)|2 = 1. In other words, the precoding coefficients are decoupled from

the power allocation variables and the precoding coefficients do not increase the total

power consumption. Besides, we can directly control the total amount of transmit

power from the M BSs to user k on subcarrier i via optimizing P k
Bm

(i). Without loss

of generality, we assume that user 1 to user k are selected for using subcarrier i, i.e.,

{1, . . . , k} ∈ S⊥(i). Let us define a super channel matrix HB(i) ∈ C|S⊥(i)|×M such

that

HT
B(i) =

[(
H⃗1

BS(i)
)T (

H⃗2
BS(i)

)T
. . .
(
H⃗k

BS(i)
)T] . (5.14)

Then, the corresponding ZFBF super matrix B(i) ∈ CM×|S⊥(i)| can be calculated in

the centralized unit and is given by

B(i) = H†
B(i)

(
HB(i)H

†
B(i)

)−1

D(i), (5.15)

where D(i) ∈ C|S⊥(i)|×|S⊥(i)| is a diagonal matrix with diagonal elements

γk(i) = 1/

√[(
HB(i)H

†
B(i)

)−1]
k,k

=
∣∣∣∑M

c=1

√
lkBc

Hk
Bc
(i)wk

Bc
(i)
∣∣∣. Note that γk(i)

represents the equivalent channel gain between all BSs and user k on subcarrier i for

ZFBF transmission. Hence, the ZFBF coefficient wk
Bc
(i) is given by

wk
Bc
(i) =

[
B(i)

]
c,k

∀k ∈ S⊥(i) (5.16)

and the central unit delivers the relevant ZFBF coefficients to each BS via additional

backhaul connections which are dedicated to control signals.
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Dual Problem

The final step in solving the main loop problem is to optimize the power allocation.

For a given set of selected users and ZFBF transmission, the problem in (5.12) is

still non-convex due to constraint C3. In general, a non-zero duality gap exists if

we solve (5.12) by solving its dual. However, we will demonstrate that the duality

gap is always zero when the number of subcarriers is sufficiently large. This result is

summarized in the following theorem.

Theorem 5.1 Let P and D denote the optimal values of the primal and the dual

problem in (5.12), respectively. For a given selected user set and ZFBF transmission,

if the number of subcarriers is sufficiently large, then strong duality holds and the

duality gap is zero, i.e., P = D.

Proof: Please refer to Appendix G for a proof of Theorem 5.1.

By Theorem 5.1, we solve the main loop problem in (5.12) by solving its dual.

For this purpose, we first need the Lagrangian function of the primal problem. Upon

rearranging terms, the Lagrangian can be written as

L(λ,β, γ,P) =
M∑

m=1

nF∑
i=1

K∑
k∈Am∩S⊥(i)

(αk + γ − βm)C
k(i)− γRmin +

M∑
m=1

βmRmaxm

−
M∑

m=1

λm

( nF∑
i=1

K∑
k∈S⊥(i)

|wk
Bm

(i)|2P k
Bm

(i)− PTm

)

− q
( M∑

m=1

K∑
k∈Am∩S⊥(i)

nF∑
i=1

εP k
Bm

(i)|wk
Bm

(i)|2 + δPBH + PC ×M
)
, (5.17)

where γ ≥ 0 is the Lagrange multiplier corresponding to the required minimum

capacity constraint C2. λ and β are the Lagrange multiplier vectors associated with

individual power constraint C1 and maximum backhaul capacity constraint C3 with
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elements λm ≥ 0 and βm ≥ 0, m ∈ {1, . . . , M}, respectively. Boundary constraint C6

will be absorbed into the KKT conditions when deriving the optimal power allocation

in the following. Note that (αk + γ − βm) ≥ 0 always holds for allocating a non-zero

capacity to user k, cf. (5.19). Thus, the dual problem of (5.12), for a given selected

user set and ZFBF transmission, is given by

D = min
λ,β, γ≥0

max
P

L(λ,β, γ,P). (5.18)

In the following, we solve the above dual problem iteratively by decomposing it

into two layers via dual decomposition: Layer 1, the maximization over P in (5.18),

consists of M × nF subproblems with identical structure; Layer 2, the minimization

over λ, β, and γ in (5.18), is the master dual problem to be solved by the gradient

method, cf. Figure 5.2.

Layer 1 Solution (Power Allocation)

By Theorem 5.1, the KKT conditions are the necessary and sufficient conditions for

the optimal solution. Thus, the closed-form power allocation for the BSs serving user

k in subcarrier i for a given parameter q is obtained as

P k
Bm

(i) =

[
B/nF (αk + γ − βm)

ln(2)Ωk(i)
− σ2

z

|γk(i)|2

]+
(5.19)

and P k
Ba
(i) = P k

Bm
(i)∀a ̸= m, whereΩk(i) =

( M∑
c=1

(λc + qε)|wk
Bc
(i)|2

)
. (5.20)

The optimal power allocation solution in (5.19) is in the form of multi-level water

filling. Note that if a user has a higher value of αk (higher priority), a higher power

will be allocated to the user since she has a higher water level B/nF (αk+γ−βm)
ln(2)Ωk(i)

compared
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Layer 2 Master Problem

Layer 1

1 st sub-problem

Layer 1

2 nd sub-problem

Layer 1
th sub-problemFM n×

 

, , γλ βGradient update on

, , γλ β , , γλ β, , γλ β
2( ) | ( ) |

M M

k k

B B
P i w i

2 2

2( ) | ( ) |k k

B B
P i w i

1 1

2( ) | ( ) |k k

B B
P i w i

Information passing from Layer 1 to Layer 2

Information passing from Layer 2 to Layer 1

according to (5.21)-(5.23)

Figure 5.2: Illustration of the dual decomposition of a large problem into a two-layer
problem.

to other users. βm ≥ 0 controls the scheduled data rate via adjusting the water level

of the power allocation in (5.19), such that the scheduled data rate will not exceed

the backhaul capacity limit. Ωk(i) represents the influence of the power consumption

of other BSs in the joint transmission on subcarrier i for user k.

Solution of Layer 2 (Master Problem)

To solve the Layer 2 master minimization problem in (5.18), i.e, to find λ, β, and γ for

a given P , the gradient method can be used since the dual function is differentiable.
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The gradient update equations are given by:

λm(c+ 1) =
[
λm(c)− ξ1(c)×

(
PTm −

nF∑
i=1

K∑
k∈S⊥(i)

|wk
Bm

(i)|2P k
Bm

(i)
)]+

,∀m, (5.21)

γ(c+ 1) =
[
γ(c)− ξ2(c)×

( M∑
m=1

nF∑
i=1

K∑
k∈Am∩S⊥(i)

Ck(i)−Rmin

)]+
, (5.22)

βm(c+ 1) =
[
βm(c)− ξ3(c)×

(
Rmaxm −

nF∑
i=1

K∑
k∈Am∩S⊥(i)

Ck(i)
)]+

, ∀m, (5.23)

where index c ≥ 0 is the iteration index and ξu(c), u ∈ {1, 2, 3}, are positive step

sizes. Then, the updated Lagrange multipliers in (5.21)-(5.23) are used for solving

the Layer 1 subproblems in (5.18) via updating the resource allocation policies, cf.

Figure 5.2. By Theorem 5.1, the duality gap is zero and it is guaranteed that the

iteration between Layer 1 and Layer 2 converges to the optimal solution of (5.18) in

the main loop, if the chosen step sizes satisfy the infinite travel condition [75, 88].

5.5 Results and Discussions

In this section, we evaluate the system performance for the proposed resource allo-

cation and scheduling algorithm using simulations. A multi-cell system with 3 cells

is considered. The inter-site distance between each pair of BSs is 500 meters as sug-

gested in the 3GPP specification [123]. The number of subcarriers is nF = 128 with

carrier center frequency 2.5 GHz, system bandwidth B = 1.25 MHz, and αk = 1,∀k.

Each subcarrier for RF transmission has a bandwidth of 9.7656 kHz and the noise

variance is σ2
z = −134 dBm. The 3GPP path loss model is used. The small scale

fading coefficients of the BS-to-user links are generated as i.i.d. Rayleigh random

variables with zero means and unit variances. We assume that all BSs have the same
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maximum transmit power, i.e., PTm = PT , ∀m. Besides, a fully connected backhaul

connection topology is considered for simulation purpose, i.e., there are δ = 6 con-

nections, cf. Figure 5.1. For the backhaul connections, we adopt the specifications of

a commercial optical fiber modem [124] which supports three types of data rates for

backhaul within a distance of 2.5 km: R1 = 11.184 Mbit/s, R2 = 34.368 Mbit/s, and

R3 = 44.736 Mbit/s24. The maximum power consumption of each backhaul link is

PBH = 15 Watts. The average system energy efficiency is obtained by counting the

amount of data which are successfully decoded by the users and dividing it by the

total power consumption averaged over both macroscopic and microscopic fading.

