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Abstract

Cooperative broadband communications is a promising technique to improve the reli-

ability, throughput, and coverage of the next generation wireless communication sys-

tems. Single-carrier transmission with frequency-domain equalization (SC-FDE) and

orthogonal frequency-division multiplexing (OFDM) are the prevailing block based

broadband schemes widely adopted in major wireless standards. Traditionally, these

broadband schemes are deployed for point-to-point communications without the co-

operation of any intermediate transmission nodes. However, as the communication

systems evolve, both service providers and users are demanding higher data rates and

non-seamless connection over large areas. As a result, it is necessary to design novel

transceiver architectures that meet these stringent requirements. This dissertation

proposes four such cooperative transceiver designs which are tailored for di�erent

communication scenarios.

Firstly, for single-user SC-FDE broadband systems with multiple multi-antenna

amplify-and-forward (AF) relays, we optimize the relay beamforming (rBF) �lters

and destination equalization �lter based on the minimum mean-square error (MSE)

criterion under an aggregate relay transmit power constraint. We also propose subop-

timal rBF schemes which perform close to the optimal rBF scheme. Subsequently, we

investigate single-user SC-FDE broadband MIMO AF relay systems. By exploiting

the properties of the block-circulant channel matrices and the majorization theo-

ry, the problem is transformed into an equivalent power optimization problem with
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Abstract

scalar variables. An alternating optimization algorithm is devised to obtain the op-

timal solution for the source and relay power allocation. Thirdly, we study a robust

transceiver design for multiuser broadband systems with multiple single-antenna AF

relays and in the presence of channel estimation errors. Our proposed design treats

multiuser SC-FDE and OFDM based systems in a uni�ed manner, where the goal is

to maximize the network ABR subject to di�erent types of relay power constraints.

Lastly, we propose a robust transceiver design for single-user SC-FDE based multi-hop

full-duplex decode-and-forward relay systems. The optimization problem is formu-

lated as the minimization of the sum MSE or maximum MSE of di�erent hops which

takes into account the loopback interference of the full-duplex relays. We propose

two algorithms to solve the resulting non-convex power allocation problems based on

sequential geometric programming and alternating optimization, respectively.
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Chapter 1

Introduction

The ever-increasing demands for higher data rates, more reliable communication, and

seamless connection from everywhere have always been the major driving forces for

the evolution of wireless communication systems [1, 2]. Cooperative communications

[3, 4, 5], multiple-input-multiple-output (MIMO) systems [6, 7], broadband commu-

nication technologies such as orthogonal frequency division multiplexing (OFDM)

[8, 9] and single-carrier transmission with frequency-domain equalization (SC-FDE)

[10, 11, 12], are some of the key enabling techniques to accomplish the aforementioned

objectives. Hence, we will provide a brief overview of these related techniques in this

chapter.

This chapter is organized as follows. In Sections 1.1, we brie�y review two major

broadband communication schemes, SC-FDE and OFDM, as well as their multiple-

access extensions, single-carrier frequency-division multiple access (SC-FDMA) and

orthogonal frequency-division multiple access (OFDMA). In Sections 1.2, we discuss

the existing cooperative beamforming for multiple relay networks for both single-

user and multiuser scenarios. In Section 1.3, we introduce the concept of MIMO

relay communication and discuss the associated transceiver optimization problems.

In Section 1.4, we provide a brief review on full-duplex relay systems, which have

recently received lots of research interest. The contributions made in this thesis are

summarized in Section 1.5, and the thesis organization is provided in Section 1.6.
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1.1 Broadband Transmission and Multiple-access

Schemes

SC-FDE and OFDM, as well as their multiple access extensions, SC-FDMA and

OFDMA, are the prevailing block based broadband schemes [14, 15] that have been

widely adopted in the major wireless standards, such as the IEEE 802.16 family of

standards [17, 18, 19] and 3rd Generation Partnership Project (3GPP) Long-Term

Evolution-Advanced (LTE-A) [14, 15, 16]. OFDM/OFDMA is well known for its

advantage of �exibility in radio resource allocation and resilience to inter-symbol in-

terference in frequency-selective fading channels [20]-[28]. However, they su�er from

a large transmit peak-to-average power ratio (PAPR) and a high sensitivity to car-

rier frequency o�sets. Although many PAPR reduction and carrier frequency o�set

compensation techniques have been proposed in the literature [29, 30], these meth-

ods introduce additional complexities and usually do not guarantee optimal system

performance. On the other hand, as an e�cient solution to the aforementioned prob-

lems, SC-FDE/SC-FDMA has been recognized as an attractive alternative to OFD-

M/OFDMA for the uplink transmission, providing an improved uncoded bit-error

rate (BER) and a similar achievable bit rate (ABR), while enjoying a comparable

implementation complexity [11, 12, 13]. Therefore, this thesis will mainly focus on

the discussion of SC-FDE/SC-FDMA based broadband systems and consider various

transceiver schemes employing this type of broadband technology. It is worth men-

tioning that we do consider SC-FDMA and OFDMA based broadband systems in a

uni�ed manner in Chapter 4 .
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1.2 Cooperative Beamforming with Multiple Relays

Next generation wireless systems are required to provide a certain quality-of-service

(QoS) to their users, including those at the cell edge. In this context, relays have

been recognized as an e�ective means to extend the coverage of wireless networks

[3, 4, 5, 31]. The three most popular relaying techniques are amplify-and-forward

(AF), compress-and-forward (CF), and decode-and-forward (DF). Compared to CF

and DF relays, AF relays have the advantage of simpler signal processing and end-to-

end transparency of data transmission [3, 31]. If the channel state information (CSI)

is available at the relays, cooperative relay beamforming (rBF) [32, 33, 34, 35] across

multiple parallel AF relays can be employed to create a virtual antenna array, which

introduces additional spatial diversity and yields considerable performance gains.

1.2.1 Cooperative Relay Beamforming with Perfect CSI

With perfect CSI available at the relay nodes and the destination node, and for �at

fading channels, the optimal rBF �lters which maximize the received signal-to-noise

ratio (SNR) and the ABR of the network under individual relay power constraints

(Ind-PCs) were reported in [36] and [37], respectively. The rBF design minimizing

the received mean-square error (MSE) under Ind-PCs was investigated in [38, 39].

In high-rate data communications, the channels become frequency-selective and sig-

ni�cant inter-symbol interference (ISI) is present at the receiver. To reduce the

performance degradation caused by ISI, the design of �lter-and-forward rBF for a

continuous SC transmission with and without time-domain (TD) equalization at the

destination under an aggregate relay power constraint (Agg-PC) was investigated

in [41] and [42], respectively. For frequency-selective fading channels, optimal rBF

across multiple relays was also studied for OFDM with ergodic capacity as the opti-
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mality criterion in [40, 43, 44]. As pointed out earlier in this chapter, OFDM is not

a good option if low transmit PAPRs are desired. On the other hand, for channels

with large length of channel impulse responses (CIRs), TD-BF and TD equaliza-

tion introduce a high complexity in systems employing continuous SC transmission

[10, 11]. In this regard, block-based SC-FDE is appealing as it enables both low

PAPR and low-complexity frequency-domain processing for e�cient mitigation of

frequency-selective fadings [12, 13]. Nevertheless, the literature on cooperative BF

for SC-FDE is very sparse, with [45] being the only notable exception, where the

application of FD linear equalization (FD-LE) has been considered in a multi-user

uplink network with a single-antenna relay station. However, [45] imposes a pre-

determined linear equalization structure on the relay and only optimizes the power

allocation across di�erent frequency tones. In addition, in future wireless systems,

multiple multi-antenna relays may cooperate for improving the link quality and the

extension of [45] to this scenario is not straightforward. This motivates us to consider

a systematic transceiver design for a multiple multi-antenna AF relay network with

both linear and nonlinear equalization receivers in Chapter 2.

1.2.2 Cooperative Relay Beamforming with Imperfect CSI

The rBF schemes mentioned so far are based on the assumption that perfect CSI is

available at the relays and the destination. In practical wireless systems, CSI is usu-

ally imperfect due to channel estimation errors and/or feedback quantization errors

[46]. Two di�erent approaches are commonly used to model imperfect CSI, namely,

statistical models and deterministic models. In the former case, the statistics of the

CSI errors are assumed to follow some known distribution such as Gaussian, which

makes this model suitable for modeling channel estimation errors [47]. In the latter
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case, the CSI error is assumed to lie in an uncertainty region with known boundary,

making this model suitable for the characterization of quantization errors [48]. There

are several works on robust rBF design, which have adopted one of these two models.

For example, the authors of [82] investigated the optimal rBF �lter which maximizes

the received SNR of a multi-relay network based on the deterministic CSI error mod-

el. In [50], the optimal minimum MSE relay precoding scheme was developed for a

multiple-antenna single-relay system based on the statistical CSI error model. The

relay precoding matrix design for a multi-relay network was studied in [51] for both

of these error models. However, all these works are only applicable to �at fading

channels, where the optimization is essentially performed on a per-subcarrier basis.

The extension of robust rBF designs to multiuser multi-relay broadband systems in

frequency-selective channels is more challenging as the dimensionality of the result-

ing problem is much higher. We note that for perfect CSI, the rBF optimization

for SC-FDMA multi-relay systems with Ind-PCs has been addressed in [52], where

the objective is the minimization of the maximum user-wise MSE in the network.

However, for a multiuser network, the ultimate system performance depends on the

aggregate ABR, which is a complex nonlinear function of the user-wise MSEs, and

thus cannot be optimized using the formulation in [52] . To the best of our knowledge,

a robust rBF �lter design which directly maximizes the network ABR for SC-FDMA

and OFDMA under either an Agg-PC or Ind-PCs has not been investigated in the

literature yet. This motivates us to investigate a uni�ed transceiver scheme, which

includes the robust design of rBF �lters and destination equalization (dEQ) �lter, for

SC-FDMA/OFDMA based multiuser broadband systems with multiple AF relays in

Chapter 4.
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1.3 MIMO Relay Systems

In the previous section, we have discussed various rBF schemes for both single-user

and multi-user multi-relay systems. A common aspect of these schemes is that on-

ly a single spatial data stream is transmitted through the communication link [53].

For the multi-user case, each user only transmits a single data stream. However,

future wireless communication systems are expected to support very high-speed data

rates with limited available bandwidth resources. Spatial multiplexing [54, 55], which

could transmit multiple data streams through multiple spatial channels created by

the MIMO systems, is one of the key technique for achieving this goal. Therefore,

MIMO relay systems [56, 57], where multiple antennas are equipped at source, re-

lay and destination nodes, have received signi�cant research interest for exploiting

the bene�ts of both multiple-antenna and relay technologies. An important research

problem for MIMO relay systems is the design of optimal node processing matrices

to improve spectral e�ciency and/or error performance through e�cient utilization

of transmit CSI [58, 59]. For example, assuming availability of perfect CSI at the

source and relay nodes and linear processing at the destination, the source and relay

processing matrices were optimized for maximization of the relay channel capacity

and minimization of the MSE in [60, 61] and [62, 63], respectively. In [64], a general

framework for linear transceiver optimization in MIMO AF relay systems was provid-

ed for a large family of objective functions, which includes the capacity maximizing

and the MSE minimizing designs as special cases. The extension of the results in [64]

to multi-hop MIMO AF relay systems with linear and decision-feedback equalization

receivers was investigated in [66] and [67], respectively. More recently, the design

of MIMO AF relay systems with partial or imperfect CSI at source and relay was

considered in [68, 50].
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Existing works on transceiver design for MIMO AF relay systems are based on

the assumption of either frequency-nonselective (�at) channels [61, 62, 66, 67, 50] or

frequency-selective channels in combination with OFDM [60, 64, 68, 65]. Since OFDM

decomposes a frequency-selective channel into multiple parallel �at subchannels [70,

121], the transceiver designs developed for frequency-nonselective channels can be

extended to OFDM based MIMO relay systems by solving an additional subcarrier

power allocation problem across di�erent subcarriers. However, the optimization of

SC-FDE based MIMO relay systems has not been considered in the literature so far.

The main di�erence of MIMO SC-FDE systems compared to MIMO OFDM systems

lies in the special structure of its MSE matrix in the time domain, which is the average

of the subcarrier-wise MSE matrices of the corresponding MIMO OFDM systems in

the frequency domain [72, 73]. Therefore, the design problem for MIMO SC-FDE

systems has a very di�erent structure compared to that for MIMO OFDM systems

even in point-to-point non-cooperative communication scenarios. This motivates us

to study the joint transceiver design for SC-FDE based MIMO AF relay systems in

Chapter 3.

1.4 Full-duplex Relay Systems

Conventionally, relay systems are operated in the half-duplex mode, where two or-

thogonal time slots are required to accomplish the signal transmission [31]. This

would result in a low spectrum e�ciency, especially when there is a large number

of hops in the relay network. Recently, due to the promising advances in hardware

technology for interference cancellation [74, 75, 76, 77], full-duplex relays (FDRs)

that can transmit and receive signals simultaneously are drawing a growing interest

from the research community. The key enabling technique for full-duplex radios is
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the so-called self-interference cancellation. The authors of [78] investigated several

signal cancellation techniques, including natural isolation, time-domain cancellation,

and spatial-domain suppression, to alleviate the loopback interference (LI) inherent

to FDRs. In [79], a spatial-domain nulling scheme was proposed for cancelling the

echo FDR channel interference. Transmit beamforming and power allocation are also

e�ective means to enhance the performance of FDR systems. In [80], a power allo-

cation scheme was employed to maximize the throughput of hybrid half-duplex relay

(HDR) and FDR systems. Power allocation for minimization of the outage proba-

bility of a cognitive radio FDR system was studied in [81]. Taking into account the

e�ects of imperfect LI cancellation, the authors of [82] studied the primary-cognitive

rate region of a cooperative cognitive system by deriving optimal and suboptimal

beamforming schemes for the cognitive FDR. In terms of performance analysis, the

diversity-multiplexing tradeo� and outage performance of FDR systems were studied

in [83] and [84], respectively. To determine the optimal duplex mode, the authors of

[85] studied the SNR outage probability for a DF relay system and derived the con-

dition under which FDRs outperform HDRs. More recently, a low-complexity joint

precoding and decoding strategy based on the zero-forcing criterion was proposed in

[87] for a multi-antenna FDR system.

The aforementioned works on FDR systems are all based on the assumption of

�at-fading channels. In the presence of frequency-selective fading, the design of FDR

systems becomes even more challenging as the signal received at the relay su�ers not

only from LI, but also from inter-symbol interference [88]. Two prevailing solutions

to overcome channel frequency selectivity are OFDM and SC-FDE, and both ap-

proaches have found successful application in HDR system design, e.g., [60, 89, 90].

Unfortunately, these HDR designs are not applicable to FDR systems due to the non-
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negligible residual LI at the relay, which couples the transmit signals of consecutive

hops and makes the design problem more di�cult. For OFDM based FDR systems,

some results for system optimization have been reported recently. For example, [91]

investigated an adaptive interference cancellation scheme for OFDM FDR systems

which aims to minimize the residual LI power assuming perfect knowledge of the LI

channel at the relay. In [92], a resource allocation scheme was proposed to maximize

the bit rate of a hybrid HDR/FDR system assuming imperfect LI channel estimation

but perfect transmit channel estimation. Nevertheless, for SC-FDE based FDR sys-

tems, the corresponding transceiver design problem has not been investigated in the

literature yet. This motivates us to study the robust transceiver design for SC-FDE

based FDR systems assuming imperfect CSI at the transceivers in Chapter 5.

1.5 Contributions of the Thesis

This thesis considers the design of various transceiver schemes for performance en-

hancement that may �nd application in several current or upcoming wireless commu-

nication standards. The main contributions of this thesis are listed in the following.

1. We propose a novel frequency-domain approach to rBF design for SC-FDE

based broadband systems with one single-antenna source, multiple multi-antenna

AF relays, and one single-antenna destination. The proposed scheme could e�ectively

reduce the inter-symbol interference originated from the multi-path fading and the

inter-relay interference resulted from the concurrent transmissions of multiple relays.

We also propose suboptimal rBF schemes which perform close to the optimal rBF

scheme and show a remarkable robustness against imperfect CSI.

2. We propose a joint transceiver design for an MIMO SC-FDE based AF relay

system with multi-antenna source, relay, and destination. Exploiting the mathemat-
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ical tools from majorization theory, we �nd the optimal structure of the source and

relay precoding matrices for minimizing a family of Schur-convex and Schur-concave

objective functions. The remaining source and relay power allocation problems are

solved by adopting an alternating optimization algorithm based on a high SNR ap-

proximation of the objective function. Furthermore, we propose low-complexity sub-

optimal precoding schemes with less signalling overhead at the cost of only a moderate

performance degradation.

3. We investigate the robust transceiver design for a broadband multiuser net-

work with multiple single-antenna source, multiple single-antenna AF relays, and

one single-antenna destination, in the presence of channel estimation errors. The

proposed uni�ed transceiver scheme for both SC-FDMA and OFDMA maximizes the

lower bound of the network ABR under di�erent types of power constraints at the

relay nodes, namely Ind-PCs and an Agg-PC. For the Agg-PC, we obtain closed-form

solutions for the rBF �lter coe�cients and global optimal solution for the relay pow-

er allocation. For Ind-PCs, we �nd a local optimal solution of the rBF problem by

reformulating the rBF problem into a reverse-convex problem and by applying the

constrained convex-concave procedure (CCCP).

4. We study the robust transceiver design for a multi-hop full-duplex DF relay

system. Two relevant objective functions are considered for the purpose of transceiver

optimization: (1) minimization of the sum MSE of di�erent hops. (2) minimization

of the maximum MSE across di�erent hops. For both cases, we optimize the trans-

mit precoding coe�cients and receive equalization coe�cients under separate node

transmit power constraints. We �nd that the the optimal equalization �lters at the

receiving nodes are identical for both considered optimization criteria and take the

form of robust Wiener �lters. We further propose two e�cient algorithms to solve the

10
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remaining non-convex optimization problems for the transmit precoding coe�cients.

The �rst scheme is based on the successive geometric programming algorithm, and

the second scheme combines the di�erent-of-convex programming algorithm and the

alternating optimization algorithm to �nd a stationary point solution to the original

problem.

1.6 Organization of the Thesis

In the following, we provide a brief overview of the remainder of this thesis.

In Chapter 2, we propose a novel single-data stream, frequency-domain rBF

scheme for SC-FDE broadband systems. Assuming perfect CSI at the relays, the

rBF �lter coe�cients are optimized for three di�erent receiver structures at the des-

tination, namely, FD-LE and FD decision feedback equalization (DFE) as well as an

idealized matched �lter (MF) receiver, which constitutes a performance upper bound

for any receiver. Simulation results for a typical frequency-selective fading channels

con�rm the excellent performance of the proposed scheme and show that proposed FD

rBF has a more favorable performance than Naive-rBF schemes and multi-antenna

source BF scheme in conventional non-cooperative communication systems.

In Chapter 3, we consider the transceiver optimization for an SC-FDE based MI-

MO AF relay networks with one multi-antenna source, one multi-antenna AF relay,

and one multi-antenna destination. Assuming perfect CSI at all nodes in the system,

the transmit precoding matrices at the source and the relay are jointly optimized for

the minimization of a general objective functions in terms of the stream-wise MSE.

We solve the associated optimization problems in two stages. In the �rst stage, we

�nd the optimal structure of the precoding matrices by exploiting the property of the

MSE matrix and the tools from majorization thoery. For Schur-concave objective
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function, the optimal precoding matrices diagonalize the end-to-end e�ective MIMO

relay channel matrix. For Schur-convex objective function, the optimal precoding

matrices diagonalize the e�ective channel up to a unitary rotation at the source pre-

coder. In the second stage, an e�cient numerical algorithm based on alternating

optimization principle is proposed for �nding the optimal power allocation at the

source and the relay. Furthermore, we propose e�cient low-complexity suboptimal

methods for the source and relay precoding matrices which results in less signalling

overhead at the cost of moderate performance degradation. Simulation results show

the bene�ts of having multiple antennas at the source, relay and destination and illus-

trate the excellent BER and ABR performance of the proposed optimal/suboptimal

precoding schemes.

In Chapter 4, we investigate robust transceiver schemes for multiuser multi-relay

networks . In contrast to prior work, which concentrated on system design with

perfect CSI, we consider here a more piratical scenario where the CSI available at the

relays and the destination are imperfect. For the power constraints at the relays, we

investigate two di�erent cases: (1) the Agg-PC and (2) Ind-PCs. For both cases, we

optimize the rBF �lter coe�cients and dEQ �lter coe�cients for maximization a lower

bound on the ABR of the network. The optimal dEQ �lters and the phases of the

optimal rBF �lter coe�cients are derived for both types of constraints. Then, for the

Agg-PC, a two-step solution for the optimal amplitudes of the rBF �lter coe�cients

is proposed by employing primal decomposition. In the �rst step, for each subcarrier

of the users, the optimal rBF allocates power across relays by taking into account the

CSI error variances. In the second step, a convex power allocation procedure further

distributes the power across subcarriers and among users to enhance the weighed

ABR performance. For Ind-PCs, the optimal amplitudes of the rBF �lter coe�cients
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are obtained by solving a sequence of convex optimization problems. Our simulation

results reveal that the proposed robust rBF schemes outperform conventional non-

robust scheme remarkably, especially with large values of CSI error variances, and

also achieves a signi�cant ABR performance gain over the naive-AF relaying scheme.

In Chapter 5, we consider robust transceiver design for a multi-hop SC-FDE based

full-duplex DF relay networks with channel uncertainty. For the performance metrics,

we consider (1) the sum MSE of di�erent hops. (2) the maximum MSE of di�erent

hops. For both problems, we propose two e�cient algorithms to �nd the solution of

transmit precoding/power allocation coe�cients. The �rst scheme is based on the

successive geometric programming algorithm, and the second scheme combine the

di�erent-of-convex programming algorithm and alternating optimization algorithm

to obtain a stationary point solution to the original problem. Numerical results

show that both approaches yield practically identical MSE and ABR performances.

In addition, the proposed robust transceiver design outperforms non-robust FDR

systems and robust half-duplex relay systems by a considerable margin, especially in

high SNR region and with large channel estimation errors.

Finally, Chapter 6 summarizes the contributions of this thesis and outlines areas

of future research. Appendices contain the proofs of the propositions, lemmas, and

theorems.
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Chapter 2

Transceiver Design For SC-FDE

Systems with Multiple Relays

2.1 Introduction

As pointed out in Chapter 1, next generation wireless systems are required to guar-

antee a certain level of QoS for the cell-edge users. In this context, relays have been

recognized as an e�ective means to achieve this goal [3, 4, 5, 31]. If the channel

state information is available at the relays, cooperative rBF [32, 33, 34, 35] across

multiple parallel AF relays can be employed to create a virtual antenna array, which

introduces additional spatial diversity and yields considerable performance gains.

In this chapter, we propose a systematic transceiver design for cooperative broad-

band SC-FDE networks with multiple multi-antenna AF relays. At the destination,

we consider both FD-LE and FD-DFE as well as an idealized MF receiver, which

constitutes a performance upper bound for any receiver. Assuming the equalizers

at the destination are optimized based on the minimum MSE criterion, we develop

a uni�ed framework for optimization of the rBF matrices, which is applicable for

all considered receivers. In particular, for an aggregate relay power constraint, we

derive a closed-form solution for the structure of the optimal rBF matrices which is

identical for all considered receivers. In contrast, the optimal power allocation across

frequency tones depends on the adopted receiver. We develop a numerical algorithm

14
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for optimal power allocation and two suboptimal power allocation schemes assigning

equal powers to all relays and/or frequency tones. These suboptimal power allocation

schemes are shown to achieve near-optimal performance for SC-FDE and constitute

viable alternatives to more complex optimal power allocation.

The remainder of this chapter is organized as follows. In Section 2.2, the system

model is presented. In Section 2.3, the optimal minimal MSE receivers are provided

and the corresponding objective functions for rBF matrix optimization are derived.

The structure of the optimal rBF matrices and power allocation schemes are de-

veloped in Section 2.4, and simulation results are provided in Section 2.5. Some

conclusions are drawn in Section 2.6.
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Figure 2.1: System model for SC-FDE block transmission with cooperative relay BF.

2.2 System Model

We consider a block-based SC-FDE system with one source node, S, NR relays,

Ri, i = 1, . . . , NR, and one destination node, D, as shown in Fig. 2.1. We assume

that S and D are equipped with a single antenna, respectively, and the relays are

equipped with N antennas. The CIR coe�cients of the S-D, S-Ri, and Ri-D channels
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are collected in vectors qt = [q0, q1, . . . , qLq−1]
T , g

(i)
t = [g

(i)T
0 ,g

(i)T
1 , . . . ,g

(i)T
Lg−1]

T , and

h
(i)
t = [h

(i)
0 ,h

(i)
1 , . . . ,h

(i)
Lh−1]

T , respectively, where Lq, Lg, and Lh are the corresponding

CIR lengths. Here, g
(i)
l = [gi1l, · · · , giNl]

T ∈ CN×1 and h
(i)
l = [hi1l, · · · , hiNl] ∈ C1×N ,

where ginl (hinl) represents the lth tap of the CIR between the nth antenna of Ri and

S (D). The transmission is organized in two phases.

2.2.1 First Phase of Transmission

During the �rst phase, the source node broadcasts its information to the relay nodes

and the destination node. Speci�cally, at the source, Nc independent, identically

distributed (i.i.d.) symbols sn, n = 1, . . . , Nc, which are drawn from a signal constel-

lation with variance σ2
s = E[|sn|2], are collected in a vector s = [s1, . . . , sNc ]

T .

A cyclic-pre�x (CP) in form of the last Ng,s (Ng,s ≥ max{Lq, Lg}) elements of s

is added at the beginning of s and the resulting signal is transmitted by the source

node. The CP transforms the linear convolution of the CIRs and the transmitted

signal into a circular convolution. Thus, the received signals (after CP removal) at

the destination, y0 ∈ CNc×1, and at the ith relay, ri = [rTi1, . . . r
T
iNc

]T ∈ CNNc×1 (rik

denotes the received vector at the ith relay at time k), are given by

y0 = Qs+ n0 and ri = Gis+ ni, i = 1, . . . , NR, (2.1)

respectively, where Q = circ{[qT
t 01×Nc−Lq ]

T} ∈ CNc×Nc and Gi = blkcirc{g(i)
0 , . . . ,

g
(i)
Lg−1,0N×1, . . . ,0N×1} ∈ CNNc×Nc , are column circular and block-circular matrices,

respectively, and n0 ∼ CN (0, σ2
n0
INc) and ni = [nT

i1, . . .n
T
iNc

]T ∼ CN (0, σ2
n1
INNc) are

the noise vectors at the destination in the �rst phase of transmission and at the ith

relay, respectively. We assume that all noise vectors are independent of each other.
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2.2.2 Second Phase of Transmission

In the second phase, the relays process the received signals before forwarding them to

the destination. Speci�cally, the ith relay �rst converts ri into the FD usingN parallel

fast Fourier transforms (FFTs). Subsequently, the FD vector (F⊗ IN)ri is multiplied

by a block-diagonal FD-BF matrix A
(i)
f = blkdiag{Aik ∈ CN×N , k = 1, ..., Nc},

where F is the DFT matrix of size Nc. The resulting FD vector is transformed

back into the TD using N parallel inverse FFTs (IFFTs) leading to vector ti =

[tTi1, . . . t
T
iNc

]T ∈ CNNc×1,

ti = Airi, i = 1, . . . , NR, (2.2)

where Ai = (F⊗ IN)
†A

(i)
f (F⊗ IN).

1 Subsequently, a CP of length Ng,r (Ng,r ≥ Lh) is

added to the vector formed by the nth element of tik, k = 1, . . . , Nc, and the resulting

signal is transmitted over the nth antenna of relay Ri. After CP removal, the received

signal at the destination in the second phase of transmission can be written as

y1 =

NR∑
i=1

Hiti + n = H̄s+ n̄, (2.3)

where Hi = blkcirc{h(i)
0 , . . . ,h

(i)
Lh−1,01×N , . . . ,01×N} ∈ CNc×NNc , n ∼ CN (0, σ2

n2
INc),

H̄ =
∑NR

i=1HiAiGi represents the e�ective channel matrix between S and D, and

n̄ =
∑NR

i=1HiAini + n is the e�ective noise vector. Stacking the signals received at

1We note that the proposed FD based processing at the relays bears a complexity advantage
compared to an equivalent TD based processing. In particular, each FFT and IFFT operation re-
quires log2(Nc)Nc/2 complex multiplications [93] and the multiplication with block-diagonal matrix

A
(i)
f entails N2Nc complex multiplications. Thus, for the proposed FD based processing, each relay

has to perform log2(Nc)NNc/2 + N2Nc complex multiplications. On the other hand, the direct
(TD) multiplication of Ai and ri in (2.2) requires N2N2

c complex multiplications. Thus, FD based
processing enables considerable computational savings, especially if the number of subcarriers Nc is
large.
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the destination in both transmission phases into one long vector, we obtain

y = [yT
0 yT

1 ]
T = H̃s+ ñ, (2.4)

where H̃ = [QT H̄T ]T and ñ = [nT
0 n̄T ]T . It is useful to note that since Q, Gi,

and Hi are circular/block-circular matrices, they admit the following diagonal/block-

diagonal decompositions:

Q = F†QfF, Gi = (F⊗ IN)
†G

(i)
f F, Hi = F†H

(i)
f (F⊗ IN)

†, (2.5)

whereQf ,G
(i)
f , andH

(i)
f are diagonal/block-diagonal matrices with the kth diagonal/block-

diagonal entry equal to qk, gik ∈ CN×1, and hik ∈ C1×N , respectively. Here, qk, gik,

and hik represent the frequency responses on the kth frequency tone of the respective

channels. Based on these observations, we can decompose H̄ and H̃ as

H̄ = F†H̄fF and H̃ =

 F†QfF

F†H̄fF

 = (I2 ⊗ F)†H̃fF, (2.6)

where H̄f =
∑NR

i=1H
(i)
f A

(i)
f G

(i)
f and H̃f = [QT

f H̄T
f ]

T are the FD representations of

H̄ and H̃, respectively.

2.2.3 Processing at the Destination

At the destination, the two vector elements of the received signal, y, namely the

signal directly received from the source, y0, and the signal received from the relays,

y1, are converted to the FD domain via FFTs. For this purpose, the same FFT

module can be used twice, of course. Subsequently, the FD signal components are

�ltered by an FD feedforward �lter (FD-FFF) Wf and transformed back to the TD
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using an FFT, as shown in Fig. 2.1. The overall TD �lter W can be expressed as

W = F†Wf (I2 ⊗ F), (2.7)

where Wf = [W
(1)
f W

(2)
f ] with {W(1)

f ,W
(2)
f } ∈ CNc×Nc being two diagonal matri-

ces. The diagonal elements of W
(1)
f and W

(2)
f represent the FDE coe�cients for the

signal received at the destination during the �rst and second phase of transmission,

respectively.

For FD-DFE, the output signal of the FD-FFF after conversion to the TD, ŷ =

Wy, is further fed into a symbol-by-symbol decision feedback module, which can be

described by a column circular matrix B = circ{[b 01×(Nc−Nfb−1)]
T} ∈ CNc×Nc , where

b = [b0, b1, . . . , bNfb
] with bl denoting the feedback coe�cient at the lth tap, and Nfb

is the number of taps of the feedback �lter (FBF). Note that b0 is set to 1 to enable

causal ISI cancellation. The circular matrix B allows the decomposition

B = F†BfF, (2.8)

where the kth diagonal entry of Bf is given by bf,k. As usual, for equalizer design,

we assume the decision feedback process to be error free [106, 96], and write the

output of the FBF as ȳ = ŷ − (B − INc)s. Note that when Nfb = 0, B becomes an

identity matrix and FD-DFE degenerates to FD-LE. Therefore, for both FD-LE and

FD-DFE, the error vector between the �ltered received signal and the desired signal

can be expressed as

e = ȳ − s = Wy −Bs. (2.9)
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2.2.4 Required CSI and Feedback

CSI: In this paper, we assume that the system operates in the time division duplex

(TDD) mode such that all channels are reciprocal. Relay Ri, i = 1, . . . , NR, estimates

its own source-relay and relay-destination channels, i.e., gink and hink, ∀n, k, based

on training symbols emitted by the source and the destination, respectively. One

node, usually the source or the destination, assumes the role of the central node.

The central node acquires the CSI of all links in the network and computes the op-

timal rBF matrices. Assuming the destination (source) is the central node, for CSI

acquisition, the source (destination) emits training symbols and the relays forward

the corresponding received signals to the destination (source). This enables the des-

tination (source) to estimate the overall channel coe�cients h̄ink = ginkhink, ∀i, n, k.

Subsequently, each relay emits training symbols and the destination (source) esti-

mates hink (gink), ∀i, n, k, and calculates gink = h̄ink/hink (hink = h̄ink/gink), ∀i, n, k.

Throughput this paper, we assume perfect CSI acquisition. The e�ect of imperfect

CSI acquisition will be investigated in Section 2.5.

Feedback: As will be seen in Section 2.4, relay Ri can compute its optimal rBF

matrix based on its own local CSI, i.e., gink and hink, ∀n, k, and 2Nc real numbers

that have to be fed back by the central node and are identical for all relays. For

this purpose, we assume a zero-delay error-free feedback broadcast channel. Similar

assumptions are commonly made in the related literature [32, 42].

