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Abstract—In this paper, we consider both channel state uncer-
tainty and harvested energy state uncertainty for a source–relay–
destination communication link where the source and the relay
are equipped with hybrid energy sources. Taking into account
these uncertainties is of important for practical energy harvesting
(EH) communication. While channel state uncertainties also
affect conventional communication systems and have been widely
studied, harvested energy state uncertainties are specific to energy
harvesting systems and have not been considered in the literature
before. The considered hybrid energy sources include a constant
energy source and an energy harvester. Our objective is to max-
imize the worst case system throughput over a finite number of
transmission intervals. We propose robust optimal offline, optimal
online, and suboptimal online power allocation schemes. The
offline power allocation design is formulated as an optimization
problem which can be solved optimally. For the online case,
we propose a dynamic programming (DP) approach to compute
the optimal transmit power. To alleviate the prohibitively high
complexity inherent to DP, we also propose several suboptimal
low–complexity online power allocation schemes. Simulation
results confirm the robustness of the proposed power allocation
schemes to channel and energy state uncertainties.

I. INTRODUCTION

Energy harvesting (EH) has attracted significant interest
as an environmentally friendly supply of energy for the
nodes of cooperative communications systems [1]–[4]. EH
nodes harvest energy from their surroundings using solar,
thermoelectric, and motion effects or by exploiting some other
physical phenomena, and store the harvested energy in their
batteries for future use. Thus, EH nodes can potentially work
as a stand–alone energy source for transmission of data packets
or as a supplement to a conventional constant energy source
for increasing the transmission capacity.

In the literature, several new transmission strategies and
power allocation policies for point–to–point EH communica-
tion systems have been reported [5], [6]. The use of EH relays
in cooperative communication was introduced in [1], where a
comprehensive performance analysis was provided for relay
selection in a cooperative network employing EH relays. A
deterministic EH model (assuming a priori knowledge of the
energy arrival times and the amount of harvested energy) for
the Gaussian relay channel was considered in [2], where delay
and non–delay constrained traffic was studied. The concept
of energy transfer in EH relay systems was studied in [3],
where an offline power allocation scheme was proposed. In
[4], offline and online power allocation schemes for a source-
relay-destination link have been considered.

The above works on EH–assisted communication [1]–[6]
assume that the channel state information (CSI) of all links

and the harvested energy state information (HESI) of all nodes
are perfectly known at the central node, which executes the
resource allocation algorithm. In a realistic scenario, the CSI
of all links has to be estimated using pilot/training symbols
and the CSI and the HESI of other nodes have to be fed back to
the central node through feedback channels. Therefore, the CSI
may not be perfectly known to the central node due to different
sources of errors in the estimation process such as noise,
quantization errors, and outdated estimates [7]. Moreover, the
HESI may not be perfectly known at the central node either
due to feedback errors or outdated estimates. Thus, the power
allocation algorithm of the EH system should take both the
uncertainties in the CSI and the HESI explicitly into account in
order to provide robust performance. Recently, CSI uncertainty
has been considered for a two–way EH communication system
in [8], where the source nodes harvest energy from the relay
nodes. However, HESI uncertainty, which is equally important
for the design of robust EH communications systems, has not
been considered in the existing literature before.

Motivated by these practical considerations, in this paper,
we consider channel and energy state uncertainties in a source–
relay–destination communication link where the source and
the relay are equipped with hybrid sources of energy. The
hybrid sources of energy comprise a non–renewable constant
energy source and an energy harvester [9]. In the literature,
there are two prevalent methods to incorporate the effect of
channel uncertainty: worst case optimization and probabilisti-
cally constrained optimization [10]. In this paper, we adopt the
worst case optimization by assuming bounded uncertainties
for CSI and HESI as this approach does not require any
statistical information to model the uncertainty. Moreover,
unlike probabilistic optimization, the worst case optimization
with bounded CSI uncertainty ensures that channel outages do
not occur. In this paper, we propose robust optimal offline, op-
timal online, and suboptimal but low complexity online power
allocation schemes maximizing the end–to–end throughput.
Offline schemes are of interest when the amounts of estimated
harvested energy and the estimated channel signal–to–noise
ratios (SNRs) are known a priori for all transmission intervals.
The obtained results from offline schemes can only serve as
a theoretical upper bound of the performance. However, in
practice, the amounts of harvested energy and the channel
SNRs are random and time varying in nature and cannot be
predicted in advance. Therefore, in practice, online power al-
location schemes, which require only causal knowledge of the
channel SNRs and harvested energies, have to be employed.



