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Abstract

Massive multiple-input multiple-output (MIMO) is one of the key technologies for the

emerging �fth generation (5G) wireless networks, and has the potential to tremen-

dously improve spectral and energy e�ciency with low-cost implementations. While

massive MIMO systems have drawn great attention from both academia and industry,

few e�orts have been made on how the richness of the spatial dimensions o�ered by

massive MIMO a�ects wireless security. As security is crucial in all wireless systems

due to the broadcast nature of the wireless medium, in this thesis, we study how

massive MIMO technology can be used to guarantee communication security in the

presence of a passive multi-antenna eavesdropper. Our proposed massive MIMO sys-

tem model incorporates relevant design choices and constraints such as time-division

duplex (TDD), uplink training, pilot contamination, low-complexity signal process-

ing, and low-cost hardware components. The thesis consists of three main parts.

We �rst consider physical layer security for a massive MIMO system employing

simple arti�cial noise (AN)-aided matched-�lter (MF) precoding at the base station

(BS). For both cases of perfect training and pilot contamination, we derive a tight

analytical lower bound for the achievable ergodic secrecy rate, and an upper bound for

the secrecy outage probability. Both bounds are expressed in closed form, providing

an explicit relationship between all system parameters, o�ering signi�cant insights

for system design.

We then generalize the work by comparing di�erent types of linear data and AN

ii



Abstract

precoders in a secure massive MIMO network. The system performance, in terms

of the achievable ergodic secrecy rate is obtained in closed form. In addition, we

propose a novel low-complexity data and AN precoding strategy based on a matrix

polynomial expansion.

Finally, we consider a more realistic system model by taking into account non-ideal

hardware components. Based on a general hardware impairment model, we derive a

lower bound for the ergodic secrecy rate achieved by each user when AN-aided MF

precoding is employed at the BS. By exploiting the derived analytical bound, we

investigate the impact of various system parameters on the secrecy rate and optimize

both the uplink training pilots and AN precoder to maximize the secrecy rate.
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B.1 Derivation of ĥknm in Section 3.2.2 . . . . . . . . . . . . . . . . . . . 163

B.2 Proof of Proposition 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . 164

B.3 Derivation of κ1,opt . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

B.4 Proof of Corollary 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . 167

B.5 Proof of Theorem 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . 168

B.6 Proof of Theorem 3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . 171

C Proofs in Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

C.1 Proof of Lemma 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

C.2 Proof of Lemma 4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

C.3 Proof of Lemma 4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

C.4 Proof of Lemma 4.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

C.5 Proof of Lemma 4.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

xi



List of Tables

3.1 SINR of the kth MT in the nth cell for linear data precoding and the

simpli�ed path-loss model in (3.36). . . . . . . . . . . . . . . . . . . . 85

3.2 AN leakage for simpli�ed path-loss model in (3.36). . . . . . . . . . . 85

xii



List of Figures

1.1 FDD mode versus TDD mode. . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Pilot contamination in multi-cell massive MIMO systems. . . . . . . . 5

1.3 Transceiver hardware model. . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Physical layer security model. . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Multi-cell massive MIMO system in the presence of a multi-antenna

eavesdropper. The shaded cell is the local cell. The MTs in the lo-

cal cell su�er from the inter-cell interference caused by data and AN

transmission in the six adjacent cells. . . . . . . . . . . . . . . . . . . 22

2.2 Ergodic capacity of the eavesdropper seeking to decode the information

intended for the kth MT in the local cell vs. the normalized number

of MTs in the cell, β, for a system with total transmit power PT = 10

dB, M = 7, ϕ = 0.75, and NT = 100. . . . . . . . . . . . . . . . . . . 51

2.3 Ergodic secrecy rate and outage probability for perfect training, M =

7, PT = 10 dB, K = 10, ρ = 0.3, α = 0.1, and ϕ = 0.75. . . . . . . . . 53

2.4 Ergodic secrecy rate and outage probability for pilot contamination,

M = 7, PT = 10 dB, K = 10 MTs, ρ = 0.1, α = 0.1, ϕ = 0.75, τ = K,

and pτ = PT/K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

xiii



List of Figures

2.5 Ergodic secrecy rate vs. power allocation factor ϕ assuming perfect

training, NT = 100, M = 7, PT = 10 dB, and ρ = 0.1. Black circles

denote the optimal power allocation factor, ϕ∗, obtained with (2.33)

and (2.34). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.6 Ergodic secrecy rate vs. power allocation factor ϕ assuming pilot con-

tamination, M = 7, NT = 100, PT = 20 dB, τ = K, pτ = PT/K, and

ρ = 0.1. Black circles denote the optimal power allocation factor, ϕ∗,

obtained with (2.51) and (2.52). . . . . . . . . . . . . . . . . . . . . . 56

2.7 Ergodic secrecy rate and optimal power allocation factor, ϕ∗, vs. β for

M = 7, PT = 20 dB, NT = 100, α = 0.3, and ρ = 0.1. In case of pilot

contamination, τ = K and pτ = PT/K. The ergodic secrecy rates

were obtained with (2.27), (2.28), (2.45), and (2.46). The optimal

power allocation factor was obtained with (2.33), (2.34), (2.51), and

(2.52). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.8 αsec vs. β and pτ for pilot contamination, total transmit power PT = 20

dB, M = 7, NT = 100, ρ = 0.1, and τ = K. . . . . . . . . . . . . . . . 58

2.9 Net ergodic secrecy rate vs. λ for a system with optimal ϕ∗, NT = 100,

M = 7, α = 0.1, PT = 10 dB, pτ = 0 dB, and ρ = 0.1. Black circles

denote the maximum net ergodic secrecy rate. . . . . . . . . . . . . . 59

3.1 Ergodic capacity of the eavesdropper vs. the normalized number of

MTs in the cell, β, for a system with NT = 200, ϕ = 0.75, PT = 10

dB, ρ = 0.3, and M = ξ = 2. . . . . . . . . . . . . . . . . . . . . . . . 91

3.2 Analytical and simulation results for the ergodic secrecy rate vs. the

number of BS antennas, NT , for a lightly loaded network with ϕ = 0.75,

PT = 10 dB, pτ = PT/τ , α = 0.1, K = 10, ρ = 0.1, and M = ξ = 2. . 92

xiv



List of Figures

3.3 Analytical and simulation results for the ergodic secrecy rate vs. the

number of BS antennas, NT , for a dense network with ϕ = 0.75, PT =

10 dB, ξ = 2, pτ = PT/τ , α = 0.1, K = 40, ρ = 0.3, and M = 7. . . . 93

3.4 Ergodic secrecy rate vs. ϕ for di�erent sel�sh data precoders for a

network with PT = 10 dB, NT = 100, ξ = 2, pτ = PT/K, α = 0.1,

ρ = 0.1, and M = 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.5 Ergodic secrecy rate vs. ϕ for di�erent data precoders for a network

with PT = 10 dB, NT = 100, ξ = 2, pτ = PT/τ , α = 0.1, and β = 0.1. 96

3.6 Ergodic secrecy rate vs. ϕ for di�erent AN precoders for a network

with PT = 10 dB, NT = 100, ξ = 2, pτ = PT/τ , M = 2, ρ = 0.1, and

α = 0.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.7 αs vs. β for di�erent data and AN precoders for a network with PT =

10 dB, NT = 100, ξ = 2, pτ = PT/τ , ρ = 0.3, and M = 2. . . . . . . 98

3.8 Ergodic secrecy rate for POLY and conventional sel�sh data precoders

for a network employing the optimal ϕ, PT = 10 dB, ξ = 1, pτ = PT/τ ,

NT = 200, and α = 0.1. . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.9 Ergodic secrecy rate for POLY and SNS AN precoders for a network

employing the optimal ϕ, PT = 10 dB, ξ = 1, pτ = PT/τ , NT = 200,

and α = 0.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.10 Ergodic secrecy rate (left hand side) and computational complexity

(right hand side) of various linear data precoders for a network em-

ploying PT = 10dB, NT = 1000, pτ = PT/τ , M = ξ = 2, ρ = 0.1,

T − τ = 100, and an SNS AN precoder. . . . . . . . . . . . . . . . . 102

xv



List of Figures

3.11 Ergodic secrecy rate (left hand side) and computational complexity

(right hand side) of various linear AN precoders for a network em-

ploying PT = 10dB, NT = 1000, pτ = PT/τ , M = ξ = 2, ρ = 0.1,

T − τ = 100, and an SZF data precoder. . . . . . . . . . . . . . . . . 103

4.1 Uplink training and downlink transmission phase. . . . . . . . . . . . 109

4.2 Capacity of the eavesdropper vs. the normalized number of MTs β for

a system with N = 128, No = 4, NE = 16, PT = 10 dB, ϕ = 0.25,

κBS
t = 0.152, and G-NS AN precoding with Mo = {1, 2, 4}. . . . . . . 132

4.3 Achievable ergodic rate, λk, and ak vs. phase noise standard deviation

σψ = σϕ for di�erent pilot designs for a system with N = 128, No = 2,

NE = 16, K = 16, pτ = PT/K, PT = 10 dB, ϕ = 0.5, and κBS
t = κBS

r =

κMT
t = κMT

r = 0.052. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

4.4 Achievable ergodic secrecy rate vs. ϕ for SO and TO pilots and a

system with K = 4 , N = 128, No = Mo = 2, NE = 4, pτ = PT/K,

PT = 10 dB, and κBS
t = κBS

r = κMT
t = κMT

r = 0.152. . . . . . . . . . . 136

4.5 Achievable ergodic secrecy rate vs. number of BS antennas for G-NS

AN precoding and a system with K = 4, NE = 4, No = 16, Bo = 1,

pτ = PT/K, PT = 10 dB, and κBS
t = κBS

r = κMT
t = κMT

r = 0.152. The

optimal ϕ is adopted. . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

4.6 αAN and αsec vs. the normalized number of MTs β for SO and TO

pilots and a system with N = 128, Mo = 2, pτ = PT/K, PT = 10 dB,

σψ = σϕ = 6◦, and κBS
t = κBS

r = κMT
t = κMT

r = 0.152. . . . . . . . . . . 138

4.7 Achievable ergodic secrecy rate vs. BS distortion noise parameter κBS
t

for a system with N = 128, K = 32, NE = 4, No = Mo = 2, pτ =

PT/K, PT = 10 dB, and κBS
r = κMT

t = κMT
r = 0.152. . . . . . . . . . . 139

xvi



List of Abbreviations

5G 5th Generation

3GPP 3rd Generation Partnership Project

LTE (3GPP) Long Term Evolution

LTE-A (3GPP) Long Term Evolution - Advanced

CDMA Code Division Multiple Access

MIMO Multiple�Input Multiple�Output

MISO Multiple�Input Single�Output

SISO Single�Input Single�Output

AWGN Additive White Gaussian Noise

BS Base Station

MT Mobile Terminal

AN Arti�cial Noise

NS Null Space

PHY Physical Layer

MAC Media Access Control

CDF Cumulative Distribution Function

PDF Probability Distribution Function

r.v. Random Variable

CSI Channel State Information

DPC Dirty Paper Coding

xvii



List of Abbreviations

FDD Frequency Division Duplex

i.i.d. Independent and Identically Distributed

MAC Medium Access Control

MMSE Minimum Mean Squared Error

ZF Zero-Forcing

RCI Regularized Channel-Inversion

MF Matched-Filter

POLY Polynomial

MSE Mean Squared Error

RF Radio Frequency

SIC Successive Interference Cancellation

SINR Signal�to�Interference�plus�Noise Ratio

SNR Signal�to�Noise Ratio

TDD Time Division Duplex

w.r.t. With Respect to

PA Power Ampli�er

CE Constant Envelope

SO Spatially Orthogonal

TO Temporally Orthogonal

xviii



Notation

(·)T Transpose

(·)H Hermitian transpose

0 All�zero column vector

1 All�one column vector

I Identity matrix

Z+ The set of positive integer

C The set of complex number

Cm×n The space of all m× n matrices with complex-valued elements

E[·] Expectation operator

var(·) Variance operator

|| · ||2 Euclidean norm operator

diag{x} A diagonal matrix with the elements of vector x on the main diagonal

tr{·} Trace of a matrix

rank{·} Rank of a matrix

X Upper bound for X

X Lower bound for X

CN(0,Σ) A circularly symmetric complex Gaussian random variable

with zero mean and covariance matrix Σ

χ2
n A chi-square random variable with n degrees of freedom[
·
]
kl

The element in the kth row and lth column of a matrix

xix



Notation

[
·
]+

max{0, x}, x ∈ R

⌈x⌉ The smallest integer no smaller than x

⌊x⌋ The largest integer no greater than x

|S| The cardinality of set S

xx



Acknowledgments

First and foremost I would like to express my deep and sincere gratitude to my

supervisors, Professor Robert Schober and Professor Vijay K. Bhargava, for their

patient guidance, encouragement, and invaluable advice throughout my time as their

student. Both of them set great examples of being a distinguished researcher and

excellent teacher. The knowledge and attitude I learned from them bene�t me forever.

I am thankful for the opportunity to work with them over the years. Without their

support and guidance, this thesis would not be possible.

Also, I greatly thank the members of my doctoral committee, for their time and

e�ort in evaluating my work and providing valuable feedback and suggestions.

Many thanks go to my dear laboratory colleagues at Lab Kaiser 4090 in Vancouver

and IDC in Erlangen, research collaborators, and friends, for their presences and fun-

loving spirits that made the otherwise grueling experience enjoyable.

Finally, I would like to thank the Natural Sciences and Engineering Research

Council of Canada (NSERC), the University of British Columbia, the German Aca-

demic Exchange Service (DAAD), the Alexander von Humboldt Foundation, and

the China Scholarship Council (CSC), not only for providing the funding which al-

lowed me to undertake the research, but also for giving me the opportunity to attend

conferences and meet so many interesting people in the world.

xxi



Dedication

To My Parents, Grandma, and Girlfriend Miss Xie Zhang

xxii



Chapter 1

Introduction

The �fth generation (5G) wireless system is expected to create a paradigm shift com-

pared to the current Long Term Evolution (LTE)/LTE-Advanced systems in order

to meet the unprecedented demands for future wireless applications, including the

tremendous throughput and massive connectivity. Massive multiple-input multiple-

output (MIMO) [1]-[8], an architecture employing large-scale multiuser MIMO pro-

cessing using the array of hundreds or even thousands of antennas, simultaneously

serving tens or hundreds of mobile users, has been identi�ed as a promising air in-

terface technology to address a signi�cant portion of the above challenges. Besides,

security is a vital issue in wireless networks due to the broadcast nature of the medium

[10]. Despite the great e�orts on massive MIMO from both academia and industry,

the security paradigms guaranteeing the con�dentiality of wireless communications

in 5G networks have scarcely been stated. These motivate us to consider the massive

MIMO system from the security perspective. This chapter provides an overview of a

series of fundamentals related to this thesis, including massive MIMO, physical layer

security, and hardware impairments.

The chapter is organized as follows. In Sections 1.1 and 1.2, we brie�y review the

fundamentals of ideal and non-ideal hardware constrained massive MIMO systems,

respectively. In Section 1.3, we introduce the concept of physical layer security. In

Section 1.4, we motivate the thesis by illustrating why we consider physical layer

security in massive MIMO systems. The contributions conducted in this thesis are
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Chapter 1. Introduction

summarized in Section 1.5, and the thesis organization is provided in Section 1.6.

1.1 Massive MIMO Wireless Systems

Massive MIMO systems, also known as large-scale antenna or very large MIMO

systems, equip base station (BS) antenna arrays with an order of magnitude more

elements than what is used in current systems, i.e., a hundred antennas or more, and

simultaneously serve low-complexity single-antenna mobile terminals (MTs) [1]-[8].

Massive MIMO enjoys all the bene�ts of conventional multiuser MIMO, such as im-

proved data rate, reliability and reduced interference, but at a much larger scale and

with simple linear precoding/detection schemes [1]-[3]. Remarkable improvements

in rates as well as in spectral and power e�ciency can be achieved by focusing the

radiating power onto the MTs with the very large antenna array [6]. Massive MIMO

is therefore capable of achieving robust performance at low signal-to-interference-

plus-noise ratio (SINR) with highly e�cient and inexpensive implementations, as the

e�ects of noise and interference vanish completely in the limit of an in�nite number

of antennas [5]. Other bene�ts of massive MIMO include but are not limited to the

extensive use of inexpensive low-power components, reduced latency, simpli�cation of

the media access control (MAC) layer, and robustness to intentional jamming [1]-[3].

This section will review the fundamentals of massive MIMO systems from the follow-

ing perspectives: uplink pilot training in Section 1.1.1, downlink linear precoding in

Section 1.1.2, and pilot contamination in Section 1.1.3.

1.1.1 Time-Division Duplex and Uplink Pilot Training

In this subsection, we review the operations for channel state information (CSI)

acquisition applicable for massive MIMO systems. It is well understood that the

2
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Figure 1.1: FDD mode versus TDD mode.

acquisition of CSI is essential for signal processing at the BS. Most current cellular

systems work on frequency-division duplex (FDD) mode, where the CSI is typically

acquired via feedback (full or limited) [11], as shown in Fig. 1.1. However, when

the BS is equipped with large excess of antennas compared with the number of

terminals, which is customary for massive MIMO systems, the time-division duplex

(TDD) mode provides the only solution to acquire CSI. This is because the training

burden for uplink pilots in a TDD system is proportional to the number of MTs,

but independent of the number of BS antennas, while conversely the training burden

for downlink pilots in an FDD system is proportional to the number of BS antennas

[5]. The adoption of an FDD system imposes a severe limitation on the number

of antennas deployed at the BS. By exploiting the reciprocity between uplink and

downlink channels for TDD systems, the BS is able to eliminate the need for feedback,

and uplink pilot training is su�cient for providing the desired uplink and downlink

CSI.
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1.1.2 Downlink Linear Precoding

With the desired downlink CSI available via uplink training by exploiting the channel

reciprocity for TDD operation, the BS performs precoding in order to simultaneously

serve multiple single-antenna MTs. Most precoding techniques are identical to those

used for conventional multiuser MIMO schemes, but at a much larger scale. The

theoretical sum-capacity optimal dirty paper coding (DPC) technique [12] is too

complex to be implemented in practice even in a conventional MIMO system, and

is thus not considered here. In contrast, linear precoding is typically adopted in

massive MIMO systems. The most popular scheme is matched-�lter (MF) precoding,

due to its simple processing and robustness to CSI error [2, 5, 8]. However, MF

precoding results in a performance degradation with increasing number of serving

MTs. This is because when more MT channels exist, the near orthogonality between

the MT channels becomes weak, which increases the level of multiuser interference.

In this case, zero-forcing (ZF)/regularized channel inversion (RCI) precoding are

preferable [13]-[15]. Like in the conventional MIMO system, the former suppresses

the multiuser interference, while the latter strikes a balance between MF and ZF

precoding. Unfortunately, they require high-dimensional matrix inversions, which

lead to a high computational complexity, especially when the number of BS antennas

and MTs are both large.

In order to reduce the computational complexity induced by conventional linear

precoding techniques, e.g., ZF/RCI precoding in massive MIMO systems, the re-

lated literature has also investigated precoding schemes based on matrix polynomials,

which avoids the need of large dimension matrix inversion calculations. The concept

was originally conceived for code division multiple access (CDMA) uplink systems in

[16] and later extended to MIMO systems in [17]. The main idea is to adopt matrix
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Uplink pilots

Contaminated pilots

Figure 1.2: Pilot contamination in multi-cell massive MIMO systems.

polynomials with several terms to approximate matrix inversion. Thereby, the coef-

�cients of the matrix polynomials need to be optimized in order to achieve a certain

approximation accuracy.

1.1.3 Multi-Cell Deployment and Pilot Contamination

In massive MIMO systems, each terminal is ideally assigned to an orthogonal uplink

pilot sequence. However, the maximum number of orthogonal pilot sequences are

limited by the coherence block length. When deployed in a multi-cell network the

available orthogonal pilot sequences are quickly exhausted. As such, pilot sequences

have to be re-used from one cell to another. The negative e�ect incurred by the pilot

re-use is generally called pilot contamination [1, 8], as shown in Fig. 1.2. More pre-

cisely, when the BS estimates the channel of a speci�c MT, it correlates the received

pilot signal with the pilot sequence of that MT. In the case of pilot reuse between
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cells, it actually acquires a channel estimate that is contaminated by a linear com-

bination of channels associated with other MTs that share the same pilot sequence.

The downlink precoding based on the contaminated channel estimates introduces

interference which is directed to the MTs that share the same pilot sequence. The

directed interference grows with the number of BS antennas at the same speed as the

desired signal. Similar interference also exists for uplink data transmission.
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1.2 Hardware Impairments in Massive MIMO

Systems

Massive MIMO, as reviewed in Section 1.1, is able to bring substantial improvements

in spectral and energy e�ciency to wireless systems, due to the high spatial resolu-

tion and array gain provided by large-scale antenna arrays. Thus, massive MIMO

has been identi�ed as the promising air interface technology for 5G wireless networks.

When the large-scale antenna array is deployed in practice, the hardware cost is a

signi�cant issue to address, as it scales linearly with the number of BS antennas [18],

as shown in Fig. 1.3. In order to reduce the total expenditure, one solution is to

adopt low-cost transceivers, in contrast to current expensive and high-quality circuit

components. Unfortunately, such transceivers are usually prone to hardware imper-

fections, e.g., ampli�er non-linearities, I/Q-imbalance, phase noise, and quantization

errors [18]. Although such impairments can be mitigated by analog and digital signal

processing techniques [19], they cannot be removed completely, due to the random-

ness introduced by di�erent sources of imperfection. Transceiver implementations

consist of various hardware components, including �lters, converters, mixers, and

ampli�ers [18]. Each of them distorts the signals in a di�erent manner. Generally

speaking, non-ideal hardware components impair the transceiver by 1) introducing

the mismatch between the intended transmit signal and what is actually emitted and

2) distorting the received signal in the reception processing. From the system perfor-

mance perspective, instead of the individual behavior of each hardware component,

the aggregate e�ects of all the residual hardware impairments is more important.

Among the literature, several works have investigated the impact of hardware

impairments on massive MIMO systems [18], [20, 21, 22]. The impact of phase noise

7



Chapter 1. Introduction
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Figure 1.4: Physical layer security model.

originating from free-running oscillators on the downlink performance of massive

MIMO systems was studied in [20] for di�erent linear precoder designs. Constant en-

velope precoding for massive MIMO was studied in [21] with the objective of avoiding

distortions caused by power ampli�er nonlinearities at the transmitter. The impact

of the aggregate e�ects of several hardware impairments originating from di�erent

sources on massive MIMO systems was studied in [18] by modelling the residual

impairments remaining after compensation as additive distortion noises [19]. The

authors in [22] presented closed-form expressions for the achievable user rates in

uplink massive MIMO systems for a general residual hardware impairment model

including both multiplicative phase noise and additive distortion noise.

1.3 Physical Layer Security

Security is a vital issue in wireless networks due to the broadcast nature of the

medium. Traditionally, security has been achieved through cryptographic encryption

implemented at the application layer, which requires a certain form of information
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(e.g., key) shared between the legitimate entities [9, 10]. This approach ignores the

behavior of the communication channels and relies on the theoretical assumption

that communication between the legitimate entities is error free. More importantly,

all cryptographic measures assume that it is computationally infeasible for them to

be deciphered without knowledge of the secret key, which remains mathematically

unproven. Ciphers that were considered potentially unbreakable in the past are con-

tinually defeated due to the increasingly growth of computational power. Moreover,

error free communication cannot be always guaranteed in non-deterministic wireless

channels [10]. A novel approach for wireless security taking advantage of the char-

acteristics of physical layer communication channels was proposed by Wyner in [23]

and is referred to as physical layer security. The concept was originally developed for

the classical wire-tap channel [23], cf. Fig. 1.4 (left). Wyner showed that a source

(Alice)-destination (Bob) pair can exchange perfectly secure messages with a positive

rate if the desired receiver enjoys better channel conditions than the eavesdropper

(Eve). However, this condition cannot always hold in practice, especially in wireless

fading channels. To make things worse, Eve enjoys a better average channel gain

than Bob as long as he/she is located closer to Alice than Bob. Therefore, perfectly

secure communication seems impossible, and techniques to enhance Bob's channel

condition while degrading Eve's are needed. One option is to utilize arti�cial noise

(AN) to perturb Eve's reception [24], as shown in Fig. 1.4 (right). Eves are typi-

cally passive so as to hide their existence, and thus their CSI cannot be obtained

by Alice. In this case, multiple transmit antennas can be exploited to enhance se-

crecy by simultaneously transmitting both the information-bearing signal and AN.

Speci�cally, precoding is used to make the AN invisible to Bob while degrading the

decoding performance of possibly present Eves [24, 25]. In [26], authors investigated
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the secrecy outage probability for the AN-aided secrecy system, where only Alice has

multiple antennas. When Eve is also equipped with multiple antennas, the work in

[27] employs AN precoder to achieve a near-optimal performance in high signal-to-

noise (SNR) regime. The contribution extends to a secrecy system where all nodes

have multiple antennas in [28].

More recent studies have considered physical layer security provisioning in mul-

tiuser networks [29]-[36]. Although the secrecy capacity region for multiuser networks

remains an open problem, it is interesting to investigate the achievable secrecy rates

of such networks for certain practical transmission strategies. All aformentioned work

generally assumed that Alice can acquire perfect CSI of Bob, which seems too ideal.

Robust beamforming designs with estimated CSI were reported in [37]-[41]. Finally,

the literature on physical layer security for the emerging massive MIMO systems will

be discussed in Section 1.4.3.

1.4 Physical Layer Security in Massive MIMO

Systems

The emerging massive MIMO architecture o�ers tremendous performance gains in

terms of network throughput and energy e�ciency by employing simple coherent

processing on the large-scale antenna array. However, very little attention has been

given to the security issue in massive MIMO systems. In order to address this concern,

we need �rst to consider two fundamental questions: 1) Is massive MIMO secure? 2)

If not, how can we improve security in massive MIMO systems? In this section, we

illustrate the main motivation of this thesis by providing brief and general responses

to the two questions.
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1.4.1 Is Massive MIMO Secure?

Compared with conventional MIMO, massive MIMO is inherently more secure, as the

large-scale antenna array equipped at the transmitter (Alice) can accurately focus a

narrow and directional information beam on the intended terminal (Bob), such that

the received signal power at Bob is several orders of magnitude higher than that

at any incoherent passive eavesdropper (Eve) [42]. Unfortunately, this bene�t may

vanish if Eve also employs a massive antenna array for eavesdropping. The following

scenarios further deteriorate the security of the massive MIMO system:

• As Eve is passive, it is able to move arbitrarily close to Alice without being

detected by either Alice or Bob. In this case, the signal received by Eve can be

strong.

• In a ultra-dense multi-cell network, Bob su�ers from severe multiuser inter-

ference (both pilot contaminated and uncontaminated), while Eve may have

access to the information of all other MTs, e.g., by collaborating with them,

and remove their interference when decoding Bob's information.

• In practice, both Alice and Bob are equipped with low-cost transceivers to

reduce the total expenditure, which are prone to hardware imperfections, while

Eve has ideal hardware.

In the aforementioned scenarios, unless additional measures to secure the communi-

cation are taken by Alice, even a single passive Eve is able to intercept the signal

intended for Bob [43]. Furthermore, we note that Eve could emit its own pilot sym-

bols to impair the channel estimates obtained at Alice to improve his ability to decode

Bob's signals during downlink transmission [44]. However, this would also increase
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the chance that the presence of the eavesdropper is detected by Alice [45]. Therefore,

in this thesis, we limit ourselves to passive eavesdropping.

1.4.2 How to Improve Security for Massive MIMO?

Massive MIMO systems o�er an abundance of BS antennas, while multiple transmit

antennas can be exploited for secrecy enhancement, e.g., by emitting AN. Therefore,

the combination of both concepts seems natural and promising. There arise sev-

eral challenges and open problems for physical layer security provisioning in massive

MIMO systems that are not present for conventional MIMO systems. We summarize

them as follows.

• In a conventional massive MIMO system (without security), pilot contamination

constitutes a limit on performance in terms of data throughput [5]. However, its

e�ects on the AN design, as well as wireless security have not been considered.

• One of the tremendous advantages of massive MIMO in the physical layer is the

simple processing, e.g., MF precoding. It remains unknown if more advanced

and sophisticated signal processing techniques, e.g., ZF/RCI precoding and BS

collaboration are bene�cial in terms of data throughput and security, in a pilot

contaminated environment.

• In conventional MIMO systems, AN is transmitted in the null space (NS) of the

channel matrix [24]. The complexity associated with computing the NS may

not be a�ordable in case of massive MIMO and thus simpler AN precoding

methods are essential.

• When deployed in practice, low-cost transceivers are equipped to reduce the

total expenditure. Such components are usually prone to hardware imperfec-
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tions. The e�ects of the imperfections on the AN design, as well as the resulting

security performance remains an open problem.

This thesis will provide detailed and insightful solutions to the aforementioned chal-

lenges and problems. As massive MIMO will serve as an essential enabling technology

for the emerging 5G wireless networks, it is expected that its design from physical

layer security perspective opens a new and promising research path. Related contri-

butions will be summarized in Section 1.4.3.

1.4.3 Prior Arts

In this section, we summarize the related work on the topic of physical layer security

for massive MIMO systems. In [46], the authors summarized the possible research

options for the design of physical layer security in the emerging massive MIMO sys-

tems. Large system secrecy analysis of MIMO systems achieved by RCI precoding

was provided in [47]-[49]. In [50], the authors adopted the channel between Alice and

Bob as secrete key and showed that the complexity required by Eve to decode Alice's

message is at least of the same order as a worst-case lattice problem. AN-aided jam-

ming for Rician fading massive MIMO channels was investigated in [51], where the

power allocation is optimized between messages and AN for both uniform and direc-

tional jamming. [52] investigated power scaling law for secure massive MIMO systems

without the help of AN. The authors in [53] de�ned a new term secrecy area where all

legitimate MTs satisfy the secrecy outage probability requirements within this area.

An optimal power allocation strategy was performed to maximize this area. In the

context of massive MIMO relaying, the work presented in [54] and [55] compared

two classic relaying schemes, i.e., amplify-and forward (AF) and decode-and-forward

(DF), for physical layer security with imperfect CSI at the massive MIMO relay. Au-
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thors in [56] provided a large system secrecy rate analysis for simultaneous wireless

information and power transfer (SWIPT) MIMO wiretap channels. Whereas [51]-[56]

and the contributions in this thesis all assumed that Eve is passive, the so-called pilot

contamination attack [44], a form of active eavesdropping, was also considered in the

literature. In particular, several techniques for detection of the pilot contamination

attack were proposed in [42], including a detection scheme based on random pilots

and a cooperative detection scheme. Moreover, the authors in [57] developed a secret

key agreement protocol under the pilot contamination attack, and the authors in [58]

proposed to encrypt the pilot sequence in order to hide it from the attacker. The en-

cryption enables the MTs to achieve the performance as if they were under no attack.

Methods for combating the pilot contamination attack in a multi-cell network was

reported in [59], which exploited the low-rank property of the transmit correlation

matrices of massive MIMO channels.

1.5 Contributions of the Thesis

This is the �rst thesis considering physical layer security in massive MIMO systems.

In this thesis, we study secure downlink transmission in single/multi-cell massive

MIMO systems in the presence of a multi-antenna eavesdropper which attempts to

intercept the signal intended for any one of the MTs. To arrive at an achievable se-

crecy rate for this MT, we assume that the eavesdropper can acquire perfect knowl-

edge of the CSI of all user data channels and is able to cancel all interfering MT

signals. Ergodic secrecy rate and secrecy outage probability are the two performance

evaluation metrics adopted in this thesis. The research work is divided into three

chapters. The contributions in each chapter are as follows:

1. AN-aided MF precoding: Chapter 2 presents the �rst study of physical layer
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security in pilot contaminated massive MIMO systems. In this chapter, we de-

rive tight lower bounds for the ergodic secrecy rate and tight upper bounds for

the secrecy outage probability for both cases of perfect training and pilot con-

tamination, when BS employs simple MF precoding and AN precoding. The

derived bounds are in closed form and provide signi�cant insight for system

design. In particular, the obtained results allow us to predict under what con-

ditions (i.e., for what number of BS antennas, eavesdropper antennas, users,

path-loss, number of cells, and pilot power) a positive secrecy rate is possible.

Furthermore, we show that employing random AN precoding matrices is an

attractive low-complexity option for massive MIMO systems. We also derive

a closed-form expression for the fraction of transmit power that should be op-

timally allocated to AN and show that, for a given number of BS antennas,

this fraction increases with the number of eavesdropper antennas and decreases

with the number of users in the system. The work in Chapter 2 was published

in [43, 60].