2.3 Receiver Structures and Objective Functions

In this section, we derive the optimal receive �lters for FD-LE, FD-DFE, and the

idealized MF receiver. In addition, we de�ne for each considered receiver an objective

20



Chapter 2. Transceiver Design For SC-FDE Systems with Multiple Relays

function for rBF matrix optimization.

2.3.1 FD-LE and FD-DFE

We �rst examine the MSE of the considered system, which is related to the diagonal

entries of the error covariance matrix E = E[ee†]. Using the de�nition of E, along

with (2.4) and (2.9), we obtain

E =W
(
σ2
sH̃H̃† + C̃

)
W† − σ2

sWH̃B† − σ2
sBH̃†W† + σ2

sBB†, (2.10)

where the covariance matrix of the e�ective noise at D is given by

C̃ , E[ññ†] =

 σ2
n0
INc 0NcNc

0NcNc σ2
n1

( NR∑
i=1

HiAiA
†
iH

†
i

)
+ σ2

n2
INc

 , (2.11)

which can be further decomposed as C̃ = (I2 ⊗ F)†C̃f (I2 ⊗ F) with

C̃f =

 σ2
n0
INc 0NcNc

0NcNc σ2
n1

( NR∑
i=1

H
(i)
f A

(i)
f A

(i)†
f H

(i)†
f

)
+ σ2

n2
INc

 . (2.12)

Inserting (2.7) into (2.10) and di�erentiating tr{E} with respect to Wf and setting

the result to zero, we obtain for the optimal FFF

W = FBfH̃
†
f

(
H̃fH̃

†
f + C̃f

)−1

(I2 ⊗ F) . (2.13)
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Using this result in (2.10) and after some matrix manipulations, the MSE matrix is

obtained as

E = σ2
sFBfΨ

−1
f B†

fF
†, (2.14)

where Ψf is a diagonal matrix given by

Ψf = σ2
sH̃

†
fC̃

−1
f H̃f + INc . (2.15)

We observe from (2.14) that E is a circular matrix, i.e., all its diagonal elements

are identical. Since the kth diagonal element of E represents the MSE for the kth

transmitted symbol, the MSEs for all transmitted symbols are identical. Furthermore,

by exploiting the expression for H̄f in (2.6) and C̃f in (2.12), we can show that the

diagonal entries of Ψf are given by

Ψk =
σ2
s

∑NR

i=1(hikAikgik)
2

σ2
n1

∑NR

i=1 hikAikA
†
ikh

†
ik + σ2

n2

+
σ2
s

σ2
n0

q2k + 1, ∀k. (2.16)

For FD-LE, we have Bf = INc , which can be used in (2.13) and (2.14) to obtain

the LE �lter W and the MSE matrix E. As the MSEs for all symbols are identical,

we obtain from (2.14)

MSEk,FD−LE =
σ2
s

Nc

tr
{
FΨ−1

f F†}
(a)
=
σ2
s

Nc

tr
{
Ψ−1

f

}
=
σ2
s

Nc

Nc∑
k=1

Ψ−1
k , ∀k, (2.17)

where in (a) the shift property of the trace operator and the unitary property of F

were used.
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Using the same reasoning as for FD-LE, for FD-DFE the MSE for the kth symbol

is given by

MSEk,FD−DFE =
σ2
s

Nc

tr
{
BfΨ

−1
f B†

f

}
=
σ2
s

Nc

Nc−1∑
k=0

bf,kΨ
−1
k bf,k

∗, ∀k,

which depends on the FD-FBF coe�cients bf,k. Therefore, we �rst need to �nd the

optimal FBF. Since the FBF is implemented in the TD, we rewrite the bf,k in terms

of the TD coe�cients, bn, resulting in

MSEk,FD−DFE =
σ2
s

Nc

Nc−1∑
k=0

Nfb∑
n=0

bne
−j 2π

Nc
nk

Ψ−1
k

Nfb∑
m=0

b∗me
j 2π
Nc

mk


=
σ2
s

Nc

Nfb∑
n=0

Nfb∑
m=0

bn

(
Nc−1∑
k=0

Ψ−1
k e−j 2π

Nc
(n−m)k

)
b∗m

=
σ2
s

Nc

bVb†, ∀k, (2.18)

where V is a Hermitian matrix whose (i, j)th entry is given by Vi,j =
∑Nc−1

k=0 Ψ−1
k

e−j 2π
Nc

(i−j)k. Recall that the �rst coe�cient of the TD-FBF is set to 1 to ensure

causality. Thus, the optimal FBF coe�cients are obtained from

min
s.t.bΦ=1

bVb†, (2.19)

where Φ = [1, 0Nfb−1]
T . Using the standard Lagrange multiplier method, the

solution to (2.19) can be derived as [106]

b = (Φ†V−1Φ)−1Φ†V−1. (2.20)

Substituting the optimal b in (2.20) into (2.18), we obtain the corresponding ex-
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pression for the minimum MSE. Unfortunately, this expression depends on the rBF

coe�cients in a complicated way, which renders the corresponding optimization prob-

lem intractable. To �nd a tractable objective function, we exploit the equivalence

between FD-DFE and TD-DFE with in�nite length �lters. In the asymptotic sce-

nario where both Nc and Nfb tend to in�nity, the MSE becomes the geometric mean

of the main diagonal elements of the error covariance matrix [96, 97]

MSEk,FD−DFE = σ2
s det(Ψf )

−1/Nc = σ2
s

Nc∏
k=1

Ψ
−1/Nc

k , ∀k. (2.21)

In the following, for FD-DFE rBF matrix optimization, we use (2.21) as an approxi-

mation for the MSE of FD-DFE with �nite Nfb and Nc. We found through extensive

simulations that this choice achieves a high performance even for relatively small

values of Nfb and Nc.

2.3.2 Idealized Matched Filter Receiver

For the idealized MF receiver, single-symbol transmission is assumed, i.e., ISI is

not present, which results in a performance upper bound for any realizable receiver

structure. Taking into account that the e�ective noise at the destination is colored

and de�ning the equivalent channel matrix after pre-whitening, Heq = C̃−1/2H̃, the

signal-to-interference-plus-noise ratio (SINR) at the output of the MF is obtained as

SINRk,MF =
σ2
s

Nc

tr
{
HeqH

†
eq

}
=
σ2
s

Nc

tr {Ψf − INc} =
σ2
s

Nc

Nc∑
k=1

(Ψk − 1) , ∀k. (2.22)
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2.3.3 Objective Function for rBF Matrix Optimization

Since the performance of SC-FDE is directly in�uenced by the MSE at the desti-

nation, a reasonable objective for rBF matrix optimization is the minimization of

the MSE (or equivalently the maximization of the SINR). Consequently, based on

(2.17), (2.21), and (2.22) the considered objective functions to be minimized can be

compactly expressed as

fX(Ψk) =



∑Nc

k=1Ψ
−1
k , X = FD-LE

−
∑Nc

k=1 logΨk, X = FD-DFE

−
∑Nc

k=1(Ψk − 1), X = MF

, (2.23)

where for FD-DFE we consider the logarithm of the MSE in (2.21) to facilitate the

subsequent optimization. Because of the monotonicity of the logarithm, this has

no e�ect on the optimal solution. We note that all objective functions in (2.23) are

monotonically decreasing function of Ψk. This property facilitates a uni�ed treatment

of rBF matrix optimization for all considered SC receiver structures.

2.4 Problem Formulation and Solution

In this section, we derive the structure of the optimal rBF matrices, Aik, i =

1, . . . , NR, k = 1, . . . , Nc, and the optimal subcarrier power allocation for the ob-

jective functions introduced in the previous section. Thereby, an aggregate relay

power constraint is adopted. Other power constraints such as individual relay power

constraints and a joint source and relay power constraint can be considered as well.

Furthermore, the extension to multiuser systems is possible by adopting SC-FDMA.

However, in this chapter, we focus on the joint relay power constraint and single-user
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systems, and leave the consideration of other power constraints and multiple users to

Chapter 4.

2.4.1 Problem Formulation

The transmit signal at the ith relay is given by ti = AiGis+Aini and the aggregate

power of the relays is PR =
∑NR

i=1 tr{tit
†
i}. PR can be rewritten as

PR =

NR∑
i=1

tr
{
Ai

(
σ2
sGiG

†
i + σ2

n1
INNc

)
A†

i

}
=

NR∑
i=1

tr
{
A

(i)
f

(
σ2
sG

(i)
f G

(i)†

f + σ2
n1
INNc

)
A

(i)†

f

}
=

NR∑
i=1

Nc∑
k=1

tr
{
Aik

(
σ2
sgikg

†
ik + σ2

n1
IN

)
A†

ik

}
. (2.24)

Hence, the optimal rBF �lters are given by

Aopt
ik = arg

Aik,
min∑Nc

k=1 Pk≤PR,max

fX (Ψk) , (2.25)

where PR,max is the maximum relay power available and Pk is the power allocated to

the kth subchannel, i.e.,

Pk =

NR∑
i=1

tr
{
Aik

(
σ2
sgikg

†
ik + σ2

n1
IN

)
A†

ik

}
. (2.26)

In the next section, we show that for given Pk, the structure of the optimal rBF

matrices can be obtained in closed form.
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2.4.2 Structure of Optimal rBF Matrices

Since the considered family of objective functions, fX(Ψk), are monotonically decreas-

ing functions in Ψk, without loss of optimality, we can �rst maximize Ψk for a given

subchannel power Pk, k = 1, · · · , Nc, before optimizing the power allocation across

subchannels. To this end, it is convenient to rewrite Ψk as Ψk = Ψ̂k +
σ2
s

σ2
n0

q2k + 1,

where

Ψ̂k =
σ2
s

∑NR

i=1(hikAikgik)
2

σ2
n1

∑NR

i=1 hikAikA
†
ikh

†
ik + σ2

n2

. (2.27)

Clearly, maximizing Ψk with respect to Aik is equivalent to maximizing Ψ̂k. Further-

more, by incorporating (2.26) into Ψ̂k, we obtain

Ψ̂k =
Pkσ

2
s(
∑NR

i=1 hikAikgik)
2

Pkσ2
n1

∑NR

i=1 tr{A
†
ikh

†
ikhikAik}+

∑NR

i=1 tr{Aik(σ2
sgikg

†
ik + σ2

n1
IN)A

†
ik}σ2

n2

.

(2.28)

For the following, it is convenient to introduce āk = [aT
1k, ..., a

T
NRk]

T with aik =

vec(Aik) and to rewrite (2.28) as

Ψ̂k =
Pkā

†
kUkāk

ā†
k(Pkσ2

n1
Zk + σ2

n2
Wk)āk

=
Pkā

†
kUkāk

ā†
k∆kāk

, (2.29)

where Uk = ū†
kūk, ūk = [u1k, ...,uNRk], uik = (vec((gikhik)

T ))T , Zk = blkdiag{(IN ⊗

h†
ikhik), i = 1, · · · , NR}, Wk = blkdiag{(σ2

sg
∗
ikg

T
ik + σ2

n1
IN)⊗ IN , i = 1, · · · , NR}, and

∆k = Pkσ
2
n1
Zk + σ2

n2
Wk. Here, we used the identities tr{AB} = vec

(
AT
)T

vec(B),

tr {ABC} = vec
(
AT
)T

(I⊗B)vec(C), and tr {ABC} = vec
(
CT
)T (

BT ⊗ I
)
vec(A)

[99] to transform (2.28) into (2.29).

Since Uk is a Hermitian matrix and ∆k is a positive de�nite Hermitian matrix,
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(2.29) is a generalized Rayleigh quotient [100], whose maximum value can be derived

as

[Ψ̂k]max = Pkλmax(∆
−†/2
k Uk∆

−1/2
k )

(a)
= Pktr{∆−†/2

k Uk∆
−1/2
k }

(b)
= Pktr{∆−1

k ū†
kūk}

(c)
= Pk

NR∑
i=1

tr{∆−1
ik u

†
ikuik}, (2.30)

where λmax(X) denotes the maximum eigenvalue of matrix X, step (a) follows from

the fact that ∆
−†/2
k Uk∆

−1/2
k is a rank-one matrix, step (b) exploits the shift property

of the trace operator, and step (c) uses the block diagonal structure of ∆k and the

de�nition of ūk. The maximum value in (2.30) is achieved when āk = ck∆
−1
k ū†

k or,

equivalently

aik = ck∆
−1
ik u

†
ik, (2.31)

where ck is a normalization factor that guarantees the power constraint (2.26).

We observe that both [Ψ̂k]max in (2.30) and aik in (2.31) contain the term ∆−1
ik u

†
ik.

In order to gain some insight into the structure of aik and to obtain a tractable expres-

sion for [Ψ̂k]max for subsequent optimization, we introduce the following proposition

to simplify this term.

Proposition 2.1. : u†
ik is an eigenvector of matrix ∆−1

ik and corresponds to the

eigenvalue 1/(Pkσ
2
n1
||hik||2 + σ2

n2
(σ2

s ||gik||2 + σ2
n1
)), i.e.,

∆−1
ik u

†
ik =

u†
ik

Pkσ2
n1
||hik||2 + σ2

n2
(σ2

s ||gik||2 + σ2
n1
)
. (2.32)

Proof. Please refer to Appendix-A.
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From (2.30) and (2.32), we obtain

[Ψ̂k]max =

NR∑
i=1

Pk||hikgik||2

Pkσ2
n1
||hik||2 + σ2

n2
(σ2

s ||gik||2 + σ2
n1
)

(2.33)

and aik can be expressed as

aik =
ckvec(h

T
ikg

T
ik)

∗

Pkσ2
n1
||hik||2 + σ2

n2
(σ2

s ||gik||2 + σ2
n1
)
. (2.34)

Upon de-vectorization of aik, we obtain the �nal expression of the FD rBF matrix

Aik =
ck||hik|| ||gik||

Pkσ2
n1
||hik||2 + σ2

n2
(σ2

s ||gik||2 + σ2
n1
)

h†
ikg

†
ik

||hik||||gik||
. (2.35)

Combining (2.35) and (2.26), the normalization factor ck can be found explicitly as

ck =
√
Pk

[
NR∑
i=1

||hikgik||2(σ2
s ||gik||2 + σ2

n1
)

[σ2
n1
||hik||2Pk + (σ2

s ||gik||2 + σ2
n1
)σ2

n2
]2

]− 1
2

. (2.36)

Interestingly, all objective functions fX(Ψ) that are decreasing functions of Ψk, k =

1, . . . , Nc, lead to the same structure for the optimal Aik and only the scalar ck is

a�ected by the particular objective function via the allocated power Pk. Furthermore,

the optimal structure of Aik in (2.35) can be interpreted as follows. The �rst term,

ck||hik|| ||gik||/(Pkσ
2
n1
||hik||2 + σ2

n2
(σ2

s ||gik||2 + σ2
n1
)) is a positive scalar and depends

on the fraction of power allocated to the kth frequency tone. The vector terms
g†
ik

||gik||

and
h†
ik

||hik||
have unit norm and represent a maximum ratio combining (MRC) �lter

for the S-Ri channel, gik, and a maximum ratio transmission (MRT) �lter for the

Ri-D channel, hik, respectively. Eq. (2.35) reveals that relay Ri, i = 1, . . . , NR, can

compute its optimal rBF matrix based on local CSI, i.e., its own source-relay and
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relay-destination channels, and the 2Nc real scalars ck and Pk, k = 1, . . . , Nc. Since

ck and Pk depend on the CSI of all channels in the system, they have to be computed

at the central node and fed back to the relays, cf. Section 2.2.4.

2.4.3 Suboptimal Power Allocation Schemes

As will be shown in the next section, the optimal values for Pk can only be found

with a numerical method, which may not be desirable in delay-sensitive or complexity-

constrained systems. One alternative suboptimal solution is to adopt equal power

allocation (EPA) across all tones, i.e., we set Pk = PR,max/Nc. A further complexity

reduction is possible by performing EPA across tones and relays, which leads to

Aik = c′k
h†
ikg

†
ik

||hik|| ||gik||
, (2.37)

where c′k =
√
PR,max/Nc(

∑NR

i=1(σ
2
s ||gik||2 + σ2

n1
))−1/2. These two suboptimal schemes

are referred to as EPA-T-rBF and EPA-TR-rBF, respectively. EPA-TR-rBF has

the additional advantage that the central node has to know only the source-relay

channels but not the relay-destination channels. This is advantageous if the source is

the central node, and thus, can directly estimate the source-relay channel based on

training symbols emitted by the relays.

Both EPA-T-rBF and EPA-TR-rBF reduce the feedback overhead compared to

optimal power allocation as the central node has to broadcast only Nc real scalars c
′
k,

k = 1, . . . , Nc.
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2.4.4 Optimal Power Allocation (OPA)

Exploiting the optimal structure of the rBF matrices, Ψk can be expressed as

Ψk =

NR∑
i=1

Pkαik

Pkβik + γik
+

σ2
s

σ2
n0

q2k + 1, (2.38)

where αik = ||hikgik||2, βik = σ2
n1
||hik||2, and γik = σ2

n2
(σ2

s ||gik||2 + σ2
n1
). Since Ψk

is now only a function of Pk, we rede�ne the objective function and express it as a

function of P = [P1, . . . , PNc ], fX(P), in the following. The optimal power allocation

vector is given by

P = arg min∑Nc
k=1 Pk=PR,max, Pk≥0

fX(P), (2.39)

where we have exploited the fact that the optimal power allocation meets the power

constraint PR,max with equality.

We �rst verify the convexity of the considered objective functions. To this end,

we have tabulated the �rst and second derivatives of the considered fX(P) in Table

2.1, where the �rst and second derivatives of Ψk are given by

∂Ψk

∂Pk

=

NR∑
i=1

αikγik
(βikPk + γik)2

> 0,
∂2Ψk

∂P 2
k

=

NR∑
i=1

−2αikβikγik
(βikPk + γik)3

< 0, (2.40)

which shows that Ψk is an increasing concave function of Pk. We observe from Table

2.1 that ∂2fX(P)/∂P 2
k > 0 for all considered objective functions, i.e., the power

allocation problem in (2.39) is a convex optimization problem.

The Lagrangian L of the power allocation problem is given by

L = fX(P) + µ(
Nc∑
k=1

Pk − PR,max)−
Nc∑
k=1

νkPk, (2.41)
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where µ and νk are the Lagrange multipliers associated with the total power con-

straint and the non-negativity constraint for the subchannel powers, respectively.

The optimal power allocation policy across the di�erent subchannels can be obtained

from the following KKT conditions, which are su�cient and necessary for convex

problems [101],

∂fX(P)

∂Pk

+ µ− νk = 0,

Nc∑
k=1

Pk − PR,max = 0,

Pk ≥ 0, νk ≥ 0, νkPk = 0. (2.42)

The last three conditions are the primal constraints, the dual constraints, and the

complementary slackness conditions, respectively, and imply that if νk > 0, then

Pk = 0 and if Pk > 0, then νk = 0. Combining the �rst condition, νk = ∂fX(P)
∂Pk

+ µ,

and the last three conditions yields

∂fX(P)

∂Pk

+ µ > 0 ⇒ Pk = 0,

Pk > 0 ⇒ ∂fX(P)

∂Pk

+ µ = 0. (2.43)

Because of the convexity of fX(P), ∂fX(P)
∂Pk

is monotonically increasing. Thus, for a

given value of µ, condition (2.43) can be veri�ed by examining [∂fX(P)
∂Pk

]Pk=0+µ. If this

value is greater than 0, we set Pk = 0; otherwise, we �nd Pk as the unique positive

solution of ∂fX(P)
∂Pk

+ µ = 0, which can be e�ciently obtained by using e.g. Newton's

method.

An algorithm for �nding the optimum P is summarized in Table 2.2, where the

required �rst and second derivatives of the objective function are given in Table 2.1.
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Table 2.1: First and second derivatives of objective functions fX(P).

Receiver ∂fX(P)
∂Pk

∂2fX(P)
∂P 2

k

FD-LE −Ψ−2
k

∂Ψk
∂Pk

2Ψ−3
k [∂Ψk

∂Pk
]2 −Ψ−2

k
∂2Ψk

∂P 2
k

FD-DFE −Ψ−1
k

∂Ψk
∂Pk

Ψ−2
k [∂Ψk

∂Pk
]2 −Ψ−1

k
∂2Ψk

∂P 2
k

MF −∂Ψk
∂Pk

−∂2Ψk

∂P 2
k

We note that this algorithm is not limited to the objective functions given in (2.23)

but is applicable to all objective functions which are convex in P.

2.5 Simulation Results

In this section, we evaluate the performance of the proposed rBF schemes using sim-

ulations. Throughout this section, we assume quaternary phase shift keying (QPSK)

modulation and de�ne the transmit SNR as Eb/N0, where Eb and N0 denote the

transmit energy per bit and the single-sided power spectral density of the underlying

continuous-time noise process, respectively. We assume equal noise variances at the

relays and the destination in both phases of transmission, i.e., σ2
n0

= σ2
n1

= σ2
n2
.

Furthermore, we assume that each data block contains Nc = 64 symbols. S and D

are located on a horizontal line and have a normalized distance of dS−D = 2 from

each other. The relays are located on a vertical line which crosses the horizontal line

connecting S and D at a distance of 1 from both S and D. The vertical distances

between the crossing point and the relays are multiples of 1/4. We assume a path loss

factor of 4 with a reference distance of dref = 1. Taking into account the pathloss, the

channel vectors are modeled as q =
√
Eb/(N0(dS−D)4) q̄, gi =

√
Eb/(N0(dS−Ri

)4) ḡi,

and hi =
√
Eb/(N0(dRi−D)4) h̄i, where s̄ ∈ {q̄, ḡi, h̄i} is the normalized channel vec-

tor with unit variance, and dS−Ri
and dRi−D are the S−Ri and the Ri−D distances,
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Table 2.2: Algorithm 2.1 for �nding the optimal power allocation. ϵ1 and ϵ2 are small
constants, e.g. ϵ1 = ϵ2 = 10−4.

1 Initialize the upper bound, µub, and the lower bound, µlb,

for µ with 0 and maxk{−∂fX(P)
∂Pk

|Pk=0}, respectively.
2 Initialize P

(1)
k , ∀k, such that

∑Nc
k=1 P

(1)
k = PR,max.

3 Set µ = 1
2(µlb + µub).

for k = 1 to Nc

Initialize iteration number m = 1.
Repeat

Set Γ
(m)
k = ∂fX(P)(m)

∂P
(m)
k

+ µ.

If Γ
(m)
k > 0, set P

(m+1)
k = 0,

otherwise, P
(m+1)
k = P

(m)
k −

(
∂2fX(P)(m)

∂P
(m)
k

2

)−1

Γ
(m)
k .

m = m+ 1.

until |P (m)
k − P

(m−1)
k | < ϵ1.

end for

4 If
∑Nc

k=1 P
(m)
k < PR,max, set µlb = µ, otherwise, µub = µ.

5 If |
∑Nc

k=1 P
(m)
k − PR,max| < ϵ2, then P

(m)
k , ∀k,

are the desired results, otherwise, goto Step 2.

respectively. The normalized channel vectors are modeled as Rayleigh block fading

channels. For simplicity, we assume that all relay antennas are uncorrelated but note

that a non-zero correlation will generally degrade performance. The power delay

pro�le of the channels is given by [102]

p[n] =
1

σt

Lx−1∑
l=0

e−n/σtδ[n− l], (2.44)

where Lx ∈ {Lg, Lh, Lq} and σt is a factor, which in�uences the delay spread of the

channels. For convenience, we assume Lq, Lg, Lh, Ng,s, and Ng,r are all equal to 16.

For FD-DFE, the number of FBF taps is set to Nfb = 15.

All simulations are averaged over at least 10,000 independent channel realiza-

tions. We compare the performance of the proposed rBF scheme with the following

reference schemes: 1) Direct transmission (Direc-Tx) without relays; 2) Direct trans-
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Figure 2.2: BERs of SC-FDE with OPA-rBF and N-AF. NR = 2, N = 1, and σt = 2.
For comparison, the BERs of SC-FDE with direct transmission using a single transmit
antenna and MISO-sBF with two transmit antennas are also shown.

mission with conventional multiple antenna BF at the source (MISO-sBF) [103] ; and

3) Naive-AF relaying (N-AF), where the relay stations only scale the power of the

received signal before forwarding it to the destination. For MISO-sBF we assume

NNR transmit antennas at the source to enable a fair comparison with the proposed

rBF scheme. All schemes are compared for the same total system power budget.
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2.5.1 Single-Antenna Relays: Impact of Receiver Structures,

Power Allocation, and Frequency Selectivity

In Fig. 2.2, we depict the BERs for FD-LE and FD-DFE at the destination with OPA-

rBF and N-AF relaying using two single-antenna relays (i.e., N = 1, NR = 2). The

performance of the idealized MF receiver with OPA-rBF is included as a benchmark.

Furthermore, for comparison, the BERs of direct transmission using a single transmit

antenna and MISO-sBF with two transmit antennas are also shown. We choose the

delay spread factor as σt = 2, which corresponds to moderately frequency-selective

fading. Fig. 2.2 shows that even N-AF achieves a considerable performance gain

compared to direct transmission and MISO-sBF because of the pathloss gain induced

by the relays. As expected, FD-DFE outperforms FD-LE since nonlinear equalization

can better exploit the frequency diversity of the channel and is more robust to spectral

nulls of the channel. However, for both MISO-sBF and rBF, the performance gap

between FD-LE and FD-DFE is smaller than for direct transmission with a single

transmit antenna since multiple antennas can alleviate the negative e�ect of spectral

nulls. Furthermore, it is interesting to note that the BER curve of FD-DFE is parallel

to that of the idealized MF receiver when OPA-rBF is adopted, with only a 1 dB

SNR gap, while FD-LE su�ers from a small loss in diversity gain compared to the

idealized MF receiver.

In Fig. 2.3, we investigate the BER of the proposed OPA- and EPA-rBF schemes

for the same system parameters as in Fig. 2.2. We observe that the BER curves of the

proposed rBF schemes with OPA, EPA-T, and EPA-TR are parallel, i.e., the diversity

gain is not negatively a�ected by the suboptimal power allocation. Furthermore,

the loss in array gain due to the suboptimal power allocation, i.e., the horizontal

shift of the SNR required to achieve a certain BER, is small. Therefore, EPA is an
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Figure 2.3: BERs of SC-FDE with OPA-rBF, EPA-T-rBF, and EPA-TR-rBF. NR =
2, N = 1, and σt = 2. For comparison, the BERs of SC-FDE with direct transmission
using a single transmit antenna and MISO-sBF with two transmit antennas are also
shown.

attractive alternative to OPA because of the reduced feedback overhead and the low

computational complexity. In addition, we note that for su�ciently high SNR, the

BER curves for MISO-sBF have similar slopes as those for rBF, implying that both

schemes achieve a comparable diversity gain. However, there is a large SNR gap

between the BER curves for MISO-sBF and rBF since MISO-sBF cannot e�ectively

combat the pathloss.

In Fig. 2.4, the e�ect of σt on the BER performance of rBF, N-AF, and direct

transmission with and without MISO-sBF is investigated for FD-LE, FD-DFE, and

an idealized MF receiver at the destination. Except for the value of σt, the system
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Figure 2.4: BERs of SC-FDE with rBF and N-AF vs. delay spread factor σt. NR = 2,
N = 1, and Eb/N0 = 14 dB. For comparison, the BERs of SC-FDE with direct trans-
mission using a single transmit antenna and MISO-sBF with two transmit antennas
are also shown.

parameters are the same as in Fig. 2.2. The results show that for SC-FDE with rBF,

increasing the channel frequency selectivity, i.e., increasing σt, leads to a considerably

lower BER for both OPA and EPA due to the diversity gain extracted by rBF and

FDE. In contrast, the performance of SC-FDE systems with MISO-sBF is almost

invariant to the value of σt. This can be attributed to the fact that MISO-sBF cannot

e�ectively compensate for the pathloss and, as a result, for the considered transmit

SNR, the received SNR is quite low. Hence, for MISO-sBF, the noise dominates

the performance and a diversity gain is not observed for increasing σt. Furthermore,
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Figure 2.5: BERs of SC-FDE with rBF and N-AF for various numbers of relays.
N = 2, NR = 2, 4, 6, and σt = 2.

for rBF, the performance gain achieved by the idealized MF when σt increases is

considerably larger than the gains for FD-LE and FD-DFE since the idealized MF

is not negatively a�ected by the increased level of ISI and can take full advantage of

the increased frequency diversity. We note that more complex trellis-based equalizers

may be able to close the gap between FD-DFE and the idealized MF receiver at the

expense of a considerably higher receiver complexity.
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2.5.2 Multiple-Antenna Relays: Impact of the Number of

Relays, Antennas, and Imperfect CSI

In Fig. 2.5, we investigate the e�ect of the number of relays on the BER of SC-

FDE with OPA-rBF in a system with N = 2 relay antennas. As can be observed, for

OPA-rBF, increasingNR improves the BER performance substantially and allows FD-

LE and FD-DFE to closely approach the performance of the idealized MF receiver.

Thus, for relay networks with a su�ciently large numbers of relays, SC-FDE with

MMSE based receivers is close to optimal and little improvement can be expected

from more complex receiver structures. In contrast, for N-AF, performance slightly

deteriorates with increasing number of relays since N-AF cannot exploit the increased

diversity introduced by the additional relays.

In Fig. 2.6, we illustrate the e�ect of the number of relay antennas on the BER

performance of SC-FDE with OPA-rBF for a system with NR = 2 relays. As expect-

ed, increasing the number of relay antennas greatly improves performance of both

rBF and MISO-sBF since additional spatial diversity is introduced. A comparison

with Fig. 2.5 reveals that adding more relay antennas is more bene�cial in rBF sys-

tems than increasing the number of relays assuming the total number of antennas is

identical in both cases. This behavior is expected as co-located antennas enable a

joint processing of all received signals, which is not possible for distributed antennas.

In Fig. 2.7, we examine the impact of imperfect CSI at the relays on the BER

of a system with NR = 2, N = 2, and Eb/N0 = 14 dB. We assume that the CSI

employed for rBF matrix computation is imperfect. We model the CSI estimation

errors for all CIR coe�cients as Gaussian random variables with variance σ2
e . For

example, the CSI estimate for ginl is given by ĝinl = ginl+∆ginl, where the actual CSI

ginl and the CSI estimation error ∆ginl are mutually independent. We consider two
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Figure 2.6: BERs of SC-FDE with rBF for various numbers of relay antennas. NR =
2, N = 1, 2, 4, and σt = 2. For comparison, the BERs of SC-FDE with direct
transmission using MISO-sBF with 2, 4, and 8 transmit antennas are also shown.

di�erent cases for the imperfect CSI. For Case I (dotted lines), the CSI of all links is

imperfect at the relays and the central node. In contrast, for Case II (solid lines), Ri

has perfect CSI of its own links, i.e., g
(i)
t and h

(i)
t , and the central node has imperfect

CSI of all links (i.e., Pk and ck, k = 1, . . . , Nc, are computed based on imperfect CSI).

The BERs of FD-LE employing rBF with OPA and EPA are shown as functions of

σ2
e in Fig. 2.7. In both cases, the performance degrades with the increase of σ2

e . For

Case I, OPA, EPA-T, and EPA-TR yield a similar performance. In contrast for Case

II, the suboptimal schemes are much more robust to imperfect CSI than OPA and

yield signi�cant performance gains for large estimation error variances of σ2
e ≥ 0.1.
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Figure 2.7: BERs of FD-LE with rBF and N-AF for imperfect CSI at the relays.
NR = 2, N = 2, σt = 2, and Eb/N0 = 14 dB. For comparison, the BERs of SC-
FDE with direct transmission using MISO-sBF with four transmit antennas are also
shown.

This can be explained as follows. For OPA, both Pk and ck are computed based on

the imperfect CSI. In contrast, for EPA-T (EPA-TR) only ck (c′k) is a�ected by the

imperfect CSI, which makes it more robust than OPA. EPA-TR has the additional

bene�t that c′k depends only on the (imperfect) source-relay channels but not on the

relay-destination channels. Thus, for σ2
e ≥ 0.1, EPA-TR performs slightly better than

EPA-T. As a general conclusion from Fig. 2.7 we note that for OPA to be bene�cial,

accurate CSI is required. Nevertheless, even with imperfect CSI, all considered rBF

schemes outperform N-AF and MISO-sBF.
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Figure 2.8: PAPR at relays for SC FD-DFE with N-AF and OPA-rBF. N = {1, 2},
NR = 2, and Eb/N0 = 14 dB. For comparison, the PAPRs of SC-FDE with direct
transmission using MISO-sBF with four transmit antennas are also shown.

2.5.3 PAPR at Relays

Since one of the primary reasons for adopting SC-FDE is its low PAPR, we study

in Fig. 2.8 the complementary cumulative density function (CCDF) of the PAPR at

the output of the relays for a system with NR = 2 relays employing one and two

antennas, respectively. For comparison, we also include the PAPR at the source for

MISO-sBF with four transmit antennas. From Fig. 2.8 we observe that N-AF has a

lower PAPR than OPA-rBF. However, the di�erences between both schemes is quite

small. Furthermore, Fig. 2.8 shows that additional relay antennas adversely a�ect
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the PAPR of all considered schemes due to the increased level of signal �uctuation

caused by the joint data processing across transmit antennas. For the same reason,

MISO-sBF introduces a comparatively high PAPR at the source, which compromises

the key advantage of SC transmission. In fact, the proposed rBF scheme shifts the

PAPR problem from the source to the relays, which makes it attractive for application

for uplink transmission.