We assume a static circuit power consumption of PC = 40 dBm [89], a data rate

requirement of Rmin = 4 bit/s/Hz/cell, and an orthogonality parameter of η = 0.1.

On the other hand, we assume a power efficiency of 20% for the power amplifiers

used in the RF, i.e., ε = 1
0.2

= 5. In the following results, the “number of iterations”

refers to the number of iterations of Algorithm 5.1 in Table 5.1.

5.5.1 Convergence of Iterative Algorithm 5.1 and Duality

Gap

Figure 5.3 illustrates the evolution of the proposed iterative algorithm for different

numbers of users and different maximum transmit powers at each BS. The results in

Figure 5.3 were averaged over 100000 independent adaptation processes where each

adaptation process involves different realizations for the path loss and the multipath

fading. It can be observed that the iterative algorithm converges to the optimal value

within 10 iterations for all considered numbers of transmit antennas. In other words,
24The values of the backhaul capacities used in the chapter are for illustration purpose. In practice,

the choice of backhaul capacities should scale with the bandwidth and the number of subcarriers
used in the RF transmission.

131



Chapter 5. EE Resource Allocation in Multi-Cell OFDMA Systems with Limited Backhaul Capacity

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

5

Number of iterations

E
ne

rg
y 

ef
fic

ie
nc

y 
(b

it/
Jo

ul
e)

 

 

P
T
 = 46 dBm, R

max
m

 = R
1

P
T
 = 46 dBm, R

max
m

 = R
2

P
T
 = 46 dBm, R

max
m

 = R
3

P
T
 = 19 dBm, R

max
m

 = R
1

P
T
 = 19 dBm, R

max
m

 = R
2

P
T
 = 19 dBm, R

max
m

 = R
3

P
T
 = 19 dBm, 

R
max

m

 = R
2
, R

max
m

 = R
3

P
T
 = 46 dBm, 

R
max

m

 = R
2
, R

max
m

 = R
3

P
T
 = 19 dBm, P

T
 = 46 dBm

R
max

m

 = R
1

Maximum 
energy efficiency

Figure 5.3: Energy efficiency (bit-per-Joule) versus number of iterations with different
maximum transmit power allowances per BS, PT , and different numbers of users K.
The dashed lines represent the maximum achievable energy efficiencies for different
cases.

the maximum system energy efficiency can be achieved within a few iterations for a

given set of selected users and ZFBF transmission.

Figure 5.4 shows the duality gap, D − P, versus the maximum transmit power

allowance at each BS, PT , for different maximum backhaul capacities. The primal

problem is solved by using the power allocation solution obtained in the dual decom-

position. It can be seen that the duality gap is practically zero for the considered

cases, despite the non-convexity of the primal problem. The few small non-zero spikes

in the duality gap (in the order of 10−7) are mainly due to a finite-precision arithmetic

of computation and a finite number of iterations in solving the dual problem.
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Figure 5.4: Duality gap versus the maximum transmit power allowance at each BS,
PT , for different backhaul capacities Rmaxm .

5.5.2 Energy Efficiency and Average Capacity versus

Transmit Power

Figure 5.5 illustrates the energy efficiency versus the maximum transmit power al-

lowance at each BS, PT , for K = 45 users. The number of iterations for the proposed

iterative resource allocation algorithm is 5 and 10. It can be seen that the perfor-

mance difference between 5 iterations and 10 iterations is negligible which confirms

the practicality of our proposed iterative resource allocation algorithm. On the oth-

er hand, when both the maximum transmit power allowance at the power amplifier

and the capacities of the backhaul links are large enough, e.g., PT ≥ 30 dBm and
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Rmaxm ≥ R2 ∀m, the energy efficiency of the proposed algorithm approaches a con-

stant value since the resource allocator is not willing to consume more power, when

the maximum energy efficiency is achieved. Besides, further increasing the backhaul

capacities from Rmaxm = R2 ∀m to Rmaxm = R3 ∀m is not beneficial for energy

efficiency as the system performance is now confined by the capacity of the radio

links. However, for the case of backhaul capacity Rmaxm = R1 ∀m, the energy ef-

ficiency is quickly saturated even if the transmit powers at the BSs are low since

the system capacity is always limited by the bottleneck of the backhaul connections.

For comparison, Figure 5.5 also contains the energy efficiency of a baseline resource

allocation scheme in which we maximize the weighted system capacity (bit/s/Hz)

with constraints C1-C6 in (5.9) for a given selected users set and ZFBF transmission,

instead of the energy efficiency. It can be observed that in the low transmit power

regime with high backhaul capacity, i.e., PT < 30 dBm and Rmaxm ≥ R2 ∀m, the

baseline scheme has virtually the same performance as the proposed algorithm. In

other words, this result suggests that in the low transmit power regime, transmitting

with the maximum available power is the most energy efficient option. However, the

energy efficiency of the baseline scheme decreases dramatically in the high transmit

power regime. This is because there is a diminishing return in the system capacity

with respect to the increment of transmit power. Meanwhile, the total power con-

sumption scales linearly with respect to the transmit power. Hence, the capacity

gain is unable to compensate for the negative impact of the total power consumption

in the RF amplifiers and results in a low energy efficiency. On the other hand, for

Rmaxm = R1 ∀m, the proposed algorithm and the baseline scheme achieve the same

energy efficiencies as the degrees of freedom in the resource allocation are limited by

the small backhaul capacities.
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Figure 5.5: Energy efficiency (bit-per-Joule) versus the maximum transmit power
allowance at each BS, PT , for different resource allocation algorithms and different
backhaul capacities with K = 45 users.
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Figure 5.6: Average system capacity (bit/s/Hz/cell) versus the maximum transmit
power allowance at each BS, PT , for different resource allocation algorithms and
different backhaul capacities with K = 45 users.

Figure 5.6 shows the average system capacity (bit/s/Hz/cell) versus the maximum

transmit power PT for K = 45 users and different backhaul capacities. We compare

the system performance of the proposed algorithm again with the baseline scheme.

The number of iterations in the proposed algorithm is set to 5 and 10. It can be

observed that the average system capacity of the proposed algorithm approaches a

constant in the high transmit power and high backhaul capacity regimes, i.e, PT ≥ 30

dBm and Rmaxm ≥ R2 ∀m. This is because the proposed algorithm clips the transmit

power at the BSs in order to maximize the system energy efficiency. However, when
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the backhaul capacity is small, i.e., Rmaxm = R1 ∀m, the maximum achievable average

system capacities of both the proposed algorithm and the baseline scheme do not scale

with the transmit power. We note that, as expected, the baseline scheme achieves

a higher average system capacity than the proposed algorithm in the high transmit

power regime for Rmaxm ≥ R2 ∀m since the former scheme consumes all the available

transmit power in all scenarios. However, the superior average system capacity of

the baseline scheme comes at the expense of low energy efficiency as shown in Figure

5.5. On the other hand, increasing the backhaul capacity beyond Rmaxm = R2 ∀m

is not beneficial for the average system capacity as the wireless communication links

are the bottleneck links.

Figure 5.7 depicts the average total power consumption, i.e., E{UTP (P,W ,S)},

versus the maximum transmit power PT for the proposed algorithm and the baseline

scheme for 10 iterations. In the considered transmit power regimes, the proposed

algorithm consumes less power than the baseline scheme for the case of Rmaxm ≥

R2 ∀m. This is because the proposed algorithm clips the transmit power for energy

efficiency maximization. However, when the backhaul capacity is the limiting factor,

i.e., Rmaxm = R1 ∀m, both the baseline scheme and the proposed algorithm consume

almost the same amount of power since the transmit power usage is confined by the

backhaul capacity instead of energy efficiency maximization.