II. SYSTEM MODEL

System Description: We consider an EH relay system, where
the source, S, communicates with the destination, D, via
a half–duplex decode–and–forward (DF) relay, R. S and R
have a hybrid energy source, respectively. The hybrid source
includes a constant energy source, possibly connected through
a cable to the power grid, and an EH module which harvests
energy from the surroundings. The harvested energy can be
of any form, e.g., solar, wind, or electro–mechanical energy.
S and R are equipped with batteries, which have limited
storage capacities to store the harvested energy for future
use. In particular, the batteries of S and R can store at
most BS,max and BR,max Joules of energy, respectively.
Throughout this paper, we assume that S, which is the central
node of the considered system, acquires the information about
the channel SNRs and the harvested energies, calculates the
optimal transmit power for S and R, and informs R about the
optimal power allocation.

We assume that the transmission is organized in equal
duration time intervals and each interval is comprised of two
time slots of duration T . In the following, we set T = 1

second for notational simplicity. The total transmission time
is equal to K intervals. We assume there is no direct link
between S and R due to heavy blockage. During the first time
slot of an interval k, packet xk, which contains Gaussian–
distributed symbols, is transmitted by S and received at
R. During the second time slot, the detected packet at R,
x̂k, is transmitted by R and received at D. The transmit
power of node N 2 {S,R} in each transmission interval,
k 2 {1, 2, · · · ,K}, is the summation of the powers PN ,E,k

and PN ,H,k drawn from the constant energy source and the
energy harvester, respectively. We denote the extra amount
of harvested energy, which cannot be stored in the battery
in transmission interval k due to its limited storage capacity,
by  N ,H,k. We assume that the powers required for signal
processing at S and R, which are constant in each time
interval, are supplied by the constant energy sources and are
excluded from the power allocation algorithm design. Since
the power amplifiers used for transmission are not ideal, the
total powers drawn at node N from the constant energy source
and the EH source are given by ⇢NPN ,E,k and ⇢NPN ,H,k,
respectively. Here, ⇢N � 1 is a constant that accounts for
the power amplifier inefficiency at node N . For instance, if
⇢N = 2, 100 Watts of power are consumed in the power
amplifier for every 50 Watts of power radiated in the radio
frequency, and the efficiency of the power amplifier in this
case is 1

⇢N
= 50%.

Channel Model: We assume the channels are quasi–static
within each interval and the estimated complex valued channel
gains of the S–R and the R–D links are denoted by ˆhS,k and
ˆhR,k, respectively. We assume ˆhS,k and ˆhR,k are independent
of each other and independent and identically distributed
(i.i.d.) over the time intervals. ˆhS,k and ˆhR,k can follow
any distribution, e.g., Rayleigh, Rician, Nakagami–m, and
Nakagami–q. We assume that the signals received at R and D
are impaired by additive white Gaussian noise (AWGN) with
zero mean and unit variance. Next, we model the uncertainty
originating from estimating the channel gains. Thereby, the
channel estimation errors are confined to some uncertainty

regions. The sizes and the shapes of the uncertainty regions
depend on the physical phenomena causing the errors [7].
The actual channel gains of the S–R and R–D links can be
expressed as

hS,k =

ˆhS,k + eS,k (1)

hR,k =

ˆhR,k + eR,k, (2)
where eS,k and eR,k are the random estimation errors and are
unknown to S. The actual channel SNRs of the S–R and R–
D links are denoted as �S,k = |hS,k|2 and �R,k = |hR,k|2,
respectively. By exploiting (1) and (2), �S,k and �R,k can be
expressed as

�S,k = �̂S,k + |eS,k|2 + 2<{ˆhS,ke
⇤
S,k} (3)