2. Linear data and AN precoding: Chapter 3 studies the performance-complexity

tradeo� of sel�sh and collaborative data and AN precoders. Sel�sh precoders

require only the CSI of the MTs in the local cell but cause inter-cell interference

and inter-cell AN leakage. In contrast, collaborative precoders require the CSI

between the local BS and the MTs in all cells, but reduce inter-cell interference

and inter-cell AN leakage. However, since the additional CSI required for the

collaborative precoders can be estimated directly by the local BS, the additional

overhead and complexity incurred compared to sel�sh precoders is limited. We

then derive novel closed-form expressions for the asymptotic ergodic secrecy rate

which facilitate the performance comparison of di�erent combinations of linear
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data precoders (i.e., MF, sel�sh and collaborative ZF/RCI) and AN precoders

(i.e., random, sel�sh and collaborative NS), and provide signi�cant insight for

system design and optimization. In order to avoid the computational complex-

ity and potential stability issues in �xed point implementations entailed by the

large-scale matrix inversions required for ZF and RCI data precoding and NS

AN precoding, we propose polynomial (POLY) data and AN precoders and

optimize their coe�cients. We borrow the tools from free probability theory

[61] to obtain the POLY coe�cients. This allows us to express the POLY coef-

�cients as simple functions of the channel and system parameters. Simulation

results reveal that these precoders are able to closely approach the performance

of sel�sh RCI data and NS AN precoders, respectively. The work in Chapter 3

was published in [62, 63, 64].

3. AN-aided MF precoding with hardware imperfections: Chapter 4 presents

the �rst study of physical layer security in hardware constrained massive MIMO

systems. For the adopted generic residual hardware impairment model, we de-

rive a tight lower bound for the ergodic secrecy rate achieved by a downlink user

when MF data precoding is employed at the massive MIMO BS. The derived

bound provides insight into the impact of various system and channel parame-

ters, such as the phase noise variance, the additive distortion noise parameters,

the AN precoder design, the amount of power allocated to the AN, the pilot

sequence design, the number of deployed local oscillators (LOs), and the num-

ber of users, on the ergodic secrecy rate. As conventional NS AN precoding is

sensitive to phase noise, we propose a novel generalized NS (G-NS) AN precod-

ing design, which mitigates the AN leakage caused to the legitimate user in the

presence of phase noise at the expense of a reduction of the available spatial de-
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grees of freedom. The proposed method leads to signi�cant performance gains,

especially in systems with large numbers of antennas at the BS. Moreover, we

generalize the spatially orthogonal (SO) and temporally orthogonal (TO) pilot

sequence designs from [22] to orthogonal pilot sequences with arbitrary numbers

of non-zero elements. Although SO sequences, which have no zero elements, are

preferable for small phase noise variances, sequence designs with zero elements

become bene�cial in the presence of strong phase noise. Our analytical and nu-

merical results reveal that while hardware impairments in general degrade the

achievable secrecy rate, the proposed countermeasures are e�ective in limiting

this degradation. Furthermore, surprisingly, there are cases when the additive

distortion noise at the BS is bene�cial for the secrecy performance as it can

have a similar e�ect as AN. The work in Chapter 4 was submitted in [65, 66].

1.6 Organization of the Thesis

In the following, we provide a brief overview of the remainder of this thesis. Each of

the Chapters 2-4 in this thesis is self-contained and included in separate journal or

conference papers. The notations are de�ned separately for each chapter.

In Chapter 2, we consider physical layer security provisioning in multi-cell massive

MIMO systems. Speci�cally, we consider secure downlink transmission in a multi-cell

massive MIMO system with MF precoding and AN precoding at the BS in the pres-

ence of a passive multi-antenna eavesdropper. We investigate the resulting achievable

ergodic secrecy rate and the secrecy outage probability for the cases of perfect training

and pilot contamination. Thereby, we consider two di�erent AN precoding matrices,

namely, the conventional AN precoding matrix, where the AN is transmitted in the

null space of the matrix formed by all user channels, and a random AN precoding
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matrix, which avoids the complexity associated with �nding the null space of a large

matrix.

In Chapter 3, we consider that linear precoding of data and AN are employed

for secrecy enhancement. Four di�erent data precoders (i.e., sel�sh ZF/RCI and col-

laborative ZF/RCI precoders) and three di�erent AN precoders (i.e., random, self-

ish/collaborative null-space based precoders) are investigated and the corresponding

achievable ergodic secrecy rates are analyzed. Our analysis includes the e�ects of up-

link channel estimation, pilot contamination, multi-cell interference, and path-loss.

Furthermore, to strike a balance between complexity and performance, linear pre-

coders that are based on matrix polynomials are proposed for both data and AN

precoding. The polynomial coe�cients of the data and AN precoders are optimized

respectively for minimization of the sum MSE of and the AN leakage to the mobile

terminals in the cell of interest using tools from free probability and random matrix

theory.

In Chapter 4, we investigate the impact of hardware impairments on the secrecy

performance of downlink massive MIMO systems in the presence of a passive multiple-

antenna eavesdropper. Thereby, for the BS and the legitimate users, the joint e�ects

of multiplicative phase noise, additive distortion noise, and ampli�ed receiver noise

are taken into account, whereas the eavesdropper is assumed to employ ideal hard-

ware. We derive a lower bound for the ergodic secrecy rate of a given user when MF

data precoding and AN transmission are employed at the BS. Based on the derived

analytical expression, we investigate the impact of the various system parameters on

the secrecy rate and optimize both the pilot sets used for uplink training and the AN

precoding.

Finally, Chapter 5 summarizes the contributions of this thesis and outlines areas
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of future research.

Appendices A-C contain the proofs of the propositions, corollaries, lemmas, and

theorems used in this thesis.
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Chapter 2

AN-Aided MF Precoding in Secure

Massive MIMO Systems

2.1 Introduction

Massive MIMO systems o�er an abundance of BS antennas, while multiple transmit

antennas can be exploited for secrecy enhancement. Therefore, the combination of

both concepts seems natural and promising, which is the main motivation for the

work presented in this chapter. Several new issues arise for physical layer security

provisioning in multi-cell massive MIMO systems that are not present for conven-

tional MIMO systems [10, 23, 27]-[38]. For example, pilot contamination is unique

to massive MIMO systems and we study its e�ect on the ergodic secrecy rate and

the secrecy outage probability. Furthermore, for the user data, MF precoding is usu-

ally adopted in massive MIMO systems [2, 5], since the matrix inversion needed for

the schemes used in conventional MIMO, such as RCI and minimum mean squared

error (MMSE) precoding, is considered to be computationally too expensive for the

large matrices typical for massive MIMO. Similarly, whereas in conventional MIMO

systems, the AN is transmitted in the NS of the channel matrix [24], the complexity

associated with computing the NS may not be a�ordable in case of massive MIMO

and simpler AN precoding methods may be needed. Finally, unlike most of the re-

lated work [10, 23, 27]-[38], we consider a multi-cell setting where not only the data
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signals cause inter-cell interference but also the AN, which has to be carefully taken

into account for system design.

In this chapter, we study secure downlink transmission in multi-cell massive

MIMO systems in the presence of a multi-antenna eavesdropper, which attempts to

intercept the signal intended for one of the users. To arrive at an achievable secrecy

rate for this user, we assume that the eavesdropper can acquire perfect knowledge

of the CSI of all user data channels and is able to cancel all interfering user signals.

Under this assumption, we derive tight lower bounds for the ergodic secrecy rate

and tight upper bounds for the secrecy outage probability for the cases of perfect

training and pilot contamination. The derived bounds are in closed form and provide

signi�cant insight for system design. In particular, the obtained results allow us to

predict under what conditions (i.e., for what number of BS antennas, eavesdropper

antennas, users, path-loss, number of cells, and pilot powers) a positive secrecy rate

is possible. Furthermore, we show that employing random AN precoding matrices

is an attractive low-complexity option for massive MIMO systems. We also derive a

closed-form expression for the fraction of transmit power that should be optimally

allocated to AN and show that, for a given number of BS antennas, this fraction

increases with the number of eavesdropper antennas and decreases with the number

of users in the system.

The remainder of this chapter is organized as follows. In Section 2.2, we describe

the channel model, the channel estimation scheme, the transmission format, and

two AN precoding matrix designs for the considered system. In Section 2.3, we

provide a simple lower bound on the achievable ergodic rate of the MT, a closed-

form expression for the ergodic capacity of the eavesdropper, and a simple and tight

upper bound for the ergodic capacity of the eavesdropper. In Sections 2.4 and 2.5, we

21



Chapter 2. AN-Aided MF Precoding in Secure Massive MIMO Systems

Figure 2.1: Multi-cell massive MIMO system in the presence of a multi-antenna
eavesdropper. The shaded cell is the local cell. The MTs in the local cell su�er from
the inter-cell interference caused by data and AN transmission in the six adjacent
cells.

analyze the secrecy performance of the considered downlink multi-cell massive MIMO

system for cases of perfect training and pilot contamination, repsectively. Analytical

and simulation results are presented in Section 2.6, and the chapter is concluded in

Section 2.7.

2.2 System Model

In this section, we introduce the channel model, the channel estimation scheme, the

transmission format, and two AN precoding matrix designs for the considered secure

multi-cell massive MIMO system.
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2.2.1 System and Channel Models

In this chapter, we consider a �at-fading multi-cell system consisting of M cells, as

depicted in Fig. 2.1. Each cell comprises an NT -antenna BS and K single-antenna

MTs 1. The nth cell, n ∈ {1, . . . ,M}, is the local cell (the shaded area in Fig. 2.1).

An eavesdropper equipped with NE antennas (equivalent to NE cooperative single-

antenna eavesdroppers) is located in the local cell of the considered multi-cell region.

The eavesdropper is passive and seeks to recover the information transmitted to the

kth MT in the local cell. Let gkmn ∈ C1×NT and GmE ∈ CNE×NT denote the channel

between the mth BS, m = 1, . . . ,M , and the kth MT in the local cell and the channel

between the mth BS and the eavesdropper, respectively. gkmn =
√
βkmnh

k
mn comprises

the path-loss, βkmn, and the small-scale fading vector, hkmn ∼ CN(0TNT , INT ). Similarly,

we model the eavesdropper channel as GmE =
√
βmEHmE, where βmE and HmE

denote the path-loss and small-scale fading components, respectively. The elements

of HmE are modeled as independent and identically distributed (i.i.d.) Gaussian

random variables (r.v.s) with zero mean and unit variance.

2.2.2 Uplink Training and Channel Estimation

We assume that the BSs are perfectly synchronized and operate in the TDD mode

with universal frequency reuse. Furthermore, we assume that the path-losses between

all users in the system and the local BS, βknm, m = 1, . . . ,M , k = 1, . . . K, are

known at the local BS, whereas the small-scale fading vectors hknm, m = 1, . . . ,M ,

k = 1, . . . K, are not known and the local BS estimates only the small-scale fading

1We note that the results derived in this chapter can be easily extended to multi-antenna MTs if
the BS transmits one independent data stream per MT receive antenna and receive combining is not
performed at the MTs. In this case, each MT receive antenna can be treated as one (virtual) MT and
the results derived in this chapter are applicable. For example, the secrecy rate of a multi-antenna
MT can be obtained by summing up the secrecy rates of its receive antennas.
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vectors of the MTs within the local cell. These assumptions are motivated by the fact

that the path-losses change on a much slower time scale than the small-scale fading

vectors, and thus, their estimation creates a comparatively low overhead.

The local BS estimates the downlink CSI of all MTs, hknn, k = 1, . . . , K, by

exploiting reverse training and channel reciprocity [1]-[8]. We consider two scenarios:

Perfect training and imperfect training which results in pilot contamination [8]. In the

former case, allMK MTs in the system emit orthogonal pilot sequences in the training

phase having a su�ciently large pilot power pτ such that ĥknn = hknn, k = 1, . . . , NT ,

can be assumed, where ĥknn denotes the estimated channel in the local cell. In the

latter case, the K pilot sequences used in a cell are still orthogonal but all cells use

the same pilot sequences. Let
√
τωk ∈ Cτ×1 denote the pilot sequence of length τ

transmitted by the kth MT in each cell in the training phase, where ωHk ωk = 1 and

ωHk ωj = 0, ∀, j, k = 1, . . . , K, k ̸= j. Assuming perfect synchronization, the training

signal received at the local BS, Ypilot
n ∈ Cτ×NT , can be expressed as

Ypilot
n =

M∑
m=1

K∑
k=1

√
pττβknmωkh

k
nm +Nn, (2.1)

where Nn ∈ Cτ×NT is a Gaussian noise matrix having zero mean, unit variance

elements. Assuming MMSE channel estimation [7, 8], the estimate of hknn given

Ypilot
n is obtained as

ĥknn =
√
pττβknnω

H
k

(
Iτ + ωk

(
pττ

M∑
m=1

βknm

)
ωHk

)−1

Ypilot
n

=

√
pττβknn

1 + pττ
∑M

m=1 β
k
nm

ωHk Y
pilot
n . (2.2)

For MMSE estimation, we can express the channel as hknn = ĥknn + h̃knn, where
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the estimate ĥknn and the estimation error h̃knn ∈ C1×NT are mutually indepen-

dent. Hence, considering (2.2) we can statistically characterize ĥknn and h̃knn as

ĥknn ∼ CN
(
0TNT ,

pτ τβknn
1+pτ τ

∑M
m=1 β

k
nm

INT

)
and h̃knn ∼ CN

(
0TNT ,

1+pτ τ
∑
m ̸=n β

k
nm

1+pτ τ
∑M
m=1 β

k
nm

INT

)
, re-

spectively. Still from (2.2), we also observe that ωHk Y
pilot
n is proportional to the

MMSE estimate of hknm for any m, i.e.,

ĥknm

∥ĥknm∥
=

ωHk Y
pilot
n

∥ωHk Y
pilot
n ∥

,∀m. (2.3)

Eq. (2.3) implies that the estimate of the kth MT in each cell is simply a scaled

version of the same vector ωHk Y
pilot
n . Hence, the BS is not able to distinguish be-

tween the channel to its kth MT and to the kth MT in other cells [8]. In the same

manner, we also expand the channel hkmn = ĥkmn + h̃kmn,
2 where ĥkmn and h̃kmn

are mutually independent. We also have ĥkmn ∼ CN
(
0TNT ,

pτ τβkmn
1+pτ τ

∑M
l=1 β

k
ml

INT

)
and

h̃kmn ∼ CN
(
0TNT ,

1+pτ τ
∑
l̸=n β

k
ml

1+pτ τ
∑M
l=1 β

k
ml

INT

)
, respectively.

In order to be able to �nd the required numbers of orthogonal pilot sequences, pilot

sequence lengths of τ ≥MK and τ ≥ K are required for the cases of perfect training

and pilot contamination, respectively. Furthermore, we note that the eavesdropper

could emit his own pilot symbols to impair the channel estimates obtained at the BS

to improve his ability to decode the MTs' signals during downlink transmission [44].

However, this would also increase the chance that the presence of the eavesdropper

is detected by the BS [45]. Therefore, in this chapter, we assume the eavesdropper is

purely passive and leave the study of active eavesdroppers in massive MIMO systems

for future work.

2In this chapter, the local BS only needs to estimate hk
nn. The role of this expansion is to

facilitate a mathematical simpli�cation in deriving the achievable rate in Section 2.5 for the case of
pilot contamination, by decomposing the inter-cell interference/AN leakage from the mth cell into

correlated terms ĥk
mn and uncorrelated terms h̃k

mn with respect to (w.r.t.) the desired MT's channel
estimate.
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2.2.3 Downlink Data Transmission

In the local cell, the BS intends to transmit a con�dential signal snk to the kth MT.

The signal vector for the K MTs is denoted by sn =
[
sn1, . . . , snK

]T ∈ CK×1 with

E[snsHn ] = IK . Each signal vector sn is multiplied by a transmit beamforming ma-

trix, Fn = [fn1, . . . , fnk, . . . , fnK ] ∈ CNT×K , before transmission. As typical for massive

MIMO systems, we adopt simple MF precoding, i.e., fnk = (ĥknn)
H/∥ĥknn∥ [5],[8], since

the matrix inversion required for ZF and MMSE precoding is computationally too ex-

pensive for the large number of users and antenna elements that are typical for massive

MIMO systems. Furthermore, we assume that the eavesdropper's CSI is not available

at the local BS. Hence, assuming that there are K < NT MTs, the BS may use the re-

maining NT −K degrees of freedom o�ered by the NT transmit antennas for emission

of AN to degrade the eavesdropper's ability to decode the data intended for the MTs

[24, 37, 38]. The AN vector, zn = [zn1, . . . , zn(NT−K)]
T ∼ CN(0NT−K , INT−K), is mul-

tiplied by an AN precoding matrix An = [an1, . . . , ani, . . . , an(NT−K)] ∈ CNT×(NT−K)

with ∥ani∥ = 1, i = 1, . . . , NT − K. The considered choices for the AN precoding

matrix will be discussed in the next subsection. The signal vector transmitted by the

local BS is given by

xn =
√
pFnsn +

√
qAnzn =

K∑
k=1

√
pfnksnk +

NT−K∑
i=1

√
qanizni, (2.4)

where p and q denote the transmit power allocated to each MT and each AN signal,

respectively, i.e., for simplicity, we assume uniform power allocation across users and

AN signals, respectively. Let the total transmit power be denoted by PT . Then, p

and q can be represented as p = ϕPT
K

and q = (1−ϕ)PT
NT−K

, respectively, where the power

allocation factor ϕ, 0 < ϕ ≤ 1, strikes a power balance between the information-

26



Chapter 2. AN-Aided MF Precoding in Secure Massive MIMO Systems

bearing signal and the AN.

The M − 1 cells adjacent to the local cell transmit their own signals and AN. In

this work, in order to be able to gain some fundamental insights, we assume that

all cells employ identical values for p and q as well as ϕ. Accordingly, the received

signals at the kth MT in the local cell, ynk, and at the eavesdropper, yE, are given by

ynk =
√
phknnfnksnk +

∑
{m,l}̸={n,k}

√
phkmnfmlsml +

M∑
m=1

√
qhkmnAmzm + nnk (2.5)

and

yE =
√
p

M∑
m=1

HmEFmsm +
√
q

M∑
m=1

HmEAmzm + nE, (2.6)

respectively, where nnk ∼ CN(0, σ2
nk) and nE ∼ CN(0NE , σ2

EINE) are the Gaussian

noises at the kth MT and at the eavesdropper, respectively. The �rst term on the

right hand side of (2.5) is the signal intended for the kth MT in the local cell with

e�ective channel gain
√
phknnfnk, which is assumed to be perfectly known at the kth

MT in the local cell. The second and the third terms on the right hand side of

(2.5) represent intra-cell/inter-cell interference and AN leakage, respectively. On the

other hand, the eavesdropper observes an MNT ×NE MIMO channel comprising K

local user signals, (M − 1)K out-of-cell user signals, NT − K local cell AN signals,

and (NT −K)(M − 1) out-of-cell AN signals. In order to obtain a lower bound on

the achievable secrecy rate, we assume that the eavesdropper can acquire perfect

knowledge of the e�ective channels of all MTs, i.e., HmEfmk,∀m, k. We note however

that this is a quite pessimistic assumption because the uplink training performed in

massive MIMO [8] makes it di�cult for the eavesdropper to perform accurate channel

estimation.
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2.2.4 Design of AN Precoding Matrix An

In this chapter, we consider two di�erent designs for the AN precoding matrix An.

NS method: For conventional (non-massive) MIMO, An is usually chosen to lie

in the null space of the estimated channel, ĥknn, i.e., ĥ
k
nnAn = 0TNT−K , k = 1, . . . , K,

which is possible as long as NT > K holds [24]. We refer to this method as N in

the following. If perfect CSI is available, i.e., ĥknn = hknn, the N -method prevents

impairment of the users in the local cell by AN generated by the local BS. In case of

pilot contamination, intra-cell AN leakage to the users in the local cell is unavoidable,

but inter-cell AN leakage is suppressed due to pilot contamination, which is an extra

bene�t, and will be discussed in Section 2.5 in details. Unfortunately, for the large

values of NT and K typical for massive MIMO systems, computation of the NS of

ĥknn, k = 1, . . . , K, is computationally expensive. This motivates the introduction of

a simpler method for generation of the AN precoding matrix.

Random method: In this case, the columns of An are mutually independent

random vectors. We refer to this method as R in the following. Here, we construct

the columns of An as ani = ãni/∥ãni∥, where the ãni, i = 1, . . . , NT −K, are mutu-

ally independent Gaussian random vectors. Note that the R-method does not even

attempt to avoid AN leakage to the users in the local cell. However, it may still im-

prove the ergodic secrecy rate as the precoding vector for the desired user signal, fnk,

is correlated with the user channel, hknn, whereas the columns of the AN precoding

matrix are not correlated with the user channel.

Our results in Sections 2.4-2.6 reveal that although the N -method always achieves

a better performance than the R-method, if pilot contamination and inter-cell inter-

ference are signi�cant, the performance di�erences between both schemes are small.

This makes the R-method an attractive alternative for massive MIMO systems due
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to its simplicity.

2.3 Achievable Ergodic Secrecy Rate Analysis

In this section, we �rst show that the achievable ergodic secrecy rate of the kth MT

in the local cell can be expressed as the di�erence between the achievable ergodic

rate of the MT and the ergodic capacity of the eavesdropper. Subsequently, we

provide a simple lower bound on the achievable ergodic rate of the MT, a closed-

form expression for the ergodic capacity of the eavesdropper, and a simple and tight

upper bound for the ergodic capacity of the eavesdropper. The results derived in this

section are valid for both perfect training and pilot contamination as well as for both

AN precoding matrix designs. For convenience, we de�ne the ratio of the number

of eavesdropper antennas and the number of BS antennas as α = NE/NT , and the

ratio of the number of users and the number of BS antennas as β = K/NT . In the

following, we are interested in the asymptotic regime where NT → ∞ but α and β

are constant.

2.3.1 Achievable Ergodic Secrecy Rate

The ergodic secrecy rate is an appropriate performance measure if delays can be

a�orded and coding over many independent channel realizations (i.e., over many

coherence intervals) is possible [25]. Considering the kth MT in the local cell, the

considered channel is an instance of a multiple-input, single-output, multiple eaves-

dropper (MISOME) wiretap channel [27]. In the following lemma, we provide an

expression for an achievable ergodic secrecy rate of the kth MT in the local cell.

Lemma 2.1. An achievable ergodic secrecy rate of the kth MT in the local cell is
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given by

Rsec
nk = [Rnk − Ceve

nk ]
+, (2.7)

where [x]+ = max{0, x}, Rnk is an achievable ergodic rate of the kth MT in the local

cell, and Ceve
nk is the ergodic capacity between the local BS and the eavesdropper seeking

to decode the information of the kth MT in the local cell. Thereby, it is assumed that

the eavesdropper is able to cancel the received signals of all in-cell and out-of-cell MTs

except the signal intended for the MT of interest, i.e.,

Ceve
nk = E

[
log2

(
1 + pfHnkG

H
nEX

−1GnEfnk
) ]
, (2.8)

where X = q
∑M

m=1A
H
mG

H
mEGmEAm denotes the noise correlation matrix at the

eavesdropper under the worst-case assumption that the receiver noise is negligible,

i.e., σ2
E → 0.

Proof. Please refer to Appendix A.1.

Eq. (2.7) reveals that the achievable ergodic secrecy rate of the kth MT in the

local cell has the subtractive form typical for many wiretap channels [10, 23, 27]-[38],

i.e., it is the di�erence of an achievable ergodic rate of the user of interest and the

capacity of the eavesdropper. Before we analyze (2.7) for perfect training and pilot

contamination in Sections 2.4 and 2.5, respectively, we derive general expressions for

Rnk and C
eve
nk , which apply to both cases.
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2.3.2 Lower Bound on the Achievable User Rate

Based on (2.5) an achievable ergodic rate of the kth MT in the local cell is given by

Rnk =

E

[
log2

(
1 +

|√pgknnfnk|2∑M
m=1

∑NT−K
i=1 |√qgkmnami|2 +

∑
{m,l}̸={n,k} |

√
pgkmnfml|2 + σ2

nk

)]
.

(2.9)

Unfortunately, evaluating the expected value in (2.9) analytically is cumbersome.

Therefore, we derive a lower bound on the achievable ergodic rate of the kth MT in

the local cell by following the same approach as in [8]. In particular, we rewrite the

received signal at the kth MT in the local cell as

ynk = E[
√
pgknnfnk]snk + n′

nk, (2.10)

where n′
nk represents an e�ective noise, which is given by n′

nk =

(√
pgknnfnk − E[

√
pgknnfnk]

)
snk +

M∑
m=1

gkmn
√
qAmzm +

∑
{m,l}≠{n,k}

√
pgkmnfmlsml + nnk.

(2.11)

Eq. (2.10) can be interpreted as an equivalent single-input single-output channel with

constant gain E[√pgknnfnk] and AWGN n′
nk. Hence, we can apply Theorem 1 in [8]

to obtain a computable lower bound for the achievable rate of the kth MT in the

local cell as Rnk = log2(1 + γnk) ≤ Rnk, where γnk denotes the received signal-to-
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interference-plus-noise ratio (SINR), given by γnk =

desired signal︷ ︸︸ ︷
|E[√pgknnfnk]|2

var[
√
pgknnfnk]︸ ︷︷ ︸

signal leakage

+
M∑
m=1

NT−K∑
i=1

E[|√qgkmnami|2]︸ ︷︷ ︸
AN leakage

+
∑

{m,l}≠{n,k}

E[|√pgkmnfml|2]︸ ︷︷ ︸
intra- and inter-cell interference

+ σ2
nk

(2.12)

with var[
√
pgknnfnk] = E[|√pgknnfnk − E[√pgknnfnk]|2]. We note that the derived lower

bound on the achievable rate is applicable to both AN precoding matrix designs and

the cases of perfect training and pilot contamination, respectively, cf. Sections 2.4

and 2.5. The tightness of the lower bound will be con�rmed by our results in Section

2.6.

2.3.3 Ergodic Capacity of the Eavesdropper

In this section, we provide a closed-form expression for the ergodic capacity of the

eavesdropper valid for both perfect training and pilot contamination. To gain more

insight, we adopt a simpli�ed path-loss model for the eavesdropper, i.e., the path-

losses between the BSs and the eavesdropper are given by βmE = 1 if n = m and

βmE = ρ if n ̸= m, i.e., the path-loss between the local BS and the eavesdropper

is 1 and the path-loss between the BSs of the other cells and the eavesdropper is

ρ ∈ [0, 1].3 A similar simpli�ed path-loss model was used in [7] for the user channels.

The resulting ergodic secrecy capacity is summarized in the following theorem.

Theorem 2.1. For NT → ∞ and both the N and the R AN precoding matrix designs,

3We note that the simpli�ed path-loss model is only adopted to reduce the number of parameters.
The ergodic capacity and the ergodic secrecy rate can also be derived for the original path-loss model
in closed form. However, the resulting equations are more cumbersome and less insightful compared
to those for the simpli�ed model.
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the ergodic capacity of the eavesdropper in (2.8) can be written as

Ceve
nk =

1

ln 2

NE−1∑
i=0

λi ×
1

µ0

2∑
j=1

bj∑
l=2

ωjlI(1/µj, l), (2.13)

where λi =
(
M(NT−K)

i

)
, µ0 =

∏2
j=1 µ

bj
j ,

(µj, bj) =


(η,NT −K), j = 1

(ρη, (M − 1)(NT −K)), j = 2,

(2.14)

η = q/p,

ωjl =
1

(bj − l)!

dbj−l

dxbj−l

(
xi∏

s̸=j(x+
1
µs
)bs

)∣∣∣∣
x=− 1

µj

, (2.15)

and I(a, n) =
∫∞
0

1
(x+1)(x+a)n

dx, a, n > 0. A closed-form expression for I(·, ·) is given

in [67, Lemma 3].

Proof. Please refer to Appendix A.2.

A lower bound on the achievable ergodic secrecy rate of the kth MT in the local cell

for the N /R methods is obtained by combining (2.7), (2.12), and (2.13). However,

the expression for the ergodic capacity of the eavesdropper in (2.13) is somewhat

cumbersome and o�ers little insight into the impact of the various system parameters.

Hence, in the next subsection, we derive a simple and tight upper bound for Ceve
nk .

2.3.4 Tight Upper Bound on the Ergodic Capacity of the

Eavesdropper

In the following theorem, we provide a tight upper bound for the ergodic capacity of

the eavesdropper.
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Theorem 2.2. For NT → ∞ and both the N and the R AN precoding matrix gener-

ation methods, the ergodic capacity of the eavesdropper in (2.8) is upper bounded by

4

Ceve
nk < C

eve

nk ≈ log2

(
1 +

α

ηa(1− β)− cηα/a

)
= log2

(
(1− ζ)ϕ+ ζ

−ζϕ+ ζ

)
, (2.16)

if β < 1−cα/a2, where we introduce the de�nitions a = 1+ρ(M−1), c = 1+ρ2(M−1),

and ζ = aβ
α
− βc

a(1−β) .

Proof. Please refer to Appendix A.3.

Remark 2.1. We note that a �nite eavesdropper capacity results only if matrix X

in (2.8) is invertible. Since GmE, m = 1, . . . ,M , are independent matrices with

i.i.d. entries, X is invertible if M(NT − K) ≤ NE or equivalently β ≤ 1 − α/M .

Regardless of the values of M and ρ, we have

1− α/[1 + ρ2(M − 1)] ≤ 1− cα/a2 ≤ 1− α/M. (2.17)

For M = 1 or ρ = 1, equality holds in (2.17). For M > 1 and ρ < 1, the condition

for β in Theorem 2.2 is in general stricter than the invertibility condition for X.

Nevertheless, the typical operating region for a massive MIMO system is β ≪ 1

[2, 5], where the upper bound in Theorem 2.2 is applicable.

Eq. (2.16) reveals that C
eve

nk is monotonically increasing in α, i.e., as expected, the

eavesdropper can enhance his eavesdropping capability by deploying more antennas.

Furthermore, in the relevant parameter range, 0 < β < 1 − cα/a2, C
eve

nk is not

4We note that, strictly speaking, we have not proved that (2.16) is a bound since we used an
approximation for its derivation, see Appendix C. However, this approximation is known to be
very accurate [69] and comparisons of (2.16) with simulation results for various system parameters
suggest that (2.16) is indeed an upper bound.
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monotonic in β but a decreasing function for β ∈ (0, 1 −
√
cα/a) and an increasing

function for β ∈ (1 −
√
cα/a, 1 − cα/a2). Hence, C

eve

nk has a minimum at β =

1 −
√
cα/a. Assuming NT and NE are �xed, this behaviour can be explained as

follows. For small K (corresponding to small β), the capacity of the eavesdropper is

large because the amount of power allocated to the intercepted MT, ϕPT/K, is large.

As K increases, the power allocated to the MT decreases which leads to a decrease

in the capacity. However, if K is increased beyond a certain point, X becomes

increasingly ill-conditioned which leads to an increase in the eavesdropper capacity.

Combining now (2.7), (2.12), and (2.16) gives a tight lower bound on the ergodic

secrecy rate of the kth MT in the local cell for both the N and the R methods.

To gain more insight, in the next two sections, we specialize the tight lower bound

on the ergodic secrecy rate to the cases of perfect training and pilot contamination,

respectively. This will allow us to further simplify the SINR expression of the kth

MT in the local cell and the resulting ergodic secrecy rate expression.

2.4 Performance Analysis for Perfect Training

In this section, we analyze the secrecy performance of the considered downlink multi-

cell massive MIMO system under the assumption of perfect CSI, i.e., ĥknn = hknn,

k = 1, . . . , K. To this end, for both considered AN precoding methods, we �rst

simplify the lower bound on the achievable ergodic rate expression derived in Section

2.3.2 by taking into account the perfect CSI assumption. Subsequently, exploiting

this result, we derive simple and insightful lower bounds on the achievable ergodic

secrecy rate. Finally, we obtain an upper bound on the secrecy outage probability.
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2.4.1 Lower Bound on the Achievable Ergodic Rate

We �rst characterize some of the terms in (2.12) for the case of perfect training in

the following lemma.

Lemma 2.2. The received signal and interference powers at the kth MT in the local

cell can be expressed as

E[hknnfnk]2 = E2[x] and E[|hknnfmk|2] = E[|hknnami|2] = E[y2], ∀n ̸= m (2.18)

respectively, where x2 =
∑NT

l=1 |ul|2 ∼ χ2
2NT

, y2 = |ul|2 ∼ χ2
2, ul are i.i.d. complex

Gaussian r.v.s with zero mean and unit variance, and E[y2] = 1.

Proof. Since each element of hknn follows a Gaussian distribution with zero mean and

unit variance and fnk = (hknn)
H

∥hknn∥
= (hknn)

H

∥hknn∥
, |hknnfnk|2 is a (scaled) chi-square r.v. with

2NT degrees of freedom and statistically equivalent to x2. On the other hand, since

fml, ∀{m, l} ̸= {n, k}, and ami are unit-norm vectors and independent of the small-

scale fading vector hknn, the normalized interference terms, |hknnfmk|2 and |hknnami|2,

are (scaled) chi-square r.v.s with 2 degrees of freedom and statistically equivalent to

y2.