5.5.3 Energy Efficiency and Average System Capacity versus

Number of Users

Figures 5.8 and 5.9 depict the energy efficiency and the average system capacity

versus the number of users, respectively. Different backhaul capacities, different

maximum transmit power allowances PT at the BSs, and 10 iterations of the proposed
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Figure 5.7: Average total power consumption, E{UTP (P ,W ,S)}, versus the maxi-
mum transmit power allowance at each BS, PT , for different backhaul capacities, 10
iterations, and K = 45 users.

algorithm are considered. It can be observed that for Rmaxm ≥ R2 ∀m, both the

energy efficiency and the average system capacity grow with the number of users since

the proposed resource allocation and scheduling algorithm is able to exploit multiuser

diversity (MUD) due to the semi-orthogonal user selection algorithm. In general,

MUD introduces an extra power gain [28, Section 6.6] to the system which provides

further energy savings. Yet, when the backhaul capacity is the performance limiting

factor, i.e., Rmaxm = R1 ∀m, the proposed algorithm is unable to take advantage of

MUD since the performance gain due to joint BS transmission is limited by the small

backhaul capacities. As a result, both the average system capacity and the energy
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Figure 5.8: Energy efficiency (bit-per-Joule) versus the number of users K for dif-
ferent maximum transmit power allowances at each BS, PT , and different backhaul
capacities.
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efficiency remain constant when the backhaul is the bottleneck.

5.6 Conclusions

In this chapter, we formulated the resource allocation and scheduling design for multi-

cell OFDMA networks with joint BS ZFBF transmission as a non-convex and com-

binatorial optimization problem, in which the circuit power dissipation, the limited

backhaul capacity, and the system data rate requirement were taken into considera-

tion. By exploiting the properties of fractional programming, the considered problem

was transformed into an equivalent problem with a tractable iterative solution. In

each iteration, a low complexity user selection is performed for maximization of the

energy efficiency. Furthermore, we demonstrated that when the number of subcarri-

ers is sufficiently large, the duality gap is practically zero despite the non-convexity

of the primal problem. As a result, an efficient closed-form power allocation can be

obtained in each iteration via dual decomposition. Simulation results showed that

the proposed algorithm converges to the solution within a small number of iterations

and unveiled a trade-off between energy efficiency, network capacity, and backhaul

capacity.
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Chapter 6

Summary of Thesis and Future

Research Topics

In this final chapter, in Section 6.1, we summarize our results and highlight the

contributions of this thesis. In Section 6.2, we also propose ideas for future related

research.

6.1 Summary of Results

This thesis as a whole has focused on resource allocation algorithm design for next

generation wireless communication systems, namely: (1) secure OFDMA DF relaying

systems; (2) energy efficient secure OFDMA systems; (3) energy efficient OFDMA

systems with a large number of BS antennas; (4) energy efficient multi-cell OFDMA

systems with BS cooperation and limited backhaul capacity. In the following, we

briefly review the main results of each chapter.

In Chapter 2, we proposed a novel resource allocation algorithm for secure OFD-

MA DF relaying systems. Distributed resource allocation policies, i.e., power, data

rate, and subcarrier allocation, were optimized for maximization of the average system

secrecy outage capacity. The proposed algorithm takes into account of the artificial

noise generation for combating an eavesdropper with multiple antennas. Simulation

results showed that a non-zero secrecy outage capacity is achievable, independent of
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the location of the multiple antennas eavesdropper.

In Chapter 3, we investigated the energy efficiency in secure OFDMA system

by taking the dynamic circuit power consumption into account. By exploiting the

fractional programming, a non-convex optimization problem in fractional form was

transformed into subtractive form which facilitated the design of an efficient resource

allocation for secrecy capacity maximization. Simulation results demonstrated that

the energy efficiency approaches a constant in the high transmit power regime which

is related to the dynamic power consumption. On the other hand, a non-zero energy

efficiency and average secrecy outage capacity can still be achieved as long as the

number of antennas at the BS is larger than the number of eavesdropper antennas,

despite the fact that the eavesdropper is closer to the BS than the desired users.

In Chapter 4, we have considered the energy efficiency in OFDMA systems with

a large number of antennas. We formulated the resource allocation design as an

optimization problem which took into account the power consumption of each antenna

and provided a high flexibility in resource allocation. In particular, we allowed the

BS to only activate a portion of the available antennas for energy saving. Simulation

results showed that increasing the number of activated antennas at the BSs is always

beneficial to the average system outage capacity. Yet, this is not necessary the case

from an energy efficiency point of view. Under the adapted simulation parameters,

we showed that an extra number of antennas is activated only whenever we were

unable in fulfilling the data rate requirement by power allocation.

In Chapter 5, we have investigated the energy efficiency in multi-cell OFDMA

systems with BS cooperation. The resource allocation design was formulated as a

non-convex optimization problem which took into account limited backhaul capacity,

a minimum system data rate requirement, and individual BS power constraints. By
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exploiting the properties of fractional programming, the original problem in fraction-

al form was transformed into a subtractive form which facilitates the design of an

iterative efficient design. In each iteration, we solved a non-convex power allocation

problem. In particular, we showed that the duality gap of the resulting power al-

location problem is zero when the number of subcarrier is sufficiently large, despite

the non-convexity of the primal problem. As a result, a novel resource allocation

algorithm was derived by using dual decomposition.

6.2 Future Work

Future wireless communication networks will have to strive for higher data rates and

more reliable communication to serve multiusers, and at the same time, guarantee

other diverse QoS requirements. This brings about several technical problems such

as a higher multi-cell interference level as well as heavy energy consumption per user.

The above issues have raised serious concerns on whether existing technologies are

able to cope with the challenges introduced by future applications. In Chapters 2–5,

we have considered four novel resource allocation algorithms for energy efficient and

secure communication systems. However, energy efficient and secure system designs

are a vast research area and many problems are still unsolved. In the following, we

propose some ideas for further research that are similar to or can be based on the

work in this thesis.
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6.2.1 Secure Communications in OFDMA Systems with an

Active Eavesdropper

One extension of Chapters 2 and 3 is to focus on an active eavesdropper under a half

duplex constraint [125, 126, 127]. In contrast to a passive eavesdropper, an active

eavesdropper can choose between eavesdropping the transmission between the legit-

imate parties and jamming the communication channels. As a result, the action of

the transmitter depends on the behavior of the eavesdropper. If the active eaves-

dropper chooses to eavesdrop the channel, the transmitter should generate artificial

noise along with the information signal to selectively interfere with the eavesdropper,

as suggested in Chapters 2 and 3. However, if the eavesdropper decides to jam the

communication channels, the transmitter should allocate all the power to the infor-

mation bearing signal in order to maximize the SINR. On the other hand, the action

of the eavesdropper depends on the action of the transmitter. The action dependen-

cies between the transmitter and eavesdropper results in an interesting trade-off in

the system performance as well as the resource allocation algorithm design. A pos-

sible direction is to study the resource allocation and scheduling problem for secure

communications in OFDMA systems with active eavesdroppers. In particular, the

problem may be modelled as a two-person zero-sum game with the secrecy capacity

as the objective function. The results of this work will provide useful insights for

designing resource allocation algorithms for secure communication in mission critical

and military networks.
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6.2.2 Energy Efficiency: Optimal Locations for Distributed

Antennas

Next generation mobile communication systems are required to provide reliable com-

munication and heterogeneous services for a large number of users in the system.

Unfortunately, the users located at the cell edges are suffering from strong multi-cell

interference and weak desired signal strengths which becomes the bottleneck of the

system performance. In order to enhance the system performance of the cell edge

users, distributed antenna technologies have been proposed and provide a substantial

gain in network downlink throughput by jointly exploiting the degrees of freedom in

frequency, time, and space [128]-[133]. Although some preliminary studies have been

already conducted for the power allocation and frequency assignment in distributed

antenna systems [131, 132, 133], the optimization of the location of the antennas has

been overlooked so far, especially in multi-cell interference limited environments. An

interesting problem for future work is the resource allocation and antenna location

optimization for maximization of the average system capacity or energy efficiency

in multi-cell OFDMA systems, under the constraints of maximum transmit power

and minimum data rate. The results of this work are useful to service providers for

network planning.

6.2.3 Energy Harvesting in Energy Efficient OFDM Systems

Energy harvesting is the process of collecting energy from external sources such as

solar energy and thermal energy for charging the battery of the energy source so

as to extend the network’s lifetime [134]-[137]. In contrast to traditional resource

allocation problems where the energy supplied by the energy source is static, the

time varying nature of the recharging process presents new challenges in the design of
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resource allocation algorithms. In particular, the transmitters must always maintain

positive energy storage levels to avoid service outages due to energy depletion. Several

contributions in the literature have considered using energy harvesters as the energy

source [134]-[137]. In practice, the fluctuations in the battery recharging process can

happen at a faster rate than the coherence time of the communication channel. In

other words, there are two dynamic processes in the system which should be taken

into account for the design of resource allocation algorithms. As a result, the design

of resource allocation and scheduling algorithms for maximizing the energy efficiency

in energy harvesting systems with consideration of the dynamic differences between

the states of the energy buffer and data buffer is needed.
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Appendix A

Mathematical Preliminaries

A.1 Convex Analysis

A.1.1 Definitions and Basic Properties

In this section, we introduce some basic properties of concave functions which are

useful for understanding the content of this thesis. The three main mathematical

references on convex analysis are [75, 77, 138]. For the sake of notational simplicity

and to avoid ambiguity, we define the following notations. We use f⟨·⟩ to denote a

function f and use (·) to denote a bracket in this section.