�R,k = �̂R,k + |eR,k|2 + 2<{ˆhR,ke
⇤
R,k}, (4)

respectively, where �̂S,k = |ˆhS,k|2 and �̂R,k = |ˆhR,k|2.
Here, <(·) and (·)⇤ represent the real part and the conjugate
of the argument, respectively. Our goal is to maximize the
system throughput for the worst case scenario to avoid outages
due to the transmission rate exceeding the channel capacity.
Therefore, we adopt the worst case channel SNRs of the S–R
and R–D links for system design. As |eN ,k|2 is always non–
negative, for node N 2 {S,R}, �N ,k can be manipulated as

�N ,k � [�̂N ,k + 2<{ˆhN ,ke
⇤
N ,k}]+ (5)

� [�̂N ,k � 2|<{ˆhN ,ke
⇤
N ,k}|]+ (6)

= [�̂N ,k � |ˆhN ,ke
⇤
N ,k +

ˆh⇤
N ,keN ,k|]+ (7)

� [�̂N ,k � (|ˆhN ,ke
⇤
N ,k|+ |ˆh⇤

N ,keN ,k|)]+ (8)

= [�̂N ,k � 2|p�̂N ,k||eN ,k|]+, (9)
where [x]+ = max{x, 0}. Here, |<(x)| � <(x), |x + y| 
|x| + |y|, and |xy| = |x||y| are used in (6), (8), and (9),
respectively. As the exact channel estimation errors are not
known to S, we only assume here that the errors are bounded
as |eS,k|  |✏S | and |eR,k|  |✏R|, where ✏S and ✏R are the
maximum channel estimation errors of the S–R and R–D
links, respectively [10]. Note that ✏S and ✏R determine how
far hS,k and hR,k, respectively, can deviate in both real and
imaginary part from the estimated values ˆhS,k and ˆhR,k. Now,
�S,k and �R,k can be represented as

�S,k � �WS,k = [�̂S,k � 2|p�̂S,k||✏S |]+ (10)

�R,k � �WR,k = [�̂R,k � 2|p�̂R,k||✏R|]+, (11)
where �WS,k and �WR,k represent the worst case SNRs of S–
R and R–D links, respectively. For future reference, we
introduce the estimated average SNRs of the S–R and the
R–D links as ˆ�̄S = E{�̂S,k} and ˆ�̄R = E{�̂R,k}, respectively,
where E{·} denotes statistical expectation.
System Throughput: When xk is transmitted from
S with transmit power PS,E,k + PS,H,k during the
first time slot of transmission interval k, ⇠S,k ,
log2(1 + �WS,k(PS,E,k + PS,H,k)) bits of data are transmit-
ted via the S–R link. Similarly, when x̂k is trans-
mitted from R with transmit power PR,k, ⇠R,k ,
log2(1 + �WR,k(PR,E,k + PR,H,k)) bits of data are transmitted
via the R–D link. We assume R ensures error free detection
by employing capacity achieving codes and hence x̂k = xk.
Therefore, the end–to–end (S–D) system throughput in in-



terval k is given by 1
2 min{⇠S,k, ⇠R,k} bits/second where the

factor 1
2 is due to the half-duplex constraint on relaying

information signal.

Constant and Renewable Energy Sources: We assume that
EN ,k is the maximum transmit energy that can be drawn from
the constant energy source at node N 2 {S,R} in each
interval, excluding the required constant signal processing
power. On the other hand, the energy harvester at S collects
HS,k  BS,max Joules of energy from its surroundings at the
end of the kth interval and stores it in a battery. Due to the
inefficiency of the battery, a fraction of the stored harvested
energy may be lost. We adopt the energy loss model from [11]
to incorporate the imperfections of the battery which stores
the harvested energy. We assume that (1 � µS) ⇥ 100% of
the stored harvested energy is leaked per time interval, where
0  µS  1 represents the storage efficiency of the battery at
S per time interval. Note that as HS,k represents the harvested
energy at S at the end of the kth interval, it already includes
a possibly present battery leakage during the kth interval.
However, HS,k is modeled as a uniformly distributed random
variable with average EH rate HS,E , E{HS,k}. As S is the
central node, therefore, HS,k is perfectly known for power
allocation optimization. Similar to [6], we assume that the
harvested energy stored in the battery increases and decreases
linearly provided the maximum storage capacity BN ,max is
not exceeded. Therefore, the available harvested energy at S
at the beginning of time interval k + 1 can be represented as
BS,k+1=min{µS(BS,k�⇢SPS,H,k) +HS,k, BS,max},8k,(12)
where BS,1 = HS,0 � 0 denotes the available harvested
energy at S before the transmission starts.