Introducing x and y in (2.12) and dividing both numerator and denominator by

p, we obtain the SINRs for the N and R AN precoding matrices as

γNnk =
βknnE2[x]

βknnvar[x] + η
∑M

m̸=n β
k
mn

∑NT−K
i=1 E[y2] +

∑
{m,l}̸={n,k} β

k
mnE[y2] + K

ϕPT

(2.19)

and

γRnk =
βknnE2[x]

βknnvar[x] + η
∑M

m=1 β
k
mn

∑NT−K
i=1 E[y2] +

∑
{m,l}≠{n,k} β

k
mnE[y2] + K

ϕPT

, (2.20)
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respectively. The right hand sides of (2.19) and (2.20) di�er only in the second term

of the denominator, where γRnk contains an additional term ηβknn
∑NT−K

i=1 E[y2], which

is due to the AN leakage caused in the local cell. This term is absent in γNnk as, for

perfect CSI, the N -method avoids AN leakage in the local cell. Hence, γNnk > γRnk

always holds. Since for large NT we have [8]

lim
NT→∞

E2[x]

NT

= 1 and lim
NT→∞

var[x]

NT

= 0, (2.21)

we obtain from (2.19) and (2.20)

lim
NT→∞

γNnk =
βknnNT

η
∑M

m̸=n β
k
mn(NT −K) +

∑
{m,l}≠{n,k} β

k
mn +

K
ϕPT

(2.22)

and

lim
NT→∞

γRnk =
βknnNT

η
∑M

m=1 β
k
mn(NT −K) +

∑
{m,l}≠{n,k} β

k
mn +

K
ϕPT

, (2.23)

respectively. In order to obtain simple yet insightful results, we adopt in the following

a simpli�ed path-loss model [7], similar to the simpli�ed model introduced for the

eavesdropper in Section 2.3.3. In particular, we model the path-losses as βkmn = 1 if

n = m and βkmn = ρ if n ̸= m, i.e., the path-loss between the local BS and the MTs

in the local cell is 1 and the path-loss between the BSs of the other cells and the MTs

in the local cell is ρ. Hence, (2.22) and (2.23) simplify to

lim
NT→∞

γNnk =
1

(M − 1)ρ(1− β)η + (M − 1)βρ+ β + β
ϕPT

(2.24)

and

lim
NT→∞

γRnk =
1

((M − 1)ρ+ 1)(1− β)η + (M − 1)βρ+ β + β
ϕPT

, (2.25)

respectively. The ergodic rate for the two considered AN precoding matrix generation
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methods is lower bounded by RΨ
nk = log2(1 + γΨnk), where Ψ ∈ {N ,R}. We note that

for systems with few users, i.e., β → 0, and NT → ∞, the lower bounds on the

ergodic rate reduce to

RN
nk ≈ log2

(
1 +

1

η(M − 1)ρ

)
and RR

nk ≈ log2

(
1 +

1

η((M − 1)ρ+ 1)

)
, (2.26)

i.e., performance is limited by AN leakage. This is in contrast to massive MIMO

systems without AN precoding, whose performance in the considered regime (β → 0)

is only limited by pilot contamination [2, 5], which is not considered in this section

but will be addressed in Section V. Moreover, (2.26) suggests that the performance

di�erence between the N -method and the R-method diminishes if the AN leakage

from adjacent cells, which is proportional to η(M − 1)ρ for both methods, dominates

the AN leakage for the R-method in the local cell, which is proportional to η.

Closed-form expressions for the lower bound on the achievable ergodic secrecy

rate of the kth MT in the local cell for the N /R methods are obtained by combining

(2.7), (2.13), and (2.24)/(2.25). The tightness of the proposed lower bounds will be

con�rmed in Section 2.6 via simulations.

2.4.2 Impact of System Parameters on Ergodic Secrecy Rate

In this subsection, we provide insight into the in�uence of the various system pa-

rameters on the ergodic secrecy rate. Combining (2.7), (2.24)/(2.25), and the upper

bound on the ergodic secrecy capacity in (2.16), simple lower bounds for the ergodic
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secrecy rate valid for NT → ∞ are obtained as

Rsec,N
nk =

[
log2

(
bβζ + (β + 1− bβ)ζϕ− (β + 1)ζϕ2

bβζ + [β(1− ζ) + bβζ]ϕ+ β(1− ζ)ϕ2

)]+
, (2.27)

Rsec,R
nk =

[
log2

(
(b+ 1)βζ + [1− (b+ 1)β]ζϕ− ζϕ2

(b+ 1)βζ + (b+ 1)β(1− ζ)ϕ

)]+
, (2.28)

where b = (M − 1)ρ + 1/PT and η = q/p = β(1/ϕ − 1)/(1 − β) was used. In the

following, we �rst investigate for what values of α a non-zero ergodic secrecy rate can

be achieved.

Impact of α: Let us denote the upper limit for α such that a positive secrecy

rate can be achieved as αsec. For the N -method and the R-method, we obtain from

(2.27) and (2.28), respectively, positive secrecy rates if α < αΨ
sec, Ψ ∈ {N ,R}, with

αN
sec =

a2(1− β)

ab(1− β) + c

β→0
=

a

b+ c/a
=

1 + ρ(M − 1)

1/PT + ρ(M − 1) + c/a
(2.29)

and

αR
sec =

a2(1− β)

a(b+ 1)(1− β) + c

β→0
=

a

b+ 1 + c/a
=

1

1 + 1/[PT (ρ(M − 1) + 1)] + c/a2
.

(2.30)

In both cases, αΨ
sec is obtained for ϕ → 0, i.e., almost the entire transmit power

is allocated to AN precoding. For both methods, αsec is monotonically decreasing

in β. Furthermore, we always have αR
sec < αN

sec, i.e., the N -method can tolerate

a larger number of eavesdropper antennas than the R-method at the expense of a

higher complexity in calculating the AN precoding matrix. The robustness of both

AN precoding matrix designs can be improved by increasing the transmit power

PT . However, based on (2.29) and (2.30) it can be shown that even for PT → ∞,

the maximum values of α that yield a non-zero ergodic secrecy rate are limited as
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αN
sec ≤ 4/3 and αR

sec ≤ 1 regardless of the choice of M and ρ. We note that for

a single-cell system with a single user, it was shown in [27] that the N -method can

achieve non-zero secrecy rate for α < 2. The smaller number of tolerable eavesdropper

antennas in the considered massive MIMO system are caused by the suboptimal MF

precoding at the BS, which was chosen for complexity reasons. More sophiscated

precoding techniques will be considered in Chapter 3.

Impact of ϕ: Eqs. (2.27) and (2.28) reveal that zero secrecy rate results for

ϕ = ϕ0 = 0 and for a second value ϕ = ϕΨ
1 , 0 < ϕΨ

1 < 1, where Ψ ∈ {N ,R}.

Speci�cally, ϕΨ
1 is given by

ϕN
1 = 1− αa(1− β)(b+ 1)

a2(1− β)(1 + α/a)− cα
(2.31)

ϕR
1 = 1− αa(1− β)(b+ 1)

a2(1− β)− cα
(2.32)

where ϕΨ
1 < 1 follows from the condition β < 1 − cα/a2 which is required for the

validity of the upper bound on the ergodic secrecy capacity in (2.16). For ϕ = 0, all

power is allocated to AN precoding and no power is left for information transmission.

On the other hand, for ϕ = ϕΨ
1 , the amount of AN generated is not su�cient to

prevent the eavesdropper from decoding the transmitted signal. This suggests that

for α < αΨ
sec, Ψ ∈ {N ,R}, there exists an optimal ϕ, 0 < ϕ < ϕΨ

1 , which maximizes

the achievable ergodic secrecy rate. The values of the optimal ϕ can be obtained from

(2.27) and (2.28) as

ϕ∗
N =

−(bβ + bζ) +
√
b(b+ 1)(ζ − bβ + βζ + bβζ)

1 + b+ β − bζ
, (2.33)

ϕ∗
R =

−ζ +
√
ζ − β − bβ + ζβ + bβζ

1− ζ
. (2.34)
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Impact of β: It can be shown from (2.33) and (2.34) that for both the N and R

methods the optimal ϕ is a monotonically increasing function of β ∈ (0, 1 − cα/a2).

Thus, as the number of MTs in the cell increase, the amount of power allocated to

AN precoding decreases. This can be explained by the fact that as β increases, the

transmit power per MT used for information transmission, ϕPT/K, decreases. To

compensate for this e�ect, a larger ϕ is necessary. On the other hand, the ergodic

secrecy rates for both the N and R methods are decreasing functions of β ∈ (0, 1−

cα/a2), cf. (2.27), (2.28), i.e., as expected, for a given number of users the ergodic

secrecy rates increase with increasing number of BS antennas. Surprisingly, this

property does not necessarily hold in case of pilot contamination, cf. Section 2.5.

2.4.3 Secrecy Outage Probability Analysis

In delay limited scenarios, where one codeword spans only one channel realization,

outages are unavoidable since Alice does not have the CSI of the eavesdropper channel

and the secrecy outage probability has to be used to characterize the performance of

the system instead of the ergodic rate. For the considered multi-cell massive MIMO

system, the rate of the desired user, Rnk, becomes deterministic as NT → ∞, but

the instantaneous capacity of the eavesdropper channel remains a random variable.

A secrecy outage occurs whenever the target secrecy rate R0 exceeds the actual

instantaneous secrecy rate. Thus, the secrecy outage probability of the kth MT in

the local cell is given by

εout = Pr{Rnk− log2(1+γE) ≤ R0} = Pr{γE ≥ 2Rnk−R0 −1} = 1−FγE(2
Rnk−R0 −1),

(2.35)
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where γE = pfHnkG
H
nEX

−1GnEfnk and FγE(x) is given in Appendix A.2. A closed-form

upper bound on the secrecy outage probability is obtained by replacing Rnk with

RΨ
nk = log2(1 + γΨnk) with γ

Ψ
nk given in (2.24)/(2.25).

2.5 Performance Analysis for Pilot Contamination

In this section, we analyze the performance of the considered multi-cell massive

MIMO system for the case of pilot contamination. To this end, we simplify the

lower bound on the achievable ergodic rate expression derived in Section 2.3.2 for the

case of pilot contamination, derive insightful and tight lower bounds on the ergodic

secrecy rate, and provide a closed-form expression for the secrecy outage probability.

2.5.1 Lower Bound on the Achievable Ergodic Rate

The lower bound on the achievable ergodic rate of the users derived in Section 2.3.2

is also applicable in case of pilot contamination. Thus, in a �rst step, we characterize

the four expectations/variances in the SINR expression in (2.12).

Expressing the small-scale fading vector as hknn = ĥknn + h̃knn, cf. Section 2.2, the

denominator of (2.12) can be rewritten as (we omit the path-loss for the moment)

E[hknnfnk] = E
[
∥ĥknn∥+h̃knn

(ĥknn)
H

∥ĥknn∥

]
= E[∥ĥknn∥] =

√
pττβknn

1 + pττ
∑M

m=1 β
k
nm

E[x], (2.36)

where x2 ∼ χ2
2NT

, cf. Lemma 2.2. Furthermore, we observe from (2.2) that, at the

local BS, the channel estimate for the kth MT in the local cell involves the sum of

all channel vectors between the local BS and the kth MTs in all cells weighted with

scaling factors

√
pτ τβknm

1+pτ τ
∑M
l=1 β

k
nl

. Thus, the transmit beamforming vector for the kth MT

in the local cell is also a�ected by the channel vectors between the local BS and
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the kth MTs in all other cells. This is the fundamental problem introduced by pilot

contamination. Using this observation, the interference caused by the kth MT in the

mth cell to the local cell (i.e., the component of the third term of the denominator in

(2.12) with l = k) is given by

E[|hkmnfmk|2] = E
[
∥ĥkmn∥2

]
+ E

[
ĥkmn

∥ĥkmn∥
(h̃kmn)

Hh̃kmn
(ĥkmn)

H

∥ĥkmn∥

]
=

pττβ
k
mn

1 + pττ
∑M

l=1 β
k
ml

E[x2] +
1 + pττ

∑
l ̸=n β

k
ml

1 + pττ
∑M

l=1 β
k
ml

E[y2], (2.37)

where y2 ∼ χ2
2, cf. Lemma 2.1. Exploiting now (2.36) and (2.37) and the de�nition of

variance, i.e., var[x] = E[x2]− E2[x], we obtain for the signal leakage term in (2.12)

var[hknnfnk] =
pττβ

k
nn

1 + pττ
∑M

m=1 β
k
nm

var[x] +
1 + pττ

∑
m̸=n β

k
nm

1 + pττ
∑M

m=1 β
k
nm

E[y2]. (2.38)

Furthermore, the interference from the lth MT, where l ̸= k, in the adjacent (i.e.,

non-local) cells is given by

E[|hkmnfml|2] = E[y2], (2.39)

as each fml, ∀l ̸= k, has unit norm and is independent of hkmn. While the terms

calculated in (2.36)-(2.39) are identical for the N and R methods, the AN leakage

depends on the AN precoding matrix design. In particular, for the N -method, the

AN is designed to lie in the NS of the estimated channels from each BS to all K MTs

in its own cell, which is also a scaled version of the estimated channels from each BS

to all K MTs in the local cell due to pilot contamination, cf. (2.3). This implies that

all ĥkml,∀l are aligned, cf. Section 2.2.2. Hence, the AN leakage is obtained as

E[|hkmnami|2] = E[h̃kmnamiaHmi(h̃kmn)H ] =
1 + pττ

∑
l ̸=n β

k
ml

1 + pττ
∑M

l=1 β
k
ml

E[y2],∀m, (2.40)

43



Chapter 2. AN-Aided MF Precoding in Secure Massive MIMO Systems

by exploiting E[|ĥkmmami|2] = 0 for N -method and the independence of ami, ∀i, and

h̃kmn. On the other hand, for the R-method, the AN is generated randomly, such that

E[|hkmnami|2] = E[y2], since the ami, ∀i, have unit norm and are independent of hkmn.

Plugging all intermediate results derived in this section so far into (2.12), we

obtain γNnk =

λnkE2[x]

λnkvar[x] +
∑M

m=1

(
µmk + η

∑NT−K
i=1 µmk +

∑
l ̸=k β

k
mn

)
E[y2] +

∑
m̸=n λmkE[x2] +

K
ϕPT

(2.41)

and γRnk =

λnkE2[x]

λnkvar[x] +
∑M

m=1

(
µmk + η

∑NT−K
i=1 βkmn +

∑
l ̸=k β

k
mn

)
E[y2] +

∑
m̸=n λmkE[x2] +

K
ϕPT

,

(2.42)

where λmk = βkmn
pτ τβkmn

1+pτ τ
∑M
l=1 β

k
ml

and µmk = βkmn
1+pτ τ

∑
l̸=n β

k
ml

1+pτ τ
∑M
l=1 β

k
ml

. Adopting now the same

simpli�ed interference model as in Section 2.4, the term
∑M

m=1 µmk in (2.41) and

(2.42) can be simpli�ed as 1− λ + (M − 1)ρ(1− ρλ) = a− cλ. Other terms can be

simpli�ed in the same way. By combining all terms together, (2.41) and (2.42) can

be further simpli�ed for large NT , the corresponding lower bound on the achievable

ergodic rates are given by

RN
nk = log2

(
1 +

λ

(a− cλ)(1− β)η + aβ + (M − 1)ρ2λ+ β
ϕPT

)
(2.43)

and

RR
nk = log2

(
1 +

λ

a(1− β)η + aβ + (M − 1)ρ2λ+ β
ϕPT

)
, (2.44)

where λ = pτ τ
1+pτ τa

. From (2.43) and (2.44) we observe that RN
nk > RR

nk always holds

but the performance di�erence diminishes if a/c ≫ λ. We note that for both AN
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precoding matrix designs the powers of the inter-cell interference are proportional

to a − 1 = (M − 1)ρ. Furthermore, for the N -method and the R-method, the

AN leakage is proportional to (1 − c/aλ)η and η, respectively. Therefore, a/c ≫ λ

implies that the inter-cell interference are much stronger (but with a weaker ρ to

have a ≫ c) than the AN leakage and/or the pilot power pτ is not su�ciently large

to prevent AN leakage for the N -method. Furthermore, for β → 0, we obtain RN
nk =

log2(1+λ/[(a− cλ)η+(M −1)ρ2λ]) and RR
nk = log2(1+λ/[aη+(M −1)ρ2λ]), i.e., in

the asymptotic regime where the number of users is constant but the number of BS

antennas increases without bound, the performance for both AN precoding matrix

designs is limited by both AN leakage and pilot contamination.

Since the ergodic capacity of the eavesdropper is not a�ected by the imperfect

CSI at the local BS, a lower bound on the ergodic secrecy rate for pilot contamination

can be calculated from (2.7), (2.8), and (2.43)/(2.44).

2.5.2 Impact of System Parameters on Ergodic Secrecy Rate

To gain more insight, we employ again the upper bound on the ergodic capacity of the

eavesdropper provided in Theorem 2.2. Combining (2.7), (2.16), (2.43), and (2.44),

we obtain simple lower bounds for the ergodic secrecy rate for the N and R methods

as Rsec,N
nk =

[
log2

(
(b+ 1− cλ)βζ + [(β + 1)cλ− (b+ 1− cλ)β]ζϕ− ζ(β + 1)cλϕ2

(b+ 1− cλ)βζ + [(βc+ c− 1)λζ + (b+ 1− cλ)β(1− ζ)]ϕ+ (1− ζ)(βc+ c− 1)λϕ2

)]+
,

(2.45)
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and

Rsec,R
nk =

[
log2

(
(b+ 1)βζ + [cλ− (b+ 1)β]ζϕ− ζcλϕ2

(b+ 1)βζ + [(c− 1)λζ + (b+ 1)β(1− ζ)]ϕ+ (1− ζ)(c− 1)λϕ2

)]+
,

(2.46)

respectively.

In the following, we investigate the impact of the system parameters on the ergodic

secrecy rate in detail.

Impact of α: Similar to the perfect training case we investigate in the following

the upper limit for α such that a positive secrecy rate can be achieved. We observe

from (2.45) and (2.46) that a non-zero secrecy rate can be achieved as long as α < αΨ
sec

holds where

αN
sec =

a2(1− β)λ

a(1− β)(1 + b− cλ) + cλ

β→0
=

a2λ

a(1 + b− cλ) + cλ
, (2.47)

αR
sec =

a2(1− β)λ

a(1− β)(1 + b) + cλ

β→0
=

a2λ

a(1 + b) + cλ
. (2.48)

Eqs. (2.47) and (2.48) reveal that the robustness of the considered multi-cell MIMO

system to eavesdropping is monotonically decreasing with increasing number of MTs

in the system. On the other hand, allocating more resources to training, i.e., increas-

ing λ by increasing the pilot power, pτ , or the pilot sequence duration, τ , leads to a

higher robustness against eavesdropping, i.e., a larger number of eavesdropper anten-

nas can be tolerated. Furthermore, as expected, αN
sec > αR

sec, i.e., the more complex

N -method is more robust to eavesdropping than the simpleR method. However, αR
sec

approaches αN
sec if both c and λ are small, i.e., both methods have a similar robustness

to eavesdropping in case of strong pilot contamination but a small value of ρ, since,

in this case, the N -method can no longer avoid AN leakage. We also note that, as

expected, since λ < 1 always holds, for R-method, the maximum tolerable number
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of eavesdropper antennas in case of pilot contamination is always smaller than that

in case of perfect training. Surprisingly, on the other hand, for the N -method, the

maximum tolerable number of eavesdropper antennas for pilot contamination is pos-

sible to be larger than that for perfect training, if λ > b+1
b+c

, cf. (2.29), (2.30), and

(2.47), (2.48). This mainly attributes to the inter-cell AN leakage suppression due to

pilot contamination, cf. Lemma 2.2 and (2.40). In particular, the channel estimates

in adjacent cells also involve the inter-cell interference channel vector between the

adjacent BS and MTs in the local cell. Therefore, the AN emitted in adjacent cells

is a�ected by the inter-cell interference channels. In this regard, pilot contamination

is bene�cial for improving the system performance.

Impact of ϕ: Similar to the case of perfect training, the ergodic secrecy rate for

both AN precoding matrix designs becomes zero for ϕ = ϕ0 = 0 also for the case of

pilot contamination, cf. (2.45) and (2.46), since zero power is allocated to information

transmission in this case. A second zero of the ergodic secrecy rate occurs for ϕ = ϕΨ
1 ,

0 < ϕΨ
1 < 1, where Ψ ∈ {N ,R}. ϕΨ

1 is obtained from (2.45) and (2.46) as

ϕN
1 = 1− αa(β − 1)((b+ 1)β + λ(c− 1))

λ(a(a+ cα)β2 + (−a2 + αa+ cα)β − aα(c− 1))
(2.49)

ϕR
1 = 1− αa(β − 1)((b+ 1)β + λ(c− 1))

λ(a2β2 + (−a2 + aα(c− 1) + cα)β − aα(c− 1))
. (2.50)

Furthermore, assuming α < αΨ
sec and taking the derivatives of (2.45) and (2.46) with

respect to ϕ and setting them to zero, we obtain the optimal power allocation factors

for the N and R methods as

ϕ∗
N =

−
√
(b+ 1− cλ)((−1 + c)λ+ (b+ 1)β)β((βc+ cζ)λ+ (−1 + ζ)β(b+ 1))λ

(−λc2β2 + ((2− 2c− ζ)λ+ (−1 + ζ)(b+ 1))β − cλ(−1 + c))λ

+
(−c2λ2 + (b+ 1)λ)β2 + ((−c− ζ + 1)cλ2 + ((ζ − 1 + c)b+ ζ − 1 + c)λ)β

(−λc2β2 + ((2− 2c− ζ)λ+ (−1 + ζ)(b+ 1))β − cλ(−1 + c))λ
(2.51)
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and

ϕ∗
R =

−
√
λ((−1 + c)λ+ (b+ 1)β)(b+ 1)(cζλ+ (−1 + ζ)β(b+ 1))β

λ((−1 + ζ)β(b+ 1)− cλ(−1 + c))

+
((ζ − 1 + c)b+ ζ − 1 + c)λβ

λ((−1 + ζ)β(b+ 1)− cλ(−1 + c))
. (2.52)

Impact of β: Based on (2.51) and (2.52) it can be shown that, similar to the case

for perfect training, for pilot contamination, the optimal ϕ∗
N and ϕ∗

R are monotonically

increasing in β. Furthermore, in Section 2.4, we found that, for perfect training, the

ergodic secrecy rate is monotonically increasing for decreasing β. However, for a

given ϕ, it can be shown based on (2.45) and (2.46) that this is no longer true in case

of pilot contamination. In other words, if ϕ and the number of users K are �xed,

in case of pilot contamination, the ergodic secrecy rate is not maximized by making

the number of BS antennas, NT , exceedingly large (i.e., NT ≫ K such that β → 0).

Instead, there is an optimal �nite number of BS antennas. We will investigate this

issue numerically in Section 2.6.

Impact of λ: Pilot contamination impacts the ergodic secrecy rate via λ, where

smaller values of λ imply that the MTs expend less resources for uplink training (i.e.,

they employ a smaller pilot power pτ and/or a shorter pilot sequence length, τ). First,

we observe from (2.45) and (2.46) that both Rsec,N
nk and Rsec,R

nk are increasing functions

of λ, i.e., as expected, if the MTs employ a higher pilot power and/or a longer pilot

sequence for channel estimation, the ergodic secrecy rate improves. Furthermore,

αsec is an increasing function of λ, i.e., a higher uplink training power and/or longer

pilot sequence lengths increase the operating region of the system where a non-zero

secrecy rate can be achieved.

On the other hand, for a given coherence interval T , �xed transmit power PT ,
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and �xed pilot power pτ , the fraction of time allocated for training τ/T (and as a

consequence λ) can be optimized for maximization of the net ergodic secrecy rate

given by (1 − τ/T )Rsec,Ψ
nk , Ψ ∈ {N ,R}. We assume that the channels are constant

within one coherence interval but change from one coherence interval to the next.

We also emphasize that by using the (net) ergodic secrecy rate as a performance

measure, we implicitly assume coding over many coherence intervals. For small τ ,

the factor (1− τ/T ) is large but the ergodic secrecy rate, Rsec,Ψ
nk , is small because of

the unreliable channel estimation. On the other hand, for large τ , the factor (1−τ/T )

is small but the ergodic secrecy rate, Rsec,Ψ
nk , is large because of the more accurate

channel estimation. Hence, τ can be optimized for optimal performance [68]. The

optimization of τ will be studied numerically in Fig. 2.9 in Section 2.6.

2.5.3 Secrecy Outage Probability Analysis

Plugging (2.43) and (2.44) into the secrecy outage probability expression derived in

(2.35), we obtain an upper bound for the secrecy outage probability for the case of

pilot contamination as

εΨout = 1− FγE(2
RΨ
nk−R0 − 1), (2.53)

where Ψ ∈ {N ,R}.

2.6 Numerical Examples

In this section, we evaluate the secrecy performance of the considered multi-cell

massive MIMO systems based on the analytical expressions derived in Sections 2.2-

2.5 and via Monte-Carlo simulation. We consider a system with M = 7 hexagonal

cells and adopt the simpli�ed path-loss model, i.e., the severeness of the inter-cell
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interference is characterized by parameter ρ only. The Monte-Carlo simulation results

for the ergodic secrecy rate of the kth MT in the local cell are based on (2.7) where the

achievable ergodic rate Rnk is obtained from (2.9) and the ergodic secrecy capacity

of the eavesdropper is obtained from (2.8). Thereby, the expected values in (2.9)

and (2.8) were evaluated by averaging over 5000 random channel realizations. The

Monte-Carlo simulation results for the outage probability are obtained from εout =

Pr{Rnk − log2(1 + γE) ≤ R0}, which was evaluated again based on 5000 random

channel realizations. The values of all relevant system parameters are provided in

the captions of the �gures.

2.6.1 Ergodic Secrecy Rate and Secrecy Outage Probability

For the results shown in this section, we adopt a �xed power allocation factor of

ϕ = 0.75. The optimization of ϕ will be addressed in the next subsection.

In Fig. 2.2, we verify the derived analytical expressions for the ergodic capacity

of the eavesdropper which seeks to decode the information intended for the kth MT

in the local cell. The analytical results were generated with (2.13) while the upper

bound results were computed with (2.16). The vertical dashed lines denote β =

1− cα/a2. Fig. 2.2 reveals that for β < 1− cα/a2, the upper bound is very tight. For

1− cα/a2 < β < 1− α/M , the upper bound is not applicable, although the ergodic

capacity of the eavesdropper is still �nite, cf. Theorem 2.2 and Remark 2.1. For β →

1−α/M , the ergodic capacity of the eavesdropper tends to in�nity since X becomes

singular. Furthermore, we observe from Fig. 2.2 that increasing inter-cell interference

(i.e., larger inter-cell interference factors, ρ) has a negative e�ect on the ergodic

capacity of the eavesdropper, whereas as expected, the eavesdropper can improve

his performance by adding more antennas, NE (i.e., by increasing α). Moreover,
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Figure 2.2: Ergodic capacity of the eavesdropper seeking to decode the information
intended for the kth MT in the local cell vs. the normalized number of MTs in the
cell, β, for a system with total transmit power PT = 10 dB, M = 7, ϕ = 0.75, and
NT = 100.

Fig. 2.2 con�rms that the ergodic capacity of the eavesdropper is monotonically

decreasing in β in the interval (0, 1 −
√
cα/a) and monotonically increasing in β in

the interval (1−
√
cα/a, 1− cα/a2). The resulting minimum of the ergodic capacity

of the eavesdropper at β = 1−
√
cα/a is denoted by a black circle in Fig. 2.2.

In Fig. 2.3, for the case of perfect training, we show the ergodic secrecy rate

vs. the number of BS antennas (sub�gure (a)) and the secrecy outage probability

vs. the target secrecy rate R0 (sub�gure (b)) for the k
th MT in the local cell. Results

51



Chapter 2. AN-Aided MF Precoding in Secure Massive MIMO Systems

for both considered AN precoding matrix designs are shown. In sub�gure (a), lower

bound I was obtained based on (2.7), (2.13), (2.24), and (2.25) and lower bound II

was obtained with (2.27) and (2.28). In sub�gure (b), the upper bound was obtained

with (2.35). Fig. 2.3 reveals that the derived bounds for the ergodic secrecy rate

and the secrecy outage probability are accurate. As expected, for the ergodic secrecy

rate, lower bound I is somewhat tighter than lower bound II. Furthermore, increasing

the number of BS antennas NT improves both the ergodic secrecy rate as well as the

secrecy outage probability. Moreover, as expected, the N -method for generation of

the AN precoding matrix always outperforms the R-method as the N -method avoids

intra-cell AN leakage.

In Fig. 2.4, we show the same performance metrics as in Fig. 2.3, however, now for

the case of pilot contamination. In sub�gure (a), lower bound I was obtained based

on (2.7), (2.13), (2.43), and (2.44), whereas lower bound II was obtained with (2.45)

and (2.46). In sub�gure (b), the upper bound was obtained with (2.53). Similar to

the case of perfect training, the derived bounds on the ergodic secrecy rate and the

secrecy outage probability are very tight. A comparison of Figs. 2.3 and 2.4 reveals

that pilot contamination causes a signi�cant performance degradation in terms of

both ergodic secrecy rate and secrecy outage probability. Furthermore, unlike for

the case of perfect training, for pilot contamination, the ergodic secrecy rate is not

monotonically increasing in NT but has a unique maximum for both AN precoding

matrix designs.

2.6.2 Optimal Power Allocation

In this subsection, we investigate the optimization of power allocation factor ϕ and

illustrate its impact on the ergodic secrecy rate.
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Figure 2.3: Ergodic secrecy rate and outage probability for perfect training, M = 7,
PT = 10 dB, K = 10, ρ = 0.3, α = 0.1, and ϕ = 0.75.

Figs. 2.5 and 2.6 show the ergodic secrecy rates of the kth MT in the local cell as

functions of ϕ for the cases of perfect training and pilot contamination, respectively.

The ergodic secrecy rate curves were obtained via Monte Carlo simulation and various

values of α and β are considered. The optimal values for ϕ obtained with (2.33)/(2.34)

(for perfect training) and (2.51)/(2.52) (for pilot contamination) are denoted by black

circles. As expected from our discussions in Sections 2.4 and 2.5, Figs. 2.5 and 2.6

show that, for both the N and the R AN precoding matrix desigs, the optimal ϕ∗ is

decreasing in α, i.e., the system should allocate more power to AN if the eavesdropper
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Figure 2.4: Ergodic secrecy rate and outage probability for pilot contamination,
M = 7, PT = 10 dB, K = 10 MTs, ρ = 0.1, α = 0.1, ϕ = 0.75, τ = K, and
pτ = PT/K.

is becoming stronger, and increasing in β, i.e., less power should be allocated to AN

if the number of users increases. For α = 0.4, no results are shown for the case of

pilot contamination in Fig. 2.6 since the corresponding ergodic secrecy rates are zero

for all choices of ϕ, i.e., α > αsec holds in this case.

In Fig. 2.7, we depict the ergodic secrecy rate and the optimal power allocation

factor, ϕ∗, as functions of the normalized number of MTs in each cell, β. Thereby,

the ergodic secrecy rate is calculated using the optimal ϕ∗, which was obtained based

on the analytical results in Sections 2.4 and 2.5 for the case of perfect training and
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Figure 2.5: Ergodic secrecy rate vs. power allocation factor ϕ assuming perfect train-
ing, NT = 100, M = 7, PT = 10 dB, and ρ = 0.1. Black circles denote the optimal
power allocation factor, ϕ∗, obtained with (2.33) and (2.34).

pilot contamination, respectively. We observe that, unlike the case when ϕ is �xed,

if ϕ is optimized, the ergodic secrecy rate is a non-increasing function of β also in

case of pilot contamination, i.e., for a given number of users, increasing the number

of BS antennas is always bene�cial. On the other hand, for all considered cases, the

optimal value of ϕ is a monotonically increasing function of β, i.e., as the number

of users in the system increases relative to the number of BS antennas, less power

is allocated to AN. Also, the performance gap between both AN precoding matrix

design methods decreases with increasing β.
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Figure 2.6: Ergodic secrecy rate vs. power allocation factor ϕ assuming pilot con-
tamination, M = 7, NT = 100, PT = 20 dB, τ = K, pτ = PT/K, and ρ = 0.1.
Black circles denote the optimal power allocation factor, ϕ∗, obtained with (2.51)
and (2.52).

2.6.3 Conditions for Non-zero Ergodic Secrecy Rate

In Fig. 2.8, we illustrate for both AN precoding matrix designs under what conditions

a non-zero ergodic secrecy rate is possible. To this end, we plot αsec as de�ned in

(2.29), (2.30), (2.47), and (2.48) as functions of β for pτ = PT/K (sub�gure on

left hand side) and the amount of power, pτ , spent by the MTs for training for

β = 0.05, 0.5 (sub�gure on right hand side). For α ≥ αsec, the ergodic secrecy rate

is zero regardless of the amount of power allocated to AN. On the other hand, for

56



Chapter 2. AN-Aided MF Precoding in Secure Massive MIMO Systems

0 0.2 0.4 0.6 0.8
0

0.5

1

1.5

2

2.5

3

3.5

β (K/NT )

E
rg

od
ic

 s
ec

re
cy

 r
at

e 
(b

ps
/H

z)

 

 
N -method
R-method

0 0.2 0.4 0.6 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

β (K/NT )

φ
∗

Perfect training

Perfect training

Pilot contamination

Pilot contamination

Figure 2.7: Ergodic secrecy rate and optimal power allocation factor, ϕ∗, vs. β for
M = 7, PT = 20 dB, NT = 100, α = 0.3, and ρ = 0.1. In case of pilot contamination,
τ = K and pτ = PT/K. The ergodic secrecy rates were obtained with (2.27), (2.28),
(2.45), and (2.46). The optimal power allocation factor was obtained with (2.33),
(2.34), (2.51), and (2.52).