2.6 Conclusion

In this chapter, we tackled the problem of optimal cooperative BF design for SC-FDE

systems with multiple relays. We derived objective functions for rBF matrix opti-

mization for FD-LE, FD-DFE, and idealized MF receivers and demonstrated that

the structure of the optimal rBF matrices is identical for all considered receivers.

Up to a power allocation factor, we obtained a closed-form expression for the opti-

mal rBF matrices. The optimal power allocation across subchannels depends on the

adopted receiver and we could show that the related optimization problem is convex,

which allows for an e�cient numerical solution. We also proposed suboptimal power

allocation schemes, which perform close to OPA and show a remarkable robustness

against imperfect CSI, hence constituting viable low-complexity alternatives to OPA

in practice. Furthermore, for optimal rBF, simple FD-LE receivers approach the per-

formance of the idealized MF receiver as the numbers of relays and/or relay antennas

increase, making more complex nonlinear trellis-based receivers unnecessary.
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Chapter 3

Transceiver Design For SC-FDE

Based MIMO Relay Systems

3.1 Introduction

In Chapter 2, we have considered the transceiver optimization for a relay system with

multi-antenna relays. However, the source and the destination are only equipped with

a single transmit/receive antenna, and only a single spatial data stream is transmitted

through the communication links, i.e., beamforming-based transmission is adopted

[53]. In order to support the requirement of high-speed data rates for future wireless

communication networks, multiple data stream transmission through spatial mul-

tiplexing [54] is highly desired [14, 17]. This requires the deployment of multiple

antennas at all the transmit and receive terminals of the relay network, giving rise

to the so-called MIMO relay systems [56, 57].

In this chapter, we shall investigate the joint transceiver design for MIMO broad-

band AF relay systems employing either FD-LE or FD-DFE at the destination. We

optimize the source and relay precoding matrices for minimization of a general func-

tion of the MSEs of the spatial streams under separate power constraints for the source

and the relay. Speci�cally, we adopt the arithmetic MSE (AMSE), the geometric MSE

(GMSE), and the maximum MSE (maxMSE) [64, 70] as objective functions, which

are closely related to the achievable bit rate and the bit-error rate performance. For
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the case of FD-LE, we show that the optimal source and relay precoding matrices have

a structure very similar to that of the optimal precoding matrices in MIMO-OFDM

relay systems. However, the remaining power allocation problem is signi�cantly dif-

ferent from the power allocation problem for MIMO-OFDM relay systems, especially

for the GMSE and maxMSE criteria. For FD-DFE, the considered objective functions

cannot be explicitly expressed in terms of the optimization variables and depend on

the number of feedback �lter taps, which makes a direct solution of the optimization

problem challenging. However, we can show that for FD-DFE, the three considered

objective functions are equivalent. Furthermore, we develop an upper bound for the

objective function which is independent of the number of feedback �lter taps and

is a comparatively simple function of the optimization variables. Interestingly, this

upper bound is shown to be identical to the GMSE objective function for the FD-LE

receiver. Consequently, a uni�ed solution for the power allocation problem for both

FD-LE and FD-DFE can be obtained, which greatly simpli�es the design procedure.

The remainder of this chapter is organized as follows. In Section 3.2, the system

model is presented. In Section 3.3, the optimal minimum MSE FDE �lters and

the corresponding stream MSE matrices are derived. The optimal source and relay

precoding matrices are presented in Section 3.4. Simulation results are given in

Section 3.5, and some conclusions are drawn in Section 3.6.

3.2 System Model

We consider a block transmission system with one source node, S, one relay node,

R, and one destination node, D, as shown in Fig. 3.1. The numbers of antennas at

S, R, and D are denoted by Ns, Nr, and Nd, respectively. The number of spatial

multiplexing data streams isM ≤ min{Ns, Nr, Nd}. The transmission is organized in
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Figure 3.1: System model for a MIMO relay system with SC-FDE at the destination.

two phases. In the �rst phase, S processes the information symbols and sends them

to R. In the second phase, R processes the received signal and retransmits it to D.

We assume there is no direct link between S and D due to the large pathloss and/or

shadowing.

The transmit signal of each source antenna is prepended by a CP, which comprises

the last Ng,s ≥ Lg symbols of the transmitted source signal, where Lg denotes the

largest CIR length between any S-R antenna pair2. Similarly, the transmit signal of

each relay antenna is prepended by a CP, which comprises the last Ng,r ≥ Lh symbols

of the transmitted relay signal, where Lh is the largest CIR length between any R-D

antenna pair.

3.2.1 Precoding at Source and Relay

Let us denote the nth source data symbol vector as sn = [sn(1), sn(2), . . . , sn(M)]T ,

n = 0, . . . , Nc − 1, where Nc is the size of the data block, and sn(j) denotes the

nth symbol of the jth data stream. Symbols sn(j) are independent and identically

distributed random variables with zero mean and variance σ2
s . By stacking all sn

into one vector, we obtain s = [sT0 , . . . , s
T
Nc−1]

T ∈ CMNc×1. The received signal at the

2For simplicity of presentation, the insertion and removal of the CPs are not shown in Fig. 3.1.
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destination, y, can be compactly written as

y = HtAtGtPts+HtAtv + u (3.1)

with block circular matrices

Pt = blkcirc([PT
t,0, · · · ,PT

t,Nc−1]
T ),

Gt = blkcirc([GT
t,0, · · · ,GT

t,Lg−1,0Ns×Nr(Nc−Lg)]
T ),

At = blkcirc([AT
t,0, · · · ,AT

t,Nc−1]
T ),

Ht = blkcirc([HT
t,0, · · · ,HT

t,Lh−1,0Nr×Nd(Nc−Lh)]
T ),

where Pt,l ∈ CNs×M , Gt,l ∈ CNr×Ns , At,l ∈ CNr×Nr , and Ht,l ∈ CNd×Nr denote the

lth tap of the TD source precoding �lter, the S-R CIR, the TD relay precoding �lter,

and the R-D CIR, respectively. The noise vectors at R and D are denoted by

v = [vT
0 , . . . ,v

T
Nc−1]

T ∼ CN (0, σ2
vINrNc),

u = [uT
0 , . . . ,u

T
Nc−1]

T ∼ CN (0, σ2
uINdNc),

where vn = [vn(1), vn(2), . . . , vn(Nr)]
T and un = [un(1), un(2), . . . , un(Nd)]

T denote

the AWGN vectors at R and D at time n, respectively. It is noted that the block

circular structure of the source and relay precoding matrices in (3.1) is imposed to

facilitate the implementation of e�cient FDE at the destination, cf. Section 3.3. The

block circular matrices {Pt, Gt, At, Ht} can be decomposed as

Pt = F†
Ns
PfFM , Gt = F†

Nr
GfFNs ,

At = F†
Nr
AfFNr , Ht = F†

Nd
HfFNr , (3.2)
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where FΥ = F†
Nc

⊗ IΥ, FNc is the DFT matrix of size Nc and Υ ∈ {M,Ns, Nr, Nd},

Xf = blkdiag([XT
0 , · · · ,XT

Nc−1]
T ), and Xf ∈ {Pf ,Gf ,Af ,Hf}. Here, Pk ∈ CNs×M ,

Gk ∈ CNr×Ns , Ak ∈ CNr×Nr , and Hk ∈ CNd×Nr represent the FD source precoding,

S-R channel, relay precoding, and R-D channel matrices for the kth frequency tone,

respectively. For subsequent use, we introduce the transmitted signal vectors at the

source and the relay explicitly as

x = Pts and t = At(Gtx+ v), (3.3)

respectively. We further de�ne the equivalent end-to-end channel matrix Qt =

HtAtGtPt and express it asQt = F†
Nd
QfFM , whereQf = blkdiag([QT

0 , · · · ,QT
Nc−1]

T )

with

Qk = HkAkGkPk ∈ CNd×M (3.4)

representing the equivalent S-D channel matrix on the kth frequency tone. Further-

more, the covariance matrix of the equivalent noise vector n = HtAtv + u can be

obtained as

K = E[nn†] = F†
Nd
KfFNd

, (3.5)

where Kf = σ2
vHfAfA

†
fH

†
f + σ2

uINdNc .

In this chapter, we assume that relay and destination can perfectly estimate the

S-R and R-D CIR coe�cients using training symbols emitted by source and relay,

respectively. These CIR coe�cients are then fed back to the source and relay, re-

spectively. We note that the overhead of feeding back time domain CSI is much

lower than feeding back frequency domain CSI. For example, the feedback overhead
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from the destination to the relay is LhNdNr and NcNdNr complex numbers for the

time domain and the frequency domain CSI, respectively. Since we have in practice

Lh ≪ Nc, feeding back the time domain CSI incurs a much lower signalling overhead,

especially for large values of Nc. In addition, with perfect CSI available at all nodes,

adaptive modulation and coding across spatial data streams can be considered. This

aspect will be partially investigated in Section 3.5, where the achievable bit rate of the

considered system is optimized implying perfect channel loading with a continuous

varying signal constellation size and optimal channel coding [11]. The system design

for maximum bit rate performance with discrete constellations and practical coding

schemes is not considered here but is an interesting topic for future work. Also, note

that the source transmit symbols considered in this work are very general and include

both discrete constellation symbols as well as Gaussian distributed symbols.

3.2.2 Equalization at the Destination

The received signal y is transformed into the FD using FNd
and equalized by an FD-

FFF Wf = blkdiag([WT
0 , · · · ,WT

Nc−1]
T ). The resulting signal is then transformed

into the TD using F†
M resulting in

ŷ = Wty, (3.6)

where Wt = F†
MWfFNd

is the equivalent TD FFF and ŷ = [ŷT
0 , . . . , ŷ

T
Nc−1]

T with

ŷn = [ŷn(1), ŷn(2), . . . , ŷn(M)]T denoting the nth signal vector at the output of the

FFF. If FD-LE is employed, ŷn is the decision variable for the nth source symbol

vector. On the other hand, for FD-DFE, ŷn is further processed using a TD-FBF

to perform interference cancellation. Assuming correct feedback at the output of the
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slicer3, the signal corresponding to the mth data stream at time n at the input of the

slicer is given by

ȳn(m) = ŷn(m)−
Nfb∑
l=0

[Bt,l](m,:)s(n−l)modNc , (3.7)

where Bt,l denotes the coe�cient matrix of the lth tap of the FBF, [X](m,:) stands

for the mth row of matrix X, Nfb is the number of feedback taps, and (·)modN

denotes the modulo-N operation. From (3.7) we observe that at the initial stage

of the feedback process, i.e., when n = 0, [sNc−Nfb
, · · · , sNc ] has to be known a

priori, which can be accomplished by using known training symbols. Nevertheless,

for detection of sn(m), [sn(1), · · · , sn(m− 1)] is still unknown. Therefore, for causal

detection, the 0th tap of the FBF, i.e., Bt,0, has to be a lower triangular matrix with

zero diagonal entries. By collecting all ȳn(m) into a vector ȳ = [ȳT
0 , . . . , ȳ

T
Nc−1]

T with

ȳn = [ȳn(1), ȳn(2), . . . , ȳn(M)]T , we arrive at

ȳ = ŷ −Bts, (3.8)

where Bt = blkcirc([BT
t,0, · · · ,BT

t,Nfb
,0M×M(Nc−Nfb−1)]

T ) ∈ CMNc×MNc is the equiv-

alent TD FBF. Thus, the error vector at the input of the slicer can be expressed

as

e = ȳ − s = ŷ − (Bt + IMNc)︸ ︷︷ ︸
Ct

s = ŷ −Cts, (3.9)

whereCt = blkcirc([CT
t,0, · · · ,CT

t,Nfb
,0M×M(Nc−Nfb−1)]

T ) withCt,n = Bt,n,∀n ̸= 0 and

Ct,0 = Bt,0+IM . The block circular matrixCt can be decomposed asCt = F†
MCfFM ,

3Correct feedback is a common assumption for the design of decision feedback equalizers [11, 106].
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where Cf = blkdiag([CT
0 , · · · , CT

Nc−1]
T ). We note that by setting Ct = IMNc , FD-

DFE reduces to FD-LE.

3.3 Optimal Minimum MSE FDE Filter Design

In this section, we derive the optimal minimum MSE equalization �lters at the des-

tination and the corresponding MSE at the output of the equalizer as functions of

the source and relay precoding matrices. Combining (3.1)-(3.6) and (3.9), the MSE

matrix, E , E[ee†], can be expressed as

E = F†
M

(
Wf (σ

2
sQfQ

†
f +Kf )W

†
f − σ2

sWfQfC
†
f − σ2

sCfQ
†
fW

†
f + σ2

sCfC
†
f

)
FM .

(3.10)

Following the conventional equalization design methodology, the optimum FD FFF

is obtained by minimizing the sum of stream MSEs, tr(E), which yields

W⋆
f = σ2

sCfQ
†
f

(
σ2
sQfQ

†
f +Kf

)−1

. (3.11)

From (3.11), it is observed that in order to guarantee the block diagonal structure

of the FDE �lter matrix W⋆
f for e�cient FD implementation, the matrices on the

right hand side of (3.11) have to be block diagonal matrices. This justi�es the special

structure of the TD source and relay precoding matrices imposed in (3.1). Using

(3.11) in (3.10) and simplifying the resulting expression, the MSE matrix becomes

E = σ2
sF

†
MCfΨ

−1
f C†

fFM , (3.12)
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where Ψf = blkdiag([ΨT
0 , · · · ,ΨT

Nc−1]
T ) ∈ CMNc×MNc with

Ψk = σ2
sQ

†
k

(
σ2
vHkAkA

†
kH

†
k + σ2

uINd

)−1

Qk + IM . (3.13)

From (3.12) we observe that E is a block circular matrix. Hence, its block diagonal

entries, En ∈ CM×M , ∀n, are identical, i.e., En = Ê,∀n. Since the diagonal entries of

En represent the MSEs of the di�erent spatial streams at time n, symbols from the

same stream experience identical MSEs. Exploiting the block circular structure of E,

we can obtain the MSE matrix Ê for symbol vector sn at each time n = 0, . . . , Nc−1

as

Ê =
σ2
s

Nc

Nc−1∑
k=0

C†
kΨ

−1
k Ck. (3.14)

3.3.1 MSE Matrix and Filter Design for FD-LE

Eqs. (3.11) and (3.14) are valid for both FD-LE and FD-DFE. For the special case

of FD-LE, we can set Cf = IMNc , which leads to

W⋆
f = σ2

sQ
†
f

(
σ2
sQfQ

†
f +Kf

)−1

(3.15)

and MSE matrix

ÊFD−LE =
σ2
s

Nc

Nc−1∑
k=0

Ψ−1
k . (3.16)

Interestingly, ÊFD−LE is equal to the arithmetic mean of the subcarrier MSE matrices,

Ψ−1
k , in MIMO-OFDM relay systems [64].
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3.3.2 MSE Matrix and Filter Design for FD-DFE

The FD-DFE MSE matrix depends on the FD feedback �lter matrices Ck. Since

the feedback �lter has to be implemented in the TD, we express Ck in terms of the

TD feedback �lter coe�cients Ct,n as Ck =
∑Nfb

n=0Ct,ne
−j 2π

Nc
nk. Now, (3.14) can be

rewritten as

ÊFD−DFE =
σ2
s

Nc

Nc−1∑
k=0

( Nfb∑
n=0

Ct,ne
−j 2πnk

Nc

)
Ψ−1

k

( Nfb∑
m=0

C†
t,me

−j 2πmk
Nc

)
=
σ2
s

Nc

Nfb∑
n=0

Nfb∑
m=0

(
Ct,n

Nc−1∑
k=0

Ψ−1
k e−j 2π

Nc
(n−m)kC†

t,m

)
=
σ2
s

Nc

ĈZĈ†. (3.17)

To simplify the notation, we have used the de�nitions Ĉ = [Ct,0, ...,Ct,Nfb
] and

Z =



z0 z1 . . . zNfb

z†1 z0 . . . zNfb−1

...
. . .

...

z†Nfb
z†Nfb−1 . . . z0


, (3.18)

where zn =
∑Nc−1

k=0 Ψ−1
k ej

2π
Nc

kn. The optimal Ĉ minimizing tr{EFD−DFE} can be

obtained as

Ĉ⋆ = arg min
ĈΘ=Ct,0

tr(ĈZĈ†), (3.19)

where Θ = [IM ,0M×(Nfb−1)]
†. Problem (3.19) can be solved using the standard

Lagrange multiplier method, leading to [106]

Ĉ⋆ = Ct,0(Θ
†Z−1Θ)−1Θ†Z−1. (3.20)
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By partitioning Z and Z−1 as

Z =

 Z11 Z12

Z†
12 Z22

 ,Z−1 =

 U11 U12

U†
12 U22

 , (3.21)

where {Z11,U11} ∈ CM×M , {Z12,U12} ∈ CM×MNfb , and {Z22,U22} ∈ CMNfb×MNfb ,

we can exploit the formula for the inverse of partitioned matrices [100],

U11 = (Z11 − Z12Z
−1
22 Z

†
12)

−1,U12 = −U−1
11 Z12Z

−1
22 , (3.22)

to further express Ĉ⋆ as

Ĉ⋆ = [Ct,0, −Ct,0Z12Z
−1
22 ]. (3.23)

Substituting (3.23) into (3.17), the FD-DFE MSE matrix can be rewritten as

EFD−DFE =
σ2
s

Nc

Ct,0U
−1
11 C

†
t,0. (3.24)

To complete the feedback �lter design, the optimal Ct,0 has to be determined. To

this end, we introduce the Cholesky decomposition of U−1
11 as

U−1
11 = LDL†, (3.25)

where L is a unit-diagonal lower triangular matrix and D is a diagonal matrix with

positive main diagonal entries. Now, it is easy to verify that the optimal Ct,0 which

minimizes tr(EFD−DFE) is given by C⋆
t,0 = L−1. Hence, the optimal Ĉ is obtained as

Ĉ⋆ = [L−1, −L−1Z12Z
−1
22 ]. (3.26)
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The structure of the optimal feedback �lter can be interpreted as follows: L−1 ∈

CM×M is a lower-triangular matrix which cancels the inter-stream interference in

the current time slot, and the remaining feedback �lter coe�cients, −L−1Z12Z
−1
22 ∈

CM×MNfb , cancel both the inter-stream interference and the inter-symbol interference

stemming from the previous Nfb − 1 time slots. Inserting Ĉ⋆ into (3.24), the MSE

matrix can be written as

ÊFD−DFE =
σ2
s

Nc

D. (3.27)

Since D in (3.25) is a diagonal matrix, unlike for FD-LE, the MSE matrix for FD-

DFE is a diagonal matrix, and also depends on the number of feedback �lter taps

Nfb.

3.4 Source and Relay Precoding Matrix

Optimization

Exploiting the expressions for the MSE matrix obtained in the previous section, in

this section, we minimize a general function f(diag[Ê]) of the spatial stream MSEs

at the output of the equalization �lter under separate constraints on the transmit

power consumed at the source and the relay, respectively4. Mathematically, the

4We note that our derivations can be extended to a joint source and relay transmit power
constraint. While such a joint transmit power constraint o�ers more degrees of freedom for the
system design, separate transmit power constraints appear more practical since usually the source
node and the relay node have their own power supplies.
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optimization problem is stated as

min
{Pk,Ak}

f(diag[Ê])

s.t. tr
(
E[xx†]

)
≤ PS, tr

(
E[tt†]

)
≤ PR, (3.28)

where Ê = ÊFD−LE and Ê = ÊFD−DFE for FD-LE and FD-DFE, respectively, PS

and PR are the transmit power limits for S and R, respectively, x and t are given in

(3.3), and diag[M] denotes a vector containing the main diagonal entries of matrix

M. The objective function f(diag[Ê]) can be either a Schur-convex or a Schur-

concave increasing function with respect to (w.r.t.) diag[Ê] [70]. For concreteness,

in this chapter, we consider the three most important objective functions of this

type, namely the arithmetic MSE (AMSE), the geometric MSE (GMSE), and the

maximum MSE (maxMSE). We note that AMSE is an important performance metric

for classical signal processing and communication systems, and the solution for AMSE

minimization can be used as a building block for solving more complex problems

such as maxMSE minimization [121]. On the other hand, GMSE minimization is

appealing due to its equivalence to average bit rate maximization, see Section 3.4.2.

Finally, maxMSE is closely related to the average system error rate performance

since the worst-case MSE dominates the average uncoded symbol/bit-error rate [70].

Speci�cally, these objective functions can be written as

f(diag[Ê]) =



∑M
m=1 Êmm, AMSE∏M
m=1 Êmm, GMSE

maxMm=1 Êmm, maxMSE

, (3.29)
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where Êmm denotes the mth diagonal entry of Ê. The AMSE and GMSE are Schur-

concave functions while the maxMSE is a Schur-convex function w.r.t. diag[Ê] [70].

We note that similar objective functions have been considered for MIMO-OFDM

based relay systems in [64]. However, for MIMO-OFDM based relay systems, the

AMSE, GMSE, and maxMSE are the sum, product, and maximum of the subcarrier

MSEs of di�erent spatial streams. In contrast, in (3.29), these three quantities are

the sum, product and maximum of the stream MSEs of a single carrier.

The transmit power consumptions at source and relay are given by

tr
(
E[xx†]

)
= σ2

s

Nc−1∑
k=0

tr
(
PkP

†
k

)
,

tr
(
E[tt†]

)
=

Nc−1∑
k=0

tr
(
Ak

(
σ2
sGkPkP

†
kG

†
k + σ2

vINr

)
A†

k

)
. (3.30)

Since the optimization variables in (3.28) are matrices, solving the problem directly

would incur high complexity. In the following, we will �rst derive the structure,

i.e., the optimal form of the singular-value decompositions (SVDs), of the source

and relay precoding matrices. Knowing this structure will allow us to transform the

matrix optimization problem into an optimization problem with scalar variables.

3.4.1 Structure of the Optimal Precoding Matrices for

FD-LE

We �rst derive the structure of the optimal source and relay precoding matrices for

FD-LE. We begin by introducing the following SVDs of the FD channel matrices

Gk = U
(k)
G Λ

(k)
G V

(k)†
G , Hk = U

(k)
H Λ

(k)
H V

(k)†
H , ∀k, (3.31)
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where U
(k)
G ∈ CNr×Nr , V

(k)
G ∈ CNs×Ns and U

(k)
H ∈ CNd×Nd , V

(k)
H ∈ CNr×Nr are the

singular-vector matrices of Gk and Hk, respectively. Furthermore, Λ
(k)
G ∈ CNr×Ns

and Λ
(k)
H ∈ CNd×Nr are the singular-value matrices of Gk and Hk, which both have

decreasing main diagonal elements.

Theorem 3.1. For the optimization problem in (3.28), the following structures of

Pk and Ak are optimal

P⋆
k = V̄

(k)
G Λ

(k)
P V0, A⋆

k = V̄
(k)
H Λ

(k)
A Ū

(k)
G , ∀k, (3.32)

where V̄
(k)
G , Ū

(k)
G , and V̄

(k)
H contain the M left-most columns of V

(k)
G , U

(k)
G , and V

(k)
H ,

respectively. Λ
(k)
P and Λ

(k)
A are M × M diagonal matrices with the mth diagonal

elements denoted by pkm and akm, respectively. For Schur-concave functions, V0 =

IM . For Schur-convex functions, V0 is a unitary matrix chosen in such a way that

all main diagonal entries of Ê are equal5.

Proof. Please refer to Appendix-B.

Theorem 3.1 shows that the structures of the source and relay precoding matrices

have to match those of the S-R and R-D channel matrices, respectively, such that

the diagonal power allocation matrices can allocate the available source and relay

transmit powers to the decomposed parallel channels in both the spatial domain and

the frequency domain6. Moreover, for Schur-concave functions, the source and relay

5In practice, V0 can be chosen as a DFT matrix or a Hadamard matrix with appropriate dimen-
sions.

6According to Theorem 3.1, the singular values of the S-R and R-D channels are sorted in the
same order when deriving the optimal structure of the precoding matrices. This can be interpreted as
optimal spatial subchannel pairing. As revealed in [60], employing only spatial subchannel pairing
incurs a negligible performance loss compared to joint frequency and spatial subchannel pairing.
Hence, to simplify the system design, we do not consider subcarrier pairing (frequency pairing) in
this chapter. Nevertheless, the optimal subcarrier pairing for di�erent optimization criteria is an
interesting topic for future work.
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precoding matrices jointly diagonalize the MIMO relay channels at each frequency

tone, while for Schur-convex functions, the precoding matrices diagonalize the chan-

nels up to a unitary rotation at the source. Therefore, the original optimization

problem involving matrix variables can be transformed into a scalar power allocation

problem across di�erent spatial beams and frequency tones.

3.4.2 Transformation of Optimization Problem for FD-LE

Since the maxMSE is a Schur-convex function, according to Theorem 3.1, the uni-

tary matrix, V0, should be chosen to make all diagonal entries of Ê equal. Recall

from Section 3.3 that diag[Ê] represents the MSE of di�erent spatial streams and all

symbols of a particular stream have the same MSE. This means that for maxMSE,

identical MSE is achieved for all symbols in the SC-FDE system. Hence, the remain-

ing maxMSE power allocation problem is identical to that for the AMSE criterion.

The only di�erence between the solutions for maxMSE and AMSE minimization lies

in the choice of V0. We note that this is not true for MIMO-OFDM relay sys-

tems, where the unitary transformation at the source only achieves identical spatial

MSEs on each subcarrier, while the MSEs across subcarriers are in general di�er-

ent. To balance these MSEs, multilevel water�lling has to be carried out in such

MIMO-OFDM relay systems, which entails a much higher complexity compared to

the single-level water�lling required for the AMSE criterion, cf. [64]7. Additionally,

for MIMO-OFDM relay systems, the unitary rotation matrices are in general di�er-

ent on each subcarrier as the number of transmitted data streams may vary from

subcarrier to subcarrier. However, for SC-FDE, the rotation matrices are identical

7The maximum number of iterations for single-level and multilevel water�lling algorithms is
log2(MNc) and MNc, respectively [104]. Therefore, for large values of MNc, e.g., 128, multilevel
water�lling incurs a much higher complexity than single-level water�lling.
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for all frequency tones since the number of data streams is determined in the time

domain.

Because of the equivalence of the power allocation problems for maxMSE and

AMSE, in the following, we focus on the power allocation problem for the AMSE and

GMSE criteria. From (3.13) and (3.32), we obtain Ψk = V†
0ΦkV0 with

Φk = σ2
sΛ

(k)2
P Λ̄

(k)2
G Λ

(k)2
A Λ̄

(k)2
H

(
σ2
vΛ

(k)2
A Λ̄

(k)2
H + σ2

uIM

)−1

+ IM , (3.33)

where Λ̄
(k)
G and Λ̄

(k)
H are diagonal matrices whose diagonal entries contain the M

largest singular values of G(k) and H(k), respectively. Now, using (3.16) and (3.33),

we can rewrite the objective functions in (3.29) as

fX(Φ) =


∑M

m=1

(
1
Nc

∑Nc−1
k=0 Φ−1

km

)
, X=AMSE∑M

m=1 log2

(
1
Nc

∑Nc−1
k=0 Φ−1

km

)
, X=GMSE

, (3.34)

where Φ = {Φkm,∀k,m} with

Φkm =
σ2
sp

2
kmg

2
kma

2
kmh

2
km

σ2
va

2
kmh

2
km + σ2

u

+ 1. (3.35)

Here, gkm and hkm denote the mth main diagonal elements of Λ̄
(k)
G and Λ̄

(k)
H , respec-

tively, and represent the corresponding channel gains of themth spatial stream on the

kth frequency tone. Note that, for the GMSE criterion, we have taken the logarithm

of the original objective function in (3.29) to facilitate the subsequent optimization.

Due to the monotonicity of the logarithm, the new objective function has the same
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optimal solution as the original one. The new objective function can be rewritten as

−
M∑

m=1

log2 (SINRm + 1) , (3.36)

where SINRm = ( 1
Nc

∑Nc−1
k=0 Φ−1

km)
−1 − 1 is the SINR of the mth data stream. This

implies that (3.36) is essentially the negative sum of the channel capacity of di�erent

spatial streams, which can be approached with Gaussian signalling and ideal channel

coding. Therefore, the minimization of the GMSE is equivalent to the maximization

of the capacity of the considered MIMO SC-FDE relay system. By exploiting (3.32),

the expression for the power consumption on the left hand side of the constraints in

(3.28) can be expressed as

tr
(
E[xx†]

)
= σ2

s

Nc−1∑
k=0

tr
(
Λ

(k)2
P

)
=

Nc−1∑
k=0

M∑
m=1

Ps,km

tr
(
E[tt†]

)
=

Nc−1∑
k=0

tr
(
Λ

(k)2
A

(
σ2
sΛ

(k)2
P Λ̄

(k)2
G + σ2

vIM

))
=

Nc−1∑
k=0

M∑
m=1

Pr,km, (3.37)

where

Ps,km = σ2
sp

2
km, Pr,km = a2km(σ

2
sp

2
kmg

2
km + σ2

v) (3.38)

can be interpreted as the power allocated to the kth frequency tone and the mth

spatial stream at the source and the relay, respectively. By rewriting Φkm in (3.35)

in terms of the newly introduced variables Ps,km and Pr,km as

Φkm =
Ps,kmPr,kmg

2
kmh

2
km

σ2
vPr,kmh2km + σ2

u(Ps,kmg2km + σ2
v)

+ 1, (3.39)
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problem (3.34) can be reformulated as the following power allocation problem

min
{Ps,km,Pr,km}

fX (Φ)

s.t.
Nc−1∑
k=0

M∑
m=1

Ps,km ≤ PS,
Nc−1∑
k=0

M∑
m=1

Pr,km ≤ PR

Ps,km ≥ 0, Pr,km ≥ 0,∀k,m, (3.40)

where the constraints Ps,km ≥ 0, Pr,km ≥ 0, ∀k,m, ensure that the allocated powers

are not negative.

3.4.3 Structure of the Optimal Precoding Matrices for

FD-DFE

For the FD-DFE receiver, we observe from (3.27) that EFD−DFE is not an explicit

function of optimization variables Pk and Ak, which renders the optimization a chal-

lenging task. In this section, we will show that by using proper transformations, an

upper bound for the original objective function can be derived, which is equivalent to

one of the objective functions considered for the FD-LE receiver. To this end, we will

�rst show that for FD-DFE, the three considered objective functions are equivalent.

Equivalence of Objective Functions

SinceEFD−DFE in (3.27) is a diagonal matrix, we invoke the following matrix arithmetic-

geometric mean inequality

1

M
tr(D) =

1

M

M∑
m=1

Dmm ≥ (
M∏

m=1

Dmm)
1
M = det(D)

1
M , (3.41)
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where the equality holds if and only if (i.f.f.) all main diagonal elements of D are

equal. The inequality provides some important insights into the objective function

for FD-DFE. First, it implies that the AMSE, i.e., tr(D), is lower bounded by the

term involving the GMSE, i.e., det(D). Second, this lower bound is achieved i.f.f. the

MSEs of all streams are identical. Therefore, making the diagonal entries of D iden-

tical will enable us to minimize the AMSE, GMSE, and maxMSE simultaneously.

Consequently, for FD-DFE, the three considered objective functions become equiv-

alent. In the sequel, we will show how this can be achieved by applying a suitable

unitary matrix at the source precoder. From (3.25), we obtain

U−1
11 = LD1/2(LD1/2)† = (QR)†QR, (3.42)

whereQ is an arbitrary unitary matrix of appropriate dimension andR = (LD1/2)† is

a lower triangular matrix whose main diagonal elements are equal to the square root

of the main diagonal elements of D. Therefore, �nding a diagonal matrix D with

equal diagonal elements is equivalent to �nding a triangular matrix R with equal

diagonal elements. In the following, we provide an explicit construction for R. By

expressing Pk as the product of a unitary matrix V1 and a general matrix P̃k,

Pk = P̃kV
†
1, (3.43)

we can write Ψk in (3.13) as

Ψk = V1Ψ̂kV
†
1, (3.44)
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where

Ψ̂k = σ2
sP̃

†
kG

†
kA

†
kH

†
k

(
σ2
vHkAkA

†
kH

†
k + σ2

uINd

)−1

HkAkGkP̃k + IM . (3.45)

Note that Ψ̂k has the same form as Ψk in (3.13) but with Pk replaced by P̃k. There-

fore, matrix Z in (3.18) can be written as

Z =



V1z̄0V
†
1 V1z̄1V

†
1 . . . V1z̄Nfb

V†
1

V1z̄
†
1V

†
1 V1z̄0V

†
1 . . . V1z̄Nfb−1

...
. . .

...

V1z̄
†
Nfb

V†
1 V1z̄

†
Nfb−1V

†
1 . . . V1z̄0V

†
1


= (INfb

⊗V1)Z̄(INfb
⊗V†

1),

(3.46)

where Z̄ has the same form as Z in (3.18) with zn replaced by z̄n =
∑Nc−1

k=0 Ψ̂−1
k ej

2π
Nc

kn.

By noting that

Z−1 = (INfb
⊗V1)Z̄

−1(INfb
⊗V†

1), (3.47)

where we have used (INfb
⊗V1)

−1 = INfb
⊗V†

1, we obtain from (3.21)

U11 = V1Ū11V
†
1, (3.48)

where Ū11 is the �rst M ×M submatrix of Z̄−1. Using (3.48) in (3.42), we obtain

that JŪ
−1/2
11 V†

1 = QR, where J is an arbitrary unitary matrix. Therefore, we need

the following decomposition for our purpose

Ū
−1/2
11 = Q̃RV1 (3.49)
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where Q̃ = J†Q is also a unitary matrix. Such a decomposition is referred to as equal-

diagonal QR decomposition (E-QRD) or geometric-mean decomposition (GMD) and

its e�cient implementation can be found in the literature [107], [108]. Hence, for a

given Ū11, we can always �nd a unitary matrix V1 which achieves the MSE lower

bound in (3.41).