Similar to S, R harvests HR,k  BR,max Joules of energy
from its surroundings. We denote the storage efficiency of
the battery at R by µR, 0  µR  1. We assume that at
the end of each time interval, k, R conveys the accumulated

harvested energy, HR,k =

kP
i=0

µk�i
R HR,i to S. As S obtains the

information regarding the harvested energy from R required
to execute the power allocation scheme through a feedback
channel, this information can be erroneous. Note that in
contrast to the channel estimation error, the harvested energy
error is always real. The accumulated actual harvested energy
at R is assumed to lie in the interval

[

ˆHR,k ��HR]
+  HR,k  ˆHR,k +�HR. (13)

where ˆHR,k  BR,max denotes the feedback information
regarding the accumulated harvested energy obtained at S,
�HR � 0 represents the maximum feedback error which
determines how far HR,k can deviate from the estimated value
ˆHR,k. For future reference, the average harvested energy at R

is denoted by HR,E , E{HR,k}. Similar to the channel SNRs,
we consider the worst case scenario regarding the accumulated
harvested energy at R to perform worst case optimization. We
denote the worst case accumulated harvested energy at R by
HW

R,k and define it as

HW
R,k = [

ˆHR,k ��HR]
+. (14)

Based on the feedback information regarding the accumulated
harvested energy at R, S calculates the available harvested

energy at R at the beginning of time interval k + 1 as

B̂R,k+1=min
nh

HW
R,k�

k
X

i=1

⇢Rµ
k�i+1
R PR,H,i

i+
, BR,max

o

, 8k, (15)

where ˆBR,1 = HW
R,0 � 0 denotes the calculated harvested

energy at S before transmission starts. Thus, we can conclude
from (12) and (15) that BS,k and ˆBR,k follow a first–order
Markov process which depends only on the past and current
states of the battery.

III. POWER ALLOCATION SCHEMES

In this section, we propose an offline and several online
power allocation schemes for the considered EH system with
channel and energy state uncertainties.
A. Optimal Offline Power Allocation

For offline power allocation, we assume prior (offline)
knowledge of the estimated CSI, the HESI at S, and the
estimated HESI at R in each time interval and consider the
maximization of the total number of bits transmitted from S
to D that can be delivered by a deadline of K intervals over
a fading channel. The offline optimization problem can be
formulated as follows

max

T ⌫0

KX

k=1

1

2

min{⇠S,k, ⇠R,k} (16)

s.t.
lX

k=1

⇢Sµ
l�k
S PS,H,k 

l�1X

k=0

µl�k�1
S (HS,k �  S,H,k), 8l(17)

lX

k=1

⇢Rµ
l�k
R PR,H,k  HW

R,l�1 �  R,H,l�1, 8l (18)

qX

k=0

µq�k
S (HS,k� S,H,k)�

qX

k=1

⇢Sµ
q�k+1
S PS,H,kBS,max,8q (19)

HW
R,q� R,H,q�

qX

k=1

⇢Rµ
q�k+1
R PR,H,kBR,max��HR, 8q (20)

⇢SPS,E,k  ES,k, ⇢RPR,E,k  ER,k, 8k (21)
�WS,k(PS,E,k + PS,H,k) = �WR,k(PR,E,k + PR,H,k), 8k, (22)

where T , [PS,E,k PR,E,k PS,H,k PR,H,k  S,H,k  R,H,k],
k 2 {1, 2, · · · ,K}, l 2 {1, 2, · · · ,K}, q 2 {1, 2, · · · ,K�1},
and  S,H,0 =  R,H,0 = 0. The slack variables  S,H,k and
 R,H,k ensure that constraints (19), (20), and (22) can be
met for all realizations of �̂S,k, �̂R,k, HS,k, and HW