α < αsec, a positive ergodic secrecy rate can be achieved. We observe from Fig. 2.8

that for both AN precoding matrix designs αsec is a decreasing function of β, whereas

it is an increasing function of pτ , i.e., the more reliable the channel estimates, the

more eavesdropper antennas can be tolerated before the ergodic secrecy rate drops to

zero. However, αsec saturates for large values of pτ . We note that the values of αsec

are smaller for the R-method than for the N -method because of the larger intra-cell
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AN leakage caused by the R-method.

2.6.4 Optimization of the Net Ergodic Secrecy Rate

Fig. 2.9 depicts the net ergodic secrecy rate, (1− τ/T )Rsec
nk , as a function of λ, where

the lower bounds in (2.45) and (2.46) were used to approximate Rsec
nk . The cases of

T = 100 and T = 500 are considered for K = 5 and K = 20 MTs. We assume that

pτ = 0 dB and λ is varied by changing τ and the optimal power allocation factor ϕ∗

is employed. Thereby, the range of possible τ is [K,T ), which directly translates into
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Figure 2.9: Net ergodic secrecy rate vs. λ for a system with optimal ϕ∗, NT = 100,
M = 7, α = 0.1, PT = 10 dB, pτ = 0 dB, and ρ = 0.1. Black circles denote the
maximum net ergodic secrecy rate.

the range of possible λ as λ = pτ τ
1+pτ τa

. Fig. 2.9 reveals that the optimal λ is (slightly)

increasing in T since for larger values of T , more time for allocation to uplink training

is available, i.e., τ can be increased resulting in a larger value for the optimal λ. For

K = 20, the lower limit of the permissible interval for τ given by τ = K yields the

maximum net secrecy rate. In this case, increasing τ beyond τ = K does not improve

Rsec
nk su�ciently to compensate for the decrease of the term 1− τ/T .
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2.7 Conclusions

In this chapter, we considered a multi-cell massive MIMO system with MF precoding

and AN precoding at the BS for secure downlink transmission in the presence of

a multi-antenna passive eavesdropper. For AN precoding, we considered both the

conventional NS AN precoding matrix design and a novel random AN precoding

matrix design. For both perfect training and pilot contamination, we derived two

tight lower bounds on the ergodic secrecy rate and a tight upper bound on the

secrecy outage probability. The analytical expressions allowed us to optimize the

amount of power allocated to AN precoding and to gain signi�cant insight into the

impact of the system parameters on performance. In particular, our results reveal

that for the considered multi-cell massive MIMO system with MF precoding (1) AN

precoding is necessary to achieve a non-zero ergodic secrecy rate if the user and the

eavesdropper experience the same path-loss, (2) secrecy cannot be guaranteed if the

eavesdropper has too many antennas, (3) for the case of pilot contamination, the

ergodic secrecy rate is only an increasing function of the number of BS antennas if

the amount of power allocated to AN precoding is optimized, and (4) the proposed

random AN precoding matrix design is a promising low-complexity alternative to the

conventional NS AN precoding matrix design.

60



Chapter 3

Linear Data and AN Precoding in

Secure Massive MIMO Systems

3.1 Introduction

Since secrecy and privacy are critical concerns for the design of future communication

systems [10], it is of interest to investigate how the large number of spatial degrees of

freedom in massive MIMO systems can be exploited for secrecy enhancement [27, 30].

If the eavesdropper (Eve) remains passive to hide its existence, neither the transmit-

ter (Alice) nor the legitimate receiver (Bob) will be able to learn Eve's CSI. In this

situation, it is advantageous to inject AN at the transmitter to degrade Eve's channel

and to use linear precoding to avoid impairment to Bob's channel as was shown in

[24, 27]-[38] and [70], for single user and single-cell multiuser systems, respectively.

However, in multi-cell massive MIMO systems, multi-cell interference and pilot con-

tamination will hamper Alice's ability to degrade Eve's channel and to protect Bob's

channel. This problem was studied �rst in Chapter 2 for simple MF data precoding

and NS and random AN precoding. However, it is well known that MF data pre-

coding su�ers from a large loss in the achievable information rate compared to other

linear data precoders such as ZF and RCI precoders as the number of MTs increases

[7]. Since it is expected that this loss in information rate also translates into a loss

in secrecy rate, studying the secrecy performance of ZF and RCI data precoders in
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massive MIMO systems is of interest. Furthermore, while NS AN precoding was

shown to achieve a better performance compared to random AN precoding [43], it

also entails a much higher complexity. Similarly, the improved performance of ZF

and RCI data precoding compared to MF data precoding comes at the expense of a

higher complexity. Hence, the design of novel data and AN precoders which allow

a �exible tradeo� between complexity and secrecy performance is desirable. In the

literature, ZF and RCI data precoding were analyzed in the large system limit in

[14, 15]. However, neither pilot contamination nor AN were taken into account and

the secrecy rate was not analyzed. Using a concept that was originally conceived

for CDMA uplink systems in [16] and later extended to MIMO systems in [17], re-

duced complexity linear data precoders that are based on matrix polynomials were

investigated for use in massive MIMO systems in [72, 73]. However, [72, 73] did not

take into account the e�ect of AN leakage for precoder design and did not study the

secrecy rate. Hence, the results presented in [72, 73], as well as the related work

discussed in Chapter 1.3 [47]-[59], are not directly applicable to the system studied

in this chapter.

In this chapter, we consider secure downlink transmission in a multi-cell massive

MIMO system employing linear data and AN precoding in the presence of a passive

multi-antenna eavesdropper. We study the achievable ergodic secrecy rate of such

systems for di�erent linear precoding schemes taking into account the e�ects of uplink

channel estimation, pilot contamination, multi-cell interference, and path-loss. The

main contributions of this chapter are summarized as follows:

• To address the impairments incurred by inter-cell interference as well as inter-

cell AN leakage, we study both sel�sh and collaborative precoders. The former

requires only the CSI of the MTs in the local cell but cause inter-cell interference
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and inter-cell AN leakage, whereas the latter requires the CSI between the local

BS and the MTs in all cells, but reduce inter-cell interference and inter-cell AN

leakage. Nevertheless, since the additional CSI required for the collaborative

precoders can be estimated directly by the local BS, the additional overhead

and complexity incurred compared to sel�sh precoders is limited.

• We derive novel closed-form expressions for the asymptotic ergodic secrecy rate

which facilitate the performance comparison of di�erent combinations of linear

data precoders (i.e., MF, sel�sh and collaborative ZF/RCI) and AN precoders

(i.e., random, sel�sh and collaborative NS), and provide signi�cant insight for

system design and optimization.

• In order to avoid the computational complexity and potential stability issues

in �xed point implementations entailed by the large-scale matrix inversions

required for ZF and RCI data precoding and NS AN precoding, we propose

POLY data and AN precoders and optimize their coe�cients. Unlike [71] and

[72], which considered polynomial data precoders for massive MIMO systems

without AN generation, we use free probability theory [61] to obtain the POLY

coe�cients, which allows us to express the coe�cients as simple functions of the

channel and system parameters. Simulation results reveal that these precoders

are able to closely approach the performance of sel�sh RCI data and NS AN

precoders, respectively.

The remainder of this chapter is organized as follows. In Section 3.2, we outline

the considered system model and review some basic results from Chapter 2. In

Sections 3.3 and 3.4, the considered linear data and AN precoders are investigated,

respectively. In Section 3.5, the ergodic secrecy rates of di�erent linear precoders are
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compared analytically for a simple path-loss model. Simulation and numerical results

are presented in Section 3.6, and some conclusions are drawn in Section 3.7.

3.2 System Model and Preliminaries

In this section, we introduce the considered system model as well as the adopted

channel estimation scheme, and review some ergodic secrecy rate results.

3.2.1 System Model

We consider the downlink of a multi-cell massive MIMO system with cell set M =

{1, . . . ,M} and a frequency reuse factor of one, i.e., all BSs use the same spectrum.

Each cell includes one NT -antenna BS, K ≤ NT single-antenna MTs, and potentially

an NE-antenna eavesdropper. The eavesdroppers try to hide their existence and

hence remain passive. As a result, the BSs cannot estimate the eavesdroppers' CSI.

To overcome this limitation, each BS generates AN to mask its information-carrying

signal and to prevent eavesdropping [24]. In the following, the kth MT, k = 1, . . . , K,

in the nth cell, n = 1, . . . ,M , is the MT of interest and we assume that an eavesdrop-

per tries to decode the signal intended for this MT. We note that neither the BSs

nor the MTs are assumed to know which MT is targeted by the eavesdropper. The

signal vector, xn ∈ CNT×1, transmitted by the BS in the nth cell (also referred to as

the nth BS in the following) is given by

xn =
√
pFnsn +

√
qAnzn, (3.1)

where sn ∼ CN(0K , IK) and zn ∼ CN(0NT , INT ) denote the data and AN vectors

for the K MTs in the nth cell, respectively. Fn = [fn1, · · · , fnK ] ∈ CNT×K and
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An = [an1, · · · , anNT ] ∈ CNT×NT are the data and AN precoding matrices, respec-

tively, and the e�cient design of these matrices is the main scope of this chap-

ter. Thereby, the structure of both types of precoding matrices does not depend on

which MT is targeted by the eavesdropper. The AN precoding matrix An has rank

L = rank{An} ≤ NT , i.e., L dimensions of the NT -dimensional signal space spanned

by the NT BS antennas are exploited for jamming of the eavesdropper. The data

and AN precoding matrices are normalized as tr{FH
n Fn} = K and tr{AH

n An} = L,

i.e., their average power per dimension is one. The average powers p and q allocated

to the information-carrying signal for each MT and each AN signal, respectively, can

be written as p = ϕPT
K

and q = (1−ϕ)PT
L

, where PT is the total transmit power and

ϕ ∈ (0, 1] is a power allocation factor which can be optimized. For the sake of clarity,

in this chapter, we assume that all cells utilize the same value of ϕ.

The vectors collecting the received signals at the K MTs and the NE antennas of

the eavesdropper in the nth cell are given by

yn =
M∑
m=1

Gmnxm + nn and yE =
M∑
m=1

GmExm + nE, (3.2)

respectively, with Gaussian noise vectors nn ∈ CN(0K , σ2
nIK) and nE ∈ CN(0NE , σ2

EINE),

where σ2
n and σ2

E denote the noise variances at one MT and one eavesdropper re-

ceive antenna, respectively. Furthermore, Gmn = D
1/2
mnHmn ∈ CK×NT and GmE =

√
βmEHmE ∈ CNE×NT are the matrices modeling the channels from the mth BS to

the K MTs and the eavesdropper in the nth cell, respectively. Thereby, Dmn =

diag{β1
mn, . . . , β

K
mn} and βmE represent the path-losses from the mth BS to the K

MTs and the eavesdropper in the nth cell, respectively. Matrix Hmn ∈ CK×NT , with

row vector hkmn ∈ C1×NT in the kth row, and matrixHmE ∈ CNE×NT represent the cor-

responding small-scale fading components. Their elements are modeled as mutually
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independent and identically distributed (i.i.d.) complex Gaussian random variables

(r.v.s) with zero mean and unit variance.

For the design of the data and noise precoders, we consider two di�erent ap-

proaches: Sel�sh designs and collaborative designs. For the sel�sh designs, each BS

designs its precoders only based on the estimate of the CSI in its own cell, Gnn, and

without regard for the interference and the AN it causes to other cells. In contrast,

for the collaborative designs, each BS designs its precoders based on the estimates of

the CSI to the MTs in all cells, Gmn, m = 1, . . . ,M , in an e�ort to avoid excessive

interference and AN to other cells. Although collaborative designs introduce more

channel estimation overhead at the BS, they may not always outperform sel�sh de-

signs because of the imperfection of the CSI and the limited number of spatial degrees

of freedom available for precoder design.

3.2.2 Channel Estimation and Pilot Contamination

As is customary for massive MIMO systems, we assume that the downlink and uplink

channels are reciprocal and the CSI is estimated in an uplink training phase [2]-[8].

To this end, all MTs emit pilot sequences of length τ = ξK, ξ ∈ M and with pilot

symbol power pτ . We assume that the pilot sequences are mutually orthogonal, and

thus can be assigned to at most ξ cells without mutual pollution. When ξ < M , this

gives rise to so-called pilot contamination [2]-[8], because at least one pilot sequence

is shared between more than one MTs in a M -cell network. Furthermore, we assume

that the path-loss information changes on a much slower time scale than the small-

scale fading. Hence, the path-loss matrices Dnm, m = 1, . . . ,M , can be estimated

perfectly and are assumed to be known at the BS for MMSE estimation of the small-

scale fading gains [8]. At the nth BS, the estimate of the small-scale fading vector to
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the kth MT in the mth cell, ĥknm, is obtained in Appendix B.1. For MMSE estimation,

we have

hknm = ĥknm + h̃knm, (3.3)

where the estimate ĥknm and the estimation error h̃knm are mutually independent

and can be statistically characterized as ĥknm ∼ CN(0NT ,
pτ τβknm

θknm+pτ τβknm
INT ) and h̃knm ∼

CN(0NT ,
θknm

θknm+pτ τβknm
INT ), respectively, cf. [43], where θ

k
nm = 1+pττ

∑
l∈Mm⊆M\{m} β

k
nl

and Mm denotes the set of cells sharing the same set of pilot sequences with the mth

cell, which is a subset of M excluding the mth cell, where

⌊M/ξ⌋ − 1 ≤ |Mm| ≤ ⌈M/ξ⌉ − 1, ∀m. (3.4)

Example: For M = 7, ξ = 2, we have 2 ≤ |Mm| ≤ 3, i.e., there are 2 or 3 cells

sharing the same set of pilot sequences with the mth cell 5.

To further clarify, when ξ = M , i.e., all MK MTs use their respective pilots, no

pilot contamination exists, θknm reduces to 1 as |Mm| = 0 in this case. For ξ = 1,

i.e., the pilot sequences in one cell are orthogonal, but reused in all other cells, we

simply have |Mm| = M − 1, and the distributions of both ĥknm and h̃knm are identi-

cal with those in Chapter 2. For future reference, we collect the estimates and the

estimation errors at the nth BS corresponding to all K MTs in the mth cell in ma-

trices Ĥnm = [(ĥ1
nm)

T , . . . , (ĥKnm)
T ]T ∈ CK×NT and H̃nm = [(h̃1

nm)
T , . . . , (h̃Knm)

T ]T ∈

CK×NT , respectively.

5For the results shown in Section 3.6, without loss of generality, we always assume |Mn| = 3 for
calculating the secrecy rate achieved by the MT in the nth cell when the parameters in this example
are adopted.
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3.2.3 Ergodic Secrecy Rate

The performance metric adopted in this chapter is the ergodic secrecy rate [30]. In

this section, we review some results for the ergodic secrecy rate in multi-cell massive

MIMO systems employing linear data and AN precoding from [43], as these results

will be needed throughout this chapter. Combining (3.1) and (3.2) we observe that

the downlink channel comprising the BS, the kth MT, and the eavesdropper in the nth

cell is an instance of a MISOME wiretap channel [27]. Hence, the achievable secrecy

rate of the kth MT in the nth cell is bounded by the di�erence of the capacities of

the channel between the BS and the MT and the channel between the BS and the

eavesdropper, see [43, Lemma 1], [47, Lemma 2]. Thus, a lower bound on the ergodic

secrecy rate of the kth MT in the nth cell is given by [43]

Rsec
nk = [Rnk − Ceve

nk ]
+, k = 1, . . . , K, (3.5)

where Rnk denotes an achievable rate of the kth MT in the nth cell and Ceve
nk denotes

the ergodic capacity of the channel between the BS and the eavesdropper. In order

to obtain a tractable lower bound on the ergodic secrecy rate, we lower bound the

achievable rate of the MT as Rnk = log2(1 + γnk) with SINR [43, Eq. (10)] γnk =

|E[
√
βknnph

k
nnfnk]|2

var[
√
βknnph

k
nnfnk] +

M∑
m=1

Nt∑
i=1

E[|
√
βkmnqh

k
mnami|2] +

∑
{m,l}≠{n,k}

E[|
√
βkmnph

k
mnfml|2] + 1

.

(3.6)

Furthermore, we make the pessimistic assumption that the eavesdropper is able to

cancel the received signals of all in-cell and out-of-cell MTs except the signal intended

for the MT of interest. This leads to an upper bound for the eavesdropper's capacity,
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and consequently, to a lower bound for the ergodic secrecy rate.6 Hence, the ergodic

capacity of the eavesdropper is given by [43, Eq. (7)]

Ceve
nk = E

[
log2

(
1 + pfHnkG

H
nEX

−1GnEfnk
) ]
, (3.7)

where X = q
∑M

m=1GmEAmA
H
mG

H
mE ∈ CNT×NT denotes the noise correlation ma-

trix at the eavesdropper under the worst-case assumption that the receiver noise at

the eavesdropper is negligible, i.e., σ2
E → 0. Denoting the normalized number of

eavesdropper antennas by α = NE/NT , a necessary condition for the invertibility of

matrix X is α ≤ ML/NT . Hence, a non-zero secrecy rate can only be achieved if

this condition is met. Consequently, a larger L implies that the BS is able to tolerate

more eavesdropper antennas.

If HnEfnk and matrix X are statistically independent, which in turn means for the

data and AN precoders that vector fnk and the subspace spanned by the columns of

An are mutually orthogonal, a simple and tight upper bound on (3.7) can be obtained.

Since any e�cient data/AN precoder pair has to keep the AN self-interference at the

desired MT small, this orthogonality condition holds at least approximately in prac-

tice. In this case, for α < a2L/(cNT ) and NT → ∞, where a = 1 +
∑M

m ̸=n βmE/βnE

and c = 1 +
∑M

m̸=n(βmE/βnE)
2, a simple and tight upper bound for Ceve

nk is given by

[43, Theorem 1]

Ceve
nk ≤ log2

(
1 +

αp

aqL/NT − cαq/a

)
= log2

(
1 +

αϕ

β(1− ϕ)(a− cαNT/(La))

)
.

(3.8)

For M = 1, we have a2/c = M = 1, i.e., the bound in (3.8) is applicable in the

6This lower bound is achievable if the eavesdropper has access to the data of all interfering in-
cell and out-of-cell MTs, which might be the case e.g. if the interfering MTs cooperate with the
eavesdropper.
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entire range of α where Ceve
nk in (3.7) is �nite. ForM > 1, we have a2/c ≤M , i.e., the

bound is not applicable for La2/(cNT ) ≤ α ≤ML/NT . However, for strong inter-cell

interference, we have βmE ≈ βnE and a2/c ≈ M , i.e., the bound is applicable for all

α for which Ceve
nk in (3.7) is �nite. On the other hand, for weak inter-cell interference,

we have βmE ≪ βnE, and matrix X will be ill-conditioned for L/NT ≤ α ≤ ML/NT

and Ceve
nk will become very large. Hence, the bound is again applicable for the values

of α (i.e., 0 ≤ α ≤ L/NT ), for which C
eve
nk in (3.7) assumes practically relevant values.

More generally, [43, Figs. 2-4] and Section 3.6 suggest that (3.8) is applicable and

tight for all values of α which permit a non-vanishing secrecy rate.

Combining (3.5), (3.6), and (3.8), we obtain a tight and tractable lower bound

on the secrecy rate [43]. It is noteworthy that the upper bound on the capacity of

the eavesdropper in (3.8) is only a�ected by the dimensionality of the AN precoder,

L, but not on the exact structures of An and Fn, as long as fnk and the subspace

spanned by the columns of An are orthogonal. On the other hand, the achievable

rate of the MT in (3.6) is a�ected by both the data and the AN precoders. In the

following two sections, we analyze the impact of the most important existing data

and AN precoder designs on the achievable rate Rnk as NT → ∞, respectively, and

propose novel low-complexity data and AN precoders that are based on a polynomial

matrix expansion.

3.3 Linear Data Precoders for Secure Massive

MIMO

In this section, we analyze the achievable rate of sel�sh and collaborative ZF/RCI

data precoding, respectively, and develop a novel POLY data precoder. In contrast
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to existing analysis and designs of data precoders for massive MIMO, e.g. [14, 15],

[72, 73], the results presented in this section account for the e�ect of AN leakage,

which is only present if AN is injected at the BS for secrecy enhancement. We

are interested in the asymptotic regime where K,NT → ∞ but β = K/NT and

α = NE/NT are �nite.

3.3.1 Analysis of Existing Data Precoders

For NT → ∞, analyzing the achievable rate is equivalent to analyzing the SINR in

(3.6). Thereby, the e�ect of the AN precoder can be captured by the term

Q =
M∑
m=1

Nt∑
i=1

E[|
√
βkmnh

k
mnami|2] =

M∑
m=1

βkmnE[hkmnAmA
H
m(h

k
mn)

H ] (3.9)

in the denominator of (3.6), which represents the inter-cell and intra-cell AN leakage.

This term is assumed to be given in this section and will be analyzed in detail for

di�erent AN precoders in Section 3.4.

Sel�sh ZF/RCI Data Precoding

The sel�sh RCI (SRCI) data precoder for the nth cell is given by

Fn = γ1LnnĤ
H
nn, (3.10)

where Lnn = (ĤH
nnĤnn + κ1INT )

−1, γ1 is a scalar normalization constant, and κ1 is a

regularization constant. In the following proposition, we provide the resulting SINR

of the kth MT in the nth cell.

Proposition 3.1. For SRCI data precoding, the received SINR at the kth MT in the
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nth cell is given by

γSRCI
nk =

1∑
m∈Mn∪{n} Γ̂mSRCI+(1+G(β,κ1))2

G(β,κ1)
(
Γ̂nSRCI+

Γ̂n
SRCI

κ1
β

(1+G(β,κ1))2
) +

∑
m∈Mn

λmk/λnk

, (3.11)

where the set Mn is de�ned in Section 3.2,

G(β, κ1) =
1

2

[√
(1− β)2

κ21
+

2(1 + β)

κ1
+ 1 +

1− β

κ1
− 1

]
, (3.12)

and

Γ̂mSRCI =
ΓSRCIλmk

ΓSRCI

∑
m∈Mn∪{n} µmk + 1

(3.13)

with

ΓSRCI =
K∑

m/∈Mn
∪
{n}
∑K

l=1 β
k
mn + ηQ+ K

ϕPT

, (3.14)

λmk = βkmn
pτ τβkmn

θkmn+pτ τβ
k
mn

, µmk = βkmn
θkmn

θkmn+pτ τβ
k
mn

, and η = q/p.

Proof. Please refer to Appendix B.2.

Regularization constant κ1 can be optimized for maximization of the lower bound

on the secrecy rate in (3.5), which is equivalent to maximizing the SINR in (3.11).

Setting the derivative of γSRCI
nk with respect to κ1 to zero, the optimal regulariza-

tion parameter is found as κ1,opt = β/
∑

m∈Mn∪{n} Γ̂
m
SRCI in Appendix B.3, and the

corresponding maximum SINR is given by

γSRCI
nk =

1

Γ̂nSRCI/
∑

m∈Mn∪{n} Γ̂
m
SRCIG(β, κ1,opt) +

∑
m∈Mn

λmk/λnk
. (3.15)

On the other hand, for κ1 → 0, the SRCI data precoder in (3.10) reduces to the

sel�sh ZF (SZF) data precoder. The corresponding received SINR is provided in the
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following corollary.

Corollory 3.1. Assuming β < 1, for SZF data precoding, the received SINR at the

kth MT in the nth cell is given by

γSZFnk =
1

β

(1−β)Γ̂SRCI
+
∑

m∈Mn
λmk/λnk

. (3.16)

Proof. Please refer to Appendix B.4.

Collaborative ZF/RCI Precoding

The collaborative RCI (CRCI) precoder for the nth cell is given by

Fn = γ2LnĤ
H
nn, (3.17)

where Ln = (ĤH
n Ĥn + κ2INT )

−1 with Ĥn = [ĤT
n1 . . . Ĥ

T
nM ]T ∈ CMK×NT , γ2 is a

normalization constant, and κ2 is a regularization constant. The corresponding SINR

of the kth MT in the nth cell is provided in the following proposition.

Proposition 3.2. For CRCI data precoding, the received SINR at the kth MT in the

nth cell is given by

γCRCI
nk =

1∑M
m=1 Γ̂

m
CRCI+(1+G(ξβ,κ2))2

G(ξβ,κ2)
(
Γ̂nCRCI+

Γ̂n
CRCI

κ2
ξβ

(1+G(ξβ,κ2))2
) +

∑
m∈Mn

λmk/λnk
, (3.18)

where Γ̂mCRCI =
ΓCRCIλmk

ΓCRCI
∑M
m=1 µmk+1

with ΓCRCI =
K

ηQ+ K
ϕPT

.

Proof. The proof is similar to that for the SINR for the SRCI data precoder given in

Appendix B.2.
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Furthermore, the optimal regularization constant maximizing the SINR (and thus

the secrecy rate) in (3.18) is obtained as κ2,opt = ξβ/
∑M

m=1 Γ̂
m
CRCI, and the corre-

sponding maximum SINR is given by

γCRCI
nk =

1

Γ̂nCRCI/
∑M

m=1 Γ̂
m
CRCIG(ξβ, κ2,opt) +

∑
m∈Mn

λmk/λnk
. (3.19)

On the other hand, for κ2 → 0, the CRCI precoder in (3.17) reduces to the

collaborative ZF (CZF) precoder. The corresponding received SINR is provided in

the following corollary.

Corollory 3.2. Assuming β < 1/M , for CZF data precoding, the received SINR at

the kth MT in the nth cell is given by

γCZF
nk =

1
ξβ

(1−ξβ)Γ̂nCRCI

+
∑

m∈Mn
λmk/λnk

. (3.20)

Proof. γCZF
nk in (3.20) is obtained by letting κ2 → 0 in (3.18). The proof is similar to

that for the SINR for the SZF data precoder given in Appendix B.4.

Remark 3.1. By comparing Propositions 3.1 and 3.2, we observe that γSRCI
nk and

γCRCI
nk are identical for ξ = 1. In this scenario, the estimate of inter-cell CSI at the

BS is nothing but a scaled version of that of the in-cell CSI, cf. Chapter 2, and both

schemes are equivalent. Therefore, we will focus more on the scenario of ξ > 1 in the

sequel.

Remark 3.2. Sel�sh data precoders require estimation of in-cell CSI, i.e., Ĥnn, only.

In contrast, collaborative data precoders require estimation of both in-cell and inter-

cell CSI at the BS, i.e., Ĥn. Furthermore, since collaborative data precoders attempt

to avoid interference not only to in-cell users but also to out-of-cell users, more BS
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antennas are needed to achieve high performance. This is evident from Corollaries 3.1

and 3.2, which reveal that NT > K and NT > ξK are necessary for SZF and CZF

data precoding, respectively. On the other hand, if successful, trying to avoid out-

of-cell interference is bene�cial for the overall performance. Hence, whether sel�sh

or collaborative precoders are preferable depends on the parameters of the considered

system, cf. Sections 3.5 and 3.6.

3.3.2 POLY Data Precoder

The RCI and ZF data precoders introduced in the previous section achieve a higher

performance than simple MF data precoding [43]. However, they require a ma-

trix inversion which entails a high computational complexity for the large values

of K and NT desired in massive MIMO. Hence, in this section, we propose a low-

complexity POLY data precoder which avoids the matrix inversion. As the goal is a

low-complexity design, we focus on sel�sh POLY precoders, although the extension

to collaborative designs is possible.

The proposed POLY precoder, Fn, for the n
th BS can be expressed as

Fn =
1√
NT

Ĥ
H

nn

I∑
i=0

µi

(
ĤnnĤ

H

nn

)i
, (3.21)

where Ĥnn = 1√
NT

Ĥnn, and µ = [µ0, . . . , µI ]
T are the real-valued coe�cients of the

precoder matrix polynomial, which have to be optimized. In the following, we show

that, for K,NT → ∞, the optimum coe�cients µ do not depend on the instantaneous

channel estimates but are constant and can be determined by exploiting results from

free probability [61] and random matrix theory [93]. To this end, we de�ne the

asymptotic average MSE of the users in the nth cell as msen = limK→∞
1
K
E [∥en∥2]
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with error vector

en = ςyn − sn = ς(Gnn(
√
pFnsn +

√
qAnzn) + ñn)− sn, (3.22)

where ñn =
∑

m̸=nGmnxm + nn includes Gaussian noise, inter-cell interference, and

inter-cell AN leakage. Furthermore, ς is a normalization constant at the receiver,

which does not impact detection performance. The optimal coe�cient vector µ min-

imizes msen for a given power budget ϕPT for the information-carrying signal, i.e.,

minµ,ς msen s.t. : Tr{FH
n Fn} = 1, (3.23)

where we use the notation Tr {·} = limK→∞ tr {·} /K. The optimal coe�cient vector,

µopt, is provided in the following theorem.

Theorem 3.1. For K,NT → ∞, the optimal coe�cient vector minimizing the asymp-

totic average MSE of the users in the nth cell for the POLY precoder in (3.21) is given

by

µopt = γ3Π
−1ψ, (3.24)

where ψ = [ζ, ζ2, . . . , ζI+1]T , [Π]i,j = Tr {Dnn} ζ i+j+
(
Tr {Dnn∆n}+ Tr{Σn}+PAN

NT p

)
ζ i+j−1,

Σn = E[ñnñHn ], ∆n = diag
{

θ1nn
θ1nn+pτ τβ

1
nn
, · · · , θKnn

θKnn+pτ τβ
K
nn

}
, and PAN =

qE
[
Tr
{
GnnAnA

H
n G

H
nn

}]
. Furthermore, ζ l denotes the lth-order moment of the sum

of the eigenvalues of ĤnnĤ
H

nn, i.e., ζ l = limK→∞
1
K

∑K
k=1 λ

l
k, which converges to

ζ l =
∑l−1

i=0

(
l
i

)(
l

i+1

)
βi

l
for K → ∞ [73, Theorem 2]. Finally, γ3 is chosen such that

Tr{FH
n Fn} = 1 holds.

Proof. Please refer to Appendix B.5.

We note that µopt does not depend on instantaneous channel estimates, and hence,
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can be computed o�ine.

3.3.3 Computational Complexity of Data Precoding

We compare the computational complexity of the considered data precoders in terms

of the number of �oating point operations (FLOPs) [74]. Each FLOP represents one

scalar complex addition or multiplication. We assume that the coherence time of

the channel is T symbol intervals of which τ are used for training and T − τ are

used for data transmission. Hence, the complexity required for precoding in one

coherence interval, consist of the complexity required for generating one precoding

matrix and T − τ precoded vectors. A similar complexity analysis was conducted in

[73, Section IV] for various sel�sh data precoders without AN injection at the BS.

Since the AN injection does not a�ect the structure of the data precoders, we can

directly adapt the results from [73, Section IV] to the case at hand. In particular, the

sel�sh MF, the SZF/SRCI, and the CZF/CRCI precoders require (2K−1)NT (T−τ),

0.5(K2 + K)(2NT − 1) + K3 + K2 + K + NTK(2K − 1) + (2K − 1)NT (T − τ),

and 0.5(ξ2K2 + ξK)(2NT − 1) + ξ3K3 + ξ2K2 + ξK + NT ξK(2ξK − 1) + (2K −

1)NT (T − τ) FLOPs per coherence interval, see [73, Section IV]. In contrast, for

the POLY data precoder, we obtain for the overall computational complexity (T −

τ) ((I + 1)(2K − 1)NT + I(2NT − 1)K) FLOPs, which assumes implementation of

the precoding operation by Horner's rule [73, Section IV].

The above complexity expressions reveal that the additional complexity intro-

duced by collaborative data precoders compared to sel�sh data precoders is at most

a factor of ξ3. In addition, the complexity savings achieved with the POLY data

precoder compared to the SZF/SRCI data precoders increase with increasing K for

a given T . We note however that, regardless of their complexity, POLY data pre-
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coders are attractive as they avoid the stability issues that may arise in �xed point

implementations of large matrix inverses.

3.4 Linear AN Precoders for Secure Massive

MIMO

In this section, we investigate the performance of sel�sh and collaborative NS (S/CNS)

and random AN precoders. In addition, a novel POLY AN precoder is derived. To

the best of the authors' knowledge, POLY AN precoding has not been considered in

the literature before.

3.4.1 Analysis of Existing AN Precoders

For a given dimensionality of the AN precoder, L, the secrecy rate depends on the

AN precoder only via the AN leakage, Q, given in (3.9), which a�ects the SINR of the

MT. Furthermore, the optimal POLY data precoder coe�cients in (3.24) are a�ected

by the AN precoder via the leakage term PAN. In this subsection, for NT → ∞, we

will provide closed-form expressions for Q and PAN for the SNS, CNS, and random

AN precoders.

SNS AN Precoder

The SNS AN precoder of the nth BS is given by [24]

An = INT − ĤH
nn

(
ĤnnĤ

H
nn

)−1

Ĥnn, (3.25)
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which has rank L = NT −K and exists only if β < 1. We divide the corresponding

AN leakage QSNS into an inter-cell AN leakage QSNS
o and an intra-cell AN leakage

QSNS
i , where QSNS = QSNS

o +QSNS
i . For the SNS AN precoder, QSNS

o is obtained as

QSNS
o =

∑
m∈Mn

βkmnE
[
hkmnAmA

H
m(h

k
mn)

H

]
+

∑
m/∈Mn

∪
{n}

βkmnE
[
hkmnAmA

H
m(h

k
mn)

H

]

= E
[
tr
{
AmA

H
m

} ] ∑
m∈Mn

µmk +
∑

m/∈Mn
∪
{n}

βkmn


= (NT −K)

 ∑
m∈Mn

µmk +
∑

m/∈Mn
∪
{n}

βkmn

 , (3.26)

where we exploited [71, Lemma 11] and the independence ofAm and h̃kmn (for contam-

inated cells, i.e., m ∈ Mn) and hkmn (for non-contaminated cells, i.e., m /∈ Mn

∪
{n}).