Definition A.1 Let f⟨·⟩ : Rn → R. Function f is said to be concave in Rn if

∀λ ∈ [0, 1] such that

f⟨λx1 + (1− λ)x2⟩ ≥ λf⟨x1⟩+ (1− λ)f⟨x2⟩ (A.1)

for all x1,x2 ∈ Rn.

Theorem A.1 Let f⟨·⟩ : Rn → R. Function f is concave in Rn if and only if for

any x̃ ∈ Rn,

f⟨x⟩ ≤ f⟨x̃⟩+
[
ξx

]T
(x− x̃) (A.2)

160



Appendix A. Mathematical Preliminaries

for each x ∈ Rn, where ξx is the sub-gradient vector with respect to x at x̃.

Geometrically, f⟨x̃⟩ +
[
ξx

]T
(x − x̃) represents a hyperplane which supports the

function f from above.

A.1.2 Optimization Problem and Perturbation Function

Without loss of generality, an optimization problem can be written in general form

as

P = max
x≽0

f0⟨x⟩ (A.3)

s.t. gi⟨x⟩ ≤ 0, 1 ≤ i ≤ L,

hl⟨x⟩ = 0, 1 ≤ l ≤ M,

where f0⟨·⟩ : RN → R is the objective function and x ∈ RN is the vector of optimiza-

tion variables. gi⟨·⟩ : RN → R are L arbitrary functions associated with L inequality

constraints. hl⟨·⟩ : RN → R are M arbitrary functions associated with M equality

constraints. Note that we do not make any assumptions regarding the concavity of

functions f0⟨·⟩, gi⟨·⟩, and hl⟨·⟩. Then, the perturbation function is defined as

v⟨y⟩ = max
x≽0

f0⟨x⟩ (A.4)

s.t. gi⟨x⟩ ≤ yi, 1 ≤ i ≤ L,

hl⟨x⟩ = yL+l, 1 ≤ l ≤ M,

where y = [y1, . . . , yL, yL+1, . . . , yL+M ]T ∈ RL+M is a perturbation vector. A geomet-

rical interpretation of the perturbation function is given Figure G.1. Note that v⟨y⟩

is a non-decreasing function of [y1, . . . , yL] since a larger value of each element in
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[y1, . . . , yL] results in a larger feasible set.

Duality Theory and KKT Conditions

The basic idea in Lagrangian duality is to take the constraints in (A.3) into account

by augmenting the objective function with a weighted sum of the constraint functions.

We define the Lagrangian associated with (A.3) as

L⟨x,u,w⟩ = f0⟨x⟩ −
L∑
i=1

ui

(
gi⟨x⟩

)
−

M∑
l=1

wl

(
hl⟨x⟩

)
(A.5)

where u ∈ RL is the Language multiplier (dual variable) vector with elements ui ≥ 0,

i ∈ {1, . . . , L} associated with the i-th inequality constraint gi⟨x⟩ ≥ 0 and w ∈ RM

is the Language multiplier vector with elements wl, l ∈ {1, . . . , M} associated with

the l-th equality constraint.

Thus, the corresponding dual problem is given by

D = min
u≽0,w

max
x

L⟨x,u,w⟩, (A.6)

which is always a convex optimization problem even if the primal problem is not

convex. This is because D is a point-wise maximum of a family of affine function

with respect to (u,w).

Theorem A.2 (Weak duality Theorem) Let x be the a feasible solution to the

primal problem P and (u,w) be a feasible solution to the dual problem D. Then,

D ≥ P (A.7)

holds regardless the convexity of the primal problem.
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Definition A.2 (Duality Gap) The duality gap is defined as the difference between

the optimal dual value and the optimal primal value, i.e., D − P.

If the duality gap is zero, i.e., D−P = 0, then strong duality holds and the primal

optimum is equal to the dual optimum. In other words, solving the dual problem is

equivalent to solving the primal problem.

In the following, we introduce the KKT conditions. Let x∗ and (u∗,w∗) be the

primal and dual variables at the optimum point. The KKT conditions are given as

gi⟨x∗⟩ ≤ 0, 1 ≤ i ≤ L,

hl⟨x∗⟩ = 0, 1 ≤ i ≤ M,

u∗
i ≥ 0, (Dual feasibility)

u∗
i gi⟨x∗⟩ = 0, (Complementary slackness)

∇xf⟨x∗⟩ −
L∑
i=1

ui
∗∇xgi⟨x∗⟩ −

M∑
l=1

w∗
l ∇xhl⟨x∗⟩ = 0, (A.8)

where u∗
i and w∗

l are the elements of Lagrangian vectors u∗ and w∗, respectively.

Under some technical conditions, (Slater’s condition [75]), the KKT conditions

are necessary and sufficient for optimality of convex optimization problem. However,

if the problem is non-convex, the KKT conditions are only the necessary conditions

for optimality.
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Proof of Lemma 2.1

The proof of Lemma 2.1 involves three steps. We first derive the channel outage data

rate between the BS and user k via relay m on subcarrier i by considering the channel

outage probability requirement C1 in (2.21), i.e.,

Pr

[
Rdata

m,k [i] >
1

2
min

{
CBRm,k[i], CRm,k[i]

}∣∣∣∆m,k[i]

]
= ε. (B.1)

Note that CRm,k[i] is the only random variable in (B.1) and both Rdata
m,k [i] and CBRm,k[i]

can be controlled via power and packet data rate adaptations. In other words,

Rdata
m,k [i] ≤ 1

2
CBRm,k[i] is guaranteed. Therefore, (B.1) can be written as

Pr
[
Rdata

m,k [i] >
1

2
CRm,k[i]

∣∣∣∆m,k[i], CBRm,k[i] > CRm,k[i]
]

×Pr
[
CBRm,k[i] > CRm,k[i]

∣∣∣∆m,k[i]
]
. (B.2)

On the other hand, it can be observed that the outage capacity Rdata
m,k [i](1 − ε) is

linearly increasing with Rdata
m,k [i] for a fixed target outage requirement ε and is upper

bounded by 1
2
CBRm,k[i]. Therefore, the outage capacity is maximized if we control

1
2
CBRm,k[i] such that it is equal to Rdata

m,k [i]. Therefore, (B.2) can be further simplified
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as

Pr
[
CBRm,k[i] > CRm,k[i]

∣∣∣∆m,k[i]
]

(B.3)

= Pr

[
(22R

data
m,k [i] − 1)(1 + (1− αRm,k[i])PRm,k[i]σ

2
e)

αRm,k[i]PRm,k[i]

> r̂†m,k[i]h
†
Rm,k[i]hRm,k[i]̂rRm,k[i]

∣∣∣∆m,k[i]

]

= Fχ2

((22Rdata
m,k [i] − 1)(1 + (1− αRm,k[i])PRm,k[i]σ

2
e)

αRm,k[i]PRm,k[i]
, i
)
= ε

⇒ Rdata
m,k [i] = min

{1
2
log2

(
1 +

αRm,k[i]PRm,k[i]F
−1
χ2

(ε, i)

1 + (1− αRm,k)PRm,k[i]σ2
e

)
,
1

2
CBRm,k[i]

}

where Fχ2(·, i) denotes the CDF of a non-central chi-square random variable with 2

degrees of freedom and non-centrality parameter ĥRm,k[i]ĥ
†
Rm,k[i] [139]. Then, we can

derive the outage secrecy data rate by calculating the secrecy outage probability in

C2 in (2.21). Without loss of generality, we define the secrecy data rate and outage

data rate as Rsec
m,k[i] =

1
2
log2(r

sec
m,k[i]) and Rdata

m,k [i] =
1
2
log2(r

data
m,k [i]), respectively. We

assume that αRm,k[i] = max{αRm,k[i], αBRm,k[i]}. This assumption is necessary for

deriving an efficient resource allocation algorithm. It results in an upper bound on

the secrecy outage probability and a lower bound on the secrecy data rate. Then,

the secrecy outage probability can be expressed as

Pr
[
Rdata

m,k [i]− Cm,E[i] ≤ Rsec
m,k[i]

∣∣∣∆m,k[i]
]
= Pr

[
(
rdatam,k [i]

rsecm,k[i]
− 1)

1

(NT − 1)

≤max
{ αBRm,k[i]