R,k. In
particular, these slack variables represent the power (possibly)
wasted in each transmission interval. Constraints (17) and
(18) stem from the causality requirement on the energy
harvested at S and R, respectively. Moreover, (19) and (20)
ensure that the harvested energy does not exceed the limited
storage capacity of the batteries at S and R, respectively.
Note that �HR in the right hand side of (20) avoids the
possibility of battery overflow at R due to uncertainty. The
limitations on the energy drawn from the constant supply
are reflected in constraints (21) for S and R. Note that for
a given time interval, for the constant energy supply, any
extra amount of energy which is not used for transmission
cannot be transferred to the next interval. Constraint (22)
ensures that the amount of information transmitted from S



to R is identical to that transmitted from R to D so as to
avoid data loss at R. Constraint (22) is required since we
assume individual power constraints for S and R. This is
a reasonable assumption since S and R have independent
power supplies. Problem (16)–(22) can be restated as follows

max

T ⌫0,⌧k�0

KX

k=1

⌧k (23)

s.t.
1

2

⇠S,k � ⌧k,
1

2

⇠R,k � ⌧k, 8k (24)

Constraints (17)� (22). (25)
Problem (23)–(25) is a convex optimization problem and hence
can be solved optimally and efficiently [12]. Moreover, as
problem (23)–(25) satisfies Slater’s constraint qualification,
the duality gap between the optimum values of the original
problem and its dual is zero [12]. Therefore, we solve our
problem by solving its dual. For this purpose, we first provide
the Lagrangian of problem (23)–(25) which can be written as

L =

KX

k=1

⌧k+

KX

k=1

�S,k

⇣
1

2

log2(1 + �WS,k(PS,E,k + PS,H,k))�⌧k
⌘

+

KX

k=1

�R,k

⇣
1

2

log2(1 + �WR,k(PR,E,k + PR,H,k))� ⌧k

⌘

�
KX

l=1

↵S,l

⇣ lX

k=1

⇢Sµ
l�k
S PS,H,k�

l�1X

k=0

µl�k�1
S (HS,k� S,H,k)

⌘

�
KX

l=1

↵R,l

⇣
 R,H,l�1 �HW

R,l�1 +

lX

k=1

⇢Rµ
l�k
R PR,H,k

⌘

�
K�1X

q=1

!S,q

⇣ qX

k=0

µq�k
S (HS,k� S,H,k)�

qX

k=1

⇢Sµ
q�k+1
S PS,H,k

�BS,max

⌘
�
K�1X

q=1

!R,q

⇣
HW

R,q� R,H,q+�HR�
qX

k=1

⇢Rµ
q�k+1
R PR,H,k

�BR,max

⌘
�

KX

k=1

�S,k(⇢SPS,E,k�ES,k)�
KX

k=1

�R,k(⇢RPR,E,k�ER,k)

�
KX

k=1

⌘k

⇣
�WS,k(PS,E,k+PS,H,k)��WR,k(PR,E,k+PR,H,k)

⌘
(26)

where �S,k � 0, �R,k � 0, ↵S,l � 0, ↵R,l � 0, !S,q � 0,
!R,q , �S,k � 0, �R,k � 0, and ⌘k are the Lagrange multipliers
associated with constraints (24), (17), (18), (20), (21), and
(22), respectively. Note that the boundary conditions PS,E,k �
0, PS,H,k � 0, PR,E,k � 0, PR,H,k � 0,  S,H,k � 0,
 R,H,k � 0 are absorbed into the Karush–Kuhn–Tucker
(KKT) conditions for deriving the optimal PS,E,k, PS,H,k,
PR,E,k, PR,H,k,  S,H,k, and  R,H,k. We adopt the Lagrange
dual decomposition method and calculate the optimal PS,E,k,
PS,H,k, PR,E,k, PR,H,k,  S,H,k, and  R,H,k and the optimal
Lagrange multipliers required in (23)–(25) via an iterative
procedure [12]. The dual of problem (23)–(25) can be stated
as

min

V�0,⌘k

max

T �0
L (27)

where V = [�S,k �R,k ↵S,l ↵R,l !S,q !R,q �S,k �R,k]. Using
standard optimization techniques and the KKT optimality con-
ditions, the optimal PS,E,k, PS,H,k, PR,E,k, PR,H,k,  S,H,k,
 R,H,k, and ⌧k can be obtained as