As Ū11 is a function of relay precoding matrix Ak as well as the remaining part

of the source precoding matrix, i.e., P̃k, in the following, we need to determine these

matrices. By noting that

det(D) = det(LDL†) = det(U−1
11 ), (3.50)

where we have exploited the properties det(AB) = det(A)det(B) and det(L) = 1

[100], we can further use (3.22) to express the objective function for FD-DFE as

OBJ = det(U−1
11 ) = det

(
Z11 − Z12Z

−1
22 Z

†
12

)
. (3.51)

Upper Bound on Objective Function

Unfortunately, the expression for OBJ in (3.51) depends on the feedback �lter length

Nfb, cf. (3.46), which is not desirable in practice. Additionally, due to the presence

of Z−1
22 in (3.51), it is also not straightforward to express the objective function in

terms of Ak and P̃k. To avoid these problems, we derive an upper bound for OBJ,

which is independent of Nfb and directly related to the optimization variables.

Since matrix Z in (3.18) is a positive semide�nite (PSD) matrix, Z−1, Z22, and

U11 are PSD matrices as well. Thus, U−1
11 and Z12Z

−1
22 Z

†
12 are also PSD matrices. By

exploiting the fact that det (A+B) ≥ det (A) if A and B are PSD matrices [100],
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we obtain

det(U−1
11 ) ≤ det (Z11) , (3.52)

where equality holds i.f.f. Nfb = 0. In other words, for the case of Nfb = 0, det (Z11)

is the exact value of OBJ. In this case, the feedback �lter matrix reduces to a lower

triangular matrix, which only cancels the inter-stream interference in the current time

slot, cf. (3.26). Otherwise, it is an upper bound for OBJ, which can be expressed as

OBJub = det(Z11)
(a)
= det

(
Nc−1∑
k=0

Ψ−1
k

)
(b)
= det

(
V1

[
Nc−1∑
k=0

Ψ̂−1
k

]
V†

1

)
(c)
= det

(
Nc−1∑
k=0

Ψ̂−1
k

)
,

(3.53)

where (a) is due to the fact that Z11 = z0 =
∑Nc−1

k=0 Ψ−1
k , cf. (3.18) and (3.21), (b) is

due to (3.44), and to obtain (c) we have exploited the properties det(AB) = det(BA)

and V†
1V1 = IM . From (3.53) we observe that OBJub is independent of V1.

Structures of Optimal Source and Relay Precoding Matrices

Since we can always choose P̃k such that
∑Nc−1

k=0 Ψ̂−1
k is a diagonal matrix, cf. (3.45),

the determinant in (3.53) is essentially the product of the diagonal entries of
∑Nc−1

k=0 Ψ̂−1
k .

Consequently, OBJub is equivalent to the objective function of the FD-LE receiver

under the GMSE criterion. From Theorem 3.1, we obtain the following optimal

structures for P̃k and Ak

P̃⋆
k = V̄

(k)
G Λ

(k)
P , A⋆

k = V̄
(k)
H Λ

(k)
A Ū

(k)†
G , (3.54)
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and the optimalP⋆
k is thus given by P̃

⋆
kV

†
1. The remaining power allocation problem is

identical to that of the GMSE criterion for FD-LE, cf. (3.40). It is worth mentioning

that for Nfb > 0, the upper bound OBJub constitutes a tight approximation of the

objective function OBJ as is illustrated in Section V.

3.4.4 Asymptotically Optimal Power Allocation

From the previous two subsections, it can be concluded that only two di�erent types

of power allocation problems have to be solved, namely the problems for the AMSE

and GMSE criteria for FD-LE. The solutions to these problems are also applicable

for the maxMSE criterion for FD-LE and for all three criteria for FD-DFE. However,

since the objective functions for the AMSE and GMSE criteria in (3.40) are not

jointly convex w.r.t. the power allocation variables, the global optimal solution is

di�cult to obtain. Thus, in the following, we adopt a high SNR approximation for

Φkm [60], i.e., we assume σ2
uσ

2
v is su�cient small such that it can be ignored in the

denominator of (3.39), which leads to

Φkm ≈ Φ̃km =
Ps,kmPr,kmg

2
kmh

2
km

σ2
vPr,kmh2km + σ2

uPs,kmg2km
+ 1. (3.55)

Proposition 3.1. The optimization problem (3.40) with Φkm approximated by Φ̃km

is a convex optimization problem.8

Proof. The proof is provided in Appendix C.

We are now ready to derive an iterative power allocation algorithm. To this end,

8In [109], we have solved the power allocation problem without the high-SNR approximation.
Although the solution in [109] is also not globally optimal, under simplifying assumptions, e.g., �xed
power allocation at the source, the solution is globally optimal. We have compared the bit error rate
of this scheme using and not using the high-SNR approximation. We found that the performance
di�erence is negligible even at low SNR. Therefore, we expect the proposed asymptotically optimal
power allocation to also work well for low-to-medium SNRs.
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we introduce the Lagrangian of the considered power allocation problem

L = fX(Φ̃) + λ[
∑
k,m

Ps,km − PS] + µ[
∑
k,m

Pr,km − PR]−
∑
k,m

[βkmPs,km + γkmPr,km],

(3.56)

where λ and µ are the Lagrange multipliers for the sum power constraints for source

and relay, respectively, and βkm and γkm are the Lagrange multipliers for the individu-

al power constraints for source and relay, respectively. Applying the KKT conditions

to (3.56), which are su�cient and necessary conditions for convex optimization prob-

lems [101], we obtain

∂fX(Φ̃)

∂Φ̃km

∂Φ̃km

∂Ps,km

+ λ− βkm = 0,

∂fX(Φ̃)

∂Φ̃km

∂Φ̃km

∂Pr,km

+ λ− γkm = 0,

βkmPs,km = 0, γkmPr,km = 0,

λ

[∑
k,m

Ps,km − PS

]
= 0, µ

[∑
k,m

Pr,km − PR

]
= 0, (3.57)

where

∂fX(Φ̃)

∂Φ̃km

=


− σ2

s

Nc
Φ̃−2

km, X=AMSE

−Φ̃−2
km∑Nc−1

k=0 Φ̃−1
km

, X=GMSE

, (3.58)

and

∂Φ̃km

∂Ps,km

=
σ2
vP

2
r,kmh

4
kmg

2
km

[σ2
vPr,kmh2km + σ2

uPs,kmg2km]
2 ,

∂Φ̃km

∂Pr,km

=
σ2
uP

2
s,kmg

4
kmh

2
km

[σ2
vPr,kmh2km + σ2

uPs,kmg2km]
2 .

(3.59)
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For given λ and µ, we obtain from (3.57)-(3.59)

Ps,km =
σ2
vPr,kmh

2
km

g2km(Pr,kmh2km + σ2
u)

[√
g2km

λBmσ2
uσ

2
v

− 1

]+
, (3.60)

Pr,km =
σ2
uPs,kmg

2
km

h2km(Ps,kmg2km + σ2
v)

[√
h2km

µBmσ2
uσ

2
v

− 1

]+
, (3.61)

where Bm = Nc/σ
2
s and Bm = (ln 2)

∑Nc−1
k=0 (Φ̃km+1)−1 for the AMSE and the GMSE

criteria, respectively, and [x]+ = max(0, x). The Lagrange multipliers λ and µ, which

are chosen to satisfy the sum power constraint for source and relay, respectively, can

be found with the following subgradient method [111, 112]

λ[i+1] =

[
λ[i] + ε1

(
Nc−1∑
k=0

M∑
m=1

Ps,km − PS

)]+
(3.62)

µ[i+1] =

[
µ[i] + ε2

(
Nc−1∑
k=0

M∑
m=1

Pr,km − PR

)]+
, (3.63)

where i is the iteration index, and εj, j = 1, 2, are step sizes. From (3.60) and (3.61),

we observe that the optimal Ps,km depends on Pr,km and vice versa. To tackle this

problem, we propose Algorithm 3.1 in Table 3.1 to iteratively �nd the optimal power

allocations. Convergence of this algorithm to the optimal solution is guaranteed

because of the convexity of the consider optimization problem. Note that if either

Ps,km or Pr,km is equal to 0, the other variable will also be 0. This result is intuitively

pleasing since, if for example the (m, k)th subchannel is shut down in the S-R link,

there is no need to waste power on this subchannel in the R-D link. It is also

worth noting that for the GMSE criterion, Ps,km and Pr,km are functions of Φ̃km,

which means the optimal Ps,km and Pr,km for the kth frequency tone depend on the

power allocations in all other frequency tones. Therefore, �nding the optimal solution

70



Chapter 3. Transceiver Design For SC-FDE Based MIMO Relay Systems

Table 3.1: Algorithm 3.1 for �nding the optimal power allocation. ϵ1 and ϵ2 are small
constants, e.g. ϵ1 = ϵ2 = 10−4.

1 Initialize µ[1] and λ[1]

2 Initialize P
[1]
s,km, P

[1]
r,km. Set P rec

s,km = P
[1]
s,km, P rec

r,km = P
[1]
r,km, ∀k,m.

3 Repeat

Set iteration number to i = 2.
Repeat

for m = 1 : M , k = 0 : Nc − 1

Find P
[i]
s,km from (3.60) using P rec

r,km and λ[i−1].

end for

Update λ[i] using (3.62). i = i+ 1.

until |λ[i+1] − λ[i]| < ϵ1, set P rec
s,km = P

[i]
s,km.

Set iteration number to l = 2.
Repeat

for m = 1 : M , k = 0 : Nc − 1

Find P
[l]
r,km from (3.61) using P rec

s,km, and µ[l−1].

end for

Update µ[l] using (3.63). l = l + 1.

until |µ[l+1] − µ[l]| < ϵ2, set P rec
r,km = P

[l]
r,km.

until P rec
r,km and P rec

s,km converge.

4 P rec
s,km and P rec

r,km, ∀k,m, are the optimal solution.

requires a higher complexity for the GMSE criterion than for the AMSE criterion.

3.4.5 Suboptimal Power Allocation Schemes

Since the proposed precoding matrix optimization scheme involves an iterative power

allocation algorithm and considerable feedback overhead from the relay and destina-

tion to the source9, it is desirable to investigate suboptimal approaches with lower

complexity and reduced feedback overhead. One option is to adopt equal power al-

location at the source and to optimize only the power allocation at the relay. We

refer to the corresponding scheme as EPA-S. EPA-S eliminates the iterative updat-

ing of the source power variables, hence guaranteeing faster convergence of the power

allocation algorithm. However, the EPA-S scheme still requires CSI feedback of the

S-R channel for computing the unitary part of the source precoding matrix. In order

to completely avoid CSI feedback to the source, one can perform precoding at the

9The CSI of both the S-R and R-D channels is required at the source for computation of the
source power allocation. This requires the feedback of (LgNrNs + LhNdNr) complex numbers.
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relay only, which we refer to as relay only precoding (ROP) scheme. For FD-DFE,

we also introduce the unitary precoding at source (UPS) scheme, which applies only

the unitary precoding matrix V1 at the source. This is motivated by the result in

Section 3.43, where it is shown that this unitary matrix can balance the MSEs of

the di�erent spatial streams. Similar to ROP, the UPS scheme has the advantage of

a reduced feedback overhead compared to optimal power allocation and the EPA-S

scheme as the source only needs to acquire knowledge of the M ×M unitary matrix

V1.

3.5 Simulation Results

In this section, we evaluate the performance of the proposed source and relay pre-

coding schemes using simulations. We assume that each data block contains Nc = 64

symbols. The channels are modeled as uncorrelated Rayleigh block fading channels

with power delay pro�le p[n] = 1
σt

∑Lx−1
l=0 e−n/σtδ[n− l] [102], where Lx ∈ {Lg, Lh} =

16 and σt = 2, which corresponds to moderately frequency-selective fading. Unless

stated otherwise, we set the values of Ng,s, Ng,r and Nfb all equal to 15. We assume

identical noise variances for both links, i.e., σ2
u = σ2

v , and de�ne the received SNRs

at the relay and destination as SNRr , PS

NsNcσ2
u
and SNRd , PR

NrNcσ2
v
, respectively.

The corresponding energy per bit to noise power spectral density ratios are given by

(Eb/N0)r =
SNRr

Nb
and (Eb/N0)d =

SNRd

Nb
, where Nb is the number of bits per symbol.

For the bit error rate (BER) simulation results, we set (Eb/N0)d = 16 dB and exam-

ine the performance as a function of (Eb/N0)d. For the achievable bit rate result in

Fig. 3.6, we set SNRr = 20 dB and examine the performance as a function of SNRd.

All simulations are averaged over at least 10,000 independent channel realizations and

data blocks. In the following, the proposed joint source and relay precoding design
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Figure 3.2: Objective function value (GMSE criterion) versus number of inner itera-
tions.

is referred to as JSR, and the notation {M,Ns, Nr, Nd} is used to specify a system

with the parameters appearing in the brackets.

3.5.1 Convergence of the Algorithm and Tightness of OBJub

for FD-DFE

We �rst examine the convergence of the proposed power allocation algorithm in terms

of the numbers of inner and outer iterations for a {2, 2, 2, 2} MIMO relay system

optimized for GMSE criterion10. We de�ne an outer iteration as one optimization

10Similar results also hold for the AMSE criterion.
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Figure 3.3: Objective function value (GMSE criterion) versus number of outer itera-
tions.

of {Ps,km} or {Pr,km} in the algorithm shown in Table I, and the update of {Ps,km}

({Pr,km}) in each outer iteration as one inner iteration. The reference lines indicate

the optimal values of the objective function. In Fig. 3.2, we take the optimization of

{Pr,km} as an example, where we choose 0.01, 0.005, and 0.001 as three speci�c initial

values for the Lagrange multiplier µ, and randomly initialize {Ps,km} and {Pr,km}. It

is observed that the choices of the initial value of µ a�ect the convergence of the inner

iterations. Nevertheless, for the considered three cases of initialization, the objective

function values converge within 10 iterations. In practice, the initial values can be

optimized o�ine for di�erent SNRs. In Fig. 3.3, we investigate the convergence of
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the algorithm in terms of the outer iterations, where both {Ps,km} and {Pr,km} are

randomly initialized. Note that according to the de�nition of the outer iteration,

the initial values of λ and µ do not a�ect the convergence of the outer iterations.

From Fig. 3.3 we observe that it takes at most three outer iterations to obtain the

�nal solutions for {Ps,km} and {Pr,km}. Moreover, the largest improvement of the

objective function value is obtained in the �rst and second outer iterations when

(Eb/N0)d is small and large, respectively. This suggests that for low SNR, optimizing

the source or the relay power allocation is su�cient to realize most of the achievable

performance gain, while for high SNR, a joint optimization of the source and relay

power allocations is bene�cial.

In Fig. 3.4, we show the values of the objective function, OBJ, for FD-DFE,

cf. (3.51), for di�erent values of Nfb. Note that OBJ for Nfb = 0 serves as the

upper bound, OBJub, for the general objective function. From the �gure, we observe

that the upper bound is very close to the objective function for all considered values

of Nfb, especially for medium-to-high SNR. Therefore, OBJub constitutes a good

approximation for the objective function for the FD-DFE receiver.

3.5.2 Comparison of SC-FDE and OFDM for JSR Precoding

In Fig. 3.5, we show the BER of uncoded quaternary phase-shift keying (QPSK)

as a function of (Eb/N0)d for the proposed FD-LE based MIMO relay system for

the three considered precoding matrix optimization criteria. For FD-DFE, only the

GMSE criterion is considered as for FD-DFE all three criteria are equivalent. For

comparison, the performance of a MIMO-OFDM relay system optimized under the

same criteria is also included [64]. The �gure shows that for the {2, 2, 2, 2} system, the

proposed MIMO relay system with an FD-LE receiver outperforms the corresponding
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Figure 3.4: Objective function value of the FD-DFE receiver for di�erent values of
Nfb.

OFDM-based system by a large margin since, in contrast to uncoded OFDM, FD-

LE is able to exploit the frequency diversity o�ered by the channel. In addition, for

both FD-LE and OFDM, the system employing the maxMSE criterion o�ers the best

performance since the worst-case MSE is minimized. In this case, FD-LE obtains a

better error rate performance than OFDM, while enjoying the advantage of a single-

level water�lling solution. For FD-DFE, the performance improvement compared to

FD-LE and OFDM is remarkable and a much higher diversity gain is observed. On the

other hand, for the {2, 3, 3, 3} system, we observe that the performance gaps between

FD-DFE, FD-LE, and OFDM become smaller. Surprisingly, using the maxMSE
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Figure 3.5: Uncoded BER of {2, 2, 2, 2} and {2, 3, 3, 3} MIMO relay systems for JSR
precoding using di�erent optimization criteria.

criterion, the optimized OFDM and FD-LE systems achieve a performance very close

to that of FD-DFE. This is due to fact that the additional antennas o�er additional

spatial diversity which helps OFDM and FD-LE to e�ectively avoid the deep spectrum

nulls that otherwise negatively a�ect their performance in frequency-selective fading.

In Fig. 3.6, we investigate the achievable bit rates (ABRs)[11, 113] of the OFDM

and SC-FDE systems under di�erent optimization criteria. The ABR is calculated
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as11

ABR =
1

MNc

M∑
m=1

Nc−1∑
k=0

log2 (SINRkm,X + 1) (3.64)

where SINRkm,X = Φkm for X=OFDM [64] and SINRkm,X = ([ÊX]mm)
−1 − 1,∀k,

for X={FD-LE, FD-DFE}. As expected, the systems optimized under the GMSE

criterion have the best performance since minimizing the GMSE is equivalent to

maximizing the ABR. In general, the ABR achieved by the considered MIMO-OFDM

11Note that for the ABR we implicitly assume Gaussian transmit symbols and ideal channel
coding [11].
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relay systems is higher than that of the corresponding FD-LE relay systems, except for

the case when both systems are optimized based on the maxMSE criterion. Indeed,

the OFDM system optimized under the maxMSE criterion su�ers from the worst ABR

performance among all the considered schemes since the available power is mainly

used to improve the MSE of the subcarriers with bad channel conditions instead

of taking advantage of the subcarriers with good channel conditions. In addition,

Fig. 3.6 shows that for FD-LE, the AMSE and maxMSE criteria lead to exactly the

same ABR, which implies that the unitary rotation of the source precoding matrix

does not in�uence the ABR of the system. Furthermore, the ABR achieved with FD-

DFE is larger than that achieved with any of the FD-LE schemes and very close to

that of OFDM. This is due to the lower streamMSEs of FD-DFE compared to FD-LE,

which translates into larger stream SINRs and larger system ABR. For the {2, 3, 3, 3}

system, we observe that SC-FDE and OFDM achieve almost the same performance

for the AMSE and GMSE criteria, implying that with more source/relay/destination

antennas, SC-FDE will approach the achievable ABR of the OFDM system.

3.5.3 Performance of Suboptimal Power Allocation Schemes

In Figs. 3.7 and 3.8, we plot the uncoded and coded BERs for the suboptimal pow-

er allocation schemes discussed in Section 3.45 using QPSK for a {2,2,2,2} system,

respectively. For the coded case, the standard rate-1/2 convolution code with gen-

erator matrix (133, 171)oct is adopted. The OFDM and FD-LE systems are both

optimized under the maxMSE criterion. The FD-DFE system is optimized under

the GMSE criterion since for FD-DFE all three considered criteria are equivalent to

the GMSE criterion. From Fig. 3.7 we observe that for uncoded transmission, the

FD-LE system outperforms the OFDM system if both employ the same precoding
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Figure 3.7: Uncoded BER of a {2, 2, 2, 2} MIMO relay system with JSR and subop-
timal precoding schemes.

technique. Fig. 3.7 also shows that for FD-LE and OFDM, EPA-S and ROP su�er

from a considerable performance degradation compared to JSR, while for FD-DFE,

the performance loss is relatively small for UPS and almost negligible for EPA-S. For

coded systems, the channel coding helps to spread the information bits across di�er-

ent subcarriers, hence OFDM systems can also exploit the frequency diversity of the

channel and signi�cantly improve their BER performance, cf. Fig. 3.8. Nevertheless,

the coded FD-LE system still outperforms the OFDM system if the same precoding

technique is assumed in both cases. Also, Fig. 3.8 reveals that channel coding signif-

icantly reduces the performance loss caused by suboptimal precoding techniques for
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both OFDM and FD-LE.

Since the performance of FD-DFE depends on the number of feedback �lter taps,

in Fig. 3.9, we investigate the in�uence of Nfb on the performance of a {2,2,2,2}

QPSK system. The results show that while the value of Nfb has limited impact on

the performance of EPA-S, it does play a critical role for UPS. The reason is that

for EPA-S, the equivalent S-R-D channel is diagonalized into M parallel channels,

thus eliminating the inter-stream interference at the receiver. However, for the case

of UPS , the equivalent end-to-end channel is not fully diagonalized and the received

symbols experience inter-stream interference. Consequently, a feedback �lter with
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su�ciently large Nfb is required to cancel out this interference. As can be inferred

from Fig. 3.9, there is a complexity tradeo� between the transmitter and the receiver

for FD-DFE. For EPA-S, since a small number of feedback �lter taps (e.g., Nfb = 3)

is su�cient to achieve good performance, the receiver complexity is similar to that

of FD-LE. However, comparatively complex FD signal processing has to be carried

out at the transmitter. This characteristic makes EPA-S suitable for the downlink

transmission. For the UPS scheme, on the other hand, the transmit processing is very

simple since the single tap precoding matrix V1 can be directly implemented in the

TD. In addition, the feedback overhead is low asV1 is identical for all frequency tones.
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However, UPS requires a longer and thus more complex feedback �lter to achieve a

high performance. These characteristics make UPS a very promising scheme for

uplink transmission.

3.6 Conclusion

In this chapter, we have tackled the problem of transceiver design for MIMO relay

systems employing SC-FDE. The optimal minimum MSE FD-LE and FD-DFE �l-

ters at the destination were derived, and the optimal structures of the source and

relay precoding matrices were obtained in closed form for a general family of objec-

tive functions. For systems employing an FD-DFE receiver, we �rst showed that the

considered objective functions are all equivalent, and we derived an upper bound on

the original objective functions, which was shown to be equal to the GMSE objec-

tive function for the FD-LE receiver. The remaining power allocation problem was

solved globally by using a high SNR approximation of the objective function and

e�cient convex optimization methods. Our results show that the proposed SC-FDE

relaying schemes outperform the corresponding OFDM schemes in terms of both

coded and uncoded BER for �xed modulation and coding rates. However, the per-

formance gap between SC-FDE and OFDM relay systems decreases when the number

of source/relay/destination antennas is larger than the number of data streams. As-

suming Gaussian signalling and ideal channel coding, SC-FDE and OFDM attain

similar achievable bit rates. Furthermore, we have shown that the proposed sub-

optimal power allocation schemes can reduce the system complexity and feedback

overhead at the expense of a moderate performance degradation, especially in case of

coded transmission, making them promising candidates for practical relay systems.
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Chapter 4

Robust Transceiver Design For

Broadband Multiuser Multi-Relay

Networks

4.1 Introduction

The transceiver designs discussed so far have assumed perfect CSI at relays and the

destination. In practical wireless systems, CSI is usually imperfect due to channel

estimation errors and/or feedback quantization errors. Two di�erent approaches are

commonly used to model imperfect CSI, namely, statistical models and deterministic

models. In the former case, the statistics of the CSI errors are assumed to follow some

known distribution such as Gaussian, which makes this model suitable for modeling

channel estimation errors [47]. In the latter case, the CSI error is assumed to lie in an

uncertainty region with known boundary, making this model suitable for the charac-

terization of quantization errors [48]. Start from this chapter, we will focus on robust

transceiver designs for cooperative relay communication systems with imperfect CSI.

In this chapter, we consider robust rBF and destination equalization (dEQ) �lter

design for multiuser SC-FDMA and OFDMA systems with multiple single-antenna

AF relays under channel estimation errors. For the CSI errors, we adopt the statis-
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tical Bayesian model due to its suitability for characterization of channel estimation

errors. Our design goal is to maximize the weighted ABR of the network subject

to either Ind-PCs or an Agg-PC12. Since in the presence of CSI errors, there is no

analytically tractable expression for the network ABR, we �rst develop a closed-form

lower bound on the ABR. Adopting this lower bound as the key component of the

objective function, joint optimization problems for the robust rBF and dEQ �lters

are formulated and solved. Speci�cally, the optimal dEQ �lters and the phases of the

optimal rBF �lter coe�cients are independent of the relay power constraints and can

be obtained in closed-form via solving unconstrained optimization problems. The

optimal amplitudes of the rBF �lter coe�cients, on the other hand, depend on the

relay power constraints. For the Agg-PC, we show that the optimization problem

can be decomposed into two subproblems using primal decomposition. In the �rst

subproblem, a closed-form solution is obtained for �xed, given power allocation vari-

ables across subcarriers and users. The second subproblem is shown to be a convex

power allocation problem, for which the global optimal solution is obtained via the

Karush-Kuhn-Tucker conditions. For Ind-PCs, we transform the optimization prob-

lem into a reverse-convex optimization problem with convex constraints, and obtain

a local optimal solution using the constrained convex concave procedure.

This chapter is organized as follows. In Section 4.2, a uni�ed system model for

OFDMA and SC-FDMA multi-relay networks is introduced. In Section 4.3, the joint

rBF and dEQ �lter optimization problem is formulated, and the optimal dEQ �lter

and the phases of the optimal rBF �lter coe�cients are derived. In Section 4.4 and

4.5, the optimization problems for the amplitudes of the rBF �lter coe�cients under

the Agg-PC and Ind-PCs are solved, respectively. Simulation results are provided in

12The Agg-PC is applicable if the relays belong to the network infrastructure and share a common
power supply, e.g., the power grid. Ind-PCs, on the other hand, are more appropriate if the relays
have their own power supplies, e.g., precharged batteries.
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Section 4.6, and some conclusions are drawn in Section 4.7.

4.2 System Model

In this section, we introduce the OFDMA and SC-FDMA signal models as well as

the channel estimation error model for the considered multiuser multi-relay systems.

4.2.1 Signal Model

We consider a network consisting of U source nodes, Su, u = 1, . . . , U , NR relay nodes,

Ri, i = 1, . . . , NR, and one destination node D, all equipped with a single antenna,

as shown in Fig. 4.113. We assume that direct links between the source nodes and

the destination do not exist due to large path losses and heavy shadowing14. The

information symbol vector of Su is given by s(u) = [s
(u)
1 , . . . , s

(u)
Q ]T , where Q is the

data block size, and symbols s
(u)
n , n = 1, . . . , Q, are modeled as i.i.d. random variables

with zero mean and unit variance. For SC-FDMA, s(u), ∀u, is �rst converted into the

FD using a Q-point FFT, mapped to the frequency band allocated to user u, zero-

padded to length Nc, and converted back into the TD using an Nc-point IFFT. For

OFDMA, s(u), ∀u, is processed in the same fasion as for SC-FDMA, except that the

conversion of the signal into the FD is not required. Hence, the transmit signal for

both SC-FDMA and OFDMA can be written as

x(u) =

√
PS

Nc

F†
Nc
M

(u)
f PQs

(u), (4.1)

13The insertion and removal of the cyclic pre�xes are not shown in Fig. 4.1 for simplicity oft
presentation.

14If direct links between the source nodes and the destination exist, they provide extra spatial
diversity and thus enhance the system performance. In this case, the proposed optimization tech-
niques are still applicable since the direct links only contribute constant gains to the end-to-end
SINR but have no impact on the rBF �lter coe�cients.
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where PS is the transmit power limit for all users, Nc is the total number of sub-

carriers, PQ = FQ for SC-FDMA, PQ = IQ for OFDMA, and M
(u)
f ∈ CNc×Q is

the subcarrier-mapping matrix which depends on the adopted subcarrier mapping

scheme, e.g., localized or interleaved subcarrier mapping [114]. Here, we have as-

sumed that all the symbols are transmitted with the same power PS

Nc
. In the follow-

ing, we assume that PS = Nc to simplify the notation. Before transmission, x(u) is

prepended with a CP of length Ng,u, Ng,u ≥ maxi{Lg,u,i}, where Lg,u,i is the length

of the CIR between Su and Ri. The CP converts the linear convolution of the CIR

and the transmitted signal into a circular convolution. Thus, the TD Su-Ri channel

matrix, G
(u)
t,i , ∀u, i, is a circular matrix, which can be decomposed as

G
(u)
t,i = F†

Nc
G

(u)
f,iFNc , (4.2)

where G
(u)
f,i ∈ CNc×Nc is the diagonal FD Su-Ri channel matrix. The received signal

at Ri after CP removal can be written as

ri =
U∑

u=1

G
(u)
t,i x

(u) + zr,i, (4.3)

where zr,i is the TD noise vector at Ri, whose entries are i.i.d. Gaussian random

variables with zero mean and variance σ2
r .

At Ri, ∀i, the received signal ri is converted into the FD using an Nc-point FFT,

demapped for user u using M
(u)†
f , processed by an FD rBF matrix A

(u)
f,i , remapped

to the frequency band allocated to user u using M
(u)
f , and converted back into the

TD using an Nc-point IFFT, resulting in

ti =
U∑

u=1

(
F†

Nc
M

(u)
f A

(u)
f,iM

(u)†
f FNc

)
ri =

U∑
u=1

F†
Nc
M

(u)
f A

(u)
f,i Ḡ

(u)
f,iPQs

(u) + z′r,i,(4.4)
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Figure 4.1: System model for OFDMA and SC-FDMA multiuser multi-relay net-
works.

whereA
(u)
f,i is a diagonal matrix whose diagonal entries are given by a

(u)
ik , k = 1, . . . , Q,

z′r,i =
∑U

u=1(F
†
Nc
M

(u)
f A

(u)
f,iM

(u)†
f FNc)zr,i is the ampli�ed TD noise vector at relay

Ri, and to obtain (4.4) we have used the following property of the subcarrier map-

ping/demapping matrices: M
(u)†
f (

∑U
u′=1G

(u′)
f,i M

(u′)
f ) = Ḡ

(u)
f,i , with Ḡ

(u)
f,i ∈ CQ×Q de-

noting the FD Su-Ri channel matrix for the non-dummy subcarriers15. Before trans-

mission, ti is prepended with a CP of length Nh, Nh ≥ maxi{Lh,i}, where Lh,i is the

length of the CIR between Ri and D. We denote the TD Ri-D channel matrix as

Ht,i. Similar to G
(u)
t,i , Ht,i is also a circular matrix, which can be decomposed as

Ht,i = F†
Nc
Hf,iFNc , (4.5)

where Hf,i ∈ CNc×Nc is the diagonal FD Ri-D channel matrix. The received signal

at D after CP removal is given by

y =

NR∑
i=1

Ht,iti + zd, (4.6)

15For each user, only Q of the Nc subcarriers carry information. We refer to the information-
carrying subcarriers as the non-dummy subcarriers.
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where zd is the TD noise vector at D, whose entries are i.i.d. Gaussian random

variables with zero mean and variance σ2
d. At D, y is converted into the FD using

an Nc-point FFT, demapped for user u using M
(u)†
f , and equalized by a diagonal

FD equalization matrix W
(u)
f . For SC-FDMA, the signal is further converted back

into the TD using an Nc-point IFFT before being fed into the decision device. For

OFDMA, such conversion is not required. Therefore, the decision variable vector for

both SC-FDMA and OFDMA can be written as

ŷ(u) =(P†
QW

(u)
f M

(u)†
f FNc)y

=P†
QW

(u)
f

(
H

[u]
effPQs

(u) +

NR∑
i=1

H̄
(u)
f,iA

(u)
f,i z̃

(u)
r,i + z̃

(u)
d

)
, (4.7)

where H
(u)
eff =

∑NR

i=1 H̄
(u)
f,iA

(u)
f,i Ḡ

(u)
f,i is the equivalent end-to-end FD channel matrix

for user u, with H̄
(u)
f,i denoting the FD Ri-D channel matrix for the non-dummy

subcarriers. Furthermore, z̃
(u)
r,i = M

(u)†
f FNczr,i and z̃

(u)
d = M

(u)†
f FNczd are the e�ective

FD noise vectors for user u at Ri and D, respectively, and have the same statistical

properties as zr,i and zd, respectively, since M
(u)†
f FNc is a unitary matrix. We note

that to arrive at (4.7), the following properties of the subcarrier mapping/demapping

matrices were used: M
(u)†
f Hf,iM

(u)
f = H̄

(u)
f,i and M

(u)†
f Hf,iM

(u′)
f = 0, ∀u′ ̸= u.

4.2.2 Channel Estimation Error Model

In this work, we assume the system is operating in the TDD mode. The FD CSI

matrices of the source-relay and the relay-destination channels, i.e., Ḡ
(u)
f,i and H̄

(u)
f,i , are

estimated at the relays via training symbols sent by the source and the destination,

respectively. These estimates are then fed back to the destination using dedicated
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zero-delay error-free feedback channels16.