In contrast, the intra-cell AN leakage power is given by

QSNS
i = βknnE

[
hknnAnA

H
n (h

k
nn)

H

]
= βknnE

[
h̃knnAnA

H
n (h̃

k
nn)

H

]
= (NT −K)µnk,

(3.27)

as the SNS AN precoder matrix lies in the NS of the estimated channels of all K

MTs in the nth cell. Similarly, the AN leakage relevant for computation of the POLY

data precoder is obtained as

P SNS
AN = (1− ϕ)PT lim

K→∞

1

K

K∑
k=1

µnk. (3.28)
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CNS AN Precoder

For the CNS AN precoder at the nth BS, the AN is designed to lie in the NS of the

estimated channels between all MK MTs and the BS, i.e.,

An = INT − ĤH
n

(
ĤnĤ

H
n

)−1

Ĥn, (3.29)

which has rank L = NT − ξK and exists only if β < 1/ξ. The corresponding AN

leakage to the kth MT in the nth cell is given by

QCNS =
M∑
m=1

βkmnE
[
hkmnAmA

H
m(h

k
mn)

H

]
= (NT − ξK)

M∑
m=1

µmk. (3.30)

Furthermore, the CNS AN precoder results in the same PAN as the SNS AN precoder,

cf. (3.28).

Random AN Precoder

For the random precoder, all elements of An are i.i.d. r.v.s independent of the channel

[43], i.e., An has rank L = NT . Hence, h
k
mn and Am, ∀m, are mutually independent,

and we obtain

Qrandom =
M∑
m=1

βkmnE
[
hkmnAmA

H
m(h

k
mn)

H

]
= NT

M∑
m=1

βkmn. (3.31)

Furthermore, we obtain P random
AN = (1− ϕ)PT limK→∞

1
K

∑K
k=1 β

k
nn.

Remark 3.3. If the power and time allocated to channel estimation are very small,

i.e., τpτ → 0, the S/CNS AN precoders yield the same qQ and PAN as the random

AN precoder. This suggests that in this regime all considered AN precoders achieve

a similar SINR performance for a given MT. However, for τpτ > 0, the S/CNS AN
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precoders cause less AN leakage resulting in an improved SINR performance compared

to the random precoder at the expense of a higher complexity.

3.4.2 POLY AN Precoder

To mitigate the high computational complexity imposed by the matrix inversion

required for the S/CNS AN precoders, while achieving an improved performance

compared to the random AN precoder, we propose a POLY AN precoder. Similar to

the POLY data precoder, we concentrate on the sel�sh design because of the desired

low complexity, and hence, set L = NT − K. The proposed POLY AN precoder is

given by

An = INT − Ĥ
H

nn

(
J∑
i=0

νj

(
ĤnnĤ

H

nn

)j)
Ĥnn, (3.32)

where ν = [ν0, . . . , νJ ]
T contains the real-valued coe�cients of the AN precoder poly-

nomial, which have to be optimized. In particular, ν is optimized for minimization

of the asymptotic average AN leakage caused to all MTs in the nth cell PAN. The

corresponding optimization problem is formulated as

minν PAN = qE
[
Tr{GnnAnA

H
n G

H
nn}
]

s.t. :Tr{AH
n An} = 1/β − 1. (3.33)

The solution of (3.33) is provided in the following theorem.

Theorem 3.2. For K,NT → ∞, the optimal coe�cient vector minimizing the asymp-

totic average AN leakage caused to the users in the nth cell for the AN precoder

structure in (3.32) is given by

νopt = Σ−1ω, (3.34)

where [Σ]i,j = ζ i+j+1 + ϵζ i+j and ω = [ζ2 + ϵζ, . . . , ζJ+2 + ϵζJ+1]. Here, ζ l de-
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notes again the lth order moment of the sum of the eigenvalues of matrix ĤnnĤ
H

nn,

cf. Theorem 3.1. ϵ is chosen such that Tr{AH
n An} = 1/β − 1.

Proof. Please refer to Appendix B.6.

3.4.3 Computational Complexity of AN Precoding

Similarly to the data precoders, the complexity of the AN precoders is evaluated in

terms of the number of �ops required per coherence interval T . For the SNS AN

precoder, the computation of An in (3.25) requires the computation and inversion of

a K×K positive de�nite matrix, which entails 0.5(K2+K)(2NT −1)+K3+K2+K

FLOPs [74], and the multiplication of an NT ×K, an K×K, and an K×NT matrix,

which entails NT (NT+K)(2K−1) FLOPs [74]. Furthermore, the T−τ vector-matrix

multiplications required for AN precoding entail a complexity of (2NT −1)NT FLOPs

[74], respectively. Hence, the overall complexity is 0.5(K2+K)(2NT −1)+K3+K2+

K + NT (NT + K)(2K − 1) + (2NT − 1)NT (T − τ) FLOPs. Similarly, for the CNS

AN precoder, we obtain a complexity of 0.5(ξ2K2 + ξK(2NT − 1) + ξ3K3 + ξ2K2 +

ξK + NT (NT + ξK)(2ξK − 1) + (2NT − 1)NT (T − τ) FLOPs, whereas the random

AN precoder entails a complexity of (2NT − 1)NT (T − τ) FLOPs as only the AN

vector-matrix multiplications are required.

Similar to the precoded data vector [73, Section IV], the POLY precoded AN

vector can be generated using Horner's rule. Hence, based on (3.32), the transmitted

AN vector in the nth cell can be obtained as

Anzn = zn −
(
ν0Ĥ

H

nnĤnn

(
zn +

ν1
ν0
Ĥ
H

nnĤnn (zn + . . .)

))
. (3.35)
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Hence, Anzn can be computed e�ciently by �rst multiplying Hnn with zn, which

requires (2NT − 1)K FLOPs, then multiplying ĤH
nn with the resulting vector, which

requires (2K−1)NT FLOPs, adding zn to the resulting vector, and repeating similar

operations (J +1) times, see [16, 73] for details on Horner's rule. Overall, this leads

to a complexity of (J + 1) ((2K − 1)NT + (2NT − 1)K) (T − τ) FLOPs.

3.5 Comparison of Linear Data and AN Precoders

In this subsection, we compare the secrecy performances of the considered data and

AN precoders. Thereby, in order to get tractable results, we focus on the relative

performances of SZF, CZF, and MF, cf. Chapter 2 data precoders and SNS, CNS, and

random AN precoders. The performances of SRCI, CRCI, and POLY data precoders

and the POLY AN precoder will be investigated via numerical and simulation results

in Section 3.6.

In order to gain some insight for system design and analysis, we adopt a simpli�ed

path-loss model. In particular, we assume the path losses are given by

βkmn =


1, m = n

ρ, otherwise

(3.36)

where ρ ∈ [0, 1] denotes the inter-cell interference factor. For this simpli�ed model,

a and c in (3.8) simplify to a = 1 + (M − 1)ρ and c = 1 + (M − 1)ρ2. Furthermore,

the SINR expressions of the linear data precoders considered in Section 3.3.1 and the

MF precoder considered in Chapter 2 can be simpli�ed considerably and are provided

in Table 3.1, where we use the normalized AN leakage Q̃ = Q/L. The expressions

for the normalized AN leakage Q̃, the asymptotic average AN leakage PAN, and the
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dimensionality L of the considered linear AN precoders are given in Table 3.2. Under

the simpli�ed model, λmk de�ned in Proposition 3.1 simpli�es to


λ1 =

pτ τ
1+(1+|Mn|ρ)pτ τ = pτ τ

1+bpτ τ
, for m = n

ρ2λ1 =
ρ2pτ τ
1+bpτ τ

, for m ∈ Mn

ρ2λ2 =
ρ2pτ τ

1+(|Mn|+1)ρpτ τ
, for m /∈ Mn

∪
{n}

(3.37)

with b = 1 + |Mn|ρ. Accordingly, the term
∑

m∈Mn∪{n} µmk and
∑M

m=1 µmk in

Propositions 3.1 and 3.2 simplify to b − dλ1 and a − dλ1 − (c − d)λ2, respectively,

where d = 1 + |Mn|ρ2. By combining all above intermediate results, Γ̂mSRCI and

Γ̂mCRCI, 1 ≤ m ≤M , simplify to

Γ̂mSRCI =


Γ̂SRCI, for m = n

ρ2Γ̂SRCI, for m ∈ Mn

, Γ̂mCRCI =


Γ̂CRCI, for m = n

ρ2Γ̂SRCI, for m ∈ Mn

ρ2λ2/λ1Γ̂SRCI, for m /∈ Mn ∪ {n}

,

(3.38)

respectively, where

Γ̂SRCI =
ΓSRCIλ1

ΓSRCI(b− dλ1) + 1
, Γ̂CRCI =

ΓCRCIλ1
ΓCRCI (a− dλ1 − (c− d)λ2) + 1

, (3.39)

and

ΓSRCI =
βϕ

βϕ(a− b) + (1− ϕ)βQ̃+ β
PT

, ΓCRCI =
βϕ

(1− ϕ)βQ̃+ β
PT

. (3.40)
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Table 3.1: SINR of the kth MT in the nth cell for linear data precoding and the
simpli�ed path-loss model in (3.36).

Data Precoder γnk
SZF λ1ϕ(1−β)

(1−ϕ)βQ̃+βϕ(a−dλ1)+(d−1)λ1ϕ(1−β)+β/PT
SRCI 1

1/dG(β,β/dΓ̂SRCI)+d−1

CZF λ1ϕ(1−ξβ)
(1−ϕ)βQ̃+βϕ(a−dλ1−(c−d)λ2)+(d−1)λ1ϕ(1−ξβ)+β/PT

CRCI 1

1/(d+(c−d)λ2/λ1)G(ξβ,ξβ/(d+(c−d)λ2/λ1)Γ̂CRCI)+d−1

MF λ1ϕ

(1−ϕ)βQ̃+βϕa+(d−1)λ1ϕ+β/PT

Table 3.2: AN leakage for simpli�ed path-loss model in (3.36).

AN Precoder Q̃ PAN L
SNS a− dλ1 (1− ϕ)PT (1− λ1) NT −K
CNS a− dλ1 − (c− d)λ2 (1− ϕ)PT (1− λ1) NT − ξK

Random a (1− ϕ)PT NT

3.5.1 Comparison of SZF, CZF, and MF Data Precoders

In this subsection, we compare the performances achieved with SZF, CZF, and MF

data precoders for a given AN precoder, i.e., L and Q̃ are �xed. Since the upper

bound on the capacity of the eavesdropper channel is independent of the adopted

data precoder, cf. Section 3.2.3, we compare the considered data precoders based on

their SINRs. Exploiting the results in Table 3.1, we obtain the following relations

between γSZFnk , γCZF
nk , and γMF

nk :

γSZFnk

γMF
nk

= 1 + β((d+ |Mn|ρ2)γSZFnk − 1)

γCZF
nk

γSZFnk

=
1− ξβ

1− β
+

[(c− d)λ2/λ1 + (d− 1)(ξ − 1)]β

1− β
γCZF
nk . (3.41)

Hence, for γSZFnk > γMF
nk , we require γ

SZF
nk > 1/(d + |Mn|ρ2) = 1/(1 + 2ρ2|Mn|), and

for γCZF
nk > γSZFnk , we need γCZF

nk > (ξ−1)/((c−d)λ2/λ1+(d−1)(ξ−1)). As expected,

(3.41) suggests that for a lightly loaded system, i.e., β → 0, all three precoders have
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a similar performance, i.e., γCZF
nk ≈ γSZFnk ≈ γMF

nk . Moreover, when ξ = 1, we simply

have γCZF
nk = γSZFnk , as SZF and CZF are equivalent, cf. Remark 3.1. In the following,

we investigate the impact of the number of MTs and the pilot power on the relative

performances of the considered data precoders.

Number of MTs : From (3.41), we �nd that for γSZFnk > γMF
nk and γCZF

nk > γSZFnk to

hold, the number of MTs has to meet K < KSZF>MF and K < KCZF>SZF, where

KSZF>MF =
dλ1ϕNT

(1− ϕ)Q̃+ aϕ+ 1/PT

KCZF>SZF =
ϕ(c− d)λ2NT

(1− ϕ)(ξ − 1)Q̃+ ((a− dλ1)(ξ − 1) + (c− d)λ2)ϕ+ (ξ − 1)/PT
,

(3.42)

for ξ > 1, respectively. Interestingly, both the maximum numbers of MTs for which

the SZF data precoder is advantageous compared to the MF data precoder, KSZF>MF,

and the maximum number of MTs for which the CZF data precoder is advantageous

compared to the SZF data precoder, KCZF>SZF, decrease with increasing AN leakage,

Q̃, the number of cells M and the number of contaminated neighboring cells |Mn|

(via d), but increase with the amount of resources dedicated to channel estimation,

pττ (via λ1 and λ2), and consequently with the channel estimation quality. However,

while KSZF>MF decreases with increasing inter-cell interference factor ρ (via a, c, and

d), KCZF>SZF increases.

3.5.2 Comparison of SNS, CNS, and Random AN Precoders

In this subsection, we analyze the impact of the AN precoders on the secrecy rate.

AN precoders a�ect the ergodic capacity of the eavesdropper via L and the achievable

rate of the MT via the leakage, Q̃. Since the upper bound on the ergodic secrecy rate
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of the eavesdropper in (3.8) is a decreasing function in L, we have

Ceve
nk |random ≤ Ceve

nk |SNS ≤ Ceve
nk |CNS. (3.43)

On the other hand, from Table 3.2, we observe Q̃random ≥ Q̃SNS ≥ Q̃CNS. Since

according to Table 3.1 the SINRs for all data precoders are decreasing functions of

Q̃, for a given data precoder, we obtain for the lower bound on the ergodic rate of

the kth MT in the nth cell

Rnk|random ≤ Rnk|SNS ≤ Rnk|CNS. (3.44)

Considering (3.43), (3.44), and the expression for the ergodic secrecy rate, Rsec
nk =

[Rnk − Ceve
nk ]

+, it is not a priori clear which AN precoder has the best performance.

In fact, our numerical results in Section 3.6 con�rm that it depends on the system

parameters (e.g. α, β, M , ξ, pττ , and ρ) which AN precoder is preferable.

3.5.3 Ergodic Secrecy Rate Analysis

In this subsection, we provide closed-form results for the ergodic secrecy rate for SZF,

CZF, and MF data precoding for the simpli�ed path-loss model in (3.36). Thereby,

the simpli�ed path-loss model is extended also to the eavesdropper, i.e., βnE = 1 and

βmE = ρ, m ̸= n, is assumed.

Combining (3.5), (3.8), and the results in Table 3.1, we obtain the following lower
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bounds for the ergodic secrecy rate of the kth MT in the nth cell:

Rsec
nk ≥



[
log2

(
(Q̃+1/PT )β+(a−Q̃)βϕ+dλ1ϕ

(Q̃+1/PT )β+(a−Q̃)βϕ+(d−1)λ1ϕ
· −χϕ+χ
(1−χ)ϕ+χ

)]+
MF,[

log2

(
(Q̃+1/PT )β+(a−dλ1−Q̃)βϕ+dλ1(1−β)ϕ

(Q̃+1/PT )β+(a−dλ1−Q̃)βϕ+(d−1)λ1(1−β)ϕ
· −χϕ+χ
(1−χ)ϕ+χ

)]+
SZF,[

log2

(
(Q̃+1/PT )β+(a−dλ1−(c−d)λ2−Q̃)βϕ+dλ1(1−ξβ)ϕ

(Q̃+1/PT )β+(a−dλ1−(c−d)λ2−Q̃)βϕ+(d−1)λ1(1−ξβ)ϕ
· −χϕ+χ
(1−χ)ϕ+χ

)]+
CZF,

(3.45)

where χ = aβ
α

− βcNT
aL

, and Q̃ and L are given in Table 3.2 for the considered AN

precoders. Eq. (3.45) is easy to evaluate and reveals how the ergodic secrecy rate of

the three considered data precoders depends on the various system parameters. To

gain more insight, we determine the maximum value of α which admits a non-zero

secrecy rate. This value is denoted by αs in the following, and can be shown to be

a decreasing function of ϕ for all conidered data precoders. Hence, we �nd αs by

setting Rsec
nk = 0 in (3.45) and letting ϕ→ 0. This leads to

αs =



a2λ1
Q̃a+dλ1NT /L+a/PT

for MF

(1−β)a2λ1
Q̃a+dλ1(1−β)NT /L+a/PT

for SZF,

(1−ξβ)a2λ1
Q̃a+dλ1(1−ξβ)NT /L+a/PT

for CZF.

(3.46)

Eq. (3.46) reveals that for a given AN precoder, independent of the system param-

eters, the MF data precoder can always tolerate a larger number of eavesdropper

antennas than the SZF data precoder, which in turn can always tolerate a larger

number of eavesdropper antennas than the CZF data precoder. This can be explained

by the fact that the high AN transmit power required to combat a large number of

eavesdropper antennas drives the receiver of the desired MT into the noise-limited

regime, where the MF data precoder has a superior performance compared to the
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S/CZF data precoders. On the other hand, since αs depends on both Q̃ and L, it is

not a priori clear which AN precoder can tolerate the largest number of eavesdropper

antennas. For a lightly loaded network with small β and smallM , according to Table

3.2, we have L ≈ NT for all three AN precoders. Hence, in this case, we expect the

CNS AN precoder to outperform the SNS and random AN precoders as it achieves

a smaller Q̃. On the other hand, for a heavily loaded network with large β and M ,

the value of αs of the CNS AN precoder is compromised by its small value of L and

SNS and even random AN precoders are expected to achieve a larger αs.

3.6 Performance Evaluation

In this section, we evaluate the performance of the considered secure multi-cell mas-

sive MIMO system. We consider cellular systems with M = 2 and M = 7 hexagonal

cells, respectively, and to gain insight for system design, we adopt the simpli�ed

path-loss model introduced in Section 3.5, i.e., the severeness of the inter-cell inter-

ference is only characterized by the parameter ρ ∈ (0, 1]. Various pilot contamination

patterns are considered by having di�erent pilot length τ = ξK, ξ ∈ M. The sim-

ulation results for the ergodic secrecy rate of the kth MT in the nth cell are based

on (3.5), (3.7), and the expression for the ergodic rate of the MT [43, Eq. (8)] and

are averaged over 5, 000 random channel realizations. Note that, in this chapter, we

consider the ergodic secrecy rate of a certain MT, i.e., the kth MT in the nth cell. The

cell sum secrecy rate can be obtained by multiplying the secrecy rate of the kth MT

by the number of MTs, K, as for the considered channel model, all MTs in the nth

cell achieve the same secrecy rate. The values of all relevant system parameters are

provided in the captions of the �gures. To enable a fair comparison, throughout this

section, we adopted the SNS AN precoder when we compare di�erent data precoders
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and the SZF data precoder when we compare di�erent AN precoders.

3.6.1 Ergodic Capacity of the Eavesdropper for Conventional

Linear AN Precoders

In Fig. 3.1, we show the ergodic capacity of the eavesdropper for the considered

conventional AN precoders. First, we note that the upper bound in (3.8) is very

tight for all AN precoders and all consider values of α and β. Furthermore, as β

increases, the ergodic capacity of all AN precoders decreases since the power allocated

to the information-carrying signal of the user that the eavesdropper tries to intercept

decreases with increasing β as the total power allocated to the information-carrying

signals of all users is �xed. As expected, the eavesdropper's capacity bene�ts from

larger values of α. Furthermore, as predicted in (3.43), because of their di�erent

values of L, the CNS AN precoder yields the largest eavesdropper capacity, while

the random AN precoder yields the lowest. The performance di�erences between the

di�erent AN precoders diminish for small values of α and β as the dependence of the

eavesdropper capacity on L becomes negligible for small α, cf. (3.8), and L ≈ NT

holds for all precoders for small β, cf. Table 3.2.

3.6.2 Ergodic Secrecy Rate for Conventional Linear Data

Precoders

In Figs. 3.2 and 3.3, we show the ergodic secrecy rates of the kth MT in the nth

cell vs. the number of BS antennas for the MF, SZF, CZF, SRCI, and CRCI data

precoders for a lightly loaded and a dense network, respectively, and a �xed power

allocation factor of ϕ = 0.75. In both �gures, the analytical results were obtained

from (3.5), (3.7), and (3.15) for the SRCI data precoder, (3.19) for the CRCI data
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Figure 3.1: Ergodic capacity of the eavesdropper vs. the normalized number of MTs
in the cell, β, for a system with NT = 200, ϕ = 0.75, PT = 10 dB, ρ = 0.3, and
M = ξ = 2.

precoder, and (3.45) for the MF, SZF, and CZF data precoders. For all considered

precoders, the analytical results provide a tight lower bound for the ergodic secrecy

rates obtained by simulations. Furthermore, as expected, the RCI data precoders

outperform the ZF data precoders for both the sel�sh and the collaborative strategies,

but the performance gap diminishes with increasing number of BS antennas.

For the lightly loaded network in Fig. 3.2, we assume M = 2 cells with no pilot

contamination, i.e., ξ = 2, and K = 10 users with a small inter-cell interference factor

of ρ = 0.1. For this scenario, the collaborative designs outperform the sel�sh designs
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Figure 3.2: Analytical and simulation results for the ergodic secrecy rate vs. the
number of BS antennas, NT , for a lightly loaded network with ϕ = 0.75, PT = 10 dB,
pτ = PT/τ , α = 0.1, K = 10, ρ = 0.1, and M = ξ = 2.

and C/SZF precoding yield a large performance gain compared to MF precoding.

This is expected from our analysis in Section 3.5.1 as for the parameters valid for

Fig. 3.2, we obtain from (3.42), KSZF>MF ≈ 280 and KCZF>SZF ≈ 46 for NT = 400.

Intuitively, as the network is only lightly loaded and without pilot contamination,

the collaborative data precoder can e�ciently reduce interference to the other cell

despite the expense of spatial degrees of freedom.

For the dense network in Fig. 3.3, we assume M = 7 cells, ξ = 2, K = 40 users,

and a larger inter-cell interference factor of ρ = 0.3. In this case, for the considered

range of NT , the collaborative precoder designs are not able to suppress inter-cell
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Figure 3.3: Analytical and simulation results for the ergodic secrecy rate vs. the
number of BS antennas, NT , for a dense network with ϕ = 0.75, PT = 10 dB, ξ = 2,
pτ = PT/τ , α = 0.1, K = 40, ρ = 0.3, and M = 7.

interference and AN leakage to other cells su�ciently well to outperform the sel�sh

precoder designs. In fact, for NT = 400, we obtain from (3.42) KCZF>SZF ≈ 26, i.e.,

our analytical results suggest that the SZF precoder outperforms the CZF precoder

for K = 40 which is con�rmed by Fig. 3.3. Nevertheless, for NT > 400, the ergodic

secrecy rate for the CZF data precoder will eventually surpass that for the SZF data

precoder.
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Figure 3.4: Ergodic secrecy rate vs. ϕ for di�erent sel�sh data precoders for a network
with PT = 10 dB, NT = 100, ξ = 2, pτ = PT/K, α = 0.1, ρ = 0.1, and M = 7.

3.6.3 Optimal Power Allocation

In this subsection, we investigate the dependence of the ergodic secrecy rate on the

power allocation factor ϕ and study the impact of system parameters such as β, M ,

and ρ on the optimal ϕ that maximizes the ergodic secrecy rate. The results in this

subsection were generated based on the analytical expressions in (3.5), (3.7), and

(3.15) for the SRCI data precoder, (3.19) for the CRCI data precoder, and (3.45) for

the MF, SZF, and CZF data precoders.

Fig. 3.4 depicts the ergodic secrecy rate of the kth MT in the nth cell for the sel�sh

data precoders SRCI, SZF, and MF as a function of the power allocation factor ϕ. All
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curves are concave and have a single maximum. For ϕ = 0 only AN is transmitted,

hence Rsec
nk = 0 results since no data can be transmitted. For ϕ = 1, no AN is

transmitted, hence Rsec
nk = 0 results since the capacity of the eavesdropper becomes

unbounded (recall that we make the worst-case assumption that the eavesdropper can

receive noise-free). For 0 < ϕ < 1, a positive secrecy rate may result depending on

the system parameters and the precoding schemes. Since we keep the total transmit

power �xed, the transmit power per MT decreases with increasing β. To compensate

for this e�ect, the portion of the total transmit power allocated to data transmission

should increase. This is con�rmed by Fig. 3.4 where the optimal value of ϕ for

β = 0.5 is larger than that for β = 0.1. Furthermore, for a given β, the optimal ϕ

is the larger, the better the performance of the adopted data precoder is, i.e., for a

more e�ective data precoder, transmitting the data signal with higher power is more

bene�cial, whereas for a less e�ective data precoder impairing the eavesdropper with

a higher AN power is more bene�cial.

In Fig. 3.5, we show the ergodic secrecy rate vs. ϕ for the CRCI, CZF, and SZF

precoders. Similar to our observations in Fig. 3.4, for given system parameters,

the optimal ϕ tends to be larger for more e�ective precoders that achieve a better

performance. For the system withM = 7, ρ = 0.1, this can be observed by comparing

the optimal ϕ for the SZF and CZF precoders. Furthermore, while for the pilot

contamination free system with M = 2, ρ = 0.3, collaborative precoding is always

preferable, forM = 7, ρ = 0.1, SZF precoding outperforms CZF and CRCI precoding

for most considered values of ϕ, as in this scenario, suppressing the interference

and AN leakage to the ξK = 20 MTs in other cells with the available NT = 100

antennas is not worth at the expense of sacri�cing extra spatial degrees of freedom

for collaborative designs. In particular, from (3.42), we obtain KCZF>SZF ≤ 6 for
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Figure 3.5: Ergodic secrecy rate vs. ϕ for di�erent data precoders for a network with
PT = 10 dB, NT = 100, ξ = 2, pτ = PT/τ , α = 0.1, and β = 0.1.

M = 7, ρ = 0.1 and KCZF>SZF ≤ 30 for M = 2, ρ = 0.3, which con�rms the results

shown in Fig. 3.5.

Fig. 3.6 depicts the ergodic secrecy rate vs. ϕ for the considered conventional

AN precoder structures. We consider a lightly loaded network with β = 0.1 and

a moderately loaded network with β = 0.4. For β = 0.1, the CNS AN precoder

outperforms the SNS AN precoder since, in this case, for the CNS AN precoder,

the negative impact of having (slightly) fewer dimensions available for degrading the

eavesdropper's channel (smaller value of L) is outweighed by the positive impact of

causing less AN leakage (smaller value of Q̃). On the other hand, for β = 0.4, the
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Figure 3.6: Ergodic secrecy rate vs. ϕ for di�erent AN precoders for a network with
PT = 10 dB, NT = 100, ξ = 2, pτ = PT/τ , M = 2, ρ = 0.1, and α = 0.1.

CNS AN precoder has a substantially smaller L than the SNS precoder which cannot

be compensated by its larger Q̃. Despite having the largest value of L, the random

AN precoder has the worst performance for both considered cases because of its large

AN leakage.

3.6.4 Conditions for Non-Zero Secrecy Rate

In Section 3.5.3, we showed that a positive ergodic secrecy rate is possible only if

α < αs. In Fig. 3.7, using (3.46), we plot αs as a function of β. In the left hand side

sub�gure, we compare MF, SZF, and CZF data precoding for SNS AN precoding, and
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dB, NT = 100, ξ = 2, pτ = PT/τ , ρ = 0.3, and M = 2.

in the right hand side sub�gure, we compare random, SNS, and CNS AN precoding

for SZF data precoding. The comparison of the data precoders reveals that although

SZF and CZF entail a much higher complexity, MF precoding achieves a larger αs.

Therefore, if the eavesdropper has a large number of antennas and small ergodic

secrecy rates are targeted, simple MF precoding is always preferable. On the other

hand, whether SNS or CNS AN precoder is preferable depends on the system load.

For small values of β, CNS AN precoding can tolerate more eavesdropper antennas,

whereas for large values of β, SNS AN precoding is preferable. Random AN precoding

is outperformed by SNS and/or CNS AN preceding for any value of β. A closer
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examination of (3.46) reveals that this is always true if S/CZF data precoders are

employed. However, for the MF data precoder, there are parameter combination for

which random AN precoding outperforms SNS and CNS AN precoding.

3.6.5 Low-Complexity POLY Data and AN Precoders

In this subsection, we evaluate the ergodic secrecy rates of the proposed low-complexity

POLY data and AN precoders. To this end, we consider again a lightly loaded net-

work with little inter-cell interference (M = 2, β = 0.1, ρ = 0.1) and a dense network

with more inter-cell interference (M = 7, β = 0.15, ρ = 0.3). All results shown

in this section were obtained by simulation. For each simulation point, the optimal

value of ϕ was found numerically and applied. In Figs. 3.8 and 3.9, we show the

ergodic secrecy rate of the kth MT in the nth cell as a function of the pilot energy,

τpτ . As expected, for all considered schemes, the ergodic secrecy rate is monoton-

ically increasing in the pilot energy since more accurate channel estimates improve

performance and the total power used for data and AN transmission, PT , is assumed

to be �xed.

In Fig. 3.8, we depict the ergodic secrecy rates for the proposed POLY data

precoder for di�erent values of I and compare them to those of conventional sel�sh

data precoders. For the sake of comparison, all data precoders are combined with

the SNS AN precoder. As the number of terms of the polynomial I increase, the

performance of the POLY data precoder quickly improves and approaches that of the

SRCI data precoder. The convergence is faster for the dense network considered in the

right hand side sub�gure, where the performance di�erence between all precoders is

smaller in general since interference cannot be as e�ciently avoided as for the lightly

loaded network.
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Figure 3.8: Ergodic secrecy rate for POLY and conventional sel�sh data precoders
for a network employing the optimal ϕ, PT = 10 dB, ξ = 1, pτ = PT/τ , NT = 200,
and α = 0.1.

In Fig. 3.9, we show the ergodic secrecy rates for the proposed POLY AN precoder

for di�erent values of J and compare them to those of the random and SNS AN

precoders. For the sake of comparison, all AN precoders are combined with SZF

data precoding. The POLY AN precoder quickly approaches the performance of the

SNS AN precoder as the polynomial order J increases. Similar to the POLY data

precoders, the convergence is faster for the dense network where the performance

di�erences between di�erent AN precoders are also smaller. For the denser network,

even the random AN precoder is a viable option and su�ers only from a small loss in

performance compared to the SNS AN precoder.
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Figure 3.9: Ergodic secrecy rate for POLY and SNS AN precoders for a network
employing the optimal ϕ, PT = 10 dB, ξ = 1, pτ = PT/τ , NT = 200, and α = 0.1.

3.6.6 Complexity-Performance Tradeo�

In this subsection, we investigate the tradeo� between the ergodic secrecy rate per-

formance and the computational complexity for the proposed data and AN precoders

in Figs. 3.10 and 3.11, respectively. In particular, Figs. 3.10 and 3.11 depict the

ergodic secrecy rate on the right hand side and the computational complexity (in

Giga FLOP) on the left hand side, both as a function of the numbers of users in a

cell. For the considered setting, the performance gains of collaborative data and AN

precoding compared to sel�sh strategies are moderate, but the associated increase in

complexity is substantial, especially for large K.
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Figure 3.10: Ergodic secrecy rate (left hand side) and computational complexity
(right hand side) of various linear data precoders for a network employing PT = 10dB,
NT = 1000, pτ = PT/τ , M = ξ = 2, ρ = 0.1, T − τ = 100, and an SNS AN precoder.

Fig. 3.10 illustrates that for the considered setting a POLY data precoder with

I = 1 achieves a better performance than the MF precoder but has substantially

lower complexity than the SRCI precoder. For large I, the POLY data precoder has

a lower complexity than the SRCI precoder for large K. However, even for small K,

the POLY precoder may be preferable as it does not incur the stability issues that

may arise in the implementation of the large-scale matrix inversions required for the

SRCI precoder.

Fig. 3.11 shows that for the considered setting the proposed POLY AN precoder

with J = 1 outperforms the Random AN precoder, and with J = 5 achieves al-
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Figure 3.11: Ergodic secrecy rate (left hand side) and computational complexity
(right hand side) of various linear AN precoders for a network employing PT = 10dB,
NT = 1000, pτ = PT/τ , M = ξ = 2, ρ = 0.1, T −τ = 100, and an SZF data precoder.

most the same performance as the SNS AN precoder but with a substantially lower

complexity. We further observe that for small K, the proposed POLY AN precoder

requires even lower complexity than the Random AN precoder, owing to the e�cient

structure given in (3.35) operated by Horner's rule.