POPT
S,E,k =

"
⌅S,k � 1

�WS,k
� PS,H,k

#+

, (28)

POPT
R,E,k =

"
⌅R,k � 1

�WR,k

� PR,H,k

#+

, (29)

POPT
S,H,k =

"
⇤S,k � 1

�WS,k
� PS,E,k

#+

, (30)

POPT
R,H,k =

"
⇤R,k � 1

�WR,k

� PR,E,k

#+

, (31)

 OPT
S,H,k =

"
k�1X

i=0

µk�i
S (HS,i �  S,H,i)�

kX

i=1

µk�i+1
S ⇢SPS,H,i

+HS,k �BS,max

#+

, (32)

 OPT
R,H,k=

"
HW

R,k�µR(HW
R,k�1� R,H,k�1)�BR,max+�HR

#+

,

(33)

⌧OPT
k =

1

2

log2

�
1 + �WS,k(PS,E,k + PS,H,k)

�

=

1

2

log2

�
1 + �WR,k(PR,E,k + PR,H,k)

�
, (34)

where ⌅S,k =

�S,k

2 ln(2)

⇣
�S,k⇢S + ⌘k�WS,k

⌘ , (35)

⇤S,k =

�S,k/(2 ln(2))
KP

j=k

⇢S↵S,jµ
j�k
S �

K�1P
j=k

⇢S!S,jµ
j�k+1
S +⌘k�WS,k

, (36)

⌅R,k =

�R,k

2 ln(2)

⇣
�R,k⇢R � ⌘k�WR,k

⌘ , (37)

⇤R,k =

�R,k/(2 ln(2))
KP

j=k

⇢R↵R,jµ
j�k
R �

K�1P
j=k

⇢R!R,jµ
j�k+1
R �⌘k�WR,k

. (38)

Here, (·)OPT denotes the optimal solutions in (28)–(34). We
define t as the iteration index. For a given set of Lagrange
multipliers and given values of POPT

S,H,k(t� 1) and POPT
R,H,k(t�

1), we obtain POPT
S,E,k(t) and POPT

R,E,k(t) using (28) and (29),
respectively, and then calculate POPT

S,H,k(t) and POPT
R,H,k(t) based

on (30) and (31), respectively. We also calculate  OPT
S,H,k(t) and

 OPT
R,H,k(t) based on (32) and (33), respectively. However, to

calculate PS,E,k(1) and PR,E,k(1) for t = 1, PS,H,k(0) � 0

and PR,H,k(0) � 0 are chosen such that (17)–(20) are satisfied.
We update the Lagrange multipliers using the standard gradient
method [12]. With the updated Lagrange multipliers, we solve
POPT
S,E,k(t + 1), POPT

S,H,k(t + 1), POPT
R,E,k(t + 1), POPT

R,H,k(t + 1),
 OPT
S,H,k(t+1), and  OPT

R,H,k(t+1) again and the same procedure
continues until convergence. Note that, due to the convexity



of problem (23)–(25), convergence to the optimal solution is
guaranteed as long as the step sizes satisfy the infinite travel
condition [12].

B. Optimal Online Power Allocation by DP

In practice, only causal CSI and HESI are available at node
S for power allocation. Therefore, the offline power allocation
scheme is not readily applicable as in a given time interval
k, the future CSI and the upcoming harvested energy are
not known in advance. We propose to employ a stochastic
DP approach for optimum online power allocation [6], [13].
Like the optimal online power allocation scheme in [4], we
follow the standard procedure of stochastic DP according to
Bellman’s equations [13] to obtain POPT

S,E,k, POPT
S,H,k, POPT

R,E,k,
and POPT

R,H,k, k 2 {1, 2, · · · ,K}. Due to space limitations, we
do not show the problem formulation in detail. In practice, the
optimal results are calculated for different realizations of �̂S,k,
�̂R,k, BS,k, and ˆBR,k and are stored in a look–up table. This
is done before transmission starts. When transmission starts,
for a given realization of �̂S,k, �̂R,k, BS,k, and ˆBR,k in time
interval k, those values of POPT

S,E,k, POPT
S,H,k, POPT

R,E,k, and POPT
R,H,k

that correspond to that realization are picked from the look–up
table.