It is well known that if a linear MSE estimator is used, the CSI errors can be

modelled as Gaussian random variables with known statistics. Speci�cally, the source-

relay and relay-destination CSI matrices for the non-dummy subcarriers of user u can

be written as

Ḡ
(u)
f,i = Ĝ

(u)
f,i +∆G

(u)
f,i , H̄

(u)
f,i = Ĥ

(u)
f,i +∆H

(u)
f,i , (4.8)

where Ĝ
(u)
f,i and Ĥ

(u)
f,i denote the estimated FD channel matrices, whose diagonal

entries are given by ĝ
(u)
ik and ĥ

(u)
ik ,∀u, k, i, respectively. ∆G

(u)
f,i and ∆H

(u)
f,i denote

the CSI estimation error matrices, whose diagonal entries follow complex Gaussian

distributions with zero means and variances σ2
e,gi

and σ2
e,hi

, respectively.

4.2.3 Implementation Issues

In this work, we assume that the destination is the central node which has the es-

timated global CSI of {Ĝ(u)
f,i , Ĥ

(u)
f,i , ∀i, u}, {σ2

e,gi
, σ2

e,hi
∀i}, σ2

r , and σ
2
d. Therefore,

the required feedback overhead from the relays to the destination is 2NcNR complex

numbers and (2NR + 1) real numbers in total. The equalization �lters, W
(u)
f , ∀u,

are computed at the destination using the estimated global CSI. The phases of the

rBF �lter coe�cients are obtained at each relay using the estimated local CSI, i.e.,

{Ĝ(u)
f,i , Ĥ

(u)
f,i , ∀u} for relay i. On the other hand, where the amplitudes of the rBF

�lter coe�cients are computed depends on the adopted power constraint. In particu-

lar, for the Agg-PC, the amplitudes of the rBF �lter coe�cients are calculated at the

16Alternatively, the destination can also perform the channel estimation. This causes a mismatch
between the CSI at the relays and the CSI at the destination if the estimation is not perfect. However,
this is not a problem for transceiver optimization as the destination can design the equalizers based
on the estimated aggregated end-to-end channels which include the e�ect of the rBF �lters.
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relays using the estimated local CSI and some global system information broadcasted

by the destination17. For the Ind-PCs, the amplitudes of the rBF �lter coe�cients

are calculated at the destination using the estimated global CSI and are then fed back

to the relays, cf. Section 4.5 for details. Hence, for the Agg-PC and Ind-PCs, the

feedback overhead from the destination to the relays is 2Nc and NRNc real numbers,

respectively. Therefore, for a small number of relays, e.g., two relays, the system

signalling overhead is similar for the Agg-PC and Ind-PCs. However, if the number

of relays is large, e.g., eight relays, a system with Ind-PCs requires a considerably

higher feedback overhead than a system with the Agg-PC.

4.3 Problem Formulation and Optimal

Equalization Filters

In this section, we formulate the joint optimization of the rBF and dEQ �lters as

a weighted ABR maximization problem with either Ind-PCs or an Agg-PC. To this

end, we �rst need to �nd an expression for the ABR.

4.3.1 Lower Bound on the ABR

With the decision vector given in (4.7), we can calculate the error vector for user u

as

e(u) =ŷ(u) − s(u) =
(
P†

QW
(u)
f H

(u)
eff PQ − IQ

)
s(u) +P†

QW
(u)
f

(
NR∑
i=1

H̄
(u)
f,iA

(u)
f,i z̃

(u)
r,i + z̃

(u)
d

)
,

17The global system information mentioned here refers to the power allocation across users and

subcarriers (i.e., {Pku, ∀k, u}) and the power normalization factors (i.e., {c(u)k ,∀k, u}) on di�erent
subcarriers, see Section 4.4 for details.
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which can be used to evaluate the MSE matrix as a function of the actual channel

matrices, E(u)(Ḡ
(u)
f,i , H̄

(u)
f,i ) = E{s,z̃(u)r,i ,z̃

(u)
d }[e

(u)e(u)†], where E{s,z̃(u)r,i ,z̃
(u)
d }(·) is the expec-

tation with respect to (w.r.t.) the statistics of the signals and noises. Since the noise

vectors are independent of the transmit signal vectors, we obtain the MSE matrix

conditioned on the actual channel matrices as

E(u)(Ḡ
(u)
f,i , H̄

(u)
f,i ) = P†

QE
(u)
f (Ḡ

(u)
f,i , H̄

(u)
f,i )PQ, (4.9)

where

E
(u)
f (Ḡ

(u)
f,i , H̄

(u)
f,i ) =W

(u)
f H

(u)
eff H

(u)†
eff W

(u)†
f −W

(u)
f H

(u)
eff −H

(u)†
eff W

(u)†
f + IQ

+W
(u)
f

(
σ2
r

NR∑
i=1

H̄
(u)
f,iA

(u)
f,iA

(u)†
f,i H̄

(u)†
f,i + σ2

dIQ

)
W

(u)†
f . (4.10)

For OFDMA, PQ = IQ and the MSEs of the symbols are given by the diagonal

entries of E
(u)
f (Ḡ

(u)
f,i , H̄

(u)
f,i ), which are denoted as E

(u)
k , ∀k, u. For SC-FDMA, we have

PQ = FQ, which implies that E(u)(Ḡ
(u)
f,i , H̄

(u)
f,i ) is a circular matrix with identical

diagonal entries; hence, all TD symbols for user u in SC-FDMA have identical MSEs

given by 1
Q

∑Q
k=1E

(u)
k , ∀u, which is equal to the arithmetic mean of the subcarrier

MSEs for user u in OFDMA. Exploiting the relation that SINR = MSE−1 − 1 [116],
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we can obtain the ABR for user u conditioned on the actual channel matrices as

ABR[OFDMA]
u (Ḡ

(u)
f,i , H̄

(u)
f,i ) = −

Q∑
k=1

log2

(
E

(u)
k

)
= − log2

(
det
[
E

(u)
f (Ḡ

(u)
f,i , H̄

(u)
f,i )
])
, (4.11)

ABR[SC−FDMA]
u (Ḡ

(u)
f,i , H̄

(u)
f,i ) = −Q log2

( 1

Q

Q∑
k=1

E
(u)
k

)
= −Q log2

( 1

Q
tr
[
E

(u)
f (Ḡ

(u)
f,i , H̄

(u)
f,i )
] )
, (4.12)

where we have implicitly assumed that the transmit symbols at the sources are Gaus-

sian distributed18. By averaging over the random CSI estimation error matrices, the

unconditional ABR for user u can be obtained as

ABR[Y]
u = E{∆G

(u)
f,i ,∆H

(u)
f,i }

ABR[Y]
u (Ḡ

(u)
f,i , H̄

(u)
f,i ), (4.13)

where Y={OFDMA, SC-FDMA}. Unfortunately, due to the nonlinearity of the

logarithm, it is di�cult to �nd an analytically tractable expression for ABR[Y]
u .

However, as log2 det(·) and log2 tr(·) are both concave functions, we can infer that

ABR[Y]
u (Ḡ

(u)
f,i , H̄f,i) is a convex function inE

(u)
f (Ḡ

(u)
f,i , H̄

(u)
f,i ). Then, by applying Jensen's

18We note that the optimal capacity-achieving input distribution for the multiple access relay
channel with imperfect CSI is an open problem in the information theory literature. Therefore, a
transceiver design which includes the optimization of the input distribution for such channels is a very
challenging task. In this work, we are mostly concerned with the optimization of the rBF and dEQ
�lters for practical broadband systems, and not with the theoretical limits of such channels. Thus,
we adopt the assumption of Gaussian input signals as is commonly done in the existing literature
on (relay) transceiver optimization under imperfect CSI, e.g., [47] [50]. In addition, we note that
by using the gap approximation for the ABR [115], our problem formulations and solutions are also
applicable to practical modulation schemes such as quadrature amplitude modulation (QAM) and
pulse amplitude modulation (PAM).
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inequality, we can arrive at the following lower bound for the ABR for user u

ABR[OFDMA]
u ≥ − log2

(
det
[
Ê

(u)
f

])
= ABR[OFDMA]

u ,

ABR[SC−FDMA]
u ≥ −Q log2

(
1

Q
tr
[
Ê

(u)
f

])
= ABR[SC−FDMA]

u , (4.14)

where Ê
(u)
f = E{∆G

(u)
f,i ,∆Hf,i}

[E
(u)
f ] is the unconditional FD MSE matrix. In the follow-

ing, we adopt this ABR lower bound as the key component of the objective function

in order to make the design problem tractable. In Section 4.6, we will investigate the

tightness of these lower bounds.

4.3.2 Problem Formulation and Optimal Equalization Filters

Our design goal is to maximize the weighted ABR (lower bound) of the network,

subject to either an average Agg-PC, i.e., E{z′r,i,∆G
[u]
f,i}

[
∑

i tr(tit
†
i )] ≤ PR, or average

Ind-PCs, i.e., E{z′r,i,∆G
[u]
f,i}

[tr(tit
†
i )] ≤ P

(i)
R ,∀i19. Mathematically, the optimization

19We note that in this chapter, the power constraints are imposed on a per-fading block basis. If
long-term power constraints were imposed, i.e., if the power was averaged with respect to several
channel fading blocks, the constraint set would be enlarged, leading to an improved performance
due to the larger number of degrees of freedom for power allocation. However, �nding closed-form
expressions for the objective functions associated with the long-term power constraints is di�cult
and requires statistical information of the estimated channel coe�cients in the FD. Therefore, to
make the optimization problem tractable, we focus on the short-term power constraint.
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problem for the rBF and dEQ �lters can be formulated as

max
{W(u)

f ,A
(u)
f }

U∑
u=1

τuABR
[Y]
u

s.t.
U∑

u=1

tr
[
A

(u)
f,i (Ĝ

(u)
f,i Ĝ

(u)†
f,i + σ2

e,gi
IQ + σ2

rIQ)A
(u)†
f,i

]
≤ P

(i)
R , ∀i, for Ind-PCs,

(4.15)

U∑
u=1

NR∑
i=1

tr
[
A

(u)
f,i (Ĝ

(u)
f,i Ĝ

(u)†
f,i + σ2

e,gi
IQ + σ2

rIQ)A
(u)†
f,i

]
≤ PR, for Agg-PC,

(4.16)

where P
(i)
R is the transmit power limit for the ith relay, PR is the total transmit power

limit for the relays, and τu is a weighting factor for user u which speci�es the priority

of the user. From (4.15) and (4.16), we observe that the optimization of W
(u)
f is

independent of the power constraints. Therefore, we can perform an unconstrained

optimization ofW
(u)
f for each user. To this end, we need to determine the expectation

of the MSE matrix w.r.t. the statistic of the channel estimation errors, cf. (4.14).

For the estimation error model given in (4.8), the unconditional MSE matrix, Ê
(u)
f ,

can be derived as

Ê
(u)
f = W

(u)
f

(
Ĥ

(u)
eff Ĥ

(u)†
eff +K

(u)
eff

)
W

(u)†
f −W

(u)
f Ĥeff − Ĥ

(u)†
eff W

(u)†
f + IQ, (4.17)

where Ĥ
(u)
eff =

∑NR

i=1 Ĥ
(u)
f,iA

(u)
f,i Ĝ

(u)
f,i , and

K
(u)
eff =

NR∑
i=1

A
(u)
f,i

[
(σ2

e,gi
+ σ2

r)Ĥ
(u)
f,i Ĥ

(u)†
f,i + σ2

e,hi
(Ĝ

(u)
f,i Ĝ

(u)†
f,i + σ2

e,gi
IQ + σ2

rIQ)
]
A

(u)†
f,i + σ2

dIQ

can be interpreted as the covariance matrix of the equivalent end-to-end noise vector.

Since the ABR lower bound for each user is a monotonic function w.r.t. the
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term inside the logarithm, the optimal equalization matrix at the destination can

be derived by minimizing either the trace (for SC-FDMA) or the determinant (for

OFDMA) of Ê
(u)
f . After some algebraic manipulations, the optimal equalization �lter

matrix and the unconditional FD MSE matrix can be found as

W
(u)
f = Ĥ

(u)†
eff

(
Ĥ

(u)
eff Ĥ

(u)†
eff +K

(u)
eff

)−1

, Ê
(u)
f =

(
Ĥ

(u)†
eff [K

(u)
eff ]

−1Ĥ
(u)
eff + IQ

)−1

. (4.18)

Explicitly, the kth diagonal entry of W
(u)
f is given by

w
(u)
k =

[
NR∑
i=1

ĥ
(u)
ik a

(u)
ik ĝ

(u)
ik

]∗([ NR∑
i=1

ĥ
(u)
ik a

(u)
ik ĝ

(u)
ik

]2
+

NR∑
i=1

|a(u)ik |2β(u)
ik + σ2

d

)−1

. (4.19)

where β
(u)
ik = (σ2

e,gi
+ σ2

r)|ĥ
(u)
ik |2 + σ2

e,hi
(|ĝ(u)ik |2 + σ2

e,gi
+ σ2

r). As can be observed from

(4.19), the optimal equalization �lter is in the form of a Wiener �lter which takes the

CSI estimation errors via β
(u)
ik into consideration. The unconditional MSEs of user u

for OFDMA and SC-FDMA are given by, respectively, the diagonal entries of Ê
(u)
f

and the arithmetic mean of these entries, namely

[Ê
(u)
k ][OFDMA] =

(
Φ

(u)
k + 1

)−1

, [Ê
(u)
k ][SC−FDMA] =

1

Q

Q∑
j=1

(
Φ

(u)
j + 1

)−1

, ∀k (4.20)

where

Φ
(u)
k =

∣∣∣∑NR

i=1 ĥ
(u)
ik a

(u)
ik ĝ

(u)
ik

∣∣∣2∑NR

i=1

∣∣∣a(u)ik

∣∣∣2 β(u)
ik + σ2

d

(4.21)

can be interpreted as the SINR for the information symbol on the kth subcarrier of

user u for OFDMA and the corresponding virtual SINR20 for SC-FDMA. Now, by

20Since for SC-FDMA, the information symbols are transmitted in the TD, we refer to the SINR
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rewriting the ABR lower bound as a function of Φ
(u)
k , we obtain

ABR[OFDMA]
u (Φ

(u)
k ) = −

Q∑
k=1

log2

(
Φ

(u)
k + 1

)−1

,

ABR[SC−FDMA]
u (Φ

(u)
k ) = −Q log2

(
1

Q

Q∑
k=1

(Φ
(u)
k + 1)−1

)
. (4.22)

Hence, after rewriting the relay power constraints (4.15) and (4.16) in scalar form,

we arrive at the following optimization problem for the rBF �lters

max
{a(u)ik }

U∑
u=1

τuABR
[Y]
u (Φ

(u)
k ) (4.23a)

s.t.
U∑

u=1

Q∑
k=1

|a(u)ik |2γ(u)ik ≤ P
(i)
R , ∀i for Ind-PCs, (4.23b)

NR∑
i=1

U∑
u=1

Q∑
k=1

|a(u)ik |2γ(u)ik ≤ PR, for Agg-PC, (4.23c)

where γ
(u)
ik = |ĝ(u)ik |2 + σ2

e,gi
+ σ2

r .

4.3.3 Optimal Phase of the rBF Filters

It is observed from (4.23) that the power constraints are independent of the phases

of the rBF �lter coe�cients. Furthermore, we can rewrite the rBF coe�cients as

a
(u)
ik =

∣∣∣a(u)ik

∣∣∣ ej∠ arg(a
(u)
ik ), where

∣∣∣a(u)ik

∣∣∣ and arg(a
(u)
ik ) are the amplitude and the phase

of a
(u)
ik , respectively. Since the power constraints are not a�ected by arg(a

(u)
ik ) and

ABR[Y ]
u is monotonically increasing in Φ

(u)
k , we can �nd the optimal phases on a per-

subcarrier basis by maximizing Φ
(u)
k . From (4.21), we observe that arg(a

(u)
ik ) appears

only in the numerator of Φ
(u)
k . Thus, by using the inequality

∣∣∣∑NR

i=1 ĥ
(u)
ik a

(u)
ik ĝ

(u)
ik

∣∣∣2 ≤

for the signal representations in the FD as "virtual" SINR.

97



Chapter 4. Robust Transceiver Design For Broadband Multiuser Multi-Relay Networks

(∑NR

i=1

∣∣∣ĝ(u)ik ĥ
(u)
ik

∣∣∣ ∣∣∣a(u)ik

∣∣∣ )2, where equality holds when a
(u)
ik = |a(u)ik | ĝ

(u)∗
ik ĥ

(u)
ik ∗

|ĝ(u)ik ||ĥ(u)
ik |

, it follows

that Φ
(u)
k is maximized when arg(a

(u)
ik ) = − arg(ĝ

(u)
ik ĥ

(u)
ik ), i.e., when the phases of the

rBF �lter coe�cients align with those of the corresponding estimated end-to-end FD

channel coe�cients. Equipped with this result, we can rewrite the maximized Φ
(u)
k ,

denoted as Φ̃
(u)
k , as a function of |a(u)ik | as

Φ̃
(u)
k =

(∑NR

i=1

∣∣∣ĝ(u)ik ĥ
(u)
ik

∣∣∣ ∣∣∣a(u)ik

∣∣∣)2∑NR

i=1

∣∣∣a(u)ik

∣∣∣2 β(u)
ik + σ2

d

. (4.24)

Replacing Φ
(u)
k by Φ̃

(u)
k in (4.23), we can formulate the optimization problem for the

amplitudes of the rBF �lter coe�cients as

max
{|a(u)ik |}

U∑
u=1

τuABR
[Y]
u (Φ̃

(u)
k ) s.t. (4.23b), (4.23c). (4.25)

Since the the objective function in (4.25) is not convex in the optimization variables

{|a(u)ik |}, solving the problem for both constraints directly is challenging, even though

the constraints can be shown to be convex in {|a(u)ik |}.

4.4 Optimal rBF Filters For The Agg-PC

In this section, we shall �rst tackle the problem in (4.25) for the Agg-PC. We shall

derive the optimal structure of the rBF �lter coe�cient amplitudes and the optimal

power allocation among subcarriers and users, respectively.
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4.4.1 Structure of the Optimal rBF Filter Coe�cient

Amplitudes

In the following, we introduce additional real-valued optimization variables, {Pku},

which can be regarded as the power limit of the kth subcarrier for user u. This allows

us to rewrite problem (4.25) as

max
{|a(u)ik |,Pku}

U∑
u=1

τuABR
[Y]
u (Φ̃

(u)
k ) s.t.

NR∑
i=1

|a(u)ik |2γ(u)ik ≤ Pku,∀k, u

U∑
u=1

Q∑
k=1

Pku ≤ PR, Pku ≥ 0, ∀k, u. (4.26)

We observe that the constraints in (4.26) are decoupled in {|a(u)ik |} and {Pku}. This

motivates us to adopt the primal decomposition technique [121] to solve this problem

by decomposing it into two problems, i.e., a subproblem

max
{|a(u)ik |}

U∑
u=1

τuABR
[Y]
u (Φ̃

(u)
k ) s.t.

NR∑
i=1

|a(u)ik |2γ(u)ik ≤ Pku, ∀k, u, (4.27)

and an upper-level master problem

max
{Pku}

U∑
u=1

τuABR
[Y]
u (Φ̃

(u)
k ) s.t.

U∑
u=1

Q∑
k=1

Pku ≤ PR, Pku ≥ 0, ∀k, u. (4.28)

The physical interpretation of (4.27) and (4.28) is as follows: the master problem

(4.28) is responsible for �nding the optimal distribution of the system transmit pow-

er among the users and the subcarriers. Once these power variables are optimized, the

subproblem in (4.27) will further determine the optimal amplitudes of the rBF �lter

coe�cients. For subproblem (4.27) with �xed Pku, the optimization of {|a(u)ik |},∀k, u

is decoupled among users and subcarriers. Thus, the problem can be further decom-
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posed into QU subproblems

max
{a(u)ik }

Φ̃
(u)
k s.t.

NR∑
i=1

|a(u)ik |2γ(u)ik = Pku,∀k, u, (4.29)

where we have exploited the fact that at optimality, the constraint in (4.27) is met

with equality. Problem (4.29) shows that, for a given relay power allocation {Pku},

each user has to maximize its own SINR/virtual SINR at each subcarrier in order to

maximize the weighted ABR of the whole network.

Using (4.21), the problem in (4.29) can be written compactly as

max
{a(u)

k }

a
(u)
k Z

(u)
k a

(u)T
k

a
(u)
k D

(u)
k a

(u)T
k + σ2

d

, s.t. a
(u)
k J

(u)
k a

(u)T
k = Pku,∀k, u, (4.30)

where we have de�ned a
(u)
k = [|a(u)1k |, ..., |a

(u)
NRk|], D

(u)
k = diag{β(u)

ik , ∀i}, Z
(u)
k =

z
(u)
k z

(u)T
k , z

(u)
k = [|ĥ(u)1k ĝ

(u)
1k |, |ĥ(u)2k ĝ

(u)
2k |, ..., |ĥ(u)NRkĝ

(u)
NRk|]T , J

(u)
k = diag{γ(u)ik , ∀i}, and

diag{·} is a diagonal matrix whose diagonal entries are given in the bracket. Next,

we introduce a unit norm vector, ã
(u)
k , to rewrite a

(u)
k as

a
(u)
k =

√
Pkuã

(u)
k J

(u)−1/2
k . (4.31)

With (4.31) we can recast problem (4.30) as

max
{ã(u)

k }

Pkuã
(u)
k Z̃

(u)
k ã

(u)T
k

Pkuã
(u)
k D̃

(u)
k ã

(u)T
k + σ2

d

s.t. ã
(u)
k ã

(u)T
k = 1, ∀k, u, (4.32)

where Z̃
(u)
k = J

(u)−1/2
k Z

(u)
k J

(u)−T/2
k , D̃

(u)
k = J

(u)−1/2
k D

(u)
k J

(u)−T/2
k . Note that (4.32) is a

generalized Rayleigh quotient maximization problem [100]. The optimal solution of
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ã
(u)
k is thus given by

ã
(u)
k = c

(u)
k

√
Pkuz̃

(u)T
k (PkuD̃

(u)
k + σ2

dINR
)−1, (4.33)

where z̃
(u)
k = J̃

(u)−1/2
k z

(u)
k , and c

(u)
k is a normalization factor that guarantees the unit

norm of ã
(u)
k . The optimal form of a

(u)
k can be obtained by inserting (4.33) into (4.31).

Explicitly, the expressions for |a(u)ik | and c(u)k are given by

|a(u)ik | = c
(u)
k

√
Pku|ĥ(u)ik ĝ

(u)
ik |

β
(u)
ik Pku + σ2

dγ
(u)
ik

and c
(u)
k =

 NR∑
i=1

|ĥ(u)ik ĝ
(u)
ik |2γ(u)ik[

β
(u)
ik Pku + σ2

dγ
(u)
ik

]2


−1/2

. (4.34)

Remark 4.1: The expression of |a(u)ik | in (4.34) speci�es the portion of the available

power Pku that the rBF �lter should distribute across di�erent relays. Since the noise

and estimation error variances appear in the denominator of (4.34), less power is

allocated to the relays with larger noise and CSI estimation error variances. In this

way, the rBF �lter structure in (4.34) e�ectively reduces the negative e�ects of noise

and CSI estimation error ampli�cation.

Using the optimal structure of the rBF �lter in (4.34), the maximum value of

Φ̃
(u)
k , which is denoted by Φ̄

(u)
k , can be derived as

Φ̄
(u)
k = Pkutr

[(
PkuD̃

(u)
k + σ2

dINR

)−1

Z̃
(u)
k

]
=

NR∑
i=1

PkuC
(u)
ik

PkuA
(u)
ik +B

(u)
ik

, (4.35)

where A
(u)
ik = β

(u)
ik , B

(u)
ik = σ2

dγ
(u)
ik , and C

(u)
ik = |ĥ(u)ik ĝ

(u)
ik |2.

Remark 4.2: It is interesting to investigate how the CSI error variances in�uence

the value of Φ̄
(u)
k . As Pku remains an unknown factor, we assume for the moment

equal power allocation at the relays, i.e., Pku = PR

Nc
= 1, ∀k, u, where we have assumed
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PR = Nc (Recall from Section II that we have also assumed PS = Nc). Then, the

denominator of (4.35) is simpli�ed to (|ĝ(u)ik |2+σ2
r)σ

2
e,hi

+(|ĥ(u)ik |2+σ2
d)σ

2
e,gi

+σ2
e,hi
σ2
e,gi

+

σ2
d|ĝ

(u)
ik |2+σ2

r |ĥ
(u)
ik |2+σ2

rσ
2
d, from which we observe that when (|ĝ(u)ik |2+σ2

r) > (|ĥ(u)ik |2+

σ2
d), σ

2
e,hi

will result in a larger SINR degradation (and thus a larger ABR loss) than

σ2
e,gi

. Otherwise, σ2
e,gi

will have a more negative e�ect on the ABR performance.

Now, we have solved the subproblem in (4.27) by �nding the optimal |a(u)ik |. The

remaining task is to solve the optimal power allocation problem given in (4.28).

4.4.2 Optimal Power Allocation for the Agg-PC

With Φ̄
(u)
k given in (4.35), (4.28) can be restated as

max
{Pku}

f
[Y]
1 (p), s.t.

∑
u,k

Pku ≤ PR, Pku ≥ 0, ∀k, u, (4.36)

with objective function

f
[Y]
1 (p) =


∑U

u=1 τu
∑Q

k=1 log2

(
Φ̄

(u)
k + 1

)
, Y=OFDMA

−
∑U

u=1 τuQ log2

(
1
Q

∑Q
k=1

(
Φ̄

(u)
k + 1

)−1
)
, Y=SC-FDMA

(4.37)

where p = [pT
1 , . . . ,p

T
U ]

T with pu = [P1u, . . . , PQu]
T .

Proposition 4.1. Optimization problem (4.36) is a convex problem w.r.t. the opti-

mization variables Pku,∀k, u.

Since (4.36) is a convex problem, and the constraints are a�ne and feasible,

Slater's condition is satis�ed, which implies that strong duality holds for the primal

and the dual problems [101]. This allows us to solve the original problem by solving
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the dual problem. Let us write the Lagrangian of (4.36) as

L[Y] =f
[Y]
1 (p) + λ

[
PR −

U∑
u=1

Q∑
k=1

Pku

]
+

U∑
u=1

Q∑
k=1

ζkuPku, (4.38)

where λ is the Lagrange multiplier associated with the average aggregate relay power

constraint, and {ζku, ∀k, u} are the Lagrange multipliers associated with the non-

negative power constraints on each subcarrier. Using (4.38), the dual problem of

(4.36) can be written as

min
λ

max
{Pku,ζku}

L[Y]. (4.39)

Applying the KKT conditions to the inner maximization problem in (4.39), we obtain

the following system of equations for the optimal {Pku} for a given λ,

Ξ[Y]∂Φ̄
(u)
k

∂Pku

− λ+ ζku = 0, (4.40)

ζkuPku = 0, (4.41)

ζku ≥ 0, Pku ≥ 0 ∀k, u, (4.42)

where

Ξ[Y] =


−τu(Φ̄(u)

k + 1)−1/ ln 2, Y=OFDMA,

−τu(Φ̄
(u)
k +1)−2

(ln 2)
∑Q

j=1(Φ̄
(u)
j +1)−1

, Y=SC-FDMA,

and

∂Φ̄
(u)
k

∂Pku

=

NR∑
i=1

B
(u)
ik C

(u)
ik

(PkuA
(u)
ik +B

(u)
ik )2

.

Eq. (4.40) reveals that the derivative of the Lagrangian w.r.t. Pku should be equal

to zero at optimality. Eq. (4.41) is the complementary slackness condition for the
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constraint Pku ≥ 0. Eq. (4.42) indicates the non-negativity of the primal and d-

ual variables. From (4.41), we note that if ζ⋆ku > 0, then we must have P ⋆
ku = 0.

Otherwise, P ⋆
ku admits a strictly positive solution which can be obtained by solving

(4.40) with ζ⋆ku = 0. Note that in both cases, there is no need to explicitly determine

{ζ⋆ku}. In practice, the bisection method can be used to �nd the root of (4.40), i.e.,

we increase the value of Pku if Ξ[Y] ∂Φ̄
(u)
k

∂Pku
− λ > 0 and decrease the value of Pku if

Ξ[Y] ∂Φ̄
(u)
k

∂Pku
− λ < 0, the procedure continues until

∣∣∣∣Ξ[Y] ∂Φ̄
(u)
k

∂Pku
− λ

∣∣∣∣ ≤ ϵ0, where ϵ0 is a

tolerance factor that controls the accuracy of the bisection method. Based on the

above discussion, we can iteratively �nd the optimal {Pku,∀k, u} for a given λ. For

the special case of NR = 1, we can obtain the closed-from solution for OFDMA as

Pku =

−B(u)
1k (2A

(u)
1k + C

(u)
1k ) +

√
Γ
(u)
k

2A
(u)
1k (A

(u)
1k + C

(u)
1k )

+

, (4.43)

where Γ
(u)
k = [B

(u)
1k ]

2(2A
(u)
1k + C

(u)
1k ) − 4A

(u)
1k (A

(u)
1k + C

(u)
1k )

(
[B

(u)
1k ]

2 − τuB
(u)
1k C

(u)
1k

λ ln 2

)
. For

SC-FDMA, the solution for NR = 1 can be derived as

Pku =
1

A
(u)
1k + C

(u)
1k

√√√√ τuB
(u)
1k C

(u)
1k

([λ ln 2]
∑Q

j=1(Φ̄
(u)
j + 1)−1

−B
(u)
1k

+

. (4.44)

Remark 4.3: From (4.43) and (4.44), one can observe that Pku has a water-�lling

structure which is an increasing function of τu. Therefore, more power will be al-

located to the subcarriers of users with larger weighting factor. This is intuitive

because with larger τu, the contribution of user u to the value of the objective func-

tion increases, and thus the user is given more power for all of its subcarriers. In

addition, compared to the bisection method, the closed-form solutions in (4.43) and

(4.44) provide a direct and fast way for computing the power allocation variables for a
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Table 4.1: Algorithm 4.1 for �nding the optimal power allocation across users and
subcarriers of the rBF �lters under the Agg-PC. ϵ is a small constant to control the
accuracy of the subgradient method, e.g., ϵ = 10−4. L is the maximum iteration
number, e.g., L = 50.

1 Initialize λ[1] and P
[1]
ku , ∀k, u. Set P rec

ku = P
[1]
ku ,∀k, u, ℓ = 1.

2 Repeat
for u = 1 : U , k = 1 : Q

Find P
[ℓ+1]
ku from (4.40) using the bisection method or from the closed-form solutions (4.43), (4.44)

using P rec
ku and λ[ℓ].

end for

Set P rec
ku = P

[ℓ+1]
ku ,∀k, u. Update λ[ℓ+1] using (4.45).

Stop when |λ[ℓ+1] − λ[ℓ]| < ϵ, or ℓ > L.
ℓ = ℓ+ 1.

3 P rec
ku , ∀k, u, is the optimal solution.

given λ, which translates into a faster convergence of the power allocation algorithm.

To obtain the optimal Lagrange multiplier λ, we can solve the outer minimization

problem in (4.39) by using the following subgradient method [122]

λ[ℓ+1] =

[
λ[ℓ] − ε

(
PR −

U∑
u=1

Q∑
k=1

P
[ℓ+1]
ku

)]+
, (4.45)

where ε is the step size adopted in the subgradient method, λ[ℓ] is the value of λ in

the ℓth iteration of the subgradient method, and P
[ℓ+1]
ku is the solution of Pku for a

given λ[ℓ]. The algorithm to obtain the optimal power allocation for the Agg-PC is

summarized in Table 4.1.

4.5 Optimal rBF �lters for Ind-PCs

To solve the problem in (4.25) under Ind-PCs, we inspect the common term in the

objective functions for OFDMA and SC-FDMA, (Φ̃
(u)
k +1)−1, which can be rewritten
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as

(Φ̃
(u)
k + 1)−1 = 1−

(∑NR

i=1

∣∣∣ĝ(u)ik ĥ
(u)
ik

∣∣∣ ∣∣∣a(u)ik

∣∣∣)2
Xku

.

where Xku =
(∑NR

i=1

∣∣∣ĝ(u)ik ĥ
(u)
ik

∣∣∣ ∣∣∣a(u)ik

∣∣∣)2 +
∑NR

i=1 |a
(u)
ik |2β(u)

ik + σ2
d. We can compactly

rewrite (Φ̃
(u)
k + 1)−1 and Xku using a

(u)
k and Z

(u)
k de�ned in the previous section as

(Φ̃
(u)
k + 1)−1 = 1− a

(u)T
k Z

(u)
k a

(u)
k

Xku

, (4.46)

Xku = a
(u)T
k Z

(u)
k a

(u)
k + a

(u)T
k D

(u)
k a

(u)
k + σ2

d. (4.47)

Next, by considering Xku as an additional optimization variable, we arrive at the

following optimization problem, which is equivalent to problem (4.25) under Ind-

PCs,

max
{{a(u)

k },{Xku}}
f
[Y]
2 (a,X) (4.48a)

s.t.
U∑

u=1

Q∑
k=1

|a(u)ik |2γ(u)ik − P
(i)
R ≤ 0, ∀i, (4.48b)

a
(u)T
k Z

(u)
k a

(u)
k + a

(u)T
k D

(u)
k a

(u)
k + σ2

d −Xku ≤ 0, ∀k, u, (4.48c)

where a = [[a(1)]T , . . . , [a(U)]T ]T with a(u) = [[a
(u)
1 ]T , . . . , [a

(u)
Q ]T ]T , X = [XT

1 , . . . ,X
T
U ]

T

with Xu = [X1u, . . . , XQu]
T , and

f
[Y]
2 (a,X) =


−
∑U

u=1

∑Q
k=1 τu log2

(
1− a

(u)T
k Z

(u)
k a

(u)
k

Xku

)
, Y=OFDMA

−
∑U

u=1 τuQ log2

[
1
Q

∑Q
k=1

(
1− a

(u)T
k Z

(u)
k a

(u)
k

Xku

)]
, Y=SC-FDMA.
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Note that in (4.48c) we have relaxed the equality constraint to an inequality con-

straint to make the constraint convex. This does not a�ect the �nal solution since at

optimality constraint (4.48c) will be satis�ed with equality.