3.7 Conclusions

In this chapter, we considered downlink multi-cell massive MIMO systems employing

linear data and AN precoding for physical layer security provisioning. We analyzed
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and compared the achievable ergodic secrecy rate of various conventional data and

AN precoders in the presence of pilot contamination. To this end, we also opti-

mized the regularization constants of the sel�sh and collaborative RCI precoders in

the presence of AN and multi-cell interference. In addition, we derived linear POLY

data and AN precoders which o�er a good compromise between complexity and per-

formance in massive MIMO systems. Interesting �ndings of this chapter include: 1)

Collaborative data precoders outperform sel�sh designs only in lightly loaded systems

where a su�cient number of degrees of freedom for suppressing inter-cell interference

and su�cient resources for training are available. 2) Similarly, CNS AN precoding is

preferable over SNS AN precoding in lightly loaded systems as it causes less AN leak-

age to the information-carrying signal, whereas in more heavily loaded systems, CNS

AN precoding does not have su�cient degrees of freedom for e�ectively degrading

the eavesdropper channel and SNS AN precoding is preferable. 3) For a large num-

ber of eavesdropper antennas, where only small positive secrecy rates are achievable,

MF data precoding is always preferable compared to SZF and CZF data precoding.

4) The proposed POLY data and AN precoders approach the performances of the

SRCI data and SNS AN precoders with only a few terms in the respective matrix

polynomials and are attractive options for practical implementation.
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Chapter 4

Hardware Impairments in Secure

Massive MIMO Systems

4.1 Introduction

Since security is a critical concern for future communication systems, facilitating

secrecy at the physical layer of massive MIMO systems has received signi�cant atten-

tion recently. All aforementioned works on secure massive MIMO systems including

Chapters 2 and 3 are based on the assumption that the transceivers of the legitimate

users are equipped with perfect hardware components, i.e., the e�ects of hardware

impairments were not taken into account. Nevertheless, all practical implementa-

tions do su�er from hardware impairments such as phase noise, quantization errors,

ampli�cation noise, and nonlinearities [18]. These impairments are expected to be

particularly pronounced in massive MIMO systems as the excessive number of BS

antennas makes the use of low-cost components desirable to keep the overall capi-

tal expenditures for operators manageable. Although hardware impairments can be

mitigated by analog and digital signal processing techniques [19], they cannot be

removed completely, due to the randomness introduced by the di�erent sources of

imperfection. The remaining residual hardware impairments can be modelled by a

combination of phase noise and additive distortion noises at the transmitter and the

receiver [19]. Several works have investigated the impact of hardware impairments
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on massive MIMO systems [18], [20, 21, 22]. They all demonstrated that hardware

impairments can severely limit the performance of massive MIMO systems. Thereby,

a crucial role is played by the degradation caused by phase noise to the quality of

the CSI estimates needed for precoder design. On the one hand, phase noise causes

the CSI estimates to become outdated more quickly, and on the other hand, it may

cause a loss of orthogonality of the pilot sequences employed by the di�erent users in

a cell for uplink training. To overcome the latter e�ect, so-called TO and SO pilot

sequences were investigated in [22]. Furthermore, the impact of the number of LOs

employed at the massive MIMO BS on the performance in the presence of phase noise

was studied in [20, 22].

All aforementioned works [18], [20, 21, 22] studied the impact of hardware impair-

ments in the context of conventional massive MIMO system design without regard

for communication secrecy. However, if communication secrecy is considered, an

additional challenge arises: Whereas the legitimate user of the system will likely em-

ploy low-cost equipment giving rise to hardware impairments, the eavesdropper is

expected to employ high-quality equipment which can compensate for all hardware

impairments except for the additive distortion noise at the BS. This disparity in

equipment quality was not considered in the related work on physical layer security

[43]-[64] nor in the related work on hardware impairments [18], [20, 21, 22] and ne-

cessitates the development of a new analysis and design framework. For example,

NS AN precoding, which was widely used to enhance the achievable secrecy rate

of massive MIMO systems [25, 43, 64], becomes ine�ective in the presence of phase

noise.

Motivated by the above considerations, in this chapter, we present the �rst study

of physical layer security in hardware constrained massive MIMO systems. Thereby,
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we focus on the downlink and adopt for the legitimate links the generic residual

hardware impairment model from [19, 22], which includes the e�ects of multiplicative

phase noise and additive distortion noise at the BS and the users. As a worst-

case scenario, the eavesdropper is assumed to employ ideal hardware. Our main

contributions are summarized as follows.

• For the adopted generic residual hardware impairment model, we derive a tight

lower bound for the ergodic secrecy rate achieved by a downlink user when

MF data precoding is employed at the massive MIMO BS. The derived bound

provides insight into the impact of various system and channel parameters, such

as the phase noise variance, the additive distortion noise parameters, the AN

precoder design, the amount of power allocated to the AN, the pilot sequence

design, the number of deployed LOs, and the number of users, on the ergodic

secrecy rate.

• As conventional NS AN precoding is sensitive to phase noise, we propose a

novel G-NS AN precoding design, which mitigates the AN leakage caused to the

legitimate user in the presence of phase noise at the expense of a reduction of the

available spatial degrees of freedom. The proposed method leads to signi�cant

performance gains, especially in systems with large numbers of antennas at the

BS.

• We generalize the SO and TO pilot sequence designs from [22] to orthogonal

pilot sequences with arbitrary numbers of non-zero elements. Although SO

sequences, which have no zero elements, are preferable for small phase noise

variances, sequence designs with zero elements become bene�cial in the presence

of strong phase noise.
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• Our analytical and numerical results reveal that while hardware impairments

in general degrade the achievable secrecy rate, the proposed countermeasures

are e�ective in limiting this degradation. Furthermore, surprisingly, there are

cases when the additive distortion noise at the BS is bene�cial for the secrecy

performance as it can have a similar e�ect as AN.

The remainder of this chapter is organized as follows. In Section 4.2, the mod-

els for uplink training and downlink data transmission in the considered massive

MIMO system with imperfect hardware are presented. In Section 4.3, we derive a

lower bound on achievable ergodic secrecy rate and introduce the proposed G-NS AN

precoder design. The impact of the various system and channel parameters on the

secrecy performance is investigated based on the derived lower bound in Section 4.4.

In Section 4.5, the achievable secrecy rate is studied via simulation and numerical

results, and conclusions are drawn in Section 4.6.

4.2 System and Channel Models

The considered massive MIMO system model comprises an N -antenna BS, K single-

antenna MTs, and an NE-antenna eavesdropper. The eavesdropper is passive in order

to hide its existence from the BS and the MTs. Similar to [18, 22], we assume that

after proper compensation the residual hardware impairments manifest themselves at

the BS and the MTs in the form of 1) multiplicative phase noises at transmitter and

receiver, 2) transmit and receive power dependent distortion noises at transmitter

and receiver, respectively, and 3) ampli�ed thermal noise at the receiver. The impact

of this general hardware impairment model on uplink training and downlink data

transmission is investigated in Sections 4.2.1 and 4.2.2, respectively, and the signal

model for the eavesdropper is presented in Section 4.2.3.
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Figure 4.1: Uplink training and downlink transmission phase.

4.2.1 Uplink Pilot Training under Hardware Impairments

In massive MIMO systems, the CSI is usually acquired via uplink training by ex-

ploiting the channel reciprocity between uplink and downlink [5, 8]. Here, we assume

that the �rst B symbol intervals of the coherence time, which comprises T symbol

intervals, are used for uplink training. Thereby, we split the training phase into Bo

sub-phases of lengths Bb, 1 ≤ b ≤ Bo, where
∑Bo

b=1Bb = B, cf. Fig. 4.1. Furthermore,

the K MTs are assigned to Bo disjunct sets Sb, 1 ≤ b ≤ Bo, with |Sb| ≤ Bb and∑Bo
b=1 |Sb| = K. In training sub-phase b, the MTs in set Sb emit mutually orthogo-

nal pilot sequences ωk = [ωk(1), ωk(2), . . . , ωk(Bb)]
T ∈ CBb×1, k ∈ Sb, for which we

assume a per-pilot power constraint |ωk(t)|2 = pτ ,∀k, t, whereas all MTs k /∈ Sb are

silent. For larger values of Bb, the total energy of the pilot sequences is larger but, as

will be shown later, the loss of orthogonality caused by phase noise becomes also more

pronounced. Hence, Bb or equivalently Bo (assuming a �xed B) should be optimized

for maximization of the secrecy rate. We note that the proposed pilot design is a

generalization of the SO and TO pilot designs proposed in [22, 20] which result as

special cases for Bo = 1 and Bo = B, respectively.

In symbol interval t ∈ Tb, where Tb denotes the set of symbol intervals in training

sub-phase b, 1 ≤ b ≤ Bo, the received uplink vector yUL(t) ∈ CN×1 at the BS is given
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by

yUL(t) =
∑
k∈Sb

Θk(t)gk(ωk(t) + ηMT
t,k (t)) + ηBS

r (t) + ξUL(t). (4.1)

Here, the channel vector of the kth MT, gk ∼ CN(0N , βkIN), is modelled as block

Rayleigh fading, where βk denotes the path-loss. Thereby, gk is assumed to be con-

stant during coherence time T and change independently afterwards. In (4.1), the

terms Θk(t), η
MT
t,k (t), ηBS

r (t), and ξUL(t) characterize the hardware impairments af-

fecting the uplink training phase and are explained in detail in the following:

1) Phase noise: Matrix

Θk(t) = diag
(
ejθ

1
k(t)11×N/No , . . . , e

jθNok (t)11×N/No

)
∈ CN×N (4.2)

models the phase noise originating from the free-running LOs equipped at the BS

and the MTs [20]. Thereby, we assume that at the BS each group of N/No ∈ Z

antennas is connected to one free-running LO. θlk(t) = ψl(t)+ϕk(t) is the phase noise

that distorts the link between the lth LO at the BS and the kth MT. Adopting the

discrete-time Wiener phase noise model [20], in time interval t, the phase noises at

the lth LO of the BS and the kth MT are modelled as ψl(t) ∼ CN(ψl(t − 1), σ2
ψ),

1 ≤ l ≤ No, and ϕk(t) ∼ CN(ϕk(t − 1), σ2
ϕ), 1 ≤ k ≤ K, where σ2

ψ and σ2
ϕ are the

phase noise (increment) variances at the BS and the MTs, respectively.

2) Distortion noise: ηMT
t,k (t) ∈ C and ηBS

r (t) ∈ CN×1 model the additive distortion

noise at the kth MT and the BS, respectively, which originates from the residual e�ects

after compensation of hardware impairments such as power ampli�er non-linearities

at the transmitter, quantization noise in the analog-to-digital converters (ADCs) at

the receiver, etc. [18]. Distortion noise is modeled as a Gaussian distributed random

process in the literature [18, 19]. This model has been experimentally veri�ed in
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[76]. Furthermore, at each antenna, the distortion noise power is proportional to the

corresponding signal power, i.e., ηMT
t,k (t) ∼ CN(0, υMT

t,k ) and ηBS
r (t) ∼ CN(0N ,ΥBS

r ),

where

υMT
t,k = κMT

t E[|ωk(t)|2] and ΥBS
r = κBS

r

K∑
k=1

E[|ωk(t)|2]Rdiag
k . (4.3)

Here, Rdiag
k = diag

(
|g1k|2, . . . , |gNk |2

)
, where gik denotes the ith element of gk, and

parameters κMT
t , κBS

r > 0 denote the ratio between the additive distortion noise vari-

ance and the signal power and are measures for the severity of the residual hardware

impairments.

3) Ampli�ed thermal noise: ξUL(t) ∼ CN(0N , ξULIN) models the thermal noise

ampli�ed by the low noise ampli�er and other components such as mixers at the

receiver [22]. Therefore, the variance of this noise is generally larger than that of the

actual thermal noise σ2
n, i.e., ξ

UL > σ2
n.

For channel estimation, we collect the signal vectors received during the bth

training phase in vector ψb = [(yUL(Bb−1 + 1))T , . . . , (yUL(Bb))
T ]T ∈ CBbN×1,

b = 1, . . . , Bo, where Bb ,
∑b

i=1Bi and B0 = 0, and de�ne the e�ective channel

vector at time t as gk(t) = Θk(t)gk. With these de�nitions, the MMSE estimate

of the channel of MT k ∈ Sb at time t ∈ {B + 1, . . . , T} (i.e., during the data

transmission phase) can be written as [22]

ĝk(t) = E[gk(t)ψH
b ]
(
E[ψbψ

H
b ]
)−1

ψb =
(
βkω

H
k Θ

b
σ(t)Σ

−1
b ⊗ IN

)
ψb, (4.4)

where

Θb
σ(t) = diag

(
e−

σ2ψ+σ2ϕ
2

|t−Bb−1−1|, . . . , e−
σ2ψ+σ2ϕ

2
|t−Bb|

)
(4.5)

111



Chapter 4. Hardware Impairments in Secure Massive MIMO Systems

and

Σb =
∑
k∈Sb

βk
(
Wb

k +Ub
k

)
+ ξULIBb . (4.6)

Here, we adopted the de�nitions [Wb
k]i,j = ωk(i)ω

∗
k(j)e

−
σ2ψ+σ2ϕ

2
|i−j|, i, j ∈ {1, . . . Bb},

and Ub
k = (κMT

t + κBS
r )pτIBb .

Considering the properties of MMSE estimation, the channel can be decomposed

as gk(t) = ĝk(t)+e(t), t = 1, . . . , B, where ĝk(t) denotes the MMSE channel estimate

given in (4.4) and ek(t) represents the estimation error. ĝk(t) and e(t) are mutually

uncorrelated and have zero mean [18, Theorem 1]. The error covariance matrix is

given by

E[ek(t)eHk (t)] = βk
(
1− βkω

H
k Θ

b
σ(t)Σ

−1
b Θb

σ(t)ωk
)
IN . (4.7)

Eqs. (4.4)-(4.7) reveal that for |Sb| > 1 and σ2
ψ, σ

2
ϕ > 0, the channel estimate of the

kth MT contains contributions from channels of other MTs emitting their pilots in

the same training sub-phase, i.e., pilot contamination occurs although the emitted

pilots are orthogonal. This loss of orthogonality at the receiver is introduced by the

phase noise via matrices Θb
σ(t) and Wb

k, and can be avoided only by enforcing that in

any sub-phase only one MT emits its pilots, i.e., |Sb| = 1, 1 ≤ b ≤ Bo. In particular,

for the case |Sb| = Bb = 1, 1 ≤ b ≤ Bo = B, for symbol interval t ∈ {B + 1, . . . T},

the MMSE channel estimate of MT k ∈ Sb can be simpli�ed to

ĝk(t) =
βke

−
σ2ψ+σ2ϕ

2
|t−b|

pτβk(1 + κMT
t + κBS

r ) + ξUL
yUL(b), (4.8)

with yUL(t) given in (4.1), i.e., ĝk(t) is not a�ected by the channels of other MTs
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despite the phase noise. The corresponding error covariance matrix simpli�es to

E[e(t)eH(t)] = βk

(
1− pτβk

pτβk(1 + κMT
t + κBS

r ) + ξUL

)
IN . (4.9)

Eqs. (4.4) and (4.8) reveal that the channel estimate depends on time t. As a conse-

quence, ideally, the channel-dependent data and AN precoders employed for downlink

transmission should be recomputed for every symbol interval of the data transmission

phase, which entails a high computational complexity. Therefore, in the following,

we assume that data and AN precoders are computed based on the channel estimate

for one symbol interval t0 (e.g., t0 = B + 1) and are then employed for precoding

during the entire data transmission phase, i.e., for t ∈ {B + 1, . . . , T}. For nota-

tional conciseness, we denote the corresponding channel estimate by ĝk = ĝk(t0),

k = {1, . . . , K}.

4.2.2 Downlink Data Transmission and Linear Precoding

Assuming channel reciprocity, during the downlink data transmission phase, the re-

ceived signal at the kth MT in time interval t ∈ {B + 1, . . . , T} is given by

yDL
k (t) = gHk Θ

H
k (t)(x+ ηBS

t (t)) + ηMT
r,k (t) + ξDL

k (t). (4.10)

In (4.10), similar to the uplink, ηBS
t (t) ∼ CN(0N ,ΥBS

t ) and ηMT
r,k (t) ∼ CN(0, υMT

r,k (t))

denote the downlink distortion noise [18] at the BS and the kth MT, respectively,

where

ΥBS
t = κBS

t diag (X11, . . . , XNN) and υMT
r,k (t) = κMT

r gHk (t)Xgk(t) (4.11)
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with X = E[xxH ] and Xii = [X]ii, i = 1, . . . , N . Furthermore, ξDL
k (t) ∼ CN(0, ξDL)

represents the ampli�ed thermal noise at the kth MT. For simplicity of presentation,

we assume that parameters κBS
t , κMT

r , and ξDL are identical for all MTs.

The downlink transmit signal x ∈ CN×1 in (4.10) is modeled as

x =
√
pFs+

√
qAz ∈ CN×1, (4.12)

where the data symbol vector s ∈ CK×1 and the AN vector z ∈ CL×1, L ≤ N , are

multiplied by data precoder F ∈ CN×K and AN precoder A ∈ CN×L, respectively.

As we assume that the eavesdropper's CSI is not available at the BS, AN is injected

to degrade the eavesdropper's ability to decode the data intended for the MTs [25,

43, 64]. Thereby, it is assumed that the components of s and z are independent

and identically distributed (i.i.d.) circularly symmetric complex Gaussian (CSCG)

random variables, i.e., s ∼ CN(0K , IK) and z ∼ CN(0L, IL). In (4.12), p = ϕPT/K

and q = (1− ϕ)PT/L denote the power assigned to each MT and each column of the

AN, where PT is the total power budget and ϕ ∈ (0, 1] can be used to strike a balance

between data transmission and AN emission. Combining (4.12) and (4.10) we obtain

yDL
k (t) =

√
pgHk (t)fksk+

K∑
l ̸=k

√
pgHk (t)flsl+

√
qgHk (t)Az+gHk (t)η

BS
t (t)+ηMT

r,k (t)+ξDL
k (t),

(4.13)

where sk and fk denote the k
th element of s and the kth column of matrix F, respec-

tively.

4.2.3 Signal Model of the Eavesdropper

We assume that the eavesdropper is silent during the training phase, i.e., for t ∈

{1, . . . , B}, and eavesdrops the signal intended for MT k during the data transmis-
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sion phase, i.e., for t ∈ {B + 1, . . . , T}. Let GE denote the channel matrix between

the BS and the eavesdropper with i.i.d. zero-mean complex Gaussian elements having

variance βE, where βE is the path-loss between the BS and the eavesdropper. Since

the capabilities of the eavesdropper are not known at the BS, we make worst-case

assumptions regarding the hardware and signal processing capabilities of the eaves-

dropper with respect to communication secrecy. In particular, we assume the received

signal at the eavesdropper at time t ∈ {B + 1, . . . , T} can be modelled as

yE(t) = GH
EΨ

H(t)(x+ ηBS
t (t)) ∈ CNE×1, (4.14)

where Ψ(t) = diag
(
ejψ1(t)1T1×N/No , . . . , e

jψNo (t)1T1×N/No

)
. Thereby, we assumed that

the eavesdropper employs high-quality hardware such that the only hardware impair-

ments are the phase noise and the additive distortion noise at the BS. Eq. (4.14) also

implies that the thermal noise at the eavesdropper is negligibly small [25, 43, 64]. Fur-

thermore, we assume that the eavesdropper has perfect CSI, i.e., it perfectly knows

the e�ective eavesdropper channel matrix GH
EΨ

H(t), and can perfectly decode and

cancel the interference caused by all MTs except for the MT of interest [25, 43, 64].

These worst-case assumptions lead to an upper bound on the ergodic capacity of the

eavesdropper given by

CE = E[log2(1 + γE)] (4.15)

where

γE = pgkE
(
GH
E (qAAH +ΥBS

t )GE

)−1
(gkE)

H (4.16)

and gkE = fHk GE. We note that since we assumed that the thermal noise at the

receiver of the eavesdropper is negligible, γE, and consequently CE, are independent of

the path-loss of the eavesdropper, βE. Furthermore, since perfect channel estimation
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at the eavesdropper was assumed, the phase noise can be compensated and the only

remaining hardware impairment a�ecting the performance of the eavesdropper is

the additive distortion noise at the BS, which impacts the ergodic capacity of the

eavesdropper in a similar manner as the AN injected at the BS, cf. (4.16).

4.3 Achievable Ergodic Secrecy Rate in the

Presence of Hardware Impairments

In this section, we analyze the achievable ergodic secrecy rate of a massive MIMO

system employing non-ideal hardware. To this end, we derive a lower bound on the

achievable ergodic secrecy rate in Section 4.3.1, and present an asymptotic analysis

for the downlink data rate of the legitimate MTs when MF data precoding is adopted

by the BS in Section 4.3.2. In Section 4.3.3, a generalized NS AN precoder is proposed

to avoid the AN leakage caused by phase noise for conventional NS AN precoding.

Finally, in Section 4.3.4, a simple closed-form upper bound for the eavesdropper's

capacity for the new AN precoder is presented.

4.3.1 Lower Bound on Achievable Ergodic Secrecy Rate

In this chapter, we assume that communication delay is tolerable and coding over

many independent channel realizations is possible. Hence, we adopt the ergodic

secrecy rate achieved by a given MT as performance metric [25].

Before analyzing the secrecy rate, we �rst employ [22, Lemma 1] to obtain a lower

bound on the achievable rate for the multiple-input single-output (MISO) phase noise

channel given by (4.10). In particular, the achievable rate of the kth MT, 1 ≤ k ≤ K,
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in symbol interval t ∈ {B + 1, . . . , T} is lower bounded by

Rk(t) ≥ Rk(t) = log2(1 + γk(t)), (4.17)

with SINR γk(t) =

p
∣∣E [gHk (t)fk]∣∣2

K∑
l=1

pE
[
|gHk (t)fl|

2
]
− p |E [gHk (t)fk]|

2
+ E

[
gHk (t)(qAAH +ΥBS

t )gk(t)
]
+ E

[
υMT
k,r (t)

]
+ ξDL

.

(4.18)

The expectation operator in (4.18) is taken with respect to channel vectors, gk, as

well as the phase noise processes, ψl(t) and ϕk(t). The SINR in (4.18) is obtained

by employing the average e�ective channel gain
∣∣E [gHk (t)fk]∣∣ for signal detection,

while treating the deviation from the average e�ective channel gain as Gaussian

noise having variance E
[∣∣gHk (t)fk∣∣2]−|E

[
gHk (t)fk

]
|2, cf. [8]. Moreover, following [22,

Lemma 1] we treated the multiuser interference and distortion noises as independent

Gaussian noises, which is a worst-case assumption for the calculation of the mutual

information. Based on (4.17), we provide a lower bound on the achievable ergodic

secrecy rate of the kth MT, 1 ≤ k ≤ K, in the following Lemma.

Lemma 4.1. : The achievable ergodic secrecy rate of the kth MT, 1 ≤ k ≤ K, is

bounded below by

Rsec
k ≥ Rsec

k =
1

T

∑
t∈{B+1,...,T}

[Rk(t)− CE]
+ , (4.19)

where Rk(t), 1 ≤ k ≤ K, is the lower bound of the achievable ergodic rate of the kth

MT given in (4.17) and CE is the ergodic capacity between the BS and the eavesdrop-

per given in (4.15).
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Proof. Please refer to Appendix C.1.

CE in (4.19) is constant for all t ∈ {B + 1, . . . , T} as we made the worst-case

assumptions that the eavesdropper employs ideal hardware and has perfect CSI. The

sum in (4.19) is over the T−B time slots used for data transmission. Motivated by the

coding scheme for the non-secrecy case in [77], a similar coding scheme that supports

the secrecy rate given in (4.19) is described as follows. For a given t ∈ {B+1, . . . , T},

the statistics of gk(t) in (4.18) given the estimate ĝk are identical across all coherence

intervals and the corresponding channel realizations are i.i.d. Hence, we employ T−B

parallel channel codes for each MT; one code for each time t ∈ {B+1, . . . , T}, i.e., the

tth channel code is employed across the tth time slots of multiple coherence intervals.

Then, at each MT, the tth received symbols across the multiple coherence intervals

are jointly decoded [77]. With this coding strategy the ergodic secrecy rate given

in (4.19) is achieved provided the parallel codes span su�ciently many (ideally an

in�nite number) of independent channel realizations gk and phase noise samples ψl(t)

and ϕk(t).

4.3.2 Asymptotic Analysis of Achievable Rate for MF

Precoding

In this subsection, we analyze the lower bound on the achievable ergodic rate of the

kth MT, 1 ≤ k ≤ K, in (4.17) in the asymptotic limit N,K → ∞ for �xed ratio

β = K/N . Thereby, we adopt MF precoding at the BS, i.e., fk = ĝk/∥ĝk∥, as is

commonly done for massive MIMO systems because of complexity concerns for more

sophisticated precoder designs. In the following Lemma, we provide a closed-form

expression for the gain of the desired signal.
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Lemma 4.2. : For MF precoding at the BS, the numerator of (4.18) re�ecting the

gain of the desired signal at MT k ∈ Sb, 1 ≤ b ≤ Bo, can be expressed as

E
[
gHk Θ

H
k (t)fk

]
=
√
βkNλk · e−

σ2ψ+σ2ϕ
2

|t−t0|, where λk = βkω
H
k Θ

b
σ(t0)

Σ−1
b Θb

σ(t0)
ωk.

(4.20)

Proof. Please refer to Appendix C.2.

The term e−
σ2ψ+σ2ϕ

2
|t−t0| in (4.20) reveals the impact of the accumulated phase noise

from the time of channel estimation, t0, to the time of data transmission, t, on the

received signal strength at MT k. On the other hand, the phase noise within the

training phase a�ects λk, and consequently the received signal strength, via Θb
σ(t0)

and Σb, cf. (4.5), when multiple pilot sequences are simultaneously emitted in a given

training sub-phase. In contrast, when TO pilots are adopted, i.e., only a single user

emits pilots in each training sub-phase and Bb = 1, 1 ≤ b ≤ B, λk in (4.20) reduces

to λk =
pτβk

pτβk(1+κ
MT
t +κBS

r )+ξUL and is not a�ected by the phase noise.

Next, an expression for the multiuser interference power in the �rst term of the

denominator of (4.18) is derived.

Lemma 4.3. : When MF precoding is adopted at the BS, the power of the multiuser

interference caused by the signal intended for the lth MT, l ̸= k, at MT k ∈ Sb,

1 ≤ b ≤ Bo, is given by

E
[∣∣gHk ΘH

k (t)fl
∣∣2] = (βk + (X(1)

k,l +X
(2)
k,l +X

(3)
k,l

)(1− ϵ

No

+ ϵ

))
, if l ∈ Sb (4.21)

and by βk otherwise. Here, ϵ = e−σ
2
ψ |t−t0|, X

(1)
k,l =

β2
kω

H
l Θb

σ(t0)
Σ−1
b Ub

kΣ
−1
b Θb

σ(t0)
ωl

ωHl Θb
σ(t0)

Σ−1
b Θb

σ(t0)
ωl

, X
(2)
k,l =

N
No

·
β2
kω

H
l Θb

σ(t0)
Σ−1
b Wb

kΣ
−1
b Θb

σ(t0)
ωl

ωHl Θb
σ(t0)

Σ−1
b Θb

σ(t0)
ωl

, and X
(3)
k,l = N

(
1− 1

No

)
·

∣∣∣∣βkωHk Θb
σ(t0)

Σ−1
b Θb

σ(t0)
ωl

∣∣∣∣2
ωHl Θb

σ(t0)
Σ−1
b Θb

σ(t0)
ωl

.
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Proof. Please refer to Appendix C.3.

Lemma 4.3 con�rms that when the number of BS antennas is su�ciently large,

i.e., N → ∞, as long as l /∈ Sb, the impact of the multiuser interference from the lth

MT vanishes, as is commonly assumed in the massive MIMO literature, e.g. [5, 6].

However, the same is not true for MTs that emit pilots in the same training sub-phase

as MT k, i.e., MTs l ∈ Sb. Because of the impairment incurred by the phase noise

during the training phase, the interference power of these MTs grows linearly with N

and does not vanish compared to the strength of the desired signal in (4.20) in the

limit of N → ∞.

Furthermore, for the summand with l = k in the sum in the �rst term of the

denominator of (4.18), we obtain E
[∣∣gHk ΘH

k (t)fk
∣∣2] =

E
[
tr

(
gk(t0)g

H
k (t0)Ψ

H
t0
(t)

ĝkĝ
H
k

∥ĝk∥2
Ψt0(t)

)]
= βk + βk(N − 1)λk

(
1− ϵ

No

+ ϵ

)
, (4.22)

where k ∈ Sb and Ψt0(t) is de�ned in Appendix C.2. The last equality in (4.22) is

obtained by applying [66, Theorem 1] [61]. The variance of the gain of the desired

signal, gHk Θ
H
k (t)fk, is obtained by subtracting the right hand side of (4.22) from the

square of the right hand side of (4.20).

The two terms in the denominator of (4.18) originating from the hardware im-

pairments at the BS and the kth MT, i.e., ηBS
t (t) and ηMT

r,k (t), respectively, can be

calculated as

E
[∣∣gHk ΘH

k (t)Υ
BS
t Θk(t)gk

∣∣] = βkκ
BS
t PT and E

[
υMT
r,k (t)

]
= βkκ

MT
r PT . (4.23)

Substituting the results in (4.20)-(4.23) into (4.18), we obtain the received SINR at
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MT k ∈ Sb in symbol interval t as

γk(t) =
pNβkλk

pβk(ak + ck) + qβkLkAN + βk(κBS
t + κMT

r )PT + ξDL
, (4.24)

with

ak =
∑
l∈Sb

(
1 +

(
X

(1)
k,l +X

(2)
k,l +X

(3)
k,l

)(1− ϵ

No

+ ϵ

)
/βk

)
+ (K − |Sb|), (4.25)

ck =

(
1− 1

No

)
(1− ϵ) + [(N − 1)λk + 1]

(
1− ϵ

No

+ ϵ

)
−Nλk, (4.26)

where λk = λke
−(σ2

ψ+σ
2
ϕ)|t−t0|. Furthermore, ak and ck represent the multiuser inter-

ference received at the kth MT and the variance of the gain of the desired signal,

respectively. Moreover, the term LkAN = E
[
gHk Θ

H
k (t)AAHΘk(t)gk

]
in (4.24) repre-

sents the AN leakage in the received signal of the kth MT in time slot t. This term

will be characterized in detail for the considered AN precoders in Section 4.3.3.

4.3.3 Generalized NS AN Precoding

The AN leakage term LkAN in (4.24) depends on the particular AN precoder used.

Therefore, in this subsection, we �rst evaluate LkAN for the conventional NS precoder,

where A is designed to lie in the NS of the estimated channel vectors of all MTs,

ĝk, 1 ≤ k ≤ K, which is the most common design used in the literature [25, 43, 64].

Subsequently, we propose and analyze the G-NS AN precoder design which is less

sensitive to hardware impairments than the conventional NS design.

The AN leakage incurred by the conventional NS AN precoder is given in the

following Lemma.

Lemma 4.4. : For the conventional NS AN precoder, where L = N−K [25, 43, 64],
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the AN leakage power received at MT k ∈ Sb in time interval t is given by

LkAN = βk(N −K)

((
1− 1

No

)
(1− ϵ) + 1− λk

)
. (4.27)

Proof. Please refer to Appendix C.4.

In Lemma 4.4, the terms ϵ and λk re�ect the negative impact of the hardware

impairments on the AN power leakage. If only one LO is employed, i.e., No = 1, the

impact of ϵ is eliminated. However, the negative e�ect of ϵ increases as the number of

LOs, No, increases since the phase noise processes of di�erent LOs are independent

destroying the orthogonality of the columns of A and gk(t), 1 ≤ k ≤ K.

This problem can be mitigated by employing Mo NS AN precoders where each

precoder encodes the data signals intended for the antennas connected to No/Mo

LOs. Thereby, No is assumed to be a multiple of Mo, i.e., No/Mo ∈ Z. The resulting

AN preorder is referred to as G-NS AN precoder. More in detail, for the G-NS

AN precoder, we divide each channel estimation vector, ĝk, 1 ≤ k ≤ K, into Mo

sub-vectors

ĝk =

[(
ĝ
(1)
k

)T
,
(
ĝ
(2)
k

)T
, . . . ,

(
ĝ
(Mo)
k

)T ]T
, (4.28)

where ĝ
(m)
k ∈ CN/Mo×1, which contains the ((m − 1)N/Mo + 1)th to the (mN/Mo)

th

elements of ĝk for 1 ≤ m ≤ Mo. Correspondingly, we split matrix A into Mo sub-

matrices as follows

A =

[
AT

(1),A
T
(2) . . . ,A

T
(Mo)

]T
, (4.29)

with A(m) ∈ CN/Mo×(N/Mo−K), 1 ≤ m ≤ Mo, i.e., we have L = N/Mo − K. Now,

matrixA(m) is designed to lie in the null-space of ĝ
(m)
k , 1 ≤ k ≤ K, i.e., A(m)ĝ

(m)
k = 0,

1 ≤ k ≤ K, 1 ≤ m ≤ Mo. For Mo = 1, the G-NS precoder simpli�es to the

conventional NS precoder. On the other hand, for Mo = No, the antennas connected
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to each LO have their own NS AN precoder.

The AN leakage of the G-NS precoder is analyzed in the following Lemma.

Lemma 4.5. : For the G-NS AN precoder, where L = N/Mo−K and 1 ≤Mo ≤ No,

the AN leakage power received at MT k ∈ Sb in time interval t is given by

LkAN = βk

(
N

Mo

−K

)((
1− Mo

No

)
(1− ϵ) + 1− λk

)
. (4.30)

Proof. Please refer to Appendix C.5.

Several observations can be made from (4.30). First, we note that, as expected,

for Mo = 1, (4.30) reduces to (4.27). Second, the negative impact of the phase

noise via ϵ on the AN leakage can be completely eliminated by choosing Mo = No.