C. Suboptimal Online Power Allocation

In the proposed DP–based optimal online power allocation
algorithm, for a certain transmission time interval k, we take
into account the average effect of all the succeeding time
intervals. Due to the recursive nature of DP, the computa-
tional complexity of this approach increases alarmingly with
increasing K. For this reason, in the following, we propose two
different suboptimal but less complex online power allocation
schemes.

1) Suboptimal Harvesting Rate (HR) Assisted Power Allo-
cation (“HR Assisted” Scheme): In this scheme, we constrain
the transmit powers PS,H,k and PR,H,k by the average energy
harvesting rates HS,E and HR,E , respectively. This scheme
is referred to as “HR Assisted” power allocation. For a given
time interval k 2 {1, 2, · · · ,K�1}, the resulting optimization
problem can be stated as

max

PS,E,k, PS,H,k, PR,E,k, PR,H,k

1

2

min{⇠S,k, ⇠R,k} (39)

s.t. 0  ⇢SPS,E,k  ES,k, 0  ⇢RPR,E,k  ER,k (40)

(1�µS)BS,k  ⇢SPS,H,kmin{BS,k, HS,E}, (41)

(1�µR)
ˆBR,k  ⇢RPR,H,kmin{ ˆBR,k,HR,E}, (42)

�WS,k(PS,E,k + PS,H,k) = �WR,k(PR,E,k + PR,H,k). (43)
Problem (39)–(43) is a convex optimization problem. There-
fore, as for the offline power allocation scheme, we can
adopt the Lagrange dual method to solve problem (39)–(43)
optimally and efficiently [12]. For the Kth time interval, we
replace the right hand side of (41) and (42) by BS,k and ˆBR,k,
respectively, and solve modified problem (39)–(43).

2) Suboptimal Naive Power Allocation (“Naive” Scheme):
In this suboptimal “naive” approach, for each time interval, k,
only the stored energies at hand determine the transmit power,
i.e., this approach does not take into account the statistical
effect of the future time intervals. For each time interval k,
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Fig. 1. Total number of transmitted bits vs. |✏S | = |✏R| = ✏ for �HR = 0
Joules and different K.

the optimization problem can be stated as

max

PS,E,k, PS,H,k, PR,E,k, PR,H,k

1

2

min{⇠S,k, ⇠R,k} (44)

s.t. (1�µS)BS,k  ⇢SPS,H,kBS,k, (45)

(1�µS)
ˆBR,k  ⇢RPR,H,k ˆBR,k, (46)

Constraints (40) and (43). (47)
Problem (44)–(47) is a convex optimization problem and thus
we can adopt the Lagrange dual method to solve the problem
optimally and efficiently [12].

IV. SIMULATION RESULTS

In this section, we evaluate the performance of the pro-
posed offline and online power allocation schemes by simu-
lations. We assume that in each time interval, HS,k (HR,k)
independently takes a value from the set {0, HS,E , 2HS,E}
({0, HR,E , 2HR,E}), where all elements of the set are
equiprobable [6]. For all presented simulation results, we
assume that �̂S,k and �̂R,k follow an exponential distribution
with mean ˆ�̄S =

ˆ�̄R =

ˆ�̄ = 20 dB. We also assume that eS,k
and eR,k are uniformly distributed in discs of radius |✏S | and
|✏R|, respectively. We adopt BS,max = BR,max = 300 Joules,
µS = µR = 0.99, and ⇢S = ⇢R = 2.5. To show the robustness
of the proposed power allocation schemes, we also consider a
baseline power allocation scheme and compare its performance
with that of the proposed power allocation schemes. In the
considered baseline power allocation scheme, the worst case
uncertainties for CSI and HESI are not considered and instead
the transmit powers are optimized for the estimated channel
SNRs and harvested energies. In particular, for the baseline
scheme, we set |✏S | = |✏R| = 0 for k = {1, 2, · · · ,K} for
all power allocation schemes and take into account the outage
of the system if ⇠S,k > log2(1 + �S,k(PS,E,k + PS,H,k)) or
⇠R,k > log2(1 + �R,k(PR,E,k + PR,H,k)). In our simulations,
when a link is in outage, we set the corresponding throughput
to zero. Note that the proposed schemes do not suffer from
outages as they ensure ⇠S,k  log2(1+�S,k(PS,E,k+PS,H,k))

and ⇠R,k  log2(1 + �R,k(PR,E,k + PR,H,k)) due to the
consideration of the worst case uncertainty. For all simulation
results, 10

4 randomly generated realizations of the channel
SNRs and the harvested energies are evaluated to obtain the
average throughput.