Proposition 4.2. Optimization problem (4.48) is a reverse-convex (convex maxi-

mization) problem with convex constraints.

Proof. The proof is given in Appendix-E

Various algorithms have been developed to solve reverse-convex problems with

convex constraints, cf. [117], [118]. The problem at hand involves (NR + 1)Nc real

optimization variables, i.e., considering practical values of Nc and NR, the problem

dimension is quite large. To strike a balance between system performance and compu-

tational complexity, we adopt a low-complexity suboptimal method called constrained

convex concave procedure (CCCP), cf. [52], [120], [119], to �nd a local optimal so-

lution of problem (4.48) . The key idea of CCCP is to approximate the non-convex

part (which is di�erentiable) in the original problem with its �rst-order Taylor series

expansion around some feasible point. This gives rise to a convex problem whose

feasible region lies in a subset of the original non-convex problem. By solving the

resulting convex problem, an improved feasible solution of the original problem can

be obtained, which is then used as the new starting point for the Taylor series ex-

pansion. This process continues until the value of the objective function converges.

The solution of the last convex problem is then chosen as the solution to the original

problem. Based on the above discussions and the �rst-order Taylor series expansion
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of f
[Y]
2 (a,X),

f
[Y]
2 (a,X) ≈ f

[Y]
2 (â, X̂) +

U∑
u=1

Q∑
k=1

[
∂f

[Y]
2 (â, X̂))]

∂(Φ
(u)
k + 1)−1

](
−2[â

(u)T
k ]Z

(u)
k

X̂ku

(
a
(u)
k − [â

(u)
k ]
)

+
[â

(u)†
k ]Y

(u)
k â

(u)
k

(X̂ku)2

(
Xku − X̂ku

))
, (4.49)

where {â, X̂} is a feasible solution to the original problem, and

∂f
[OFDMA]
2 (a,X)

∂(Φ
(u)
k + 1)−1

= −τu

(
1− a

(u)T
k Z

(u)
k a

(u)
k

Xku

)−1

∂f
[SC−FDMA]
2 (a,X)

∂(Φ
(u)
k + 1)−1

= −τu

[
1

Q

Q∑
j=1

(
1− a

(u)T
k Z

(u)
k a

(u)
k

Xku

)]−1

,

we arrive at the following optimization problem

max
{a(u)

k ,Xku}
[f

[Y]
2 (a,X)](ℓ) +

U∑
u=1

Q∑
k=1

[
∂f

[Y]
2 (a,X))]

∂(Φ
(u)
k + 1)−1

](ℓ)(
−2[a

(u)T
k ](ℓ)Z

(u)
k

X
(ℓ)
ku(

a
(u)
k − [a

(u)
k ](ℓ)

)
+

[a
(u)T
k ](ℓ)Z

(u)
k [a

(u)
k ](ℓ)

(X
(ℓ)
ku )

2

(
Xku −X

(ℓ)
ku

))

s.t. (4.48b), (4.48c) (4.50)

where (·)(ℓ) is the value of the function or variable obtained in the ℓth iteration of

the CCCP. Since the problem in (4.50) is a convex problem with a linear objective

function and convex constraints, it can be solved e�ciently using standard convex

optimization tools, e.g., CVX or SeDuMi [124], [125]. The algorithm for �nding the

optimal amplitudes of the rBF �lter coe�cients under Ind-PCs is summarized in

Algorithm 4.2 in Table 4.2. It is worth mentioning that due to the non-convex nature

of problem (4.48), the convergence of Algorithm 4.2 to the global optimum is not
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guaranteed. However, since problem (4.48) admits a strictly feasible solution, e.g.,

all-zero rBF �lter coe�cient amplitudes, and the sequence of the objective functions

in problem (4.50) increases monotonically with the iteration number ℓ and is upper-

bounded by in�nity, the convergence of Algorithm 4.2 to a stationary point of the

original problem (4.48) is guaranteed. Moreover, as the objective function in problem

(4.48) is twice continuously di�erentiable and strictly convex in the optimization

variables, the stationary point obtained by Algorithm 4.2 can not be a saddle point

but has to be a local optimum of problem (4.48). In Section 4.6, we will investigate

the convergence behavior of Algorithm 4.2 numerically.

Remark 4.4: It is interesting to compare the solutions of the rBF amplitudes

obtained for the two considered power constraints. For Ind-PCs, the power allocation

across relays, users, and subcarriers is performed simultaneously through the rBF

�lter coe�cient amplitude optimization in (4.50), which involves solving a sequence

of convex optimization problems with (NR + 1)Nc real optimization variables. For

the Agg-PC, the power allocation across relays is obtained from the closed-form

expression given in (4.34), and the power allocation among users and subcarriers

is obtained by solving a single convex optimization problem in (4.36) with Nc real

optimization variables. Therefore, the complexity of Algorithm 4.2 for the Ind-PCs

is higher than that of Algorithm 4.1 for the Agg-PC, especially for large values of

NR.

4.6 Simulation Results

In this section, we evaluate the performance of the proposed robust rBF and dEQ

schemes for OFDMA and SC-FDMA systems using simulations. All TD channels are

modeled as uncorrelated Rayleigh block fading channels whose CIR is generated based
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Table 4.2: Algorithm 4.2 for �nding the optimal amplitudes of the rBF �lter coef-
�cients under Ind-PCs. ϵ is a small constant to control the accuracy of the CCCP,
e.g., ϵ = 10−4. L is the maximum iteration number, e.g., L = 50.

1 Initialize [a
(u)
k ][1], X

[1]
ku,∀k, u. Calculate [f

[Y]
2 (a,X)][1]. Set ℓ = 1.

2 Repeat

Find [a
(u)
k ][ℓ+1] and X

[ℓ+1]
ku , ∀k, u, by solving the convex problem in (4.50).

Calculate the new objective function value [f
[Y]
2 (a,X)][ℓ+1].

Stop when |[f [Y]
2 (a,X)][ℓ+1] − [f

[Y]
2 (a,X)][ℓ]| < ϵ, or ℓ > L.

ℓ = ℓ+ 1.

3 [a
(u)
k ][ℓ+1], ∀k, u, is the optimal solution.

on the power delay pro�le p[n] = 1
σt

∑L−1
l=0 e

−n/σtδ[n − l] [126], where σt = 2, which

corresponds to moderately frequency-selective fading. For convenience, we assume

that the length of all multipath channels is equal to 16, i.e., Lg,u,i = Lh,i = 16, ∀u, i.

The received SNR at relay and destination is de�ned as SNRr =
PS

σ2
rNc

and SNRr =

PR

σ2
dNc

, respectively. For convenience, we assume that PS = PR = Nc. We further de�ne

(SNR)ref as the value of SNR when SNRr = SNRd. The proposed rBF with optimal

power allocation is denoted as rBF-OPA. Three baseline schemes are considered: a

naive-AF scheme, optimal rBF with equal power allocation (rBF-EPA), and non-

robust rBF-OPA. For the naive-AF scheme, the destination employs the optimal

equalizer in (4.19) while the relays perform simple power ampli�cation to meet the

average power constraint. For rBF-EPA, the relays only align the phases of the

estimated end-to-end channels and distribute the power uniformly across frequencies,

users, and relays. For the non-robust scheme, both the relays and the destination

treat the estimated CSI as the actual CSI for the design of the dEQ and rBF �lters.

Unless speci�ed otherwise, we set σ2
g,i = σ2

h,i = 0.1,∀i, the number of users is U = 4,

the data block size of each user is Q = 16, uniform user weighting is adopted, i.e.,

τu = 1/U , and equal relay power budgets are assumed for the Ind-PCs, i.e., P
(i)
R =

PR/NR, ∀i. All simulation results are obtained by averaging over 10,000 realizations

of the estimated channels and CSI errors.

110



Chapter 4. Robust Transceiver Design For Broadband Multiuser Multi-Relay Networks

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

(SNR)
ref

 (dB)

A
B

R
/A

B
R

 L
o

w
e

r 
b

o
u

n
d

 (
b

p
s/

H
z)

Naive−AF, Agg−PC

Naive−AF, Agg−PC (Lower bound)

σ
e
2=0.01

σ
e
2=0.05

σ
e
2=0.1

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5

4

(SNR)
ref

 (dB)

A
B

R
/A

B
R

 L
o

w
e

r 
b

o
u

n
d

 (
b

p
s/

H
z)

Naive−AF, Agg−PC

Naive−AF, Agg−PC (Lower bound)

σ
e
2=0.01

σ
e
2=0.05

σ
e
2=0.1

Figure 4.2: Average ABR and ABR lower bound for multiuser multi-relay systems,
two relays, and σ2

e,gi
= σ2

e,hi
= σ2
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4.6.1 Tightness of the ABR Lower Bound

In Fig. 4.2, we show the actual average ABRs and the corresponding ABR low-

er bounds for two-relay OFDMA and SC-FDMA systems employing the naive-AF

scheme and the Agg-PC. As can be seen, for OFDMA, the bound is close to the

actual ABR when the CSI error variance is small and when the SNR is low. On the

other hand, for SC-FDMA, the lower bound is tight over the entire SNR range and

for all considered CSI error variances. The di�erent tightness of the lower bound may

be due to the fact that, for SC-FDMA, the inverse Fourier transform after the FDE

has an averaging e�ect on the SINR of the TD symbols at the input of the slicer

(as indicated by the factor 1/Q inside the logarithm in (4.14)), which reduces the

�uctuation of the ABR compared to that of OFDMA. Note that although the lower

bound for OFDMA is not tight for high SNR and large CSI error variances, adopting

the lower bound for optimization leads to substantial performance gains compared to

un-optimized and non-robust relay systems, as will be shown in the following �gures.

We also note that as the CSI error variances increase, the ABR degrades dramatically

for both OFDMA and SC-FDMA. This illustrates the necessity of a robust design of

the rBF and dEQ �lters.

4.6.2 Convergence of Algorithm 4.2

As explained in Section 4.5, Algorithm 4.2, which is used to compute the optimal

rBF �lter coe�cient amplitudes for the Ind-PCs, involves solving a sequence of convex

optimization problems. Therefore, the complexity of the algorithm depends on the

number of iterations required to obtain the optimal solution. In Fig. 4.3, we numer-

ically investigate the convergence behavior of the algorithm by examining the values

of the objective function (the ABR lower bound) versus the iteration number, ℓ. In
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the upper sub-�gure, we study a two-relay SC-FDMA system operating at di�erent

SNRref . In the lower sub-�gure, we examine a multi-relay SC-FDMA system operat-

ing at SNRref = 6 dB for di�erent numbers of relays. We observe that as SNRref and

NR increase, more iterations are required for the algorithm to converge. However,

for all the considered cases, the objective value is already close to the optimal value

after 5 iterations. In the following, we set the maximum number of iterations for the

algorithm equal to 20 to achieve near-optimal performance.

4.6.3 Comparison of the Robust and Non-robust rBF

Schemes

In Fig. 4.4, we examine the ABR performance of the proposed rBF and dEQ schemes

for the Agg-PC for SC-FDMA systems with one and two relays. We also include

the performance of non-robust rBF/dEQ and non-robust rBF with robust dEQ for

σ2
e = 0.1. As expected, for larger CSI error variances, the performance of both the

robust and the non-robust rBF/dEQ schemes degrades, as the CSI used for designing

the involved �lters becomes increasingly inaccurate. However, the proposed robust

scheme achieves a considerable performance gain compared to the non-robust schemes

especially for large CSI error variances. Furthermore, the non-robust schemes become

less sensitive to the CSI errors as the number of relays increases, because of the

additional spatial diversity provided by the relays. For one- and two-relay systems

with σ2
e = 0.1, we also observe that robust dEQ can compensate for a considerable

amount of the ABR loss su�ered by non-robust rBF and non-robust dEQ.
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4.6.4 Comparison of Optimal and Suboptimal rBF Schemes

for Agg-PC and Ind-PCs

In Fig. 4.5, we study the weighted ABR of the optimal and suboptimal rBF schemes

for a two-relay SC-FDMA system using uniform and non-uniform user weighting, re-

spectively. The non-uniform weighting factors are chosen to be {0.9, 0.06, 0.03, 0.01},

which is an extreme case where one of the users has much higher priority than the

other users. From both sub-�gures, we can see that rBF-OPA with Ind-PCs per-

forms only slightly worse than rBF-OPA with the Agg-PC, regardless of the choice

of the user weighting factors. Also, suboptimal rBF-EPA outperforms the naive-AF

scheme by a large margin, which underlines the importance of the channel coe�-
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cient phase alignment for rBF �lter design. In the upper sub-�gure, suboptimal

rBF-EPA achieves a similar performance as rBF-OPA for both types of power con-

straints. This is because with uniform user weighting, all users contribute equally to

the system ABR. Thus, distributing the power uniformly across users, subcarriers,

and relays does not cause a signi�cant performance degradation. However, if the

weighting factors of the users are non-uniform, cf. the lower sub-�gure, rBF-EPA

su�ers from a considerable ABR loss compared to rBF-OPA.

4.6.5 E�ect of Di�erent CSI Error Variances

In Fig. 4.6, we investigate the e�ect of di�erent values of σ2
e,gi

and σ2
e,hi

on the ABR

performance of the considered optimal and suboptimal rBF schemes for the Agg-PC.

We consider two types of CSI errors: {σ2
e,gi
, σ2

e,hi
} = {0.5, 0}, ∀i, and {σ2

e,gi
, σ2

e,hi
} =

{0, 0.5}, ∀i. This corresponds to the situation where the CSI in one hop contains

large errors while the CSI in the other hop is perfectly known. We increase SNRr and

SNRd simultaneously in the upper sub-�gure, and �x SNRr = 12 dB in the lower sub-

�gure. The results show that when SNRr = SNRd, almost identical ABR performance

is achieved for both types of CSI errors. This is in accordance with the analysis in

Remark 4.2 of Section 4.41, where it was shown that when the noise level of the two

hops are identical, σ2
e,gi

and σ2
e,hi

will have a similar e�ect on the ABR. However,

when SNRr ≫ SNRd, the ABR with {σ2
e,gi
, σ2

e,hi
} = {0.5, 0}, ∀i, is considerably lower

than that with {σ2
e,gi
, σ2

e,hi
} = {0, 0.5}, ∀i, and when SNRr ≪ SNRd, the reverse

holds true. This reveals that the link with the lower SNR is more robust to CSI

imperfection than the link with the higher SNR, which is again in accordance with

Remark 4.2. Moreover, from both �gures, we also observe that, in contrast to Fig. 4.5,

the performance gain achieved by rBF-OPA over rBF-EPA is more prominent in the
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high SNR region. This implies that if the CSI errors in one of the two hops dominate,

performing OPA is very bene�cial for the ABR performance.

4.6.6 E�ect of U and NR on the Network ABR

For multiuser systems, the impact of the number of users on the ABR of the network

is an important consideration. In Fig. 4.7, we evaluate the network ABR versus

the number of users for two-relay OFDMA and SC-FDMA systems operating at

SNRref = 12 dB. The total number of subcarriers, Nc, is �xed to 64. From the upper

sub-�gure, we observe that for OFDMA, the ABRs of all the considered schemes do

not scale with the number of users in the network. In contrast, in the lower sub-

�gure, the ABRs for SC-FDMA increase as more users are accommodated in the

network, e.g., the ABR increases from 1.9 bps/Hz to 2.1 bps/Hz for rBF-OPA when

U increases from 1 to 16. This observation can be explained as follows: Since the

ABR for OFDMA is a linear function of per-subcarrier ABRs, as long as Nc is �xed,

the network ABR will not increase notably with the number of users. For SC-FDMA,

the ABR varies with the number of subcarriers assigned to each user. Consider two

extreme cases: When U = 1, the SC-FDMA system reduces to a single-user SC-FDE

system, whose ABR is lower than that of the correponding OFDM system. When

U = 64, the SC-FDMA system is essentially equivalent to an OFDMA system since

only one subcarrier is assigned to each user. In between, as U increases, the ABR

of the SC-FDMA system gradually approaches that of the OFDMA system as the

number of subcarriers assigned to each user decreases.

As we consider multi-relay systems, it is also of interest to investigate how the

number of relays a�ects the ABR of the network. In Fig. 4.8, we plot the ABR as a

function of the number of relays for a multi-relay system operating at SNRref = 10
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dB. We show the results for SC-FDMA systems with both equal and unequal relay

power budgets (rPB), where in the latter case P
(i)
R is randomly generated such that∑

i P
(i)
R = PR. From the �gure, we observe that the ABRs for the naive-AF schemes

increase only slightly with NR, while remarkable ABR performance gains are achieved

for rBF-OPA and rBF-EPA when more relays are deployed. This is due to the fact

that the channel coe�cient phase alignment in rBF can take full advantage of the

increased spatial diversity for large numbers of relays. Moreover, the performance

gap between the schemes using Ind-PCs and those using the Agg-PC is enlarged

as NR increases. This phenomenon becomes more prominent when nonequal relay

power budgets are adopted. This is because with the increase of NR, the Agg-PC can

o�er increasingly more degrees of freedom in allocating the relay transmit powers as

compared to the Ind-PCs.

4.7 Conclusion

In this chapter, we investigated robust rBF and dEQ �lter design for multi-relay

OFDMA and SC-FDMA systems based on a statistical CSI error model. A lower

bound on the weighted ABR of the network was maximized under an Agg-PC and

Ind-PCs, respectively. First, the optimal dEQ �lters and the phases of the optimal

rBF �lter coe�cients were derived for both types of constraints. Then, for the Agg-

PC, a two-step solution for the optimal amplitudes of the rBF �lter coe�cients was

proposed by employing primal decomposition. In the �rst step, for each subcarrier of

the users, the optimal rBF allocates power across relays by taking into account the

CSI error variances. In the second step, a convex power allocation procedure further

distributes the power across subcarriers and among users to enhance the weighed

ABR performance. For Ind-PCs, the optimal amplitudes of the rBF �lter coe�cients
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were obtained by solving a sequence of convex optimization problems. Simulation

results showed that the proposed robust rBF schemes outperform conventional non-

robust and naive-AF relaying schemes. Furthermore, our results revealed that the

suboptimal rBF-EPA scheme achieved near-optimal performance when uniform user

weighting was employed and the CSI error variances in both hops were similar. On

the other hand, if non-uniform user weighting was adopted and/or the CSI error

variances in the two hops were quite di�erent, the optimal rBF-OPA scheme enjoyed

a considerable performance gain over rBF-EPA.
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Chapter 5

Robust Transceiver Design for

SC-FDE Multi-hop Full-Duplex DF

Relay Systems

5.1 Introduction

In the previous chapter, we have investigated the transceiver design for a dual-hop

multiple parallel relay network. In practical wireless systems, multi-hop serial re-

lay network is another promising candidate with various potential applications. For

example, in rural areas, where the cell sizes of cellular systems are relatively large,

multi-hop transmission is bene�cial for ensuring the QoS of cell-edge users [14, 18].

Multi-hop relay systems have also found application in device-to-device communica-

tions, where the number of wireless devices that can potentially serve as intermediate

relaying nodes is typically large [130, 129]. Another application for multi-hop relay-

ing is millimeter-wave communications due to the severe channel attenuation at high

frequencies [131]. Conventionally, multi-hop relay systems are operated in the half-

duplex mode, which results in a low spectrum e�ciency, especially when the number

of hops is large. Hence, considering the recent advances in hardware technology for

interference cancellation [74, 75, 76, 132], full-duplex relays (FDRs) that can transmit
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and receive signals simultaneously are drawing a growing interest from the research

community.

In this chapter, we propose a robust transceiver design for a multi-hop SC-FDE

based DF FDR system assuming imperfect CSI at the transceivers. Thereby, we

adopt the statistical error model because of its suitability for modeling CSI errors

originating from non-ideal channel estimation [133]. Since the MSE is an important

performance metric for systems employing equalization [126], we adopt the mini-

mization of the sum MSE and the maximum MSE across the di�erent hops as our

design objectives. Separate transmit node power constraints are imposed because

source and relays usually have their own power supplies and thus cannot share pow-

ers. Moreover, separate power constraints also re�ect the hardware limitations and

emission regulations of the transmitting nodes. To solve the formulated problems, we

�rst derive the optimal equalization �lters at the receiving nodes, which are identical

for both considered optimization criteria and take the form of robust Wiener �lter-

s. With the optimal equalization �lters in hand, the transmit precoding problems

become non-convex power allocation problems in the frequency domain. In a �rst

approach, we propose a sequential geometric programming (sGP) based method to

solve the power allocation problems, where the condensation technique [89] is applied

to transform the objective function into a posynomial. Then, by successively solving

a sequence of standard GP problems, improved approximate solutions for the original

problems are obtained. The sGP based power allocation schemes require a central

node to collect the CSI of all hops, leading to a signi�cant signalling overhead. In

addition, only numerical solutions can be obtained for the sGP subproblems, which

does not provide physical insights. Hence, motivated by the observation that by �x-

ing the powers of all other nodes, the power optimization of a speci�c node can be
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formulated as either a convex problem or a di�erence of convex problems, we also

investigate an alternating optimization (AO) method [135], where closed-form solu-

tions are obtained in each iteration step and e�cient algorithms can be developed by

exploiting the (partial) convexity of the subproblems. Our simulation results reveal

that the AO based method and the sGP based method yield almost identical perfor-

mances in terms of MSE and achievable rate. However, the AO based algorithm has

the advantage that it requires signi�cant less signalling overhead for systems with a

large number of hops and facilitates a semi-distributed implementation if the relays

can employ directional antennas to avoid the backward interference.

The remainder of the chapter is organized as follows. In Section 5.2, we introduce

the system model for the considered SC-FDE based DF FDR system. In Section

5.3, the optimization problems for sum MSE and maximum MSE minimization are

formulated and the optimal FDE �lter is derived. In Section 5.4, the sGP and AO

based power allocation schemes are developed. Simulation results are provided in

Section 5.5, and some conclusions are drawn in Section 5.6.

5.2 System Model

We consider a multi-hop DF FDR system that consists of one source node, S, M − 1

relay nodes, Ri, i = 1, . . . ,M − 1, and one destination node, D, as shown in Fig. 5.1.

The relay nodes are equipped with two antennas21, one for signal transmission and

one for signal reception. The source and the destination are equipped with a single

antenna. For convenience, we denote the source as node 1, the ith relay as node (i+1),

and the destination as node (M+1). Due to the large path loss and shadowing, there

21Although equipped with two antennas, the relay cannot employ multi-antenna techniques, e.g.,
beamforming, since there is only a single transceiver in each relay.
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Figure 5.1: Block diagram of an M -hop full-duplex relay system. The backward
interference exists only for M ≥ 3.

are no direct links between any non-adjacent nodes. However, not only LI (dotted

arrows in Fig. 5.1) will be present for M ≥ 3, but also backward interference (dash-

dotted arrows in Fig. 5.1) between adjacent relays .

5.2.1 Signal and Channel Model

The information symbol vector generated at the source is given by s[n] = [s
[n]
1 , . . . , s

[n]
Nc
]T ,

where n is the index of the transmit data block, Nc is the data block size, and the

s
[n]
m , ∀m,n, are modeled as i.i.d. random variables with zero mean and unit variance.

We assume error-free decoding at the relays due to the use of capacity-achieving

channel codes and adoption of a suitable transmission rate which is strictly lower

than the channel capacity. At transmit node i, either the original signal (for the

source node) or the error-free decoded signal (for the relay nodes) is converted into

the FD using an Nc-point FFT. The FD signal is then processed by a diagonal FD

precoding (one-tap �lter) matrix Pf,i = diag{pk,i,∀k} ∈ CNc×Nc . Subsequently, the

precoded signal is converted back into the TD using an Nc-point IFFT, resulting in

the transmitted signal

xi = F†
Nc
Pf,iFNcs

[n−i+1], i = 1, . . . ,M, (5.1)
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where s[n] is assumed to be independent of s[n
′], ∀n′ ̸= n, and FNc is the DFT matrix

of size Nc. Note that the combined e�ect of F†
Nc
Pf,iFNc is essentially a circular

�ltering of the signal in the TD. Before transmission, xi is appended with a CP,

which is identical to the last Ncp,i symbols of the data block, where Ncp,i is chosen to

be larger than the lengths of the CIRs of the transmit channel between node i and

node (i+1), the LI channel of node i, and the backward channel from node i to node

(i− 1). At the receiving node, the CP is �rst removed prior to any signal processing.

The received signal at node (i+ 1) after CP removal can be written as

y(i+1) = Ht,ixi + Lt,(i+1)x(i+1) +Gt,(i+2)x(i+2) + n(i+1), i = 1, . . . ,M, (5.2)

where Ht,i ∈ CNc×Nc and Gt,i ∈ CNc×Nc are the TD CIR matrices from node i to

node (i + 1) and that from node (i + 1) to node i, respectively, Lt,i ∈ CNc×Nc is

the TD CIR matrix of the LI channel at node i, and ni is the TD AWGN vector at

node i, whose entries are i.i.d. with zero mean and variance σ2
ni
. Note that there is

no backward interference and LI at the destination, and there is also no backward

interference at the last relay, i.e., Gt,i = Lt,i = 0Nc×Nc , ∀i ≥ M + 1. Since the CP

transforms the linear convolution of the CIR and the signal into a circular convolu-

tion, the TD channel matrices Ht,i, Gt,i, and Lt,i are circulant matrices, i.e., they can

be expressed as Ht,i = circ{[hT
t,i,01×(Nc−Lhi

)]
T}, Gt,i = circ{[gT

t,i,01×(Nc−Lgi )
]T}, and

Lt,i = circ{[lTt,i,01×(Nc−Lli
)]
T}, where ht,i ∈ CLhi

×1, gt,i ∈ CLgi×1, and lt,i ∈ CLli
×1

contain the CIR coe�cients of the forward, backward, and LI channels, respectively,

and are given by ht,i = [h
[1]
t,i , . . . , h

[Lhi
]

t,i ], gt,i = [g
[1]
t,i , . . . , g

[Lgi ]

t,i ], and lt,i = [l
[1]
t,i , . . . , l

[Lli
]

t,i ],

respectively. Here, Lhi
, Lgi , and Lli are the lengths of the corresponding CIRs.

Since circulant matrices can be eigen-decomposed by the DFT matrix, we have

Qt,i = F†
Nc
Qf,iFNc , where Qf,i ∈ {Hf,i,Gf,i,Lf,i} are diagonal matrices containing
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the corresponding FD channel coe�cients.

5.2.2 Channel Estimation Error Model

In this work, we assume that the channel frequency responses are estimated at the

receivers via training symbols sent by the corresponding transmitters. Assuming

a linear MSE channel estimator, the channel estimation errors can be modelled as

Gaussian random variables with known statistics [133]. Thus, we can rewrite the

actual FD channel matrices as

Qf,i = Q̂f,i +∆Qf,i, (5.3)

where Q̂f,i ∈ {Ĥf,i, Ĝf,i, L̂f,i} are the estimated channel frequency response ma-

trices, which are diagonal matrices with the main diagonal entries given by q̂k,i ∈

{ĥk,i, ĝk,i, l̂k,i}, k = 1, . . . , Nc, respectively. ∆Qf,i ∈ {∆Hf,i,∆Gf,i,∆Lf,i} are the

corresponding diagonal channel estimation error matrices, whose main diagonal en-

tries are complex Gaussian random variables with zero mean and variances σ2
e,h,k,i,

σ2
e,g,k,i and σ

2
e,l,k,i, k = 1, . . . , Nc, respectively. Without loss of generality, we assume

σ2
e,q,k,i = σ2

e,q,i, q ∈ {h, g, l},∀k, in the following for notational simplicity.

5.2.3 Processing at the Receiving Nodes

We assume that the ith relay knows the estimated FD LI and backward channel-

s, L̂f,(i+1) and Ĝf,(i+2), and the transmitted data symbol vectors, x(i+1) and x(i+2).

Thus, it can perform partial LI and backward interference cancellation by subtract-

ing L̂t,(i+1)x(i+1) + Ĝt,(i+2)x(i+2) from y(i+1), where L̂t,i = F†
Nc
L̂f,iFNc and Ĝt,i =
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F†
Nc
Ĝf,iFNc , resulting in the following e�ective received signal

ȳ(i+1) = y(i+1) − L̂t,(i+1)x(i+1) − Ĝt,(i+2)x(i+2)

= Ht,ixi +∆Lt,(i+1)x(i+1) +∆Gt,(i+2)x(i+2) + n(i+1), (5.4)

where ∆Lt,i = F†
Nc
∆Lf,iFNc and ∆Gt,(i+1) = F†

Nc
∆Gf,(i+1)FNc . Signals ȳ(i+1) are

converted into the FD, equalized by FD equalization matricesWf,(i+1) = diag{wk,(i+1),

∀k} ∈ CNc×Nc , and then converted back to the TD. Hence, the equalized TD signal

and the error vector at receiving node (i+ 1) can be written as

ŷ(i+1) = F†
Nc
Wf,(i+1)FNcȳ(i+1) and e(i+1) = ŷ(i+1) − s[n−i+1], i = 1, . . . ,M, (5.5)

respectively. Subsequently, the signal is demodulated and decoded. At the relay, the

recovered signal is further re-encoded, re-modulated, and sent over the channel to

the next receiving node.

5.3 Problem Formulation and Optimal

Equalization Filters

For the design of equalization schemes, the MSE is an important and commonly used

performance criterion [126]. Therefore, in this section, we formulate the optimization

problem for the transmit precoding and receive equalization �lters as the minimiza-

tion of the sum MSE and the maximum MSE across the di�erent hops, respectively.
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5.3.1 Problem Formulation

Consider the conditional MSE matrix at node i, which is de�ned as the auto-correlation

matrix of the error vector, i.e.,

Et,(i+1)(∆Ht,i,∆Lt,(i+1),∆Gt,(i+2)) = E{s[n−i+1],n(i+1)}[e(i+1)e
†
(i+1)], (5.6)

where the expectation is carried out with respect to the signal and the noise. Using

(5.1)-(5.5), the conditional MSE matrix can be written as

Et,(i+1)(∆Ht,i,∆Lt,(i+1),∆Gt,(i+2)) = F†
Nc
Ef,(i+1)(∆Hf,i,∆Lf,(i+1),∆Gf,(i+2))FNc ,

(5.7)

where i = 1, . . . ,M , and Ef,(i+1)(∆Hf,i,∆Lf,(i+1),∆Gf,(i+2)) is the conditional FD

MSE matrix, which can be written as Ef,(i+1)(∆Hf,i,∆Lf,(i+1),∆Gf,(i+2)) =

Wf,(i+1)Hf,iPf,iP
†
f,iH

†
f,iW

†
f,(i+1) −Wf,(i+1)Hf,iPf,i −P†

f,iH
†
f,iW

†
f,(i+1) + INc

+Wf,(i+1)

(
∆Lf,(i+1)Pf,(i+1)P

†
f,(i+1)∆L†

f,(i+1) +∆Gf,(i+2)Pf,(i+2)P
†
f,(i+2)∆G†

f,(i+2)

+ σ2
n(i+1)

INc

)
W†

f,(i+1), (5.8)

where ∆Lf,i = ∆Gf,i = Pf,i = 0Nc×Nc ,∀i ≥ M + 1. Here, the arguments of

Et,(i+1)(∆Ht,i,∆Lt,(i+1),∆Gt,(i+2)) andEf,(i+1)(∆Hf,i,∆Lf,(i+1),∆Gf,(i+2)) stress that

these MSE matrices are conditioned on the TD and FD channel estimation error ma-

trices, respectively. By taking the average of Et,(i+1)(∆Ht,i,∆Lt,(i+1),∆Gt,(i+2)) with

respect to the CSI error matrices, we obtain the unconditional MSE matrices as

Êt,(i+1) = F†
Nc
Êf,(i+1)FNc , i = 1, . . . ,M, (5.9)
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where Êf,(i+1) is the unconditional FD MSE matrix, which can be written as

Êf,(i+1) =E{∆Hf,i,∆Lf,(i+1),∆Gf,(i+2)}
[
Ef,(i+1)(∆Hf,i,∆Lf,(i+1),∆Gf,(i+2))

]
=Wf,(i+1)

(
Pf,i[Ĥf,iĤ

†
f,i + σ2

e,hi
INc ]P

†
f,i + σ2

e,l(i+1)
Pf,(i+1)P

†
f,(i+1) + σ2

n(i+1)
INc

+ σ2
e,g(i+2)

Pf,(i+2)P
†
f,(i+2)

)
W†

f,(i+1) −Wf,(i+1)Ĥf,iPf,i −P†
f,iĤ

†
f,iW

†
f,(i+1) + INc .