1− αBRm,k[i]
Ω1[i],

αRm,k[i]

1− αRm,k[i]
Ω2[i]

}∣∣∣∆m,k[i]

]

≤ Pr

[
(
rdatam,k [i]

rsecm,k[i]
− 1)

1− αRm,k[i]

αRm,k[i](NT − 1)
≤ max

{
Ω1[i],Ω2[i]

}∣∣∣∆m,k[i]

]
, (B.4)
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where Ω1[i] = g†
1[i](G1[i]G

†
1[i])

−1g1[i] and Ω2[i] = g†
2[i](G2[i]G

†
2[i])

−1g2[i]. Note

that the upper bound on the secrecy outage probability in (B.4) is due to the assump-

tion of αRm,k[i] = max{αRm,k[i], αBRm,k[i]}. If αBRm,k[i] = max{αRm,k[i], αBRm,k[i]},

the inequality is also valid by replacing αRm,k[i] by αBRm,k[i] in (B.4). On the other

hand, since Ω1[i] and Ω2[i] are i.i.d. random variables, we have the follow identity

Pr
[
z ≤ Ω1[i]

∣∣∣∆m,k[i]
]
= Pr

[
z ≤ Ω2[i]

∣∣∣∆m,k[i]
]
, (B.5)

where z =
(rdatam,k [i]−rsecm,k[i])(1−αRm,k[i])

rsecm,k[i]αRm,k[i](NT−1)
. Hence, the secrecy outage probability in (B.4)

can be written as

Fzc(z, i) = Pr
[
z ≤ max

{
Ω1[i],Ω2[i]

}∣∣∣∆m,k[i]
]

(B.6)

= Pr
[
z ≤ Ω1[i]

∣∣∣∆m,k[i]
]
+ Pr

[
z ≤ Ω2[i]

∣∣∣∆m,k[i]
]

− Pr
[
z ≤ Ω1[i]

∣∣∣∆m,k[i]
]
×Pr

[
z ≤ Ω2[i]

∣∣∣∆m,k[i]
]
.

On the other hand, it can be observed that Ω1[i] is equivalent to the SIR of an

NE-branch MMSE diversity combiner for NT − 1 interferers. The corresponding

complementary CDF (CCDF) is given by [69, 140]

Pr
[
z ≤ Ω1[i]

∣∣∣∆m,k[i]
]
= FΩ(z) =

∑NE−1
n=0

(
NT−1

n

)
zn

(1 + z)NT−1
. (B.7)

Therefore, the target secrecy outage probability Fzc(z, i) can be obtained by substi-

tuting (B.7) into (B.6), which yields

Fzc(z, i) = FΩ(z) + FΩ(z)− FΩ(z)× FΩ(z)

=

∑NE−1
n=0

(
NT−1

n

)
2zn

(1 + z)NT−1
−
∑NE−1

n=0

∑NE−1
m=0

(
NT−1

n

)(
NT−1
m

)
zm+n

(1 + z)2NT−2
. (B.8)
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For a target secrecy outage probability of δ, z can be expressed as

z = F−1
zc (δ, i)

=⇒ Rsec
m,k[i] =

[
Rdata

m,k [i]−
1

2
log2

(
1 +

αRm,k[i](NT − 1)F−1
zc (δ, i)

1− αRm,k[i]

)]+
, (B.9)

where F−1
zc (δ, i) is the inverse CCDF of random variable max

{
Ω1[i],Ω2[i]

}
, which

can be computed efficiently by numerical solvers or implemented as a look-up table

in practice. The final step in deriving the lemma is to calculate the asymptotically

optimal α∗
Rm,k[i] and α∗

BRm,k[i] in high SNR. Let ΦBRm,k[i] = PBRm,k[i]λmaxBRm
[i],

ΦRm,k[i] = F−1
χ2

(ε, i)/σ2
e , and ΛE[i] = (NT − 1)F−1

zc (δ, i). The expression for the

secrecy data rate of user k on subcarrier i depends on the link qualities of the BS-to-

relay link and the relay-to-user link, cf. (B.4), (B.9). If the BS-to-relay link is weaker

than the relay-to-user link, then the secrecy data rate can be expressed as

Rsec
k [i] =

1

2
CBRm,k[i]−

1

2
log2

(
1 +

αBRm,k[i]F
−1
zc (δ, i)(NT − 1)

1− αBRm,k[i]

)
. (B.10)

On the other hand, if the relay-to-user link is weaker than the BS-to-relay link, the

secrecy data rate of user k on subcarrier i in high SNR is lower bounded by

Rsec
k [i] >

1

2

{
log2

(
1 +

PRm,k[i]F
−1
χ2

(ε, i)α∗
B,k[i]

1 + PRm,k[i]σ2
e

)
− log2

(
1 +

αRm,k[i]F
−1
zc (δ, i)(NT − 1)

1− αRm,k[i]

)}
. (B.11)

In fact, the term
PRm,k[i]F

−1
χ2

(ε,i)α∗
B,k[i]

PRm,k[i]σ2
e

in (B.11) can be interpreted as an SINR under

a virtual interferer with interference power PRm,k[i]σ
2
e . By standard optimization

techniques, it can be shown that the optimal α∗
BRm,k[i] and α∗

Rm,k[i] maximizing (B.10)
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and (B.11) have the same asymptotic expression in high SNR (PBRm,k[i], PRm,k → ∞):

α∗
BRm,k[i] =

−ΦBRm,k[i]+
√
ΦBRm,k[i]ΛE[i](ΦBRm,k[i]− ΛE[i] + 1)

ΦBRm,k[i](ΛE[i]− 1)
(a)
≈ 1√

ΛE[i]
and (B.12)

α∗
Rm,k[i] =

−ΦRm,k[i]+
√
ΦRm,k[i]ΛE[i](ΦRm,k[i]− ΛE[i] + 1)

ΦRm,k[i](ΛE[i]− 1)
(b)
≈ 1√

ΛE[i]
, (B.13)

respectively. (a) is due to the high SNR assumption, i.e., ΦBRm,k[i] ≫ ΛE[i] ≫

1. The assumption of high SNR is necessary for arriving at an efficient resource

allocation algorithm. Note that ΦBRm,k[i] ≫ ΛE[i] is always valid in the high transmit

power regime as ΦBRm,k[i] increases with the total transmit power while ΛE[i] remains

constant. On the other hand, (b) is due to ΦRm,k[i] ≫ ΛE[i] ≫ 1, which holds for

reasonably small channel estimation error variance σ2
e (e.g. σ2

e ≪ σ2
hRm,k

) and secrecy

outage requirement δ (e.g. δ ≪ 1).
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Proof of Theorem 3.1 and Algorithm

Convergence

Proof of Theorem 3.1 We now prove the forward implication of Theorem 3.1 by

following a similar approach as in [84]. Without loss of generality, we define q∗ and

{P∗,R∗,S∗} ∈ F as the optimal energy efficiency and the optimal resource allocation

policies of the original objective function in (3.13), respectively. Then, the optimal

energy efficiency can be expressed as

q∗ =
Usec(P∗,R∗,S∗)

UTP (P∗,R∗,S∗)
≥ Usec(P,R,S)

UTP (P,R,S)
, ∀{P ,R,S} ∈ F , (C.1)

=⇒ Usec(P ,R,S)− q∗UTP (P,R,S) ≤ 0

and Usec(P∗,R∗,S∗)− q∗UTP (P∗,R∗,S∗) = 0. (C.2)

Therefore, we conclude that max
P,R,S,αk[i]

Usec(P,R,S) − q∗UTP (P ,R,S) = 0 and it is

achievable by resource allocation policies {P∗,R∗,S∗}. This completes the forward

implication.

Next, we prove the converse implication of Theorem 3.1. Suppose {P∗
e ,R∗

e,S∗
e} is

the optimal resource allocation policies of the equivalent objective function such that

Usec(P∗
e ,R∗

e,S∗
e )− q∗UTP (P∗

e ,R∗
e,S∗

e ) = 0. Then, for any feasible resource allocation
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policies {P ,R,S} ∈ F , we can obtain the following inequality

Usec(P ,R,S)− q∗UTP (P ,R,S) ≤ Usec(P∗
e ,R∗

e,S∗
e )− q∗UTP (P∗

e ,R∗
e,S∗

e ) = 0. (C.3)

The above inequality implies

Usec(P ,R,S)
UTP (P ,R,S)

≤ q∗ ∀{P ,R,S} ∈ F and
Usec(P∗

e ,R∗
e,S∗

e )

UTP (P∗
e ,R∗

e,S∗
e )

= q∗. (C.4)

In other words, the optimal resource allocation policies {P∗
e ,R∗

e,S∗
e} for the equivalent

objective function is also the optimal resource allocation policies for the original

objective function.