Third, the G-NS precoder requires the calculation of Mo null spaces of dimension

N/Mo ×K. Hence, computational complexity increases with Mo. We will elaborate

on the optimal choice of Mo in Sections 4.4 and 4.5.

The achievable rates of MT k ∈ Sb in time slot t with conventional NS and G-NS

precoding are obtained by inserting (4.27) and (4.30) into (4.24), respectively. Hence,

for the proposed G-NS precoder, we obtain

Rk(t) = log2

(
1 +

λkϕN

(ak + ck − βµk)ϕ+ βµk + ξk

)
, (4.31)

where µk = ( N
Mo

−K)
((

1− Mo

No

)
(1− ϵ) + 1− λk

)
, ξk = β(κMT

r +κBS
t +ξDL/(βkPT )),

and β = K/N > 0.
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4.3.4 Upper Bound on the Eavesdropper's Capacity

In the following Proposition, we provide a tight and tractable upper bound on eaves-

dropper's capacity.

Proposition 4.1. : For N → ∞ and (G-)NS AN precoding, the eavesdropper's

capacity in (4.15) can be upper bounded as

CE ≤ CE = log2

(
1 +

pNE

qL+ κBS
t PT − χNE

)
, with χ =

(1 + κBS
t )2q2L+ (κBS

t )2p2K

(1 + κBS
t )qL+ κBS

t pK
,

(4.32)

for qL+κBS
t PT > χNE, and where L = N−K and L = N/Mo−K for the conventional

NS and the G-NS precoders, respectively.

Proof. The term GH
EΥ

BS
t GE in (4.16) converges to a deterministic diagonal matrix

for N → ∞, and is therefore independent of gkE. Hence, similar steps as in [43,

Appendix B, C] can be used to arrive at (4.32).

We observe from (4.32) that, as expected, the capacity of the eavesdropper is

increasing in the number of its equipped antennas, NE. Interestingly, when no AN is

injected, i.e., q = 0, (4.32) reduces to

CE

∣∣∣∣
q=0

= log2

(
1 +

NE

κBS
t (K −NE)

)
, (4.33)

for K > NE. For perfect BS hardware, we have κBS
t → 0 and CE → ∞ making secure

communication impossible. Hence, without AN injection, hardware impairments may

in fact be bene�cial for secure communication as the distortion noise at the BS acts

like AN and may facilitate secrecy. This surprising insight will be studied more

carefully in the next section. Furthermore, the number of independent distortion

noise processes at the BS is equal to the number of users, K. Hence, K > NE is

124



Chapter 4. Hardware Impairments in Secure Massive MIMO Systems

needed to prevent the eavesdropper from nulling out the distortion noise and for

achieving secrecy.

4.4 Guidelines for System Design

In this section, we exploit the analytical results derived in the previous section to

gain some insight into the impact of the various system and hardware impairment

parameters on system design. To this end, we carefully study the closed-form lower

bound on the achievable ergodic secrecy rate obtained by combining (4.19), (4.31),

and (4.32).

4.4.1 Design of the Pilot Sequences

Assuming that we assign the maximum number of users to each training sub-phase,

i.e., |Sb| = Bb, the relevant design parameter for the pilot sequences is the number

of training sub-phases Bo, or equivalently, the size of the training sub-phases Bb as∑Bo
b=1Bb = B. In particular, Bb a�ects the lower bound on the achievable ergodic

rate of MT k in (4.31) via λk, ak, and ck, where ck becomes proportional to λk for

N → ∞, cf. (4.26). Thereby, close inspection of (4.20) reveals that λk, which re�ects

the power of the received useful signal, is not monotonic in Bb. This can be explained

as follows. On the one hand, since the power of each pilot symbol is constrained,

i.e., |ωk(t)|2 = pτ , ∀k, t, the sum power of the pilot sequence per MT increases

with Bb. On the other hand, for larger Bb, more MTs are allowed to emit pilots in

training sub-phase b introducing more contamination due to phase noise. This has an

adverse e�ect on the quality of the channel estimate and consequently on the power

of the received useful signal. Similarly, close inspection of (4.25) reveals that ak,

which re�ects the multiuser interference incurred to the kth MT, is a monotonically
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increasing function of Bb, as a lower channel estimation accuracy gives rise to more

multiuser interference. Considering the behaviour of λk, ak, and ck and their impact

on the achievable ergodic rate of MT k in (4.31), we conclude that Bb, 1 ≤ b ≤ Bo,

should be optimized and the optimal value depends on the channel and hardware

impairment parameters. Thereby, the optimal Bb is decreasing in the phase noise

variances, σ2
ψ and σ2

ϕ, as the degradation introduced by concurrent pilot emission by

multiple MTs is increasing in these parameters. This conclusion will be veri�ed in

Section 4.5.2 by numerically evaluating (4.19).

4.4.2 Selection of Mo for G-NS AN Precoding

The number of G-NS AN precoding sub-matrices, Mo, 1 ≤ Mo ≤ No, employed

a�ects the achievable ergodic secrecy rate via the AN leakage LkAN in (4.30) and

via the (bound on the) eavesdropper capacity CE in (4.32). The AN leakage is a

decreasing function with respect to Mo, i.e., as far as the AN leakage is concerned,

Mo = No is preferable. On the other hand, since the dimensionality of the G-NS

AN precoder is given by L = N/Mo −K, the eavesdropper capacity is an increasing

function of Mo, cf. (4.32), which has a negative e�ect on the ergodic secrecy rate.

Hence, Mo has to be optimized. Since the eavesdropper capacity does not depend on

the phase noise, we expect that the optimal Mo increases with increasing BS phase

noise variance, σ2
ψ, as σ

2
ψ a�ects the AN leakage via ϵ in (4.30). This conjecture will

be numerically veri�ed in Section 4.5.4.

4.4.3 Secrecy in the Absence of AN

In [43, 64] it was shown that if perfect hardware is employed, injection of AN is

necessary to achieve secrecy. In particular, without AN generation, under worst-case
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assumptions regarding the noise at the eavesdropper, the eavesdropper capacity is

unbounded. On the other hand, we showed in Section 4.3.4 that in the presence

of hardware impairments the eavesdropper capacity is bounded since the distortion

noise generated at the BS has a similar e�ect as AN. Motivated by this observation,

in this section, we calculate the maximum number of eavesdropper antennas NE that

can be tolerated if a positive secrecy rate is desired without AN emission.

If AN is not emitted, we have ϕ = 1 or q = 0. In this case, the proposed lower

bound on the ergodic secrecy rate of the kth MT in time interval t simpli�es to

Rsec
k (t)

∣∣∣∣
q=0

=

[
log2

(
1 +

λkN

ak + ck + ξk

)
− log2

(
1 +

α

κBS
t (β − α)

)]+
. (4.34)

where α = NE/N denotes the normalized number of eavesdropper antennas. In

the following Proposition, we provide a condition for the number of eavesdropper

antennas that has to be met for secure communication to be possible.

Proposition 4.2. : If AN is not generated, the maximum number of eavesdropper

antennas that the system can tolerate while ensuring a positive ergodic secrecy rate is

NE = ⌊αANN⌋, where

αAN =
λkNκ

BS
t β

λkNκBS
t + ak + ck + ξk

∣∣∣
t=B+1

. (4.35)

Proof. First, we note that Rk(t) is a decreasing function of t. Hence, considering

(4.19), it is su�cient to ensure Rk(B + 1) > CE for achieving a positive ergodic

secrecy rate. Eq. (4.35) is obtained by setting (4.34) to zero and observing that

Rsec
k (t)

∣∣∣∣
q=0

is a decreasing function of α.

Eq. (4.35) clearly shows that the additive distortion noise at the BS is essential for

achieving a positive secrecy rate if AN is not injected as αAN = 0 results if κBS
t = 0.
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On the other hand, αAN is a decreasing function of all other hardware impairment

parameters, i.e., κBS
r , κMT

t , κMT
r , ξDL, σ2

ψ, and σ2
ψ, as the corresponding hardware

impairments a�ect only the achievable ergodic rate of the MT but not the ergodic

capacity of the eavesdropper. We note that αAN is an increasing function of β since

the dimensionality of the additive distortion noise at the BS is proportional to β.

4.4.4 Maximum Number of Eavesdropper Antennas

Now, we consider the maximum number of eavesdropper antennas that can be toler-

ated if a positive ergodic secrecy rate is desired and AN injection is possible. Com-

bining (4.19), (4.31), and (4.32), the lower bound on the ergodic secrecy rate in time

interval t can be expressed as

Rsec
k (t) =

[
log2

(
1 +

λkϕN

(ak + ck)ϕ+ βµk(1− ϕ) + ξk

)
−log2

(
1 +

αϕ

β(1− ϕ+ κBS
t − χ′α)

)]+
,

(4.36)

where χ′ =
(1+κBS

t )2(1−ϕ)2N/L+(κBS
t )2ϕ2/β

1−ϕ+κBS
t

.

Proposition 4.3. : If AN injection is possible, a positive secrecy rate can be achieved

by the kth MT if the number of eavesdropper antennas does not exceed NE = ⌊αsecN⌋,

where

αsec =
(1 + κBS

t )λkL

L/N(µk + κMT
r + κBS

t + ξDL/(βkPT )) + λkN(1 + κBS
t )

∣∣∣
t=B+1

(4.37)

and ϕ→ 0, i.e., almost all transmit power is employed for AN generation.

Proof. Exploiting again that Rk(t) is a decreasing function of t it su�ces to consider

the ergodic secrecy rate for t = B + 1. Then, an expression for αsec is obtained by

setting Rsec
k (t) in (4.36) to zero. This expression is monotonically decreasing in ϕ and
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hence can be further simpli�ed by letting ϕ→ 0 which yields (4.37).

Proposition 4.3 reveals that, as expected, the number of eavesdropper antennas

that can be tolerated increases with the channel estimation accuracy (i.e., λk) and

the number of spatial dimensions available for AN (i.e., L). Furthermore, similar to

αAN, αsec is a decreasing function of the hardware impairment parameters κBS
r , κMT

t ,

κMT
r , ξDL, σ2

ψ, and σ
2
ψ, and an increasing function of κBS

t . However, unlike αAN, αsec

is independent of β.

4.4.5 Number of LOs

The number of LOs, No, a�ects the ergodic secrecy rate via the terms ak, ck, and

µk in the achievable ergodic rate in (4.31). For N → ∞, ak and ck are decreasing

functions of No, i.e., less multiple access interference is caused if more LOs are em-

ployed, whereas the AN leakage term µk is an increasing function in No. Therefore,

considering the speci�c form of the denominator of the fraction inside the logarithm

in (4.31), the optimal value of No, which maximizes the ergodic secrecy rate, depends

on ϕ. In particular, for a given Mo, for ϕ = 1 no AN is injected and µk cancels in the

expression for the achievable ergodic rate in (4.31). Hence, in this case, the ergodic

secrecy rate is a monotonically increasing function of No, i.e., increasing the number

of LOs is bene�cial. On the other hand, for a given Mo, for ϕ < 1, the optimal No

maximizing the ergodic secrecy rate can be found by performing a numerical search

based on (4.31).

We note that by employing G-NS AN generation and enforcing Mo = No, we

can avoid the harmful e�ect of the multiple LOs on the AN leakage term µk. In

this case, the achievable ergodic rate of the MT becomes an increasing function of

Mo = No. However, at the same time, the number of dimensions available for AN
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injection, L = N/Mo − K, is a decreasing function of Mo = No. Therefore, the

optimal Mo = No maximizing the ergodic secrecy rate has to be found again by a

numerical search.

4.4.6 Are hardware impairments Bene�cial for Security?

Since the hardware impairment parameters κBS
r , κMT

t , κMT
r , ξDL, σ2

ψ, and σ2
ψ only

a�ect the legitimate user but not the eavesdropper, the corresponding hardware im-

pairments are always detrimental to the ergodic secrecy rate. However, the additive

distortion noise at the BS a�ects both the achievable ergodic rate of the MT and

the capacity of the eavesdropper. Hence, it is not a priori clear if this hardware

impairment is bene�cial or detrimental to the ergodic secrecy rate. The following

Proposition provides a criterion for judging the bene�ts of the additive BS distortion

noise.

Proposition 4.4. : For time interval t, non-zero additive BS distortion noise with

small κBS
t > 0, κBS

t → 0, is bene�cial for the achievable ergodic secrecy rate of the

kth MT if and only if

(1− ϕ)[1−NE/L− (1−NE/L−NE/K)ϕ]× 1−NE/L

1− (1− 2ϕ)NE/L
<
αγ(Nλkϕ+ γ)

β2λkN
,

(4.38)

where γ = (ak + ck)ϕ+ βµk(1− ϕ) + β(κMT
r + ξDL/(βkPT )).

Proof. For additive BS distortion noise to be bene�cial for a given time interval t and

small κBS
t > 0, the derivative ∂Rsec

k (t)/∂κBS
t at κBS

t = 0 has to be positive. Assuming

Rsec
k (t) > 0, this condition leads to ∂Rk(t)/∂κ

BS
t |κBS

t =0 > ∂CE/∂κ
BS
t |κBS

t =0, which can

be further simpli�ed to (4.38).
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Remark 4.1. : We note that the criterion in Proposition 4.4 only guarantees that

additive BS distortion noise with small positive κBS
t is bene�cial. The ergodic secrecy

rate, Rsec
k (t), is in general not monotonic in κBS

t and larger κBS
t may be harmful even

if small κBS
t are bene�cial, see Section 4.5.5. Furthermore, since the right hand side

of (4.38) is always positive, we conclude that additive BS distortion noise with small

κBS
t is always bene�cial when ϕ = 1, i.e., when AN is not injected.

4.5 Numerical Examples

In this section, we provide numerical and simulation results to verify the analysis

presented in Sections 4.3 and 4.4 and to illustrate the impact of hardware impairments

on the ergodic secrecy rate. For the numerical results, we numerically evaluate the

analytical expression for the lower bound on the ergodic secrecy rate obtained by

combining (4.19), (4.31), and (4.32). For the simulation results, we employ Monte

Carlo simulation and evaluate (4.19) using Rsec
k (t) = log2(1+γk(t)) and CE = log2(1+

γE) with γk(t) and γE given by (4.18) and (4.16), respectively, for 5, 000 independent

channel realizations. For simplicity, in this section, we assume that the path-loss

for all MTs is identical, i.e., βk = 1, 1 ≤ k ≤ K, and the coherence block length is

equal to T = 500 time slots. Typical values for the phase noise increment standard

deviations, σψ, σϕ, used include 0.06◦, which was adopted in the long-term evolution

(LTE) speci�cations [78], and 6◦, which corresponds to strong phase noise according

to [79, 80]. Furthermore, typical values for the additive distortion noise κMT
t = κBS

r =

κBS
t = κMT

r include {0, 0.052, 0.152} [18], whereas the ampli�ed receiver noise was set

to ξUL = ξDL = 1.58σ2
n [22], with σ2

n = 1. The speci�c values of the adopted system

and hardware impairment parameters are provided in the captions of the �gures.
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Figure 4.2: Capacity of the eavesdropper vs. the normalized number of MTs β for a
system with N = 128, No = 4, NE = 16, PT = 10 dB, ϕ = 0.25, κBS

t = 0.152, and
G-NS AN precoding with Mo = {1, 2, 4}.

4.5.1 Capacity of Eavesdropper for G-NS AN Precoding

Fig. 4.2 depicts the eavesdropper's ergodic capacity, CE, as a function of β for G-NS

AN precoding with Mo = {1, 2, 4}. Besides results for the analytical upper bound,

CE, from (4.32), we also show simulation results for CE by averaging log2(1+γE) over

5, 000 independent channel realizations, where γE is given by (4.16). From Fig. 4.2

we observe that the proposed upper bound on the capacity of the eavesdropper is

very tight. Furthermore, as expected, the ergodic capacity of the eavesdropper is an
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increasing function ofMo since the number of dimensions available for AN generation,

L = N/Mo−K, is a decreasing function ofMo. In fact, since L = N/Mo−K > NE is

needed for successfully jamming the eavesdropper, for Mo = 4, we depict the ergodic

capacity of the eavesdropper only for β < 0.125. Nevertheless, as will be shown

below, choosing Mo > 1 may still be bene�cial as far as the ergodic secrecy rate is

concerned as the achievable ergodic rate of the MT is an increasing function of Mo.

4.5.2 Achievable Ergodic Rate of MT for Di�erent Pilot

Designs

Next, we investigate the impact of the general pilot designs introduced in Section

4.2.1 on the lower bound of the achievable ergodic rate of the considered MT given

in (4.31)7. Note that the capacity of the eavesdropper is not a�ected by the pilot

design. For simplicity, we assume equal duration for all training sub-phases, Bb =

B/Bo, b ∈ {1, . . . , Bo}, and B = K. The same number of users is assigned to each

training sub-phase. In Fig. 4.3, we show the achievable ergodic rate of a MT in

training set SBo as well as the corresponding λk, which re�ects the power of the

received useful signal, and ak, which re�ects the multiuser interference. Results for

Bo = 1 (SO pilots), Bo = 2, and Bo = 16 (TO pilots) are shown. As predicted

in Section 4.4.1, the multiuser interference, ak, is monotonically decreasing in Bo as

larger Bo improve the robustness against phase noise during the channel estimation

phase, which allows better suppression of multiuser interference via MF precoding.

Somewhat surprisingly, for σψ = σϕ ≤ 5◦, ak is a decreasing function of the phase noise

variance. This may be attributed to the fact that phase noise prevents the coherent

7We note that all results obtained by numerically evaluating the analytical expressions derived
in this chapter were veri�ed by simulations. However, the simulation results are not included in all
�gures for clarity of presentation.
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Figure 4.3: Achievable ergodic rate, λk, and ak vs. phase noise standard deviation
σψ = σϕ for di�erent pilot designs for a system with N = 128, No = 2, NE = 16,
K = 16, pτ = PT/K, PT = 10 dB, ϕ = 0.5, and κBS

t = κBS
r = κMT

t = κMT
r = 0.052.

superposition of the multiuser interference generated by di�erent MTs such that large

interference values are avoided. On the other hand, for σψ = σϕ > 5◦, the detrimental

e�ects of the pilot contamination caused by the loss of orthogonality for Bo < 16

outweigh this positive e�ect and ak increases with the phase noise variance. For λk,

i.e., the received signal power, we observe from Fig. 4.3 that the optimal Bo depends

on the phase noise variance. In particular, for small phase noise variances, small

Bo are preferable since the increased pilot power outweighs the loss of orthogonality

during training. On the other hand, for large phase noise variances, eventually TO
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pilots become optimal as the preserved orthogonality during training becomes crucial.

The behaviour of λk and ak is also re�ected in the behaviour of the achievable rate

of the considered MT. In particular, for the considered system parameters, Bo = 1,

Bo = 2, and Bo = 16 are optimal for σψ = σϕ ≤ 6◦, 6◦ < σψ = σϕ ≤ 21◦, and

σψ = σϕ > 21◦ (which is not a practical range), respectively. Hence, in practice, the

optimal Bo can be found by evaluating (4.31).

4.5.3 Optimal Power Allocation to Data and AN

Fig. 4.4 shows the achievable ergodic secrecy rate as a function of the power allocation

parameter ϕ for SO and TO pilots and di�erent phase noise variances. G-NS AN

precoding with Mo = No = 2 is adopted. The curve for ideal hardware components,

i.e., κBS
t = κBS

r = κMT
t = κMT

r = σψ = σϕ = 0, is also provided for reference. We

investigate the optimal power allocation between data transmission and AN emission

for the maximization of the ergodic secrecy rate achieved for di�erent phase noise

levels. When the phase noise variance is small, i.e., σψ = σϕ = 0.6◦, SO pilots

outperforms TO pilots for all values of ϕ. However, this is not true for stronger phase

noise. We also observe that the optimal value for ϕ maximizing the ergodic secrecy

rate is only weakly dependent on the phase noise variance.

4.5.4 Achievable Ergodic Secrecy Rate for Non-Ideal

Hardware Components

In Fig. 4.5, we show the ergodic secrecy rate achieved with G-NS AN precoding for

di�erent values of Mo as a function of the number of BS antennas. The cases of weak

(σψ = σϕ = 0.6◦) and strong (σψ = σϕ = 6◦) phase noise are considered. For weak

phase noise, using large values of Mo becomes bene�cial only for large numbers of
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antennas, i.e., N > 200, as for smaller numbers of antennas the positive e�ect of larger

values of Mo on the AN leakage is outweighed by their negative e�ect on the number

of spatial dimensions available for AN precoding. On the other hand, for strong

phase noise, the AN leakage is larger and its mitigation by choosing Mo = No = 16

is bene�cial already for N > 150. These observations are in line with our theoretical

considerations in Section 4.4.2. Fig. 4.5 also con�rms the accuracy of the derived

analytical expressions for the ergodic secrecy rate.
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4.5.5 Maximum Tolerable Number of Eavesdropper

Antennas

Fig. 4.6 depicts the (normalized) maximum tolerable number of eavesdropper anten-

nas for achieving a positive ergodic secrecy rate for the case without AN generation,

αAN, and the case with AN generation, αsec, as a function of the (normalized) num-

ber of users, β. Results for channel estimation based on SO and TO pilots as well

as the case of no phase noise (σψ = σϕ = 0◦) are shown for No = 2 and No = 4
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LOs. First, we note that, as expected from our considerations in Section 4.4.5, for

the case without AN (ϕ = 1), increasing No from 2 to 4 is bene�cial, i.e., the number

of tolerable eavesdropper antennas increases. In contrast, if AN is injected, No = 2 is

preferable. Second, AN generation is bene�cial and improves the robustness against

eavesdropping, i.e., αsec > αAN. Third, as expected from Sections 4.4.3 and 4.4.4,

αAN is a monotonically increasing function of β whereas αsec is independent of β.

Fourth, for the considered example of weak phase noise, SO pilots outperform the

TO pilots for all considered cases.
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Figure 4.7: Achievable ergodic secrecy rate vs. BS distortion noise parameter κBS
t for

a system with N = 128, K = 32, NE = 4, No = Mo = 2, pτ = PT/K, PT = 10 dB,
and κBS

r = κMT
t = κMT

r = 0.152.

4.5.6 Is Additive Distortion Noise at the BS Bene�cial for

Security?

In Fig. 4.7, we show the achievable ergodic secrecy rate as a function of the BS

distortion noise parameter, κBS
t , for di�erent phase noise variances and di�erent power

allocation factors ϕ. For comparison, the achievable ergodic secrecy rates without BS

distortion noise (i.e., κBS
t = 0) are also shown. Fig. 4.7 shows that if the power

allocated to AN is substantial (e.g., ϕ = 0.05), the additional distortion noise has a
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negative e�ect on the ergodic secrecy rate. On the other hand, if the power assigned

for AN is not su�cient (e.g., ϕ = 0.25), non-zero additive distortion noise at the

BS is bene�cial as the distortion noise acts like additional AN. In particular, for

ϕ = 0.25, σψ = 0.06◦, we obtain for the left hand side and right hand side of (4.38)

0.52 and 1.66, respectively, which we represent as (0.52, 1.66). Correspondingly, we

obtain for ϕ = 0.25, σψ = 6◦ and ϕ = 0.05, σψ = 0.06◦ and ϕ = 0.05, σψ = 6◦ the

tupels (0.52, 2.53) and (0.80, 0.16) and (0.80, 0.35), respectively. These values and

the results in Fig. 4.7 suggest that (4.38) can indeed be used to predict whether or

not BS distortion noise is bene�cial.

4.6 Conclusions

In this chapter, we have investigated the impact of hardware impairments such as mul-

tiplicative phase noise, additive distortion noise, and ampli�ed receiver noise on the

secrecy performance of massive MIMO systems employing MF precoding for downlink

data transmission. To mitigate the loss of pilot orthogonality during uplink training

if multiple MTs emit pilots concurrently, a generalized pilot design was proposed.

Furthermore, to avoid the AN leakage caused by the loss of orthogonality between

the user channels and the NS AN precoder if multiple noisy LOs are employed at the

BS, a novel G-NS AN precoding scheme was introduced. For the considered system,

a lower bound on the achievable ergodic secrecy rate of the users was derived. This

bound was used to obtain important insights for system design, including the impact

of the pilot sequence design, the AN precoder design, the number of LOs, and the

various hardware impairment parameters. The following general conclusions can be

drawn: 1) Additive distortion noise at the BS may be bene�cial for the secrecy per-

formance especially if little or no AN is injected; 2) all other hardware impairments
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have a negative impact on the ergodic secrecy rate; 3) despite their susceptibility to

pilot contamination in the presence of phase noise, SO pilots are preferable except

for the case when the phase noise is very strong; 4) if the number of BS antennas is

su�ciently large, the proposed G-NS AN precoder outperforms the conventional NS

AN precoder in the presence of phase noise.
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Chapter 5

Summary of Thesis and Future

Research Topics

In this �nal chapter, in Section 5.1, we summarize our results and highlight the

contributions of this thesis. In Section 5.2, we also propose ideas for future related

research.

5.1 Summary of Results

This thesis as a whole has focused on physical layer security for massive MIMO

systems. In the following, we brie�y review the main results of each chapter.

In Chapter 2, we considered a multi-cell massive MIMO system with MF precoding

and AN precoding at the BS for secure downlink transmission in the presence of

a multi-antenna passive eavesdropper. For AN precoding, we considered both the

conventional NS AN precoding matrix design and a novel random AN precoding

matrix design. For both perfect training and pilot contamination, we derived two

tight lower bounds on the ergodic secrecy rate and a tight upper bound on the

secrecy outage probability. The analytical expressions allowed us to optimize the

amount of power allocated to AN precoding and to gain signi�cant insight into the

impact of the system parameters on performance. In particular, our results reveal

that for the considered multi-cell massive MIMO system with MF precoding (1) AN
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precoding is necessary to achieve a non-zero ergodic secrecy rate if the user and the

eavesdropper experience the same path-loss, (2) secrecy cannot be guaranteed if the

eavesdropper has too many antennas, (3) for the case of pilot contamination, the

ergodic secrecy rate is only an increasing function of the number of BS antennas if

the amount of power allocated to AN precoding is optimized, and (4) the proposed

random AN precoding matrix design is a promising low-complexity alternative to the

conventional NS AN precoding matrix design.

In Chapter 3, we considered downlink multi-cell massive MIMO systems employ-

ing linear data and AN precoding for physical layer security provisioning. We ana-

lyzed and compared the achievable ergodic secrecy rate of various conventional data

and AN precoders in the presence of pilot contamination. To this end, we also opti-

mized the regularization constants of the sel�sh and collaborative RCI precoders in

the presence of AN and multi-cell interference. In addition, we derived linear POLY

data and AN precoders which o�er a good compromise between complexity and per-

formance in massive MIMO systems. Interesting �ndings of this chapter include: 1)

Collaborative data precoders outperform sel�sh designs only in lightly loaded systems

where a su�cient number of degrees of freedom for suppressing inter-cell interference

and su�cient resources for training are available. 2) Similarly, CNS AN precoding is

preferable over SNS AN precoding in lightly loaded systems as it causes less AN leak-

age to the information-carrying signal, whereas in more heavily loaded systems, CNS

AN precoding does not have su�cient degrees of freedom for e�ectively degrading

the eavesdropper channel and SNS AN precoding is preferable. 3) For a large num-

ber of eavesdropper antennas, where only small positive secrecy rates are achievable,

MF data precoding is always preferable compared to SZF and CZF data precoding.

4) The proposed POLY data and AN precoders approach the performances of the
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SRCI data and SNS AN precoders with only a few terms in the respective matrix

polynomials and are attractive options for practical implementation.

In Chapter 4, we have investigated the impact of hardware impairments such

as multiplicative phase noise, additive distortion noise, and ampli�ed receiver noise

on the secrecy performance of massive MIMO systems employing MF precoding for

downlink data transmission. To mitigate the loss of pilot orthogonality during up-

link training if multiple MTs emit pilots concurrently, a generalized pilot design was

proposed. Furthermore, to avoid the AN leakage caused by the loss of orthogonal-

ity between the user channels and the NS AN precoder if multiple noisy LOs are

employed at the BS, a novel G-NS AN precoding scheme was introduced. For the

considered system, a lower bound on the achievable ergodic secrecy rate of the users

was derived. This bound was used to obtain important insights for system design,

including the impact of the pilot sequence design, the AN precoder design, the num-

ber of LOs, and the various hardware impairment parameters. The following general

conclusions can be drawn: 1) Additive distortion noise at the BS may be bene�cial for

the secrecy performance especially if inadequate AN is emitted; 2) all other hardware

impairments have a negative impact on the ergodic secrecy rate; 3) despite their

susceptibility to pilot contamination in the presence of phase noise, SO pilots are

preferable except for the case when the phase noise is very strong; 4) if the number

of BS antennas is su�ciently large, the proposed G-NS AN precoder outperforms the

conventional NS AN precoder in the presence of phase noise.

5.2 Future Work

In the following, we propose some ideas for further research that are similar to or can

be based on the work in this thesis.
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5.2.1 Physical Layer Security in Massive MIMO Systems

under Constant Envelope Precoding

Equipping large antenna array in massive MIMO systems requires each antenna ele-

ment and its associated radio-frequency (RF) electronics, e.g. power ampli�ers (PAs),

to be inexpensive and power-e�cient. However, cheaply manufactured PAs are in gen-

eral non-linear devices, which su�er from linearity issues when processing signals with

large amplitude-variations. A per-antenna constant envelope (CE) nonlinear precod-

ing was considered in single-user massive MIMO systems in [21]. It was shown that

under the per-antenna CE constraint at the BS transmitter, an equivalent single-input

single-output (SISO) model over additive white Gaussian noise (AWGN) is obtained

for MISO system where we have a single-user equipped with a single-antenna [21].

When a su�ciently large number of antennas is used, the corresponding achievable

rate under a per-antenna CE constraint is close to the capacity of the multiple-input

single-output (MISO) channel under an average power constraint in the high-power

regime. More recently, the idea of per-antenna CE precoding has been extended

to multi-user massive MIMO systems over �at and frequency-selective fading chan-

nels [75] [81]. To the best of our knowledge, there is no work considering secure

transmission under CE precoding in the presence of multi-antenna eavesdroppers.

Therefore, one promising research option is to investigate novel data and AN pre-

coding methods, which jointly satisfy the per-antenna CE constraints, and compare

their performance with the secrecy capacity achieving scheme for the average total

transmit power constrained channel. Some of the results have been reported in [82].
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5.2.2 Physical Layer Security in Massive MIMO Systems

with Limited RF-Chain Constraints

When multiple antennas are deployed at the BS in a conventional manner, the com-

plex baseband symbols are tuned for both amplitude and phase. The baseband sym-

bols are then upconverted to the carrier frequency after passing through RF chains,

whose outputs are coupled with antenna elements. This implies that each antenna

element is supported by one dedicated RF chain, which is far too expensive to deploy

in massive MIMO systems due to the large number of antenna elements. On the

other hand, the rapid development of circuitry technology enables the high dimen-

sional phase-only RF (or analog) processing. In [83] and [84], analog precoding was

considered to achieve full diversity order and near-optimal beamforming performance

via iterative algorithms. The authors in [85] have taken into account more practi-

cal constraints, including only quantized phase control and �nite-precision analog-

to-digital (A/D) conversion. In order to further enhance the system performance,

related literature [86]-[88] have considered a hybrid approach combining digital and

analog preocoding together. More precisely, a low dimensional (limited to the num-

ber of RF chains) baseband precoding is employed based on the equivalent channel

acquired from the product of the analog RF precoder and the actual channel matrix

[87]. However, the problems of how the limited RF-chain constraints will a�ect the

system security and how to design the transmission strategy to enhance the system

security with such practical constraints have not been studied before. One foreseeable

challenge is that the BS may not possess su�cient spatial dimensions for emitting

AN due to the limited number of RF chains. This motivates future research in this

direction, and some of the results have been reported in [89].
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5.2.3 Physical Layer Security in Massive MIMO Systems

against Active Eavesdropping

The contributions covered in this thesis, including the aforementioned two future re-

search options, are based on the assumption that the eavesdroppers always remain

passive to hide their existence. Another promising topic is to investigate how massive

MIMO systems can combat active eavesdropping. Among multiple active eavesdrop-

ping techniques, the pilot contamination attack [44] poses the most serious secrecy

threat to the TDD based massive MIMO systems. For such attacks, the eavesdropper

is able to acquire any training sequences assigned to legitimate MTs, as they are �xed

and repeatedly adopted for uplink training. In the training phase, the eavesdropper

emits the pilots while all legitimate MTs transmit. As such, the estimates at the

BS align with both the legitimate MT's and the eavesdropper's channel. The attack

not only reduces the estimation accuracy at the BS, but enhances the eavesdropper's

capability to detect his/her desired data signals. It is foreseeable that if the emitting

power for the eavesdropper is su�ciently large, the achievable secrecy rate eventually

approaches zero. In this scenario, emitting conventional NS based AN is no longer

e�cient, as the designed AN also lies in the NS of the eavesdropper's channel due to

the pilot contamination. In the literature, the authors in [42] proposed several tech-

niques to detect the attack by taking advantage of massive MIMO, while the authors

in [57] developed a secret key agreement protocol under pilot contamination attack.