(5.10)

Note that Êt,(i+1) is a circulant matrix, cf. (5.9). Therefore, it has identical diagonal

entries given by [Êt,(i+1)]kk =
1
Nc
tr
[
Êf,(i+1)

]
,∀k, which represent the MSE of the TD

symbols. Assuming separate transmit node power constraints, the problems of sum

MSE and maximum MSE minimization can be formulated as

min
{Wf,(i+1),Pf,i}

fX(W,P) s.t. tr
(
E[xix

†
i ]
)
≤ P̄i, i = 1, . . . ,M, (5.11)

where W = {Wf,(i+1),∀i}, P = {Pf,i,∀i}, P̄i is the transmit power limit for node i,

and

fsumMSE(W,P) =
M∑
i=1

tr
[
Êf,(i+1)

]
, fmaxMSE(W,P) = max

i=1,...,M
tr
[
Êf,(i+1)

]
. (5.12)

5.3.2 Optimal Equalization Filters and Power Allocation

Problems

The optimization of the equalization matrices, {Wf,(i+1), ∀i}, in (5.11) is independent

of the power constraint and decoupled among di�erent nodes. Therefore, we can �rst

obtain the optimal equalization matrices by separately minimizing tr
[
Êf,(i+1)

]
with

respect to Wf,(i+1). By taking the derivative of tr
[
Êf,(i+1)

]
with respect to Wf,(i+1)
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and setting the result to zero, the optimal FDE �lter at node i is obtained as

W⋆
f,(i+1) = P†

f,iĤ
†
f,i

(
Ĥf,iPf,iP

†
f,iĤ

†
f,i +Kf,(i+1)

)−1

, (5.13)

where Kf,(i+1) is the covariance matrix of the end-to-end noise given by Kf,(i+1) =

σ2
e,hi

Pf,iP
†
f,i+σ

2
e,l(i+1)

Pf,(i+1)P
†
f,(i+1)+σ

2
e,g(i+2)

Pf,(i+2)P
†
f,(i+2)+σ

2
n(i+1)

INc . The optimal

FDE �lter in (5.13) has the form of a Wiener �lter that takes the CSI estimation errors

into account. Substituting W⋆
f,(i+1) into (5.10) and applying the matrix inversion

lemma [100], the optimized FD MSE matrix at node i can be written as

Ψf,(i+1) =
(
Ĥf,iPf,iK

−1
f,(i+1)P

†
f,iĤ

†
f,i + INc

)−1

. (5.14)

The diagonal entries of W⋆
f,i, wk,i = [W⋆

f,i]kk, and Ψf,i, Ψk,i = [Ψf,i]kk, represent

the equalization coe�cient and the MSE at node i on frequency tone k, respectively.

These entries are given by

wk,(i+1) =
ĥ∗k,ip

∗
k,i

(|ĥk,i|2 + σ2
e,hi

)|pk,i|2 + σ2
e,l(i+1)

|pk,(i+1)|2 + σ2
e,g(i+2)

|pk,(i+2)|2 + σ2
n(i+1)

,

Ψk,(i+1) =

(
|ĥk,i|2Pk,i

σ2
e,hi
Pk,i + σ2

e,l(i+1)
Pk,(i+1) + σ2

e,g(i+2)
Pk,(i+2) + σ2

n(i+1)

+ 1

)−1

, (5.15)

where i = 1, . . . ,M , and Pk,i = |pk,i|2 is the transmit power allocated to the kth

frequency tone at node i. With the FD MSE given in (5.15), and by rewriting

the power constraint in scalar form, (5.11) reduces to the following transmit power

allocation problem

min
{Pk,i}

fX(p) s.t.
Nc∑
k=1

Pk,i ≤ P̄i, Pk,i ≥ 0, i = 1, . . . ,M, ∀k, (5.16)
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where the constraint Pk,i ≥ 0 re�ects the fact that power cannot be negative, and

fsumMSE(p) =
M∑
i=1

Nc∑
k=1

Ψk,(i+1), fmaxMSE(p) = max
i=1,...,M

Nc∑
k=1

Ψk,(i+1), (5.17)

with p = {Pk,i, ∀k, i}. We note that once we have obtained the optimal Pk,i, the

corresponding precoding coe�cient pk,i can be recovered by taking the square root

of Pk,i and multiplying the result with an arbitrary phase term. However, solving

problem (5.16) directly is very challenging as the power variables of di�erent hops

are coupled with each other, which makes the objective function a highly non-convex

function with respect to {Pk,i}.

5.4 Solutions to the Power Allocation Problems

In this section, we propose two di�erent approaches to handle the di�cult non-convex

problem in (5.16). The �rst method is a centralized scheme which employs the

sequential GP algorithm to iteratively �nd improved approximate solutions to (5.16).

In the second approach, we propose an alternating optimization based method to �nd

a stationary point solution to (5.16) by solving convex programming and di�erence

of convex programming problems in an alternating manner.

5.4.1 A Sequential Geometric Programming (sGP) Approach

We �rst consider solving problem (5.16) by using a GP approach. Since the objective

function is not a posynomial, the standard GP algorithm can not be applied. In a

�rst attempt, we handle this di�culty by ignoring the constant 1 in the expression
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for Ψk,(i+1) in (5.15), which leads to the following approximation

Ψk,(i+1) ≈

(
|ĥk,i|2Pk,i

σ2
e,hi
Pk,i + σ2

e,l(i+1)
Pk,(i+1) + σ2

e,g(i+2)
Pk,(i+2) + σ2

n(i+1)

)−1

= |ĥk,i|−2
(
σ2
e,hi

+ σ2
e,l(i+1)

Pk,(i+1)P
−1
k,i + σ2

e,g(i+2)
Pk,(i+2)P

−1
k,i + σ2

n(i+1)
P−1
k,i

)
.

(5.18)

By adopting (5.18) in (5.17), the objective function becomes a posynomial and we can

solve the resulting GP problem using e�cient convex optimization tools, such as CVX

[101]. We refer to this GP approach as GP-I method. It is noted that the GP-I method

leads to the minimization of a very loose upper bound for the original problem as the

approximation in (5.18) is tight only when
|ĥk,i|2Pk,i

σ2
e,hi

Pk,i+σ2
e,l(i+1)

Pk,(i+1)+σ2
e,g(i+2)

Pk,(i+2)+σ2
n(i+1)

≫

1, i.e., for high SNR and negligible CSI errors. To also achieve a high performance

for low-to-medium SNR and non-zero CSI errors, we invoke the sequential GP (sGP)

approach [134]. To this end, we rewrite Ψk,(i+1) in (5.15) as

Ψk,(i+1) =
σ2
e,hi
Pk,i + σ2

e,l(i+1)
Pk,(i+1) + σ2

e,g(i+2)
Pk,(i+2) + σ2

n(i+1)

(|ĥk,i|2 + σ2
e,hi

)Pk,i + σ2
e,l(i+1)

Pk,(i+1) + σ2
e,g(i+2)

Pk,(i+2) + σ2
n(i+1)

=
ρ1,k,i(p)

ρ2,k,i(p)
,

(5.19)

from which we can observe that Ψk,(i+1) is a ratio of two posynomials. In order

to transform Ψk,(i+1) into a posynomial, we apply the arithmetic-geometric mean

inequality to lower bound the denominator, ρ2,k,i(p), with a monomial, i.e.,

(|ĥk,i|2 + σ2
e,hi

)Pk,i︸ ︷︷ ︸
µ1,k,i(p)

+σ2
e,l(i+1)

Pk,(i+1)︸ ︷︷ ︸
µ2,k,i(p)

+σ2
e,g(i+2)

Pk,(i+2)︸ ︷︷ ︸
µ3,k,i(p)

+ σ2
n(i+1)︸ ︷︷ ︸

µ4,k,i(p)

=
4∑

z=1

µz,k,i(p) ≥
4∏

z=1

(
µz,k,i(p)

αz,k,i(p̂)

)αz,k,i(p̂)

= ρ̂2,k,i(p), (5.20)
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where µ1,k,i(p) = (|ĥk,i|2+σ2
e,hi

)Pk,i, µ2,k,i(p) = σ2
e,l(i+1)

Pk,(i+1), µ3,k,i(p) = σ2
e,g(i+2)

Pk,(i+2),

and µ4,k,i(p) = σ2
n(i+1)

are the monomial terms in the denominator, and αz,k,i(p̂) =

µz,k,i(p̂)∑4
z=1 µz,k,i(p̂)

,∀z, are the weighting factors for these monomial terms, with p̂ being a

feasible point of the original problem. Eq. (5.20) is known as the single condensa-

tion technique in sGP [134]. Due to the inequality in (5.20), replacing ρ2,k,i(p) with

ρ̂2,k,i(p) will lead to the minimization of an upper bound for the original problem

(5.16). The resulting new problem is a standard GP and can be solved e�ciently.

Since this GP problem has the same feasible set as problem (5.16), its optimal solu-

tion, p[gp], is also feasible for (5.16). Therefore, by condensing ρ2,k,i(p) with the newly

obtained p[gp] and solving the resulting GP problem again, the objective value can

be further decreased and an improved approximate solution to the original problem

can be found. This process continues until the objective value of the GP problem

converges. Speci�cally, in the ℓth iteration of the sGP, we have to solve the following

GP problem

min
{Pk,i}

f
[ℓ]
X (p) s.t.

Nc∑
k=1

Pk,i ≤ P̄i, Pk,i ≥ 0,∀k, i = 1, . . . ,M, (5.21)

where

f
[ℓ]
sumMSE(p) =

M∑
i=1

Nc∑
k=1

ρ1,k,i(p)

ρ
[ℓ]
2,k,i(p)

, f
[ℓ]
maxMSE(p) = max

i=1,...,M

Nc∑
k=1

ρ1,k,i(p)

ρ
[ℓ]
2,k,i(p)

, (5.22)

and ρ
[ℓ]
2,k,i(p) =

∏4
z=1

(
µz(p)

αz,k,i(p[ℓ])

)αz,k,i(p
[ℓ])

. In Table 5.1, we summarize the proposed

sGP algorithm.

Remark 5.1: The sGP algorithm is guaranteed to converge to a stationary point

(KKT point) of the original non-convex problem since it satis�es the conditions for the

convergence of the successive approximation method [101]. Since the GP problems in
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Table 5.1: Algorithm 5.1 for optimization of {Pk,i,∀k, i} based on sequential GP. ϵ1
is a small constant which controls the accuracy of the algorithm, e.g. ϵ1 = 10−4.

1 Input {|ĥk,i|2, σ2
e,hi

, σ2
e,li

, σ2
e,gi

,∀k, i}. Initialize {P [0]
k,i,∀k, i}, OBJ

[0]
gp = f

[0]
X (p), and m = 1.

2 Repeat

Solve the GP problems in (5.21) to �nd the optimal {P [m]
k,i , ∀k, i} using {P [m−1]

k,i ,∀k, i}.
Update OBJ

[m]
gp = f

[m]
X (p).

If |OBJ
[m]
gp −OBJ

[m−1]
gp | < ϵ1, go to step 3.

Otherwise, set m = m+ 1.

3 Output {P [m]
k,i , ∀k, i}

each iteration involve (M−1)Nc optimization variables, the overall complexity of the

sGP algorithm is O (I(M − 1)3N3
c ), where I is the number of iterations required for

the sGP algorithm to converge22. Note that the central node solving the GP problem

in (5.21) has to know the CSI of all hops, which implies that the sGP based power

allocation scheme is a centralized scheme requiring signi�cant information exchange

between the central node and the transmitting nodes.

5.4.2 An Alternating Optimization (AO) Approach

The sGP based approach presented in the last section is a centralized scheme which

requires the availability of global CSI at a central node. Moreover, as each subprob-

lem of the sGP algorithm can be solved only numerically, it is di�cult to get any

physical insights regarding the problem structure. In this section, motivated by the

observation that with the powers of all other nodes being �xed, the power optimiza-

tion of a speci�c node can be formulated as either a convex problem or di�erence

of convex problems, we propose an AO based approach to solve the transmit power

allocation problem. It will be shown that by exploiting the (partial) convexity of

the subproblems, analytical power allocation solutions can be obtained, which �nally

leads to an e�cient algorithm with reduced signaling overhead compared to the sGP

22Solving an n-dimensional GP problem with interior point methods requires the calculation of
the inverse of the Hessian matrix, which entails a complexity of O

(
n3
)
[101].
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approach.

Sum MSE Minimization

We �rst consider the sum MSE minimization problem in (5.16), which can be explic-

itly stated as

min
{Pk,i}

M−1∑
i=1

Nc∑
k=1

(
|ĥk,i|2Pk,i

σ2
e,hi
Pk,i + σ2

e,l(i+1)
Pk,(i+1) + σ2

e,g(i+2)
Pk,(i+2) + σ2

n(i+1)

+ 1

)−1

(5.23a)

s.t.
Nc∑
k=1

Pk,i ≤ P̄i, Pk,i ≥ 0, ∀k, i = 1, . . . ,M. (5.23b)

Proposition 5.1. For given {Pk,i, ∀k}, i ̸= 1, the problem in (5.23) with respect

to the source transmit power, {Pk,1,∀k}, is a convex optimization problem, and the

optimal solution is given by

Pk,1 =
σ2
e,l2
Pk,2 + σ2

e,g3
Pk,3 + σ2

n2

|ĥk,1|2 + σ2
e,h1

(√
|ĥk,1|2

λ1(σ2
e,l2
Pk,2 + σ2

e,g3
Pk,3 + σ2

n2
)
− 1

)+

, (5.24)

where λ1 is the Lagrange multiplier chosen to satisfy the transmit power constraint

with equality, i.e.,
∑

k Pk,1 = P̄1. In practice, a simple bisection procedure can be used

to iteratively identify the optimal λ1.

Proof. Please refer to Appendix-F.

Remark 5.2: The above solution for {Pk,1} indicates that regardless of the power

level at the relay, the source node always transmits with the maximum possible power.

This is intuitive because the objective function is an increasing function with respect

to the source transmit powers, and since the transmission of the source node does

not cause any interference, it is optimal to fully utilize the available power budget.
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Proposition 5.2. For given {Pk,j, ∀k}, j ̸= i, the problem in (5.23) can be trans-

formed as a di�erence of convex (d.c.) programming problem with respect to {Pk,i}, i =

2, . . . ,M , as follows

min
{Pk,i}

gi(pi)−
2∑

u=1

ψi,u(pi)︸ ︷︷ ︸
fi(pi)

s.t.
Nc∑
k=1

Pk,i ≤ P̄i, Pk,i ≥ 0, i = 2, . . . ,M, ∀k, (5.25)

where

gi(pi) =
Nc∑
k=1

(
|ĥk,i|2Pk,i

σ2
e,hi
Pk,i + Tk,i

+ 1

)−1

, ψi,u(pi) =
Nc∑
k=1

(
Bk,i,u

Ak,i,uPk,i + Ck,i,u

− 1

)
,

(5.26)

with Tk,i = σ2
e,l(i+1)

Pk,(i+1)+σ
2
e,g(i+2)

Pk,(i+2)+σ
2
n(i+1)

, Ak,i,1 = σ2
e,li
, Ak,i,2 = σ2

e,gi
, Bk,i,1 =

|ĥk,(i−1)|2Pk,(i−1), Bk,i,2 = |ĥk,(i−2)|2Pk,(i−2), Ck,i,1 = (|ĥk,(i−1)|2 + σ2
e,h(i−1)

)Pk,(i−1) +

σ2
e,g(i+1)

Pk,(i+1) + σ2
ni
, Ck,i,2 = (|ĥk,(i−2)|2 + σ2

e,h(i−2)
)Pk,(i−2) + σ2

e,l(i−1)
Pk,(i−1) + σ2

n(i−1)
,

and pi = {Pk,i,∀k}.

Proof. Please refer to Appendix-G.

There are many global optimum-achieving techniques for solving d.c. problems in

the optimization literature [136]. However, these techniques are based on the branch-

and-bound procedure, whose computational complexity becomes prohibitively high

when dealing with large dimensional problems. As the dimension of the considered

problem is determined by the number of frequency tones, which can be as large as

2048 in broadband systems like LTE-A [14, 16] �nding the global optimum does not

seem feasible in practice. Furthermore, since problem (5.25) is only a subproblem of
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the proposed AO scheme, a low-complexity solution is desirable in order to keep the

overall complexity of the algorithm low. Thus, in the following, we aim at deriving

a low-complexity algorithm which is guaranteed to attain a stationary point (KKT

point) of problem (5.25).

Proposition 5.3. For given {Pk,j,∀k}, j ̸= i, a KKT point of the d.c. programming

problem (5.25) with respect to {Pk,i, ∀k}, i = 2, . . . ,M , can be obtained by sequentially

solving the following convex optimization problem,

min
{Pk,i}

ĥ
[ℓ]
i (pi) , gi(pi) +

2∑
u=1

Nc∑
k=1

D
[ℓ]
k,i,uPk,i

s.t.
Nc∑
k=1

Pk,i ≤ P̄i, Pk,i ≥ 0, ∀k, (5.27)

where D
[ℓ]
k,i,u =

Ak,i,uBk,i,u

(Ak,i,uP
[ℓ]
k,i+Ck,i,u)2

, and P
[ℓ]
k,i is the solution of problem (5.27) for a given

P
[ℓ−1]
k,i . The global optimal solution of convex problem (5.27) is given by

Pk,i =
Tk,i

|ĥk,i|2 + σ2
e,hi

√√√√ |ĥk,i|2

[λi +
∑2

u=1D
[ℓ]
k,i,u]Tk,i

− 1

+

, (5.28)

where the optimal Lagrange multiplier λi can be obtained by using the subgradient

method

λ
[κ+1]
i =

[
λ
[κ]
i + ε

[κ]
0

(
Nc∑
k=1

Pk,i − P̄i

)]+
, (5.29)

where ε
[κ]
0 is the step size adopted in the κth iteration of the subgradient method.

Proof. Please refer to Appendix-H.

Remark 5.3: We can show that for the optimum solution of problem (5.27), the
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relay transmit power constraint is not necessarily met with equality, i.e., the relay

may not use its full power budget23. Consider the relevant KKT conditions for the

Lagrangian of problem (5.27),

∂gi(pi)

∂Pk,i

+ λi +
2∑

u=1

D
[ℓ]
k,i,u − βk,i = 0, (5.30)

λi(
Nc∑
k=1

Pk,i − P̄i) = 0, (5.31)

λi ≥ 0, βk,i ≥ 0, (5.32)

where ∂gi(pi)
∂Pk,i

is given in (G.2). Since ∂gi(pi)
∂Pk,i

< 0 and βk,i ≥ 0, in order for (5.30)

to hold, we must have λi +
∑2

u=1D
[ℓ]
k,i,u > 0. For σ2

e,li
= 0 and σ2

e,g(i+1)
= 0 (zero

loopback and zero backward interference), we have
∑2

u=1D
[ℓ]
k,i,u = 0. In this case, λi

should take a strictly positive value. From the complementary slackness condition

(5.31), λi > 0 implies that
∑Nc

k=1 Pk,i = P̄i, i.e., the transmit power budget of the

relay is fully utilized when there is no loopback/backward interference. On the other

hand, when σ2
e,li

̸= 0 and/or σ2
e,g(i+1)

̸= 0,
∑2

u=1D
[ℓ]
k,i,u takes a strictly positive value.

Therefore, λi can be zero as long as ∂gi(pi)
∂Pk,i

+
∑2

u=1D
[ℓ]
k,i,u − βk,i = 0 holds. In this

case, according to (5.31), we have
∑Nc

k=1 Pk,i < P̄i. Thus, if there is non-negligible

loopback/backward interference, node i may not fully use its maximum power budget

in order to limit the loopback/backward interference.

Exploiting Propositions 5.1 and 5.3, we can perform AO of pi to �nd a KKT

point solution to the original non-convex problem (5.23). Speci�cally, for given initial

p
[0]
j ,∀j ̸= i, we can obtain the global optimal point p

[1]
i , i = 1, by solving the convex

problem (F.1) (in Appendix F), and the KKT point p
[1]
i , i ≥ 2 by solving the d.c.

problem (5.25). Substituting the updated value of p
[1]
i into the objective function,

23A similar observation has been made in [80] for a di�erent optimization criterion.
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Table 5.2: Algorithm 5.2 for optimization of {Pk,i,∀k, i} based on AO. ϵ2 is a small
constant which controls the accuracy of the algorithm, e.g. ϵ2 = 10−4.

1 Input {|ĥk,i|2, σ2
e,li

, σ2
e,hi

, σ2
e,gi

, ∀i, k}. Initialize {p[0]
i , ∀i}, OBJ

[0]
ao = f

[0]
X (p), and m = 1.

2 Repeat

Solve convex problem (F.1) with respect to p
[m]
1 using p

[m−1]
i , ∀i ̸= 1.

For i = 2 : M

Solve d.c. problem (5.25) or (5.34) with respect to p
[m]
i using p

[m−1]
j ,∀j ̸= i.

End

Update OBJ
[m]
ao = f

[m]
X (p).

If |OBJ
[m]
ao −OBJ

[m−1]
ao | < ϵ2, go to step 3.

Otherwise, set m = m+ 1.

3 Output {p[m]
i , ∀i}.

we can conduct another round of sequential optimization to obtain p
[2]
i . This process

continues until the value of the objective function converges, which is guaranteed

since the objective function is lower bounded by zero, and the update of {pi} in each

iteration monotonically decreases or maintains the objective value. Furthermore,

since the solutions for {pi} in each iteration are the KKT points for convex problem

(F.1) and d.c. problem (5.25), respectively, it can be shown that the �nal solution

of the AO algorithm is also a KKT point of the original non-convex problem (5.23).

The AO algorithm is summarized in Table 5.224.

Maximum MSE Minimization

We now proceed to solve the maximum MSE minimization problem in (5.16). By

introducing an auxiliary optimization variable t, the problem can be written in an

24The algorithm is uni�ed for both sum MSE and maximum MSE minimization.

142



Chapter 5. Robust Transceiver Design for SC-FDE Multi-hop Full-Duplex DF Relay Systems

epigraph form as follows

min
{{Pk,i},t}

t (5.33a)

s.t.
Nc∑
k=1

(
|ĥk,i|2Pk,i

σ2
e,hi
Pk,i + σ2

e,l(i+1)
Pk,(i+1) + σ2

e,g(i+2)
Pk,(i+2) + σ2

n(i+1)

+ 1

)−1

≤ t,

(5.33b)

Nc∑
k=1

Pk,i ≤ P̄i, Pk,i ≥ 0, , i = 1, . . . ,M, k = 1, . . . , Nc, (5.33c)

which is a non-convex problem due to the non-convex constraint in (5.33b). Thus,

�nding the global optimal solution with polynomial time complexity is very di�cult.

Motivated by a similar observation as in the last subsection, we apply the AO method

to solve also this non-convex problem. First, for �xed {Pk,i,∀k}, i = 2, . . . ,M − 1,

the auxiliary variable in problem (5.33) becomes a dummy variable and thus can be

eliminated. Consequently, for the �rst hop, the problem becomes equivalent to the

sum MSE minimization, and the solution of Pk,1 is given by (5.24). Next, for given

{Pk,j,∀k}, j ̸= i, i ≥ 2, the non-convex constraint (5.33b) becomes a reverse-convex

constraint with respect to {Pk,i,∀k}. Hence, problem (5.33) with variable {Pk,i,∀k}

for optimization can be written as

min
{{Pk,i},t}

t s.t. gi(pi) ≤ t − ψi,1(pi) ≤ t, − ψi,2(pi) ≤ t, (5.34a)

Nc∑
k=1

Pk,i ≤ P̄i, Pk,i ≥ 0, ∀k, (5.34b)

where gi(pi) and {ψi,u(pi), u = 1, 2} are given in (5.26). It is well known that a

convex minimization problem with additional reverse-convex constraints is essentially

a special case of the d.c. programming problem [136]. Therefore, following a similar
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approach as in the last subsection, we have the following result.

Proposition 5.4. For given {Pk,j,∀k}, j ̸= i, a KKT point of the d.c. programming

problem (5.34a) with respect to {Pk,i} can be obtained by sequentially solving the

following convex optimization problem

min
{{Pk,i},t}

t (5.35a)

s.t.
Nc∑
k=1

(
E

[ℓ]
k,i,u +D

[ℓ]
k,i,u(Pk,i − P

[ℓ]
k,i)
)
≤ t, u = 1, 2, (5.35b)

Nc∑
k=1

(
|ĥk,i|2Pk,i

σ2
e,hi
Pk,i + Tk,i

+ 1

)−1

≤ t, (5.35c)

Nc∑
k=1

Pk,i ≤ P̄i, Pk,i ≥ 0, ∀k, (5.35d)

where E
(ℓ)
k,i,u = 1− Bk,i,u

Ak,i,uP
[ℓ]
k,i+Ck,i,u

, and P
[ℓ]
k,i is the solution of problem (5.35) for a given

P
[ℓ−1]
k,i . Furthermore, the solution of {Pk,i} is given by

Pk,i =
Tk,i

|ĥk,i|2 + σ2
e,hi

√√√√ (1−
∑2

u=1 γu)|ĥk,i|2

[λi +
∑2

u=1 γuD
[ℓ]
k,i,u]Tk,i

− 1

+

, (5.36)

where the Lagrange multipliers λi and γu are obtained from (5.29) and

γ[κ+1]
u =

γ[κ]u − ε[κ]u

 Nc∑
k=1

D
[ℓ]
k,i,u(Pk,i − P

(ℓ)
k,i ) + E

[ℓ]
k,i,u −

(
|ĥk,i|2Pk,i

σ2
e,hi
Pk,i + Tk,i

+ 1

)−1
+

,

(5.37)

respectively, where ε
[κ]
u is the step size parameter for γu adopted in the κth iteration

of the subgradient method.

Proof. Please refer to Appendix-I.
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Corollory 5.1. After the convergence of the AO algorithm for solving problem (5.33),

the MSEs of di�erent nodes are not necessarily balanced. In addition, the MSE of the

ith hop is always larger than or equal to that of the (i− 1)th hop.

Proof. Please refer to Appendix-J.

Remark 5.4: Corollary 5.1 indicates that the MSE of the di�erent hops may

not be identical after convergence. This happens when the (i− 1)th hop has a much

better channel quality than the ith hop, which makes it impossible to reduce the

MSE of the ith hop to the level of the (i−1)th hop even when node i fully utilizes its

power budget for the power allocation. Moreover, the MSE of the ith hop is always

no less than that of the (i − 1)th hop. This is intuitive because node i can control

the loopback/backward interference to the previous hops through power allocation,

and we can always scale down its transmit power to increase the MSE of the ith hop

while decreasing the MSEs of the (i − 1)th hop, if this reduces the maximum MSE

value.

5.4.3 Complexity and Signalling Overhead for AO

For both considered objective functions, the source power allocation problem is con-

vex, while the relay power allocation problems are d.c. problems. The overall com-

plexity of the AO algorithm is thus dependent on the number of inner iterations of

the d.c. problem and the number of outer iterations of the AO algorithm. Thereby,

we assume that the ith outer iteration is executed at node i. Given that the com-

plexity of solving the convex problems in (5.27), (F.1), and (5.35) is O(N2
c ) [101],

the complexity of the AO algorithm is O
(
(J1
∑M−1

i=1 Ki + J2)N
2
c

)
, where J1 and J2

are the numbers of d.c. problems and convex problems that have to be solved in

the outer iterations, respectively, and Ki is the number of inner iterations needed
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for solving the d.c. problem for the ith relay25. The signalling overhead required at

the di�erent nodes for executing the AO algorithm is summarized in Table 5.3. Note

that node i only needs to solve a local optimization problem with respect to {Pk,i,∀k}

using the local estimated CSI and the CSI and power feedback from the nodes that

are one and two hops away. Speci�cally, due to the coupling of the transmissions in

adjacent hops, knowledge of the power allocation vectors at node (i − 1) and node

(i + 1) is required at node i. Moreover, for FDR systems with more than two hops,

due to the backward interference from the subsequent relay to the previous relay, the

transmit powers of node (i + 2) and node (i − 2) have also to be known by node i.

Therefore, for a moderate number of hops, e.g., three hops, the feedback overhead

of the AO algorithm is not signi�cantly less than that of the sGP scheme. However,

for a large number of hops, e.g., twenty hops, the reduction in the signalling and

CSI overhead becomes prominent. Furthermore, if the relays can employ directional

antennas which make the backward interference negligible, the feedback of the pow-

ers and CSI from node (i + 2) and node (i − 2) can be avoided. In this case, the

information exchange required for the AO algorithm is limited to neighboring nodes,

which further facilitates a semi-distributed implementation of the algorithm.

5.5 Simulation Results

In this section, we provide simulation results for the considered FDR system using

the proposed algorithms. The input data block length is Nc = 64. The received

signal-to-noise ratios at node i is de�ned as SNRi =
P̄(i−1)

Ncσ2
ni

, i = 2, . . . ,M + 1. For the

simulation results, we adopt the reference SNR as SNRref = SNRi, ∀i, unless speci�ed
25From extensive experiments, we have found that Ki = 2, ∀i is su�cient for the considered d.c.

algorithm to converge.
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Table 5.3: Required signalling overhead at di�erent nodes for execution of the AO
algorithm.

Node Required CSI for power allocation

1 {|ĥk,1|2, Pk,2, Pk,3,∀k}, σ2
e,h1

, σ2
e,l2

, σ2
e,g3

...
...

i {|ĥk,(i−2)|2, |ĥk,(i−1)|2, |ĥk,i|2, ∀k}, σ2
e,h(i−2)

, σ2
e,h(i−1)

, σ2
e,hi

...
...

M {|ĥk,(M−2)|2, |ĥk,(M−1)|2, |ĥk,M |2, ∀k},
M + 1 N/A

otherwise. All the TD channel vectors are modeled as uncorrelated Rayleigh block

fading with power delay pro�le: p[n] = 1
σt

∑L−1
l=0 e

−n/σtδ[n − l] [126], where σt = 2,

which corresponds to moderately frequency-selective fading. For convenience, we

assume that the length of all multipath channels is equal to 16. The reference CSI

error variance is de�ned as σ2
e = σ2

e,hi
= σ2

e,gi
= σ2

e,li
,∀i.

We also propose two robust baseline schemes, namely, naive power allocation (PA)

and equal PA (EPA), which both employ the robust equalizers in (5.13). For naive

PA, di�erent nodes optimize their own MSE performance by taking into account the

CSI errors of the transmit channels, the LI channels, and the backward interference

channels, but ignoring the interferences caused to other nodes. In this way, they only

need to solve standard convex optimization problems which entails a lower complexity

than solving d.c. problems. For EPA, the precoders distribute their transmit powers

uniformly across frequency tones, and thus power optimization is not required. In

addition, we consider non-robust naive PA and non-robust EPA, which both employ

equalization �lters and transmit precoders that are designed under the assumption

that the estimated CSI is perfect.
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5.5.1 Convergence of the Proposed Algorithms

In Fig. 5.2, we examine the convergence of the AO algorithm for the proposed PA

scheme based on sum MSE minimization. In the upper sub-�gure, a two-hop FDR

system with di�erent initial values of p
[0]
i and SNRs is considered and the CSI error

is set to σ2
e = 0.03. As can be observed, for all investigated initial values for p

[0]
i ,

the AO algorithm converges within two iterations to the same sum MSE value. This

suggests that for two-hop FDR systems performing optimization iteratively between

the source and the relay is not necessary as two iterations already lead to a near-

optimal performance. In the lower sub-�gure, the results for a three-hop FDR system

with di�erent CSI errors are shown and the SNR is set to SNRref = 32 dB. The �gure

reveals that for large CSI errors (e.g., σ2
e = 0.07) in the high SNR regime, additional

iterations are bene�cial to further decrease the sum MSE value. Therefore, unlike

the two-hop case, for multihop systems, performing AO iteratively between di�erent

nodes may be necessary to achieve optimal performance.

In Fig. 5.3, we examine the hop-wise MSE versus the outer iteration number of

the AO algorithm for a three-hop FDR system and maximum MSE minimization,

where σ2
e = 0.03. As can be observed from the �gure, after convergence, the MSE

of the later hops are always no better than that of the earlier hops. In the upper

sub-�gure, where the SNR of the �rst hop is much larger than those of the later hops,

we observe that the MSEs of di�erent hops are not equal after convergence. This is

because the �rst hop has a much better channel than the second and third hops, and

it is impossible to adjust the power at the relays to balance the MSEs of the second

and third hops with that of the �rst hop. Nevertheless, the MSEs of the second and

third hops are still balanced since they have similar channel conditions due to the

identical hop SNRs. In the lower sub-�gure, where the SNRs of all three hops are
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Figure 5.2: Convergence of the AO algorithm for multi-hop FDR systems employing
sum MSE minimization. Upper: Two-hop FDR systems with di�erent SNR values
and σ2

e = 0.03. Lower: Three-hop FDR systems with di�erent CSI errors and
SNRref = 32 dB.
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employing maximum MSE minimization. Upper: MSE per symbol of di�erent hops
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hops with SNRref = 32 dB.
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identical, we can see the MSEs are balanced after convergence of the algorithm due

to the similar channel conditions in all hops.

In Fig. 5.4, we compare the convergence of the AO and sGP algorithms. At �rst

glance, it seems that the sGP algorithm has a faster convergence rate than the AO

algorithm. However, it is worth noting that in each iteration of the sGP algorithm, we

have to solve a GP problem with (M − 1)Nc optimization variables using numerical

optimization solvers, while in each step of AO algorithm, we only need to solve a

convex or a d.c. problem with Nc optimization variables using analytical subproblem

solutions. Taking this into account when considering the computational complexity

of the two algorithms, we can infer that the complexity of the AO algorithm is indeed

lower than that of sGP algorithm. In fact, as veri�ed by extensive simulations, the run

time that the AO algorithm needs to converge is signi�cantly lower than that of the

sGP algorithm. Furthermore, from Fig. 5.4, we observe that for di�erent SNRs and

CSI estimation errors, both algorithms �nally converge to the same objective value

within �ve and eight iterations for two-hop and three-hop FDR channels, respectively.