This complete the proof of the converse implication of Theorem 3.1. In summary,

the optimization of the original objective function and the optimization of the equiva-

lent objective function result in the same resource allocation policies. �

Proof of Algorithm Convergence

We follow a similar approach as in [84] for proving the convergence of Algorithm

3.1 in Table 3.1. We first introduce the following two propositions. For the sake of

notational simplicity, we define the equivalent objective function in (3.16) as F (q′) =

max
P,R,S,αk[i]

{Usec(P ,R,S)− q′UTP (P ,R,S)}.

Proposition C.1 F (q′) is a strictly monotonic decreasing function in q′, i.e., F (q′′) >

F (q′) if q′ > q′′.
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Proof: Let {P ′,R′,S ′} ∈ F and {P ′′,R′′,S ′′} ∈ F be the two distinct optimal

resource allocation polices for F (q′) and F (q′′), respectively.

F (q′′) = max
P,R,S,αk[i]

{Usec(P ,R,S)− q′′UTP (P ,R,S)}

= Usec(P ′′,R′′,S ′′)− q′′UTP (P ′′,R′′,S ′′)

> Usec(P ′,R′,S ′)− q′′UTP (P ′,R′,S ′) ≥ Usec(P ′,R′,S ′)− q′UTP (P ′,R′,S ′)

= F (q′). (C.5)

�

Proposition C.2 Let {P ′,R′,S ′} ∈ F be an arbitrary feasible solution and q′ =

Usec(P ′,R′,S′)
UTP (P ′,R′,S′)

, then F (q′) ≥ 0.

Proof: F (q′) = max
P,R,S,αk[i]

{Usec(P ,R,S)− q′UTP (P ,R,S)}

≥ Usec(P ′,R′,S ′)− q′UTP (P ′,R′,S ′) = 0. (C.6)

�

We are now ready to prove the convergence of Algorithm 3.1 in Table 3.1.

Proof of Convergence: We first prove that the energy efficiency q increases in

each iteration. Then, we prove that if the number of iterations is large enough, the

energy efficiency q converges to the optimal q∗ such that it satisfy the optimality

condition in Theorem 3.1, i.e., F (q∗) = 0.

Let {Pn,Rn,Sn} be the optimal resource allocation polices in the n-th iteration.

Suppose qn ̸= q∗ and qn+1 ̸= q∗ represent the energy efficiency of the considered

system in iterations n and n+ 1, respectively. By Theorem 3.1 and Proposition C.2,

F (qn) > 0 and F (qn+1) > 0 must be true. On the other hand, in the proposed
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algorithm, we calculate qn+1 as qn+1 =
Usec(Pn,Rn,Sn)
UTP (Pn,Rn,Sn)

. Thus, we can express F (qn) as

F (qn) = Usec(Pn,Rn,Sn)− qnUTP (Pn,Rn,Sn)

= UTP (Pn,Rn,Sn)(qn+1 − qn) > 0 (C.7)

=⇒ qn+1 > qn, ∵ UTP (Pn,Rn,Sn) > 0.

By combining qn+1 > qn, Proposition C.1, and Proposition C.2, we can show that

as long as the number of iterations is large enough, F (qn) will eventually approach zero

and satisfy the optimality condition as stated in Theorem 3.1. �
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Proof of Proposition 3.1

Without loss of generality, we define the secrecy data rate as Rk[i] = W log2(rk[i]).

Now, the secrecy outage probability can be expressed as

Pr
[
Ck[i]− CE[i] ≤ Rk[i]

∣∣∣hk[i]
]
= ε (D.1)

=⇒ Pr
[ ( 1

rk[i]
(1 + Γk[i])− 1

) 1− αk[i]

(NT − 1)αk[i]︸ ︷︷ ︸
Θk[i]

≤ g†
1[i](G2[i]G

†
2[i])

−1g1[i]︸ ︷︷ ︸
Zk[i]

∣∣∣hk[i]
]
= ε,

where Γk[i] =
αk[i]Pk[i]λmaxk

[i]

N0W
and Zk[i] is an unknown random variable for the BS.

Since the supermatrix Bk[i] =
[
bk[i] Vk[i]

]
is an unitary matrix, Bk[i]G̃[i] has i.i.d.

complex Gaussian entries. As a result, Zk[i] is equivalent to the SIR of an NE-branch

MMSE diversity combiner for NT − 1 interferers. Hence, the corresponding CCDF is

given by [69, 140]

Fzc(z) =

∑NE−1
n=0

(
NT−1

n

)
zn

(1 + z)NT−1
, ∀z ≥ 0. (D.2)

Therefore, for a target secrecy outage probability of ε, Θk[i] can be expressed as

Θk[i] = F−1
zc (ε) =⇒ (D.3)

Rk[i] = W
[
log2

(
1 +

αk[i]Pk[i]λmaxk [i]

N0W

)
− log2

(
1 +

αk[i]

1− αk[i]
(NT − 1)F−1

zc (ε)
)]+

,
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where F−1
zc (ε) is the inverse CCDF of random variable Zk[i], which can be computed

efficiently by numerical solvers or implemented as a look-up table for practical im-

plementation. The second step in solving the optimization problem in (3.13) is to

calculate the fraction of power allocated to each subcarrier for generating the arti-

ficial noise. By standard optimization techniques, the asymptotically optimal α∗
k[i]

maximizing the secrecy outage capacity on subcarrier i for a fixed Pk[i] in high SNR

is given by

α∗
k[i] =

Γk[i]−
√

(Γk[i])2 ΛE[i]− Γk[i] (ΛE[i])2 + Γk[i] ΛE[i]

Γk[i]− Γk[i] ΛE[i]

(a)
≈

√
ΛE[i]− 1

ΛE[i]− 1
≈ 1√

ΛE[i]
, (D.4)

where (a) is due to the high SNR25 assumption, i.e., Γk[i] ≫ ΛE[i] ≫ 1. Note that

Γk[i] ≫ ΛE[i] is always valid in the high transmit power regime as Γk[i] increases with

the total transmit power while ΛE[i] remains constant. On the other hand, ΛE[i] ≫ 1

holds for a reasonably small secrecy outage requirement adopted in practical appli-

cations, i.e., ε ≪ 1. �

25The assumption of high SNR is necessary for arriving at an efficient resource allocation algorith-
m. Note that the high SNR assumption does not necessarily require a high transmit power. High
SNR can be achieved by exploiting multiuser diversity or using MIMO-beamforming for moderate
or small transmit powers.
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Proof of Proposition 4.1

The outage probability requirement C3 is a complicated non-convex function of data

rates and powers, and a closed-form expression for the corresponding distribution

function is not available. Therefore, we tackle this issue by the following approxima-

tions. We focus on an upper bound on the actual outage probability by bounding

Pr(Γi,k < c) = Pr(Ci,k < Ri,k), 1 ≤ k ≤ K, with an outage probability require-

ment ε, where Γi,k is defined in (4.3) and c = 2
Ri,k
W − 1. For notational simplicity,

we define variables Φj = |hT
i,k f̂i,j|2Pi,jsi,jlkgk ≥ 0, ∀j ̸= k, Φ =

∑
j ̸=k Φj + N0W ,

and B = Pi,klkgk|hT
i,k f̂i,k|2. Suppose now we restrict the resource allocator such that

Pr
(
Φ ≥ c2

)
≤ ε

2
and Pr

(
B ≤ c1

)
= ε

2
, where c1

c2
= c = 2

Ri,k
W − 1 is a function of the

scheduled data rate, and c1 and c2 are positive constants that will be specified in the

following. Hence, the actual outage probability can be expressed as

Pr
(
Ci,k < Ri,k

)
= Pr

(B
c1
c2 < Φ

∣∣∣B ≤ c1

)
︸ ︷︷ ︸

a′

Pr
(
B ≤ c1

)

+Pr
(B
c1
c2 < Φ

∣∣∣B > c1

)
︸ ︷︷ ︸

b′

Pr
(
B > c1

)
. (E.1)

For calculating b′, it can be observed that b′ ≤ ε
2

since B
c1

> 1 and Pr
(
Φ ≥ c2

)
≤ ε

2
.

On the other hand, a′ ≤ 1. Thus, the actual outage probability Pr
(
Ci,k < Ri,k

)
is
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bounded by

Pr
(
Ci,k < Ri,k

)
≤ ε

2
+

ε

2
(1− ε

2
) = ε− ε2

4
≈ ε for ε ≪ 1. (E.2)

In other words, the outage probability requirement Pr
(
Ci,k < Ri,k

)
≤ ε is satis-

fied if we guarantee Pr
(
Φ ≥ c2

)
≤ ε

2
and Pr

(
B ≤ c1

)
= ε

2
.