Fig. 1 shows the total number of transmitted bits vs. the
maximum error of the channel gain, |✏S | = |✏R| = ✏, for
K = 8 and K = 100. Here, we assume �HR = 0 Joule, i.e.,
no feedback error for the HESI to observe the sole impact of
CSI uncertainty. Moreover, we assume ES,1 = · · · = ES,K =

ER,1 = · · · = ER,K = 1 Joule and HS,E = HR,E = 6 Joules.
Results for the proposed offline and online power allocation
schemes are provided. Note that due to the high computational
complexity, the performance of the optimal DP based online
power allocation scheme is not shown for K = 100. We
have also included the performances of the baseline power
allocation scheme.

We observe from Fig. 1 that the total number of transmit-
ted bits decreases with increasing ✏ for all proposed power
allocation schemes for both K = 8 and K = 100. We also
observe that the proposed offline scheme performs better than
the proposed online power allocation schemes for all ✏. This is
due to the fact that in the optimal offline scheme, we assume
that both causal and noncausal information regarding the
estimated CSI and the feedback HESI are available whereas
the online schemes are based only on causal information
regarding the estimated CSI and the feedback HESI. Moreover,
as expected, the optimal DP based online scheme outperforms
the considered suboptimal online schemes and performs close
to the optimal offline scheme for K = 8. It is worth noting
that when ✏ = 0, the proposed and the baseline schemes for
each power allocation scheme have the same performance, as
expected. However, the performance of the baseline schemes
degrades significantly with increasing ✏. On the other hand, the
performance of the proposed scheme degrades gradually. This
finding reveals that our proposed power allocation schemes are
much more robust to uncertainty in comparison to the baseline
schemes.

In Fig. 2, we show the total number of transmitted bits
vs. the number of time slots, K for ES,1 = · · · = ES,K =

ER,1 = · · · = ER,K = 0.2 Joules and HS,E = HR,E = 8

Joules. To observe the impact of the uncertainty in harvested
energy, we have assumed that the available amount of constant
energy is small. Three different scenarios for |✏S | = |✏R| = ✏
and �HR have been considered. In Scenario 1, we assume
✏ = 0 and �HR = 0 Joule, i.e., the channel and energy
states are perfectly known. In Scenario 2, we assume ✏ = 0.7
and �HR = 2 whereas in Scenario 3, we assume ✏ = 0.7
and �HR = 5. We show the performances of the optimal
offline and suboptimal online power allocation schemes for the
considered scenarios. We observe that for all proposed power
allocation schemes, there is relatively large performance gap
between Scenarios 1 and 2 in comparison to the gap between
Scenarios 2 and 3. This is becasue Scenario 2 differs from
Scenario 1 by both CSI and HESI errors whereas Scenario
3 differs from Scenario 2 by only HESI error. To show the
robustness of the proposed power allocation schemes, we
have also included the performance of the HR assisted online
baseline scheme. We observe that for Scenario 1, where there
is no error due to channel or energy state uncertainties, both
the proposed and the baseline HR assisted schemes yield
identical results, as expected. However, for Scenarios 2 and
3, we observe large performance gaps between the proposed
and the baseline HR assisted schemes for all K and this gap
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Fig. 2. Total number of transmitted bits vs. K for 3 different scenarios for
|✏S | = |✏R| = ✏ and �HR Joules.

increases with increasing K.
V. CONCLUSIONS

In this paper, we have considered the problem of transmit
power allocation for a hybrid EH single relay network with
channel and energy state uncertainties. We have proposed
robust optimal offline, optimal online, and suboptimal online
power allocation schemes for worst case optimization by
incorporating bounded uncertainties for the CSI and the HESI.
While the effect of CSI uncertainties has been studied for con-
ventional non–EH systems in the literature, our results show
that the impact of HESI uncertainties is equally important for
the robust design of EH relaying systems.
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