Methods for combating such attack in a multi-cell network (pilot contaminated) was

reported in [59], based on the assumption that the channel covariance matrix of the

eavesdropper is low-rank. A more general combating strategy is essential and of great

importance. Besides the pilot contamination attack, the eavesdropper is also able to

broadcast jamming signals during the data transmission phase, in order to further
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reduce the detection capability at the legitimate MTs. Consequently, secure massive

MIMO system design under active attacks remains many open problems to solve.
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Appendix A

Proofs in Chapter 2

Appendix A provides the proofs of Lemmas and Theorems in Chapter 2.

A.1 Proof of Lemma 2.1

The proof closely follows [36]. We �rst derive an expression for the secrecy rate

for given realizations of hmk and Heve
m , k = 1, . . . , K, m = 1, . . . ,M . Since the

MISOME channel in (2.5) and (2.6) is a non-degraded broadcast channel [27], the

secrecy capacity is given by [36], [90]

Csec
nk (h) = max

snk→wnksnk→ynk,yeve

I (snk; ynk|h)− I (snk;yeve|h) , (A.1)

where vector h contains the CSI of all user and eavesdropper channels and I(x; y|h)

is the mutual information between two r.v.s x and y conditioned on the CSI vector.

Csec
nk (h) is achieved by maximizing over all joint distributions such that a Markov

chain snk → wnksnk → ynk,yeve results, where snk is an arbitrary input variable [36].

Speci�cally, for snk ∼ CN(0, 1) an achievable secrecy rate for the kth MT in the local
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cell, Rsec
nk (h), is given by

Rsec
nk (h) =

[
I (snk; ynk|h)− I (snk;yeve|h)

]+
(a)
=

[
I (wnksnk; ynk|h)− I (wnksnk;yeve|h)

]+
(b)

≥
[
Rnk (h)− Ceve

nk (h)

]+
(A.2)

where (a) follows since wnksnk is a deterministic function of snk. Furthermore,

Rnk(h) ≤ max I (wnksnk; ynk|h) is an achievable rate of the kth MT in the local

cell and Ceve
nk (h) = log2

(
1 + pwH

nkH
eveH
n X−1Heve

n wnk

)
≥ I (wnksnk;yeve|h) is an up-

per bound on the mutual information I (wnksnk;yeve|h). Thus, follows (b). We note

that for computation of Ceve
nk (h) we made the worst-case assumption that the eaves-

dropper can decode and cancel the signals of all MTs except the signal intended for

the MT of interest [91, Chapter 10.2].

Finally, to arrive at the ergodic secrecy rate, we average Rsec
nk (h) over all channel

realizations, which results in [25]

E
[
Rsec
nk (h)

]
= E

[[
Rnk (h)− Ceve

nk (h)

]+]

≥
[
E [Rnk (h)]− E [Ceve

nk (h)]

]+
= Rsec

nk . (A.3)

Introducing the de�nitions of the achievable ergodic secrecy rate, Rnk = E [Rnk (h)],

and the ergodic eavesdropper capacity, Ceve
nk = E [Ceve

nk (h)], completes the proof.
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A.2 Proof of Theorem 2.1

We �rst recall that the entries of Heve
m , m = 1, . . . ,M , are mutually independent

complex Gaussian r.v.s. On the other hand, for Nt → ∞ and both AN shaping

matrix designs, the vectors vml, l = 1, . . . , Nt−K, form an orthonormal basis. Hence,

Heve
m Vm, m = 1, . . . ,M , also has independent complex Gaussian entries, which are

independent from the complex Gaussian entries of Heve
n wnk. Thus, the term γeve =

pwH
nkH

eveH
n X−1Heve

n wnk in (2.8) is equivalent to the SINR of an Ne-branch MMSE

diversity combiner withM(Nt−K) interferers [25, 92]. As a result, for the considered

simpli�ed path-loss model, the cumulative density function (CDF) of the received

SINR, γeve, at the eavesdropper is given by [92]

Fγeve(x) =

∑Ne−1
i=0 λix

i∏2
j=1(1 + µjx)bj

, (A.4)

where λi, µj, and bj are de�ned in [66, Theorem 1]. Exploiting (A.4), we can rewrite

(2.8) as

Ceve
(a)
=

1

ln 2

∫ ∞

0

(1 + x)−1Fγeve(x)dx

=
1

ln 2

Ne−1∑
i=0

λi ×
∫ ∞

0

xi

(1 + x)
∏2

j=1(1 + µjx)bj
dx

(b)
=

1

ln 2

Ne−1∑
i=0

λi ×
1

µ0

2∑
j=1

bj∑
l=1

∫ ∞

0

ωjl
(x+ 1)(x+ 1

µj
)l
dx

(c)
=

1

ln 2

Ne−1∑
i=0

λi ×
1

µ0

2∑
j=1

bj∑
l=2

ωjlI(1/µj, l), (A.5)

where µ0, ωjl, and I(·, ·) are de�ned in Theorem 2.1. Here, (a) is obtained using

integration by parts, (b) holds if the order of x in the denominator of (A.4) is not
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smaller than that in the numerator, i.e., Nt−K ≥ Ne/M or equivalently 1−β ≥ α/M ,

which is also the condition to ensure invertibility of X in (2.8), and (c) is obtained

using the de�nition of I(·, ·) given in Theorem 2.1. This completes the proof.

A.3 Proof of Theorem 2.2

Using Jensen's inequality and the mutual independence of w̃nk = Heve
n wnk and

Heve
m Vm, m = 1, . . . ,M (cf. Appendix B), Ceve

nk in (2.8) is upper bounded by

Ceve
nk ≤ log2

(
1 + Ew̃nk

[
pw̃H

nkE
[
X−1

]
w̃nk

])
. (A.6)

Let us �rst focus on the term E [X−1] in (A.6) and note that X is statistically equiv-

alent to a weighted sum of two scaled Wishart matrices [93]. Speci�cally, we have

X = qX1+ρqX2 with X1 ∼ WNe(Nt−K, INe) and X2 ∼ WNe((M−1)(Nt−K), INe),

where WA(B, IA) denotes an A × A Wishart matrix with B degrees of freedom.

Strictly speaking, X is not a Wishart matrix, and the exact distribution of X seems

intractable. However, X may be accurately approximated as a single scaled Wishart

matrix, X ∼ WNe(φ, ξINe), where parameters ξ and φ are chosen such that the �rst

two moments of X and qX1 + ρqX2 are identical [69, 94]. Equating the �rst two

moments of the traces of these matrices yields [94]

ξφ = q(Nt −K) + ρq(M − 1)(Nt −K), (A.7)

and

ξ2φ = q2(Nt −K) + ρ2q2(M − 1)(Nt −K). (A.8)
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By exploiting the expectation of an inverse Wishart matrix given in [94, Eq. (12)],

we obtain E[X−1] = 1
ξ(φ−Ne−1)

INe with ξ = cq/a if φ − Ne > 1 or equivalently if

β < 1− cα/a2 for Nt → ∞. Plugging this result and E[w̃H
nkw̃nk] = Ne into (A.6), we

�nally obtain the result in (2.16). This completes the proof.
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Proofs in Chapter 3

Appendix B provides the proofs of Propositions, Corollaries, and Theorems in Chap-

ter 3.

B.1 Derivation of ĥknm in Section 3.2.2

Let
√
τωmk ∈ Cτ×1 be the pilot sequence of length τ transmitted by the kth MT in

themth cell in the training phase, where ωHljωmk = 1, if l ∈ Mm∪{m} and j = k, and

equals zero otherwise, where set Mm, ∀m is de�ned in Section 3.2.2. The training

signal received at the nth BS, Ypilot
n ∈ Cτ×NT is given in (2.1), with ωmk instead of

ωk. Assuming MMSE channel estimation [7, 8], the estimate of hknm given Ypilot
n can

be derived as

ĥknm =
√
pττβknmω

H
mk

(
Iτ + pττ

M∑
l=1

K∑
j=1

ωljβ
j
nlω

H
lj

)−1

Ypilot
n

=
√
pττβknmω

H
mk (Iτ +Amk +Bmk)

−1Ypilot
n

(a)
=

√
pττβknmω

H
mk ((Iτ +Amk) (Iτ +Bmk))

−1Ypilot
n

=
√
pττβknmω

H
mk (Iτ +Bmk)

−1 (Iτ +Amk)
−1 Ypilot

n

=
√
pττβknmω

H
mk

(
Iτ −Bmk (Iτ +Bmk)

−1) (Iτ +Amk)
−1 Ypilot

n

(b)
=

√
pττβknmω

H
mk (Iτ +Amk)

−1Ypilot
n

=

√
pττβknm

1 + pττβknm + pττ
∑

l∈Mm
βknl
ωHmkY

pilot
n . (B.1)
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where

Amk = pττ
∑

l∈Mm∪{m}

ωlkβ
k
nlω

H
lk ∈ Cτ×τ , (B.2)

and

Bmk = pττ
∑

l∈Mm∪{m}

∑
j ̸=k

ωljβ
j
nlω

H
lj + pττ

∑
l /∈Mm∪{m}

K∑
j=1

ωljβ
j
nlω

H
lj ∈ Cτ×τ . (B.3)

In (B.1), (a) is due to AmkBmk = 0, while (b) uses ωHmkBmk = 0. For the special case

of Mm = M\{m}, (B.1) reduces to (2.2) in Chapter 2 with n instead of m when

estimating the in-cell CSI.

B.2 Proof of Proposition 3.1

Considering (3.3) and (3.10), the e�ective signal power, i.e., the numerator in (3.6),

can be expressed as [15]

E2[hknnfnk] = γ21E2[hknnLnn(ĥ
k
nn)

H ] = γ21E2

[
hknnLn,k(ĥ

k
nn)

H

1 + ĥknnLn,k(ĥ
k
nn)

H

]
=
γ21λnk(Xnk + Ank)

2

βknn(1 +Xnk)2
,

(B.4)

where Ln,k = (ĤnnĤ
H
nn − (ĥknn)

Hĥknn + κ1INT )
−1, Xnk = E[ĥknnLn,k(ĥknn)H ], and

Ank = E[h̃knnLn,k(ĥknn)H ]. On the other hand, the intra-cell interference term in

the denominator of (3.6) can be expressed as

E
[∑
l ̸=k

|hknnfnl|2
]
= γ21E

[
hknnLn,kĤ

H
n,kĤn,kLn,k(h

k
nn)

H(
1 + ĥknnLn,k(ĥ

k
nn)

H
)2 ]

=
γ21λnk(Ynk +Bnk)

βknn(1 +X)2
, (B.5)
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where Ĥn,k is equal to Ĥnn with the kth row removed, and

Ynk = E[ĥknnLn,kĤH
n,kĤn,kLn,k(ĥ

k
nn)

H ], Bnk = E[h̃knnLn,kĤH
n,kĤn,kLn,k(h̃

k
nn)

H ].

(B.6)

Due to pilot contamination, the data precoding matrix of the mth BS is a function of

the channel vectors between the mth BS and the MTs in all cells with reused pilots.

Hence, the inter-cell interference from the the mth BS (if m ∈ Mn) is obtained as

E[|hkmnfmk|2] =
γ21λmk(Xmk + Amk)

2

βkmn(1 +Xmk)2
+

θkmn
θkmn + pττβkmn

(B.7)

and

E
[∑
l ̸=k

|hkmnfml|2
]
= γ21E

[
hkmnLm,kĤ

H
m,kĤm,kLm,k(h

k
mn)

H(
1 + ĥkmmLm,k(ĥ

k
mm)

H
)2 ]

=
γ21λmk(Ymk +Bmk)

βkmn(1 +Xmk)2
,

(B.8)

respectively. Meanwhile, by exploiting (B.4), (B.7), and the de�nition of the variance,

i.e., var[x] = E[x2]− E2[x], we obtain for the �rst term of the denominator of (3.6)

var[hknnfnk] =
θknn

θknn + pττβknn
. (B.9)

According to [15, Eq. (16)] and [95, Theorem 7], for NT → ∞ and constant β,

Xmk converges to G(β, κ1) de�ned in (3.12) and Amk → 0. Similarly, Ymk and Bmk

approach

Ymk
NT→∞
= G(β, κ1) + κ1

∂

∂κ1
G(β, κ1) (B.10)

and

Bmk
NT→∞
=

µmk
λmk

(1 + G(β, κ1))2
(
G(β, κ1) + κ1

∂

∂κ1
G(β, κ1)

)
, (B.11)
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respectively, where ∂
∂κ1

G(β, κ1) = −G(β,κ1)(1+G(β,κ1))2
β+κ1(1+G(β,κ1))2 .

Moreover, the inter-cell interference from other non-contaminated cells (i.e., m /∈

Mn

∪
{n}) is calculated as

E
[
hkmnFm,kF

H
m,k(h

k
mn)

H

]
= E

[
tr
{
Fm,kF

H
m,k

} ]
= K − 1, (B.12)

where Fm,k is equal to Fm with the kth column removed. The �rst equality in (B.12)

is due to the fact that the precoding matrix for the other MTs (i.e., not the kth

MTs) in adjacent cells are independent of hkmn and [71, Lemma 11], while the second

equality holds for NT → ∞.

On the other hand, the constant scaling factor γ1 for SRCI precoding is given by

[15, Eq. (22)]

γ21 =
ϕP

G(β, κ1) + κ1
∂
∂κ1

G(β, κ1)
. (B.13)

Hence, employing (B.4)-(B.13) in (3.6), the received SINR in (3.11) is obtained as

γSRCI
nk

=

γ21λnkX
2
nk

(1+Xnk)2

γ21
∑
m∈Mn∪{n} λmk(Ymk+Bmk)

(1+Xmk)2
+
∑

m∈Mn

γ21λmkX
2
mk

(1+Xmk)2
+ p

∑
m/∈Mn∪{n}

∑K
l=1 β

k
mn + qQ+ 1

=

Kλnk
g+κ1

∂g
∂κ1

g2

(1+g)2

K
∑

m∈Mn∪{n} λmk

(
1+

µmk
λmk

(1+g)2

(1+g)2

)
+
∑

m∈Mn

γ21λmkg
2

(1+g)2p
+ σ2

1

=
Γ̂nSRCIg

2(
g + κ1

∂g
∂κ1

)(∑
m∈Mn∪{n} Γ̂

m
SRCI + (1 + g)2

)
+
∑

m∈Mn
Γ̂mSRCIg

2

=
1(

g+κ1
∂
∂κ1

g
)
(
∑
m∈Mn∪{n} Γ̂mSRCI+(1+g)2)
Γ̂nSRCIg

2
+
∑

m∈Mn
Γ̂mSRCI/Γ̂

n
SRCI

=
1∑

m∈Mn∪{n} Γ̂mSRCI+(1+g)2

g

(
Γ̂nSRCI+

Γ̂n
SRCI

κ1
β

(1+g)2
) +

∑
m∈Mn

λmk/λnk

, (B.14)
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where we denote g = G(β, κ1) for notational simplicity, σ2
1 =

∑
m/∈Mn

∪
{n}
∑K

l=1 β
k
mn+

ηQ+ K
ϕPT

and Γ̂mSRCI is de�ned in Proposition 3.1. This completes the proof.

B.3 Derivation of κ1,opt

We �rst denote γSRCI
nk = 1

1/Γ+
∑
m∈Mn

λmk/λnk
in (3.11), where

Γ =
Γ̂nSRCI

β
· G(β, κ1) ·

β + κ1(1 + G(β, κ1))2

Υ+ (1 + G(β, κ1))2
. (B.15)

with Υ =
∑

m∈Mn∪{n} Γ̂
m
SRCI. From (B.15), it is obvious that the optimal κ1 to

maximize γSRCI
nk is equivalent to the one that maximizes Γ.

In order to obtain the optimal κ1,opt, we need the following steps:

∂Γ

∂κ1
=

Γ̂nSRCI

β

(
∂g

∂κ1
· β + (1 + g)2

Υ+ (1 + g)2
+ g · ∂

∂κ1

(
β + (1 + g)2

Υ+ (1 + g)2

))
=

Γ̂nSRCIg

β
· β + (1 + g)2

Υ+ (1 + g)2

(
2κ1(1 + g)∂g/∂κ1
β + κ1(1 + g)2

+
2(1 + g)∂g/∂κ1
Υ+ (1 + g)2

)
=

2Υ2g(1 + g)2

β (Υ + (1 + g)2)2
∂g

∂κ1

(
κ1 −

β

Υ

)
= 0, (B.16)

where we denote g = G(β, κ1). This �nally gives κ1,opt = β/Υ, which completes the

derivation.

B.4 Proof of Corollary 3.1

γSZFnk in (3.16) can be obtained from (3.11) as γSZFnk = limκ1→0 γ
SRCI
nk . In particular,

when κ1 → 0, G(β, κ1) in (3.12) can be rewritten as

G(β, κ1) =
1

2κ1

(√
(1− β)2 + 2(1 + β)κ1 + κ21 + (1− β)− κ1

)
. (B.17)
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Plugging this into (B.15), we have

Γ =
Γ̂nSRCI

2β

(√
(1− β)2 + 2(1 + β)κ1 + κ21 + (1− β)− κ1

)
4
∑

m∈Mn∪{n} Γ̂
m
SRCIκ

2
1 +

(√
(1− β)2 + 2(1 + β)κ1 + κ21 + (1− β) + κ1

)2
×

[
4βκ1 +

(√
(1− β)2 + 2(1 + β)κ1 + κ21 + (1− β)− κ1

)2 ]
, (B.18)

For κ1 → 0, we simply have

lim
κ1→0

γSRCI
nk =

1
β

(1−β)Γ̂nSRCI

+
∑

m∈Mn
λmk/λnk

. (B.19)

This completes the proof of Corollary 3.1.

B.5 Proof of Theorem 3.1

The objective function in (3.23) can be rewritten as

msen = ς2pE
[
Tr

{ I∑
i=0

µi

(
ĤnnĤ

H

nn

)i+1

Dnn

I∑
i=0

µi

(
ĤnnĤ

H

nn

)i+1}]

+ ς2pE
[
Tr

{ I∑
i=0

µi

(
ĤnnĤ

H

nn

)i
ĤnnH̃

H

nnDnnH̃nnĤ
H

nn

I∑
i=0

µi

(
ĤnnĤ

H

nn

)i}]

− 2ς
√
pE
[
Tr

{
D1/2
nn

I∑
i=0

µi

(
ĤnnĤ

H

nn

)i+1}]
+ 1 + ς2PAN + ς2Tr {Σn} ,

(B.20)

where we exploited E[snsHn ] = IK , the de�nition of PAN given in Theorem 3.1, the

de�nition of Fn in (3.21), the de�nition 1√
NT

Hnn = Ĥnn+ H̃nn, and H̃nn = 1√
NT

H̃nn.

In the following, we simplify the right hand side (RHS) of (B.20) term by term.

To this end, we denote the �rst three terms on the RHS of (B.20) by t1, t2, and t3,
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respectively. Using a result from free probability theory [61], the �rst term converges

to [66, Theorem 1]

t1 = ς2pTr {Dnn}E
[
Tr

{( I∑
i=0

µi

(
ĤnnĤ

H

nn

)i+1)2}]
, (B.21)

as matrixDnn is free from
∑I

i=0 µi

(
ĤnnĤ

H

nn

)i+1

. Similarly, the third term converges

to

t3 = −2ς
√
pTr

{
D1/2
nn

}
E
[
Tr

{ I∑
i=0

µi

(
ĤnnĤ

H

nn

)i+1}]
. (B.22)

Furthermore, the second term can be rewritten as

t2
(a)
= ς2pE

[
Tr

{
H̃
H

nnDnnH̃nn

}
Tr

{ I∑
i=0

µi

(
ĤnnĤ

H

nn

)i
ĤnnĤ

H

nn

I∑
i=0

µi

(
ĤnnĤ

H

nn

)i}]
(b)
= ς2pNTTr {Dnn∆n} , (B.23)

where (a) follows again from [66, Theorem 1] and (b) results from E[Tr{H̃
H

nnDnnH̃nn}] =

Tr {Dnn∆n}, where∆n is de�ned in Theorem 3.1, (3.21), and the constraint in (3.23).

Exploiting (B.21)-(B.23) and the eigen-decomposition of matrix ĤnnĤ
H

nn = TΛTH ,

where diagonal matrix Λ = diag (λ1, . . . , λK) contains all eigenvalues and unitary ma-

trix T contains the corresponding eigenvectors, the asymptotic average MSE becomes

msen = E
[
ς2pTr {Dnn}Tr

{
Λ2

( I∑
i=0

µiΛ
i

)2}
− 2ς

√
pTr

{
D1/2
nn

}
Tr

{ I∑
i=0

µiΛ
i+1

}]
+1 + ς2PAN + ς2Tr {Σn}+ ς2pNTTr {Dnn∆n} . (B.24)

Next, we introduce the Vandermonde matrix C1 ∈ RK×(I+1), where [C1]i,j = λj−1
i ,
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and λ = [λ1, . . . , λK ]
T , which allows us to rewrite (B.24) in compact form as

msen = lim
K→∞

1

K
E
[
ς2pTr {Dnn}µTCT

1Λ
2C1µ− 2ς

√
pTr

{
D1/2
nn

}
µTCT

1λ

]
+1 + ς2PAN + ς2Tr {Σn}+ ς2pNTTr {Dnn∆n} . (B.25)

Similarly, the constraint in (3.23) can be expressed as

lim
K→∞

1

K
E
[
µTCT

1ΛC1µ

]
= NT . (B.26)

Thus, the Lagrangian function of primal problem (3.23) can be expressed as L1(µ, ς) =

msen + ϵ1(limK→∞
1
K
E[µTCT

1ΛC1µ] − NT ), where ϵ1 is the Lagrangian multiplier.

Taking the gradient of the Lagrangian function with respect to µ, and setting the

result to zero, we obtain for the optimal coe�cient vector µopt:

lim
K→∞

1

K
E
[
CT

1Λ

(
Λ+

ϵ1
Tr {Dnn} ς2p

IK

)
C1

]
µ =

Tr
{
D

1/2
nn

}
ς
√
pTr {Dnn}

lim
K→∞

1

K
E
[
CT

1λ
]
.

(B.27)

Furthermore, taking the derivative of L1(µ, ς) with respect to ς and equating it to

zero, and multiplying both sides of (B.27) by µT and applying (B.26), we obtain

ϵ1
ς2p

= Tr {Dnn∆n}+
PAN + Tr {Σn}

NTp
. (B.28)

The expressions involving C1, Λ, and λ in (B.27) can be further simpli�ed. For ex-

ample, we obtain limK→∞ E
[

1
K

[
CT

1ΛC1

]
m,n

]
= limK→∞ E

[
1
K

∑K
k=1 λ

m+n−1
k

]
. Sim-

plifying the other terms in (B.27) in a similar manner and inserting (B.28) into (B.27)

we obtain the result in Theorem 3.1.
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B.6 Proof of Theorem 3.2

Exploiting E[znzHn ] = INT , the constraint in (3.33), and a similar approach as was

used to arrive at (3.28), the objective function in (3.33) can be rewritten as PAN =

qE
[
Tr
{
GnnAnA

H
n G

H
nn

} ]
= qE

[
Tr
{
DnnĤnnAnA

H
n Ĥ

H
nn

}]
+(1−ϕ)PTTr{Dnn∆n}.

(B.29)

Using (3.32) and a similar approach as in Appendix B.5, (B.29) can be rewritten

as

PAN = (1− ϕ)PTTr{Dnn∆n}

+ qNTTr {Dnn}E
[
− 2Tr

{ J∑
j=0

νjΛ
j+2

}
+ Tr {Λ}+ Tr

{
Λ

( J∑
i=0

νjΛ
j+1

)2}]
(B.30)

De�ning Vandermode matrix C2 ∈ RK×(J+1), where [C2]i,j = λj−1
i , we can rewrite

(B.30) in compact form as PAN =

qNTTr {Dnn} lim
K→∞

1

K
E
[
−2νTCT

2Λλ+1Tλ+νTCT
2Λ

3C2ν

]
+(1−ϕ)PTTr{Dnn∆n},

(B.31)

where 1 denotes the all-ones column vector. Taking into account the constraint in

(3.33), we can formulate the Lagrangian as

L2(ν) = PAN + ϵ2( lim
K→∞

1

K
E[νTCT

2Λ
2C2ν − 2νTCT

2λ] + 1) (B.32)

with Lagrangian multiplier ϵ2. The optimal coe�cient vector νopt is then obtained

by taking the gradient of the Lagrangian function with respect to ν and setting it to
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zero:

lim
K→∞

E
[
CT

2Λ
2 (Λ+ ϵIK)C2

]
ν = lim

K→∞
E
[
CT

2 (Λ+ ϵIK)λ

]
, (B.33)

where we used ϵ = ϵ2
qNTTr{Dnn} . Simplifying the terms in (B.33) by exploiting a similar

approach as in Appendix B.5, we obtain the result in Theorem 3.2.
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Proofs in Chapter 4

Appendix C provides the proofs of Lemmas in Chapter 4.

C.1 Proof of Lemma 4.1

The ergodic secrecy rate achieved by the kth MT in symbol interval t ∈ {B+1, . . . , T}

is given by [43, Lemma 1]

Rsec
k (t) = E

[
[Rk(t)− log2(1 + γE)]

+
]
≥ [E[Rk(t)]− CE]

+
(a)

≥ [Rk(t)− CE]
+ = Rsec

k (t),

(C.1)

where Rsec
k (t) is an achievable lower bound for Rsec

k (t), and (a) uses (4.17). By aver-

aging Rsec
k (t) over all symbol intervals t ∈ {B+1, . . . , T} we obtain Lemma 4.1. This

completes the proof.

C.2 Proof of Lemma 4.2

The expectation given in (4.20) for k ∈ Sb is calculated as

E
[
gHk Θ

H
k (t)fk

]
(a)
= E

[
ĝHk Ψ

H
t0
(t)ĝk

∥ĝk∥
ej(ϕk(t)−ϕk(t0))

]
(b)
= tr

(
E
[
ĝkĝ

H
k

∥ĝk∥

]
E
[
ΨH
t0
(t)

])
E
[
ej(ϕk(t)−ϕk(t0))

]
=

√
βkNλk · e−

σ2ψ+σ2ϕ
2

|t−t0|, (C.2)
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where Ψt0(t) = diag
(
ej(ψ1(t)−ψ1(t0))1T1×N/No , . . . , e

j(ψNo (t)−ψNo (t0))1T1×N/No

)
and λk is

de�ned in Lemma 4.2. In (C.2), (a) exploits that the channel estimate and the

estimation error are uncorrelated [18], and (b) exploits the mutually independence of

ĝkĝ
H
k , Ψ

H
t0
(t), and ej(ϕk(t)−ϕk(t0)). This completes the proof.

C.3 Proof of Lemma 4.3

In (4.18), the term re�ecting the interference caused by the signal intended for MT

l ∈ Sb to MT k ∈ Sb can be expanded as

E
[∣∣gHk ΘH

k (t)fl
∣∣2] = E

[∣∣∣∣gHk (t0)ΨH
t0
(t)

ĝl
∥ĝl∥

ej(ϕk(t)−ϕk(t0))
∣∣∣∣2
]

= E
[
tr

(
gk(t0)g

H
k (t0)Ψ

H
t0
(t)

ĝlĝ
H
l

∥ĝl∥2
Ψt0(t)

)]
(a)
= βk +

(
I

β2
l ω

H
l Θ

b
σ(t0)

Σ−1
b ΘH

σ(t0)
ωlN

− βk

)

× Eψ
[(

1

N
tr
(
ΨH
t0
(t)
))2 ]

, (C.3)

where Xl = βlω
H
l Θ

b
σ(t0)

Σ−1
b ⊗ IN and I = E

[
tr
(
XH
l gk(t0)g

H
k (t0)Xlψbψ

H
b

)]
. (a)

exploits [66, Theorem 1] from free probability theory, since the phase drift matrices

Ψt0(t) and ΨH
t0
(t) are free from gk(t0)g

H
k (t0) and

ĝlĝ
H
l

∥ĝl∥2
. The further step is to expand

I as

I = E
[
tr
(
YH
lkgkg

H
k Ylkgkg

H
k

)]
+ tr

(
βkX

H
l Xl(Σb − βk

(
Wb

k +Ub
k

))
⊗ IN) +

E
[
tr
(
XH
l gkg

H
k Xl

(
Ub
k ⊗ diag

(
g
(1)
k , . . . , g

(N)
k

)))]
, (C.4)
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where

Ylk = ΘH
k (t0)Xl

[
ΘH
k (Bb−1 + 1)ωk(Bb−1 + 1), . . . ,ΘH

k (t0)ωk(t0)
]T
. (C.5)

Denoting the tth column of IN by eNt ∈ CN×1, the �rst term on the right hand side

of (C.4), denoted by I1, can be expanded as

I1 =
∑

n1,n2,b1,b2

[βkXle
Bb
b1

⊗ IN ]n1n1 [βkXle
Bb
b2

⊗ IN ]
H
n2n2

× ωk(b1)ω
∗
k(b2)Θ(n1, n2, b1, b2, t0)

=
∣∣tr (βkXl(Θ

b
σ(t0)

ωk ⊗ IN)
)∣∣2 + tr

(
β2
kX

H
l Xl(W

b
k ⊗ IN)

)
+

N∑
|n1−n2|≤ N

N0

β2
k(e

N
n1
)HXl

(
(Wb

k −Θb
σ(t0)

ωkω
H
k Θ

b
σ(t0)

)⊗ eNn1
(eNn2

)H
)
XH
l e

N
n2
, (C.6)

where the expectation with respect to the phase drift, Θ(n1, n2, b1, b2, t0), depends on

the number of LOs, No, and is given by Θ(n1, n2, b1, b2, t0) =

E
[
eθ
n1
k (b1)−θ

n1
k (t0)−θ

n2
k (b2)+θ

n2
k (t0)

]
=


e−

σ2ψ+σ2ϕ
2

|b1−b2| |n1 − n2| ≤ N
No
,

e−
σ2ψ+σ2ϕ

2
|t0−b1|e−

σ2ψ+σ2ϕ
2

|t0−b2| |n1 − n2| > N
No
.

(C.7)

Furthermore, we rewriteUb
k = (κMT

t +κBS
r )pτ

∑Bb
t=1 e

Bb
t (eBbt )H and diag

(
g
(1)
k , . . . , g

(N)
k

)
=∑N

n=1 |(eNn )Hgk|2eNn (eNn )H . Using these results in the third term on the right hand

side of (C.4), denoted by I2, we obtain

I2 = β2
ktr
(
XH
l Xl(U

b
k ⊗ IN)

)
+

N∑
n=1

β2
k(e

N
n )

HXl

(
Ub
k ⊗ eNn (e

N
n )

H
)
Xle

N
n . (C.8)

Applying (C.6) and (C.8) in (C.3) and exploiting E
[ (

1
N
tr
(
ΨH
t0
(t)
))2 ]

= 1−ϵ
No

+ ϵ, we

obtain the result in Lemma 4.3 for k, l ∈ Sb.
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For the case of l /∈ Sb, the multiuser interference term simpli�es to

E
[∣∣gHk ΘH

k (t)fl
∣∣2] = E

[∣∣∣∣gHk (t0)ΨH
t0
(t)

ĝl
∥ĝl∥

ej(ϕk(t)−ϕk(t0))
∣∣∣∣2
]
= βk, (C.9)

where the last equality follows from the independence of gk, ĝl, l /∈ Sb, and ΨH
t0
(t).

This completes the proof.

C.4 Proof of Lemma 4.4

The AN leakage power received at the kth MT in time slot t can be expanded as

LkAN(t) = E
[
tr
(
ĝkĝ

H
k Ψ

H
t0
(t)AAHΨt0(t)

)]
+ E

[
eHk (t0)Ψ

H
t0
(t)AAHΨH

t0
(t)ek(t0)

]
.

(C.10)

By using [66, Theorem 1], the �rst term in (C.10) can be further expanded as

βkL+
(
E
[
tr
(
ĝkĝ

H
k AAH

)]
− βkL

)
Eψ

[(
1

N
tr (Ψt0(t))

)2
]
= βkL

(
1− 1

No

)
(1− ϵ) ,

(C.11)

since phase drift matrices Ψt0(t) and ΨH
t0
(t) are free from ĝkĝ

H
k and AAH . Further-

more, we exploited ĝHk A = 0, 1 ≤ k ≤ K, which holds for the NS AN precoder.

The second term in (C.10) is equal to βkL(1− λk), with λk as de�ned in Lemma

4.2, due to the mutual independence of the estimation error vector ek(t0), the phase

drift matrix Ψt0(t), and the AN precoder A. Combining these two terms completes

the proof.
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C.5 Proof of Lemma 4.5

For the G-NS AN precoder, we rewrite the leakage power received at the kth MT in

time slot t as

LkAN =
Mo∑
m=1

E
[(

g
(m)
k

)H (
Θ

(m)
k (t)

)H
A(m)A

H
(m)Θ

(m)
k (t)g

(m)
k

]
, (C.12)

where g
(m)
k ∈ CN/Mo×1 contains the ((m− 1)N/Mo+1)th to the (mN/Mo)

th elements

of vector gk, 1 ≤ m ≤ Mo, and Θ
(m)
k (t) ∈ CN/Mo×N/Mo is a diagonal matrix with

the ((m − 1)N/Mo + 1)th to the (mN/Mo)
th elements of matrix Θk(t) on its main

diagonal. Using similar steps as in Appendix C.4 but with No/Mo substituted by No

for calculation of the expectation terms in (C.12), we obtain (4.30). This completes

the proof.
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