Next, we calculate Pr
(
Φ ≥ c2

)
which represents the probability that the sum

power of the K − 1 inter-user interferers exceeds c2. Let c2 =
∑

j ̸=k ηj +N0W , where

ηj are dummy variables. We obtain

Pr
(
Φ ≥ c2

)
= Pr

(∑
j ̸=k

Φj +N0W ≥
∑
j ̸=k

ηj +N0W
)

(a)

≤
E{
∑

j ̸=k Φj}∑
j ̸=k ηj

=

∑
j ̸=k Pi,jsi,jlkgk∑

j ̸=k ηj
, (E.3)

where (a) is due to Markov’s inequality [141, 142]. Note that although Markov’s

inequality may not be the tightest upper bound for the corresponding outage prob-

ability, it has been widely adopted in the literature [141, 142] for calculating the

outage probability in interference channels, since it only requires the first moment of

the random variable. As a result, if we set ηj = Pi,jsi,jlkgk(
2
ε
), then we have26

Pr
(
Φ ≥ c2

)
= Pr

(∑
j ̸=k

|hT
i,k f̂i,j|2Pi,jsi,jlkgk ≥

∑
j ̸=k

2

ε
Pi,jsi,jlkgk

)
≤ ε

2
. (E.4)

26Note that in [92, 143], the denominator of the SINR is approximated by only its mean value.
However, this approximation cannot guarantee a small channel outage probability requirement ε.
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For calculating Pr
(
B ≤ c1

)
, we consider

|hT
i,k f̂i,k|2 =

[(
ĥT
i,k +∆hT

i,k

) ĥi,k

∥ĥi,k∥

]2
= ∥ĥi,k∥2 + 2ℜ(∆hT

i,kĥi,k) +
∥∆hT

i,kĥi,k∥2

∥ĥi,k∥2
(c)
≈ ∥ĥi,k∥2 = Θ

(
NTi,k

(1− σ2
e)
)

for NTi,k
→ ∞, (E.5)

where (c) is due to the fact that ∥ĥi,k∥2 scales with NTi,k
in the order of Θ(NTi,k

(1−σ2
e))

for NTi,k
→ ∞, thanks to the law of large numbers. Note that ∥ĥi,k∥2 is a random

variable if NTi,k
is an unknown before solving the optimization problem. On the other

hand, the term 2ℜ(∆hT
i,kĥi,k)+

∥∆hT
i,kĥi,k∥2

∥ĥi,k∥2
scales only in the order of O(1) which can

be neglected for large NTi,k
. By choosing c1 = Pi,klkgkNTi,k

(1−σ2
e)(1−δ), Pr

(
B ≤ c1

)
can be upper bounded by its Chernoff bound as

Pr
(
B ≤ c1

)
≈ Pr

(
∥ĥi,k∥2 ≤ NTi,k

(1− σ2
e)(1− δ)

)
≤ ϕNTi,k exp

(
(1− ϕ)NTi,k

)
=

ε

2
, (E.6)

where ϕ = (1−σ2
e)(1−δ) and 0 < δ < 1 is a constant backoff factor. Mathematically,

δ represents the deviation of (1 − σ2
e) from ∥ĥi,k∥2

NTi,k

, for a finite value of NTi,k
. For a

given outage probability requirement ε and backoff factor δ, solving (E.6) for NTi,k

results in the minimum required Nth for satisfying the outage requirement. Note that

for a target outage probability requirement ε, the actual outage probability for the

case of NTi,k
≥ Nth will be less than ε since ϕNTi,k exp

(
(1− ϕ)NTi,k

)
is a decreasing

function of NTi,k
. Therefore, by combining (E.4) and (E.6), a scheduled data rate of

Ri,k = (1− ε)W log2

(
1+ c1

c2

)
= (1− ε)W log2

(
1+

Pi,klkgkNTi,k
(1−σ2

e)(1−δ)

WN0+
∑

j ̸=k(
2
ε
)Pi,jsi,j lkgk

)
can satisfy

the outage probability requirement Pr
(
Ci,k < Ri,k

)
≤ ε which proves in Proposition

1. We note that the use of the strong law of large numbers in (E.5) makes the
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optimization of NTi,k
possible since NTi,k

becomes a part of the equivalent channel

gain.
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Proof of the Concavity of the

Transformed Problem in (4.14)

For notational simplicity, we drop the subindices and scaling constants of all opti-

mization variables in this section such that the transformed objective function in

(4.14) can be expressed as the summation of two functions with variables P, s, and

NT , i.e., y = f + t, where f = s log2(P/s) + s log2(NT/s) and t = −qŨ(P ,A,R,S).

Let H(f) and λ1, λ2, λ3 be the Hessian matrix of function f and the eigenvalues of

H(f), respectively. The Hessian matrix of function f and the trace of the Hessian

matrix are given by

H(f) =


−2

s ln(2)
1

P ln(2)
1

NT ln(2)

1
P ln(2)

−s
P 2 ln(2)

0

1
NT ln(2)

0 −s
N2

T ln(2)

 and (F.1)

tr
(
H(f)

)
=

3∑
n=1

λn = −s2 P 2 + s2N2
T + 2P 2 N2

T

s P 2N2
T ln(2)

, (F.2)

respectively. Besides, it can be shown that the eigenvalues of the Hessian matrix are

given by

λ1 × λ2 =
s2 + P 2 +N2

T

P 2 N2
T ln2(2)

≥ 0, λ3 = 0. (F.3)
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From (F.3), λ1 and λ2 must be either both positive or both negative. Therefore, by

combining the above with tr
(
H(f)

)
≤ 0, it implies that λ1, λ2 ≤ 0. Since λn ≤ 0, ∀n,

so H(f) is a negative semi-definite matrix and f is jointly concave with respect to

P, s, and NT . On the other hand, function t is a jointly concave function of P, s, and

NT so the concavity of function f is not destroyed by adding function f and function

t. Therefore, the transformed objective function is jointly concave with respect to all

the optimization variables.
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Proof of Theorem 5.1

Hyperplane with 

suboptimal  u

y

Hyperplane 

with optimal  u

P

Perturbation function

v(y)

Dual optimal = 

Primal optimal

(a) Zero duality gap in maximizing
a concave problem.

y

P

Perturbation function

v(y)

Hyperplane with 

optimal  uDual optimal

Primal optimal

Duality gap

(b) Non-zero duality gap in maximizing a non-convex
problem.

Figure G.1: Geometric interpretation of duality and perturbation function for concave
and non-convex optimization problem with a 1-dimensional perturbation vector y ∈
R1 for illustration. The shaded areas represent the set of values of the primal problem
under different perturbations y ∈ R1.

As mentioned in the main text of Chapter 5, the transformed optimization prob-

lem for a given parameter q, selected user set, and ZFBF transmission is a non-convex

optimization problem due to constraint C3 in (5.9). In general, a non-zero duality

gap exists if we solve the transformed problem by solving its dual, cf. Figure G.1(b).

However, we demonstrate in the following that when a non-convex optimization prob-

lem satisfies certain conditions, the duality gap is always zero. Before introducing

181



Appendix G. Proof of Theorem 5.1

another important theorem for the proof of Theorem 5.1, we first introduce the con-

cept of perturbation function. For the sake of notational simplicity and to avoid

ambiguity, we use the following notations. We use v⟨·⟩ to denote a function v and

(·) to denote brackets. Without loss of generality, the primal optimization problem

in (5.12) can be written in general form as

P = max
pk
i ≥0

nF∑
i=1

fi⟨pk
i ⟩

s.t.
nF∑
i=1

gi⟨pk
i ⟩ ≤ 0, (G.1)

where fi⟨·⟩ : CK → R and gi⟨·⟩ : CK → RL are arbitrary continuous functions. L and

0 are the total number of inequality constraints and a column vector with all zero

elements, respectively. pk
i ∈ RK represents a feasible solution vector of the primal

problem in general form. Indeed, (G.1) is a general representation of an optimization

problem and the physical meaning of vector pk
i is not limited to transmit power. Note

that we do not make any assumption on the concavity of functions fi⟨·⟩ and gi⟨·⟩.

Then, the perturbation function is defined as [144, 138]

v⟨y⟩ = max
pk
i ≥0

nF∑
i=1

fi⟨pk
i ⟩

s.t.
nF∑
i=1

gi⟨pk
i ⟩ ≤ y, (G.2)

where y ∈ RL is a perturbation vector. A geometrical interpretation of the pertur-

bation function is given in Figure G.1. The perturbation function v⟨y⟩ corresponds

to the upper envelope of the shaded areas in Figure G.1. Note that v⟨y⟩ is a non-

decreasing function of y since a larger value of each element in y results in a larger
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feasible set. The Lagrangian function of (G.1) can be expressed as

L⟨pk
i ,u⟩ =

nF∑
i=1

fi⟨pk
i ⟩ − uT

(
gi⟨pk

i ⟩
)

(G.3)

where u ∈ RL,u ≥ 0 is a vector of Lagrange multipliers. Thus, the corresponding

dual problem is given by

D = min
u≥0

max
pk
i

L⟨pk
i ,u⟩. (G.4)

Indeed, from a geometrically point of view, the dual problem is equivalent to finding

the slope u of the supporting hyperplane of the perturbation function at v⟨0⟩, such

that its intercept on P-axis is minimal, cf. Figure G.1(a).

We are now ready to introduce the following theorem.

Theorem G.1 If the perturbation function v⟨y⟩ is a concave function of y, then the

duality gap is zero despite the convexity of the primal problem27, i.e., D = P.

Proof of Theorem G.1:

The main idea of the proof is based on [138, Theorem 6.2.7] which states that a zero

duality gap is equivalent to the existence of a saddle point of the Lagrangian function.

Before proceeding to the proof of Theorem G.1, let us first show how the concavity of

the perturbation function v⟨y⟩ can be used to prove the existence of a saddle point

of the Lagrangian function.

Suppose v⟨y⟩ is a concave function with respect to y, then there exists a hyper-

plane that supports the hypograph of v⟨y⟩ for any y ∈ RL, cf. Figure G.1. Thus, by
27It is obvious that if the primal problem is concave, then the perturbation function v⟨y⟩ will be

a concave function of y. However, the reverse is not necessarily true.
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the definition of concavity [75, Chapter 3.1.3], there exists some vector ũ such that

v⟨y⟩ ≤ v⟨0⟩+ ũT (y − 0), (G.5)

where ũ ∈ RL is known as the sub-gradient of v⟨·⟩.

Next, let pk∗
i be the optimal solution of optimization problem (G.1). Then,

(pk∗
i , ũ) is a saddle point of the Lagrangian function if ũ ≥ 0 and (pk∗

i , ũ) satis-

fies

L⟨pk∗
i ,u⟩ ≥ L⟨pk∗

i , ũ⟩ ≥ L⟨pk
i , ũ⟩, ∀pk

i ≥ 0,u ≥ 0. (G.6)

First, we prove ũ ≥ 0 by contradiction. Consider a vector ∆ ∈ RL,∆ ≥ 0. By the

non-decreasing property of the permutation function, we have v⟨y +∆⟩ ≥ v⟨y⟩. As

a result, we obtain the following inequality

v⟨y⟩ ≤ v⟨y +∆⟩ ≤ v⟨0⟩+ ũT (y +∆− 0) (G.7)

which holds for arbitrary vectors ∆ ≥ 0 and y. Now, we put y = 0 into (G.7) which

yields

v⟨0⟩ ≤ v⟨0⟩+ ũT∆. (G.8)

Suppose now, there exists one element in ũ which takes a negative value. Then,

we can always choose a vector ∆ such that ũT∆ < 0 which violates the inequality

in (G.8). Thus, ũ ≥ 0 has to be true. Second, we prove ũT
∑nF

i=1 gi⟨pk∗
i ⟩ = 0. Again,

we consider the hyperplane in (G.5) with input vector y =
∑nF

i=1 gi⟨pk∗
i ⟩. Since

pk∗
i is the optimal solution of the primal problem in (G.1),

∑nF

i=1 gi⟨pk∗
i ⟩ ≤ 0 must
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hold. Therefore, v
⟨∑nF

i=1 gi⟨pk∗
i ⟩
⟩
= v⟨0⟩ and ũT

∑nF

i=1 gi⟨pk∗
i ⟩ = 0 must be true for

satisfying (G.5). Now, we are ready to prove the right hand side of (G.6). Let us

first consider the following:

L⟨pk∗
i , ũ⟩ =

nF∑
i=1

fi⟨pk∗
i ⟩ − ũT

(
gi⟨pk∗

i ⟩
)
=

nF∑
i=1

fi⟨pk∗
i ⟩

= v⟨0⟩ ≥ v⟨y⟩ − ũTy, ∀y. (G.9)

Suppose pk
i is a feasible solution of the primal problem. Then, pk

i is also a feasible

solution of the perturbation function v⟨·⟩ if we set the perturbation vector y such

that y =
∑nF

i=1 f⟨pk
i ⟩. Then, we substitute y =

∑nF

i=1 f⟨pk
i ⟩ into (G.9) which yields

L⟨pk∗
i , ũ⟩ = v⟨0⟩ ≥ v

⟨ nF∑
i=1

gi⟨pk
i ⟩
⟩
− ũT

nF∑
i=1

gi⟨pk
i ⟩

(a)

≥ v
⟨ nF∑

i=1

gi⟨pk
i ⟩
⟩
+ ũT

nF∑
i=1

gi⟨pk
i ⟩ = L⟨pk

i , ũ⟩, (G.10)

where (a) is due to
∑nF

i=1 gi⟨pk
i ⟩ ≤ 0.

On the other hand, the left hand side inequality in (G.6) can be proved as follows:

L⟨pk∗
i , ũ⟩ =

nF∑
i=1

fi⟨pk∗
i ⟩ − ũT

(
gi⟨pk∗

i ⟩
)
=

nF∑
i=1

fi⟨pk∗
i ⟩ (G.11)

≤
nF∑
i=1

fi⟨pk∗
i ⟩ − uT

(
gi⟨pk∗

i ⟩
)
= L⟨pk∗

i ,u⟩ ∵ gi⟨pk∗
i ⟩ ≤ 0,u ≥ 0.

Therefore, ⟨pk∗
i , ũ⟩ is a saddle point of the Lagrangian function and by [138, Theorem

6.2.5], the duality gap is zero. �

In other words, the concavity of the perturbation function v⟨y⟩ with respect to y

is the key to prove that the duality gap is zero. The final step in proving Theorem
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5.1 is to prove that v⟨y⟩ is a concave function of y, i.e.,

v⟨ρy + (1− ρ)x⟩ ≥ ρv⟨y⟩+ (1− ρ)v⟨x⟩ (G.12)

for 0 ≤ ρ ≤ 1, where x ∈ RL is another perturbation vector such that x − y ̸= 0.

Indeed, the concavity condition of the perturbation function is always satisfied in

multi-carrier systems if frequency sharing is allowed. Suppose the spectrum of each

subcarrier is flat due to a large number of subcarriers28. Then, we can increase the

number of subcarriers for a fixed amount of total bandwidth B such that the original

bandwidth of each subcarrier is divided into two portions, i.e., (1 − ρ) and ρ. Let

px
k∗
i and py

k∗
i be the two optimal resource allocation policies with respect to the

perturbation functions v⟨x⟩ and v⟨y⟩, respectively. Then, for the perturbation func-

tion v⟨ρy+ (1− ρ)x⟩, by construction, we implement the resource allocation policies

px
k∗
i and py

k∗
i in portion one and portion two, respectively. Then, the constraints

associated with v⟨ρy + (1 − ρ)x⟩ become a linear combination of the constraints in

v⟨x⟩ and v⟨y⟩. On the other hand, the value of v⟨ρy + (1 − ρ)x⟩ becomes a linear

combination of v⟨x⟩ and v⟨y⟩ due to the flatness of the channel over neighbouring

subcarriers. As a result, v⟨ρy+ (1− ρ)x⟩ ≥ ρv⟨y⟩+ (1− ρ)v⟨x⟩ holds immediately29

due to linearity. Thus, the frequency sharing condition always holds when nF → ∞

for a fixed amount of total bandwidth. In other words, the perturbation function is

a concave function with respect to y under the frequency sharing condition.

So, by combining Theorem G.1 and the condition of nF → ∞, Theorem 5.1 is
28In practical systems such as LTE, the coherence bandwidth is in the order of 100 kHz [123] and

the subcarrier spacing is in the order of 10 kHz. Thus, the spectrum of each subcarrier is virtually
flat due to the highly correlated fading within each subcarrier.

29In [87], the frequency sharing condition was used to show the zero duality gap visually for multi-
carrier systems. The proof provided in this chapter is more rigorous as it is based on showing the
existence of a saddle point of the Lagrangian function by using the concavity of the perturbation
function.
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proved. �
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