This implies that for both of these two algorithms the FDR schemes have identical

performance in terms of MSE and achievable rate, which will be con�rmed by the

subsequent simulation results.

5.5.2 MSE Performance

In Fig. 5.5, we show the sum MSE per symbol of a two-hop FDR system for the

proposed AO/sGP based power allocation and the baseline schemes. For low SNRs,

the robust and non-robust schemes have a similar performance. However, as the SNR

increases, the MSE of the robust schemes decrease monotonically while the MSE

of the non-robust schemes starts to increase at some SNR value. This is because,
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Figure 5.4: Convergence comparison of the AO and sGP algorithms. Upper: Two-
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employing maximum MSE minimization.
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Figure 5.5: Sum hop MSE per symbol for a two-hop DF FDR system employing
SC-FDE.

at high SNR, the CSI error variance dominates the MSE, and since the non-robust

equalizers fail to take the resulting strong interference into account, their performance

is severely degraded. Also, the proposed robust naive-PA and EPA schemes both

exhibit a performance comparable to the proposed AO/sGP algorithm for low-to-

medium SNRs and in the presence of large CSI errors. For small CSI errors, e.g.,

σ2
e = 0.003, the naive PA scheme achieves a near-optimal performance. Since these

baseline schemes entail a lower complexity, they are attractive alternatives to the

optimal algorithm for these SNRs and CSI error variances.

In Fig. 5.6, we compare the maximum MSE per symbol of the proposed AO/sGP

based power allocation schemes and the GP-I scheme for a two-hop FDR system under
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Figure 5.6: Maximum hop MSE per symbol for a two-hop DF FDR system employing
SC-FDE, σ2

e = 0.07.

both considered optimization criteria, where σ2
e = 0.07. It can be seen that due to the

use of the loose upper bound, the performance of the GP-I scheme based on sum MSE

minimization su�ers from a considerable performance loss in low-to-medium SNRs,

and the performance of the GP-I scheme for maximum MSE minimization is even

worse than that of EPA over the entire considered SNR range. On the other hand,

the proposed AO and sGP schemes achieve for both criteria a better performance

than EPA in terms of the maximum hop MSE.
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5.5.3 ABR Performance

For communication systems, the ABR is the ultimate performance metric. Therefore,

in Fig. 5.7, we investigate the ABRs of three-hop SC-FDE based FDR relay systems,

where the ABR is obtained by evaluating E{Hf,i,Lf,(i+1),Gf,(i+2)} {mini=1,...,M log2(1+

SINR(i+1))} via Monte-Carlo simulations. The SINR for node i is given by SINRi =[
1
Nc
tr (Et,i)

]−1

−1, where we have exploited the relationship between the MSE and the

SINR [96]. As expected from Fig. 5.7, the proposed robust designs achieve a larger

ABR compared to the non-robust schemes, and the robust baseline schemes achieve

a similar ABR as the optimized PA scheme for low-to-medium SNRs but require a
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lower complexity. Similar to the MSE performance, the sGP and AO based schemes

also achieve identical ABRs. For both schemes, minimizing the maximum MSE yields

a higher ABR than minimizing the sum MSE since the ABR is a monotonic function

of the MSE for SC-FDE systems and the ABR for DF relaying is determined by

the worst-case hop ABR. We also observe that the proposed FDR system enjoys a

signi�cantly higher ABR than a HDR system if the LI and backward interference is

handled appropriately. However, if the transceivers do not take the CSI errors into

account, the FDR system can perform even worse than the HDR system in medium-

to-high SNRs. This illustrates the importance of the proposed robust algorithms for

optimizing FDR systems.

5.6 Conclusions

In this chapter, we have addressed the sum MSE and maximum MSE minimization

problems for multi-hop DF FDR systems employing SC-FDE. To this end, �rst the

optimal equalization �lters at the receiving nodes and the corresponding MSE matri-

ces were derived taking into account the imperfect CSI knowledge. Subsequently, the

transmit power allocation matrices were obtained based on sGP and AO approaches,

respectively. Numerical results show that both approaches yield practically identical

MSE and ABR performances. In addition, the proposed robust transceiver design

outperforms non-robust FDR systems and robust HDR systems by a considerable

margin, especially in the case of high SNR and large channel estimation errors, i.e.,

the interference limited operating region.
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Chapter 6

Summary of Thesis and Future

Research Topics

In this �nal chapter, we summarize our results and highlight the contributions of this

thesis in Section 6.1. In Section 6.2, we also illustrate ideas for future research.

6.1 Summary of Results

This thesis has focused on transceiver optimization for broadband cooperative com-

munication systems with di�erent types and topologies of the relay network.

In Chapter 2, we considered transceiver design for single-user broadband SC-FDE

in a wireless network consisting of one single-antenna source, one single-antenna des-

tination, and multiple multiantenna relays. Adopting the minimum MSE as opti-

mality criterion, the optimal frequency-domain LE and DFE receivers were derived

and corresponding objective functions for relay BF matrix optimization are speci-

�ed. For a sum relay power constraint, we obtain the structure of the optimal relay

BF matrices in closed form. While the structure of the optimal relay BF matrices

is identical for LE and DFE as well as for an idealized matched �lter receiver, the

solution of the remaining power allocation problem depends on the adopted receiver.

The power allocation problem is shown to be convex for all considered receivers and

an e�cient numerical algorithm for �nding the optimal power allocation is provid-

157



Chapter 6. Summary of Thesis and Future Research Topics

ed. Furthermore, to reduce complexity, two suboptimal power allocation schemes

assigning identical powers to all relays and/or frequencies are proposed and shown

to lead to only a small loss in performance and a remarkable robustness against

imperfect channel state information. Furthermore, for optimal rBF, simple FD-LE

receivers approach the performance of the idealized MF receiver as the numbers of

relays and/or relay antennas increase, making more complex nonlinear trellis-based

receivers unnecessary.

In Chapter 3, we proposed a joint transceiver design for SC-FDE based MIMO

relay systems. To this end, we �rst derived the optimal minimum mean-square error

linear and decision-feedback frequency-domain equalization �lters at the destination

along with the corresponding error covariance matrices at the output of the equalizer.

Subsequently, we formulated the source and relay precoding matrix design problem

as the minimization of a family of Schur-convex and Schur-concave functions of the

mean-squared errors at the output of the equalizer under separate power constraints

for the source and the relay. By exploiting properties of the MSE matrix and results

from majorization theory, we derived the optimal structures of the source and relay

precoding matrices, which allows us to transform the matrix optimization problem in-

to a scalar power optimization problem. Adopting a high SNR approximation for the

objective function, we obtained the global optimal solution for the power allocation

variables. Our results show that the proposed SC-FDE relaying schemes outperfor-

m the corresponding OFDM schemes in terms of both coded and uncoded BER for

�xed modulation and coding rates. However, the performance gap between SC-FDE

and OFDM relay systems decreases when the number of source/relay/destination

antennas is larger than the number of data streams. Assuming Gaussian signalling

and ideal channel coding, SC-FDE and OFDM attain similar achievable bit rates.

158



Chapter 6. Summary of Thesis and Future Research Topics

Furthermore, we have shown that the proposed suboptimal power allocation schemes

can reduce the system complexity and feedback overhead at the expense of a moder-

ate performance degradation, especially in case of coded transmission, making them

promising candidates for practical relay systems.

In Chapter 4, we studied the robust design of the rBF and dEQ �lters for broad-

band multiuser multi-relay networks employing SC-FDMA and OFDMA. Thereby,

we considered the realistic case where only imperfect channel state information was

available for rBF and dEQ �lter optimization. Our goal was to maximize a lower

bound for the weighted ABR of the network, subject to either Ind-PCs or an Agg-

PC. We �rst derived the optimal dEQ �lters and the phases of the optimal rBF �lter

coe�cients, which are independent of the power constraints. For the Agg-PC, the

amplitude optimization of the rBF �lter coe�cients was decomposed into two sub-

problems, which corresponded to the optimization of the power allocation across the

relays and the power allocation across the users and subcarriers, respectively. We ob-

tained a closed-form structural solution for the �rst subproblem by �xing the powers

across users and subcarriers, and the global optimal solution for the second subprob-

lem. For the Ind-PCs, the corresponding optimization problem was formulated as a

reverse-convex problem with convex constraints. Subsequently, the constrained con-

vex concave procedure was applied to approximate the original non-convex problem

with a sequence of convex problems, which can be e�ciently solved using convex op-

timization techniques. Simulation results validated the excellent performance of the

proposed robust rBF and dEQ �lter designs and showed their superiority compared

to conventional non-robust and naive relaying schemes.

In Chapter 5, we tackled the problems of sum MSE and maximum MSE mini-

mization for multi-hop DF FDR systems employing SC-FDE. To this end, �rst the
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optimal equalization �lters at the receiving nodes and the corresponding MSE matri-

ces were derived taking into account the imperfect CSI knowledge. Subsequently, the

transmit power allocation matrices were obtained based on sGP and AO approaches,

respectively. In the sGP approach, we used the condensation technique to transform

the objective function into a posynomial and then solved a sequence of standard GP

problems. The sGP approach required global channel knowledge at a central node

and the involved subproblems admited only numerical solutions. To gain further in-

sight into the structure of the problem, we also consider an AO approach for power

allocation where convex programming problems and di�erence of convex program-

ming problems are solved in an alternating manner. The resulting AO algorithm

admits closed-form solutions in each iteration step and requires less signaling over-

head compared to the centralized sGP scheme. Numerical results show that both

approaches yield practically identical MSE and ABR performances. In addition, the

proposed robust transceiver design outperforms non-robust FDR systems and robust

HDR systems by a considerable margin, especially in the case of high SNR and large

channel estimation errors, i.e., the interference limited operating region.

6.2 Future Work

Broadband cooperative relay system design is a current research area with still many

open problems for both single and multi-user systems. In the following, we provide

several possible extensions of the current work based on the results obtained in this

thesis.
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6.2.1 Transceiver Design for Broadband Multiuser MIMO

Relay Systems.

One possible extension of the work in Chapter 3 is the transceiver design for broad-

band multiuser MIMO relay systems. Thereby, di�erent users can adopt orthogonal

transmission schemes, such as SC-FDMA, to completely avoid multiuser interference,

or employ non-orthogonal multiple access schemes, such as spatial-division multiple

access (SDMA), to increase the spectral e�ciency. In the former case, the transceiver

design problem is similar to the problem addressed in Chapter 3. The main di�erence

lies in that at the relay node, a joint transmit power constraint should be imposed for

the signals from all users. This problem can be tackled in a layered manner by using

the primal decomposition technique, where a master problem for the power allocation

among users is solved in the upper-level, while subproblems in the lower-level for the

source/relay precoding matrix design with given allocated user powers can be han-

dled similarly as in Chapter 3. Speci�cally, we can exploit majorization theory and

convex optimization to solve these subproblems. On the other hand, for the case of

non-orthogonal SDMA, the corresponding transceiver design problem becomes more

complicated as now we have excessive multiuser and multi-stream interferences in the

system, which leads to a highly nonconvex problem structure. One possible solution is

to impose some speci�c structure on the source and relay precoding matrices, which

simpli�es the problem by reducing the dimension of the system design parameter-

s. For example, the block-diagonalization technique [137, 138] which was originally

proposed for point-to-point multiuser systems, can be employed to decouple the sig-

nal transmission of di�erent users in the spatial domain. Afterwards, scalar-based

convex/non-convex optimization techniques become applicable to the resulting power

allocation problem. Nevertheless, deriving the optimal scheme which does not im-
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pose any structural constraint on the multiuser transceivers [139, 140] for broadband

SC-FDE/OFDM systems is an interesting and challenging topic for future work.

6.2.2 Transceiver Design for Heterogenous Cooperative

Cognitive Radio Networks.

Next generation wireless communication systems are envisioned to be able to accom-

modate heterogenous users and may adopt completely new multiple access schemes.

For example, in cooperative communication scenarios, the relay stations may simul-

taneously receive signals from both SC-FDMA-based and OFDMA-based users. If

the link CSI and the corresponding information on the signal formats of di�erent

users are available at the relays, they can perform dynamic resource allocation, e.g.,

adapt their transmit power and/or data rate for di�erent users, in order to achieve the

optimal network performance. Furthermore, such heterogenous cooperative networks

can also be deployed for secondary-user systems in cognitive radio communication

networks [141, 142]. In this case, the secondary-user system should be able to adap-

t to di�erent signalling schemes for the legitimate primary-users in order to better

guarantee the quality of service for the primary-user network [143]. We expect that

the uni�ed framework developed in Chapter 4 for cooperative multiuser transceiver

schemes can serve as the basis for building the aforementioned heterogenous networks.

6.2.3 Robust Transceiver Design for MIMO Full-duplex

AF/DF Relay Systems.

The robust transceiver design problem addressed in Chapter 5 only considers single-

stream transmission with single-antenna source and destination. It is possible to

extend the results to MIMO full-duplex relay systems where multiple transmit and
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receive antennas are deployed at the source, the destination, and the full-duplex

relays. In this case, we will have matrix optimization variables, instead of scalar

power allocation variables, at all the nodes of the network [92]. In order to solve

the resulting problem, matrix decomposition techniques and majorization theory are

important and necessary mathematical tools to reduce the dimension of the matrix

design parameters. Judging from the non-convexity of the scalar problem encountered

in Chapter 5, we expect that the resulting problem for MIMO full-duplex DF relay

systems will also be a highly non-convex problem whose optimal solution requires

high computational complexity. Thus, low-complexity suboptimal solutions seem to

be a more viable option for practical implementations. Furthermore, compared to the

DF relaying scheme, the AF relaying scheme has the advantage of lower complexity

and less signal processing delay. However, the robust transceiver design for full-

duplex multi-hop AF relay systems is a challenging problem even for a network with

single-antenna terminals. This is due to the accumulating e�ect of the interference-

plus-noise ampli�cation at the AF relays, which couples the design parameters of all

hops [67]. The deployment of multiple antennas at the full-duplex AF relays can

further complicate the problem structure [78]. These are important and challenging

problems which merit consideration in future work.
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Appendix A

Proof of Proposition 2.1

First, we rewrite u†
ik as u†

ik = vec(h†
ikg

†
ik) = g∗

ik ⊗ h†
ik. Next, to simplify the inverse

matrix ∆−1
ik , we recall a result for the Kronecker product [99]. In particular, for all

matrices A ∈ CN×N and B ∈ CN×N , the following equality holds:

(A⊕B)−1 =
N∑
i=1

N∑
j=1

(ai ⊗ bj)(āi ⊗ b̄j)
†

λi(A) + λj(B)
, (A.1)

where A ⊕ B = IN ⊗ B +A ⊗ IN , λi(X) is the ith eigenvalue of matrix X, and xi

and x̄i are the eigenvectors that correspond to the ith eigenvalues of matrices X and

X†, respectively. Hence, we can rewrite ∆−1
ik as

∆−1
ik =

[
σ2
n2
(σ2

sg
∗
ikg

T
ik + σ2

n1
IN)⊕ σ2

n1
Pkh

†
ikhik)

]−1

=
N∑
i=1

N∑
j=1

(vi ⊗ uj)(v̄i ⊗ ūj)
†

λi(σ2
n1
Pkh

†
ikhik) + λj(σ2

n2
(σ2

sg
∗
ikgik + σ2

n1
IN))

. (A.2)

It is easy to verify that the largest eigenvalue of σ2
n1
Pkh

†
ikhik and the corresponding

eigenvector are given by λ1 = σ2
n1
Pk||hik||2 and v1 =

h†
ik

||hik||
, respectively. Likewise,

the largest eigenvalue of σ2
n2
(σ2

sg
∗
ikg

T
ik + σ2

n1
IN) and the corresponding eigenvector

are λ′1 = σ2
n2
(σ2

s ||gik||2 + σ2
n1
) and u1 =

g∗
ik

||gik||
, respectively. By noting that except for

u1⊗v1 =
1

||hik||||gik||
g∗
ik⊗h†

ik, all other terms in the summation of (A.2) are orthogonal
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Appendix A. Proof of Proposition 2.1

to u†
ik, we obtain

∆−1
ik u

†
ik =

(g∗
ikg

T
ikg

∗
ik)⊗ (h†

ikhikh
†
ik)

||hik||2 ||gik||2(λ1 + λ′1)
=

g∗
ik ⊗ h†

ik

(λ1 + λ′1)
, (A.3)

which is the result in (2.32).
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Appendix B

Proof of Theorem 3.1

We �rst provide some relevant de�nitions and lemmas that will be used in the proof.

De�nition 1 [110, 1.A.1]: Given two N×1 real vectors x,y ∈ RN , let x[1], · · · , x[N ]

and y[1], · · · , y[N ] denote the components of x and y sorted in decreasing order. Then,

x is majorized by y, or x ≺ y, if
∑k

i=1 x[i] ≤
∑k

i=1 y[i] for k < N and
∑N

i=1 x[i] =∑N
i=1 y[i]. Vector x is weakly majorized by y, or x ≺w y, if

∑k
i=1 x[i] ≤

∑k
i=1 y[i],∀k.

De�nition 2 [110, 3.A.1]: A real function f is Schur-convex if for x ≺ y, we have

f(x) ≤ f(y). Similarly, f is Schur-concave if for x ≺ y, we have f(x) ≥ f(y).

Lemma 1 [110, 9.B.1]: For a Hermitian matrixA with diag[A] and λ(A) denoting

vectors containing the main diagonal elements and the eigenvalues of A arranged in

decreasing order, respectively, we have diag[A] ≺ λ(A).

Lemma 2 [110, 9.H.2]: For M matrices Ai ∈ CN×N , i = 1, · · · ,M , let B =

A1A2 · · ·AM . Then, σ(B) ≺w σ(A1)⊙ σ(A2)⊙ · · · σ(AM), where σ(X) denotes the

vector containing the singular values of matrix X arranged in decreasing order and

⊙ denotes the element-wise product of two vectors.

Lemma 3 [110, 3.A.8]:: A real function f satis�es x ≺w y ⇒ f(x) ≤ f(y) if and

only if f is Schur-convex and increasing.

Lemma 4 [110, 9.H.1]: For two Hermitian positive semide�nite matrices {A,B} ∈

CN×N with eigenvalues λA,i, λB,i, arranged in the same order, we have tr(AB) ≥∑N
i=1 λA,iλB,N−i+1.

Lemma 5 [110, p.7]: For a vector x ∈ RN×1, we have
∑N

i=1(x[i]/N)1 ≺ x, where
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1 is the all-ones vector.

Lemma 6: For Hermitian matrices Ak and Âk, k = 1, 2, · · · , Nc , if diag[Ak] ≺w

diag[Âk], we have diag[
∑Nc

k=1Ak] ≺w diag[
∑Nc

k=1 Âk].

Proof. According to De�nition 1, if diag[Ak] ≺w diag[Âk], we have
∑j

i=1 a[ki] ≤∑j
i=1 â[ki] for j ≤ N , ∀k, where a[ki] and â[ki] are the ith largest diagonal entries of

Ak and Âk, respectively. By taking the summation over k, we have
∑Nc

k=1

∑j
i=1 a[ki] ≤∑Nc

k=1

∑j
i=1 â[ki] for j ≤ N . Since the summations over k and j are exchangeable, we

can write
∑j

i=1 b[i] ≤
∑j

i=1 b̂[i] for j ≤ N , where b[i] =
∑Nc

k=1 a[ki] and b̂[i] =
∑Nc

k=1 â[ki]

are the ith largest diagonal entries of [
∑Nc

k=1 Ak] and [
∑Nc

k=1 Âk], respectively. By

De�nition 1, we obtain diag[
∑Nc

k=1Ak] ≺w diag[
∑Nc

k=1 Âk].

Lemma 7 [110, 9.B.2]: For a diagonal matrix D ∈ CM×M , there is a unitary

matrix U such that A = U†DU has identical diagonal entries equal to tr(D)/M .

Lemma 8 [66]: If f(x) is Schur-concave with respect to x, and y = 1− x, where

1 is a vector of all ones, then f(1− y) is also Schur-concave with respect to y.

We now set out to prove the optimal structure of the source and relay precoding

matrices when f(diag[Ê]) is a Schur-concave increasing function w.r.t. diag[Ê]. Let

us begin with the core term in the expression for Ê in (3.13), which is given by

Ψ−1
k = IM −Υk, (B.1)

where Υk = σ2
sQ

†
k(σ

2
sQkQ

†
k + σ2

vHkAkA
†
kH

†
k + σ2

uINd
)−1Qk, and we have applied the

matrix inversion lemma. Using (B.1), the MSE matrix in (3.16) can be expressed as

Ê =
σ2
s

Nc

Nc−1∑
k=0

Ψ−1
k =

σ2
s

Nc

(NcIM −
Nc−1∑
k=0

Υk). (B.2)
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By de�ning the following terms

Xk = σsGkPk, Yk = HkAk, Jk = Yk(XkX
†
k + σ2

vINr)
1/2, (B.3)

and using (3.4), we can rewrite Υk as

Υk = X†
k(XkX

†
k + σ2

vINr)
−1/2J†

k(JkJ
†
k + σ2

uINd
)−1Jk(XkX

†
k + σ2

vINr)
−1/2Xk. (B.4)

Next, using the following SVDs

Xk = U
(k)
X Λ

(k)
X V

(k)
X , Jk = U

(k)
J Λ

(k)
J V

(k)
J ,

(XkX
†
k + σ2

vINr)
−1/2 = U

(k)
X (Λ

(k)2
X + σ2

vIM)−1/2Ω(k), (B.5)

where U
(k)
X ∈ CNr×M , U

(k)
J ∈ CNd×M , {V(k)

J ,Ω(k)} ∈ CM×Nr , {Λ(k)
X ,V

(k)
X ,Λ

(k)
J } ∈

CM×M , Ω(k) is an arbitrary unitary matrix, and the diagonal entries of Λ
(k)
X and Λ

(k)
J

are both sorted in decreasing order, we can further rewrite (B.4) as

Υk = V
(k)†
X Λ

(k)
X Q

(k)†
2 (Λ

(k)2
X + σ2

vIM)−1/2Q
(k)†
1 (IM+

σ2
uΛ

(k)−2
J )−1Q

(k)
1 (Λ

(k)2
X + σ2

vIM)−1/2Q
(k)
2 Λ

(k)
X V

(k)
X , (B.6)

where Q
(k)
1 = V

(k)
J U

(k)
X and Q

(k)
2 = Ω(k)U

(k)
X . By applying Lemmas 1 and 2 to (B.6),

we obtain

diag[Υk] ≺ λ(Υk) ≺w diag[(IM + σ2
vΛ

(k)−2
X )−1︸ ︷︷ ︸

D
(k)
1

(IM + σ2
uΛ

(k)−2
J )−1︸ ︷︷ ︸

D
(k)
2

]. (B.7)

Therefore, diag[Υk] is majorized by diag[D
(k)
1 D

(k)
2 ] when V

(k)
X = Ξ1, Q

(k)
2 = Ξ2,
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Q
(k)
1 = Ξ3, where Ξi ∈ CM×M ,∀i, are arbitrary diagonal matrices with unit norm

diagonal elements. Without loss of generality, we can choose Ξi = IM , ∀i. Hence, we

have

V
(k)
X = IM , Ω(k) = U

(k)†
X , V

(k)
J = U

(k)†
X . (B.8)

From (B.7) and Lemma 6, we have

diag[
Nc−1∑
k=0

Υk] ≺w diag[
Nc−1∑
k=0

D
(k)
1 D

(k)
2 ]. (B.9)

Recall that the objective function f(diag[Ê]) is a Schur-concave increasing func-

tion w.r.t. diag[Ê]. Based on Lemma 8, f(diag[σ2
sIM − σ2

s

Nc

∑Nc−1
k=0 Υk]) is then

a Schur-concave decreasing function w.r.t. diag[
∑Nc−1

k=0 Υk]. By adding the minus

sign, −f(diag[σ2
sIM − σ2

s

Nc

∑Nc−1
k=0 Υk]) becomes a Schur-convex increasing function

w.r.t. diag[
∑Nc−1

k=0 Υk]. Therefore, by using (B.9) and Lemma 3, we deduce that

−f(diag[σ2
sIM − σ2

s

Nc

∑Nc−1
k=0 Υk]) ≤ −f(diag[σ2

sIM − σ2
s

Nc

∑Nc−1
k=0 D

(k)
1 D

(k)
2 ]), which is

equivalent to

f(diag[σ2
sIM − σ2

s

Nc

Nc−1∑
k=0

Υk]) ≥ f(diag[σ2
sIM − σ2

s

Nc

Nc−1∑
k=0

D
(k)
1 D

(k)
2 ]). (B.10)

Consequently, with the help of the matrices in (B.8), the value of the objective

function can be reduced to f(diag[σ2
sIM − σ2

s

Nc

∑Nc−1
k=0 D

(k)
1 D

(k)
2 ]).

In the following, we derive the structure of the optimal source and relay precoding

matrices minimizing the transmit power consumption of the source and the relay. For

simplicity of notation, we only consider the case when Ns = Nr = Nd. The proof

can be easily extended to the case where Ns, Nr, and Nd have di�erent values. From
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(B.3) and (B.5), we have σsU
(k)
G Λ

(k)
G V

(k)†
G Pk = U

(k)
X Λ

(k)
X V

(k)
X , which can be used to

express the source transmit power consumption at frequency tone k as

σ2
str(PkP

†
k) = tr(Λ

(k)−1
G U

(k)†
G U

(k)
X︸ ︷︷ ︸

Q
(k)†
3

Λ
(k)2
X U

(k)†
X U

(k)
G︸ ︷︷ ︸

Q
(k)
3

Λ
(k)−1
G ) ≥ tr(Λ̄

(k)−2
G Λ

(k)2
X ), (B.11)

where the inequality follows from Lemma 4, and the diagonal matrix Λ̄
(k)
G ∈ CM×M

contains the M largest singular values of Gk. Therefore, in order to minimize the

source transmit power, we need to choose Q
(k)
3 = [IM 0M×(Ns−M)], i.e., U

(k)
X = Ū

(k)
G ,

where Ū
(k)
G contains the M left-most columns of U

(k)
G . Recalling from (B.8) that

V
(k)
X = IM , the source matrix can be expressed as

Pk =
1

σs
V̄

(k)
G Λ̄

(k)−1
G Λ

(k)
X = V̄

(k)
G Λ

(k)
P , (B.12)

where V̄
(k)
G contains theM left-most columns of V

(k)
G and Λ

(k)
P , 1

σs
Λ̄

(k)−1
G Λ

(k)
X . Next,

from (B.3) and (B.5) we obtain U
(k)
H Λ

(k)
H V

(k)†
H Ak = Jk(XkX

†
k + σ2

vINr)
−1/2. Using

this result, we can express the relay transmit power consumption at frequency tone

k as

tr(Ak(XkX
†
k + σ2

vINr)A
†
k) = tr(Λ

(k)−1
H U

(k)†
H JkJ

†
kU

(k)
H Λ

(k)−1
H )

= tr(Λ
(k)−1
H U

(k)†
H U

(k)
J︸ ︷︷ ︸

Q
(k)†
4

Λ
(k)2
J U

(k)†
J U

(k)
H︸ ︷︷ ︸

Q
(k)
4

Λ
(k)−1
H ) ≥ tr(Λ̄

(k)−2
H Λ

(k)2
J ),

(B.13)

where the inequality follows from Lemma 4, and the diagonal matrix Λ̄
(k)
H ∈ CM×M

contains theM largest singular values of Hk. In (B.13), equality holds for Q
(k)
4 = [IM

0M×(Nr−M)], i.e., U
(k)
J = Ū

(k)
H , where Ū

(k)
H contains the M left-most columns of U

(k)
H .
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Recalling from (B.8) that U
(k)
X

†
= Ω(k) = V

(k)
J , and from (B.11) that U

(k)
X = Ū

(k)
G , we

obtain for Ak the expression

Ak = V̄
(k)
H Λ̄

(k)−1
H Λ

(k)
J (Λ

(k)2
X + σ2

vIM)−1/2Ū
(k)†
G = V̄

(k)
H Λ

(k)
A Ū

(k)†
G , (B.14)

where V̄
(k)
H and Ū

(k)
G contain the M left-most columns of V

(k)
H and U

(k)
G , respectively,

and Λ
(k)
A , Λ̄

(k)−1
H Λ

(k)
J (Λ

(k)2
X +σ2

vIM)−1/2. Hence, we have proved that the expressions

for the source and relay precoding matrices given in (B.12) and (B.14) minimize the

objective function f(diag[Ê]), cf. (B.10), as well as the transmit power consumption

at the source and the relay, cf. (B.11) and (B.13).

Now, we turn our attention to the case when f(diag[Ê]) is a Schur-convex in-

creasing function w.r.t. diag[Ê]. From Lemma 5 we know that 1
M
tr(Ê)1 ≺ diag[Ê].

Combining this fact and De�nition 2, we obtain the inequality

f(diag[Ê]) ≥ f(
1

M
tr(Ê)1), (B.15)

where equality holds when the diagonal entries of Ê are all equal to 1
M
tr(Ê). In the

following, we show that by applying a unitary rotation to the source precoding matrix,

we can achieve this equality. Applying in (3.13) the eigenvalue decomposition,

σ2
sQ

†
k

(
σ2
vHkAkA

†
kH

†
k + σ2

uINd

)−1

Qk = U
(k)
E Λ

(k)
E U

(k)†
E , (B.16)

where U
(k)
E ∈ CM×M , Λ

(k)
E ∈ CM×M , we obtain Ψ−1

k = U
(k)
E (IM + Λ

(k)
E )−1U

(k)†
E . Let

us consider the feasible source precoding matrix P̄k = PkU
(k)
E V0, where U

(k)
E V0 is

a unitary matrix and thus does not a�ect the power constraints. Replacing Pk with
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P̄k in (3.13) and using (B.16), we can obtain

Ψ−1
k = V†

0(IM +Λ
(k)
E )−1V0, (B.17)

which allows us to express the MSE matrix as

Ê =
σ2
s

Nc

Nc−1∑
k=0

Ψ−1
k =

σ2
s

Nc

V†
0

Nc−1∑
k=0

(IM +Λ
(k)
E )−1V0. (B.18)

Since
∑Nc−1

k=0 (IM + Λ
(k)
E )−1 is the sum of Nc diagonal matrices, it is also a diagonal

matrix. Based on Lemma 7, we conclude that there exists a unitary matrix V0

such that Ê has identical diagonal elements given by 1
M
tr(Ê). Since the objective

function is an increasing function w.r.t. its arguments, minimizing the original Schur-

convex objective function is now equivalent to minimizing 1
M
tr(Ê), which is a Schur-

concave function. Therefore, the optimal structures of Pk and Ak are given by (B.12)

and (B.14), respectively. Furthermore, as the resulting U
(k)
E can be shown to be an

identity matrix, the source precoding matrix for Schur-convex functions is given by

P̄k = PkV0 = V̄
(k)
G Λ

(k)
P V0.
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Proof of Proposition 3.1

To show that the objective function in (3.40) is jointly convex w.r.t. Pr,km and Ps,km

when Φkm is approximated by Φ̃km, let us �rst examine the elements of the Hessian

matrix, ∇F =

 ∂2Φ̃km

∂P 2
s,km

∂2Φ̃km

∂Ps,km∂Pr,km

∂2Φ̃km

∂Pr,km∂Ps,km

∂2Φ̃km

∂P 2
r,km

, of Φ̃km w.r.t. Pr,km and Ps,km:

∂2Φ̃km

∂P 2
s,km

=
−2σ2

vP
2
r,kmh

4
kmg

4
km

[σ2
vPr,kmh2km + σ2

uPs,kmg2km]
3

∂2Φ̃km

∂Pr,km∂Ps,km

=
2σ2

uσ
2
vPr,kmPs,kmh

4
kmg

4
km

[σ2
vPr,kmh2km + σ2

uPs,kmg2km]
3 ,

∂2Φ̃km

∂P 2
r,km

=
−2σ2

uP
2
s,kmg

4
kmh

4
km

[σ2
vPr,kmh2km + σ2

uPs,kmg2km]
3 . (C.1)

One can verify that the trace and the determinant of ∇F are given by

tr(∇F) = ω1 + ω2 ≤ 0, and det(∇F) = ω1ω2 = 0, (C.2)

where ω1 and ω2 are the eigenvalues of ∇F. It can be inferred from (C.2) that one

of ω1 and ω2 is zero and the other one is non-positive. Since the Hessian matrix only

has non-positive eigenvalues, we conclude Φ̃km in (3.55) is jointly concave w.r.t. Pr,km

and Ps,km. Now, we are ready to prove the convexity of the objective function. For
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the AMSE criterion, we have

∂fAMSE(Φ̃)

∂Φ̃km

= − σ2
s

Nc

Φ̃−2
km < 0,

∂f 2
AMSE(Φ̃)

∂2Φ̃km

=
2σ2

s

Nc

Φ̃−3
km > 0, (C.3)

where Φ̃ = {Φ̃km,∀, k,m}. Therefore, fAMSE(Φ̃) is convex decreasing w.r.t. Φ̃km, and

by the composition rule [101], we can deduce that fAMSE(Φ̃) is jointly convex w.r.t.

Pr,km and Ps,km. For the GMSE criterion, we rewrite the objective function as

fGMSE(Φ̃) =
M∑

m=1

log2

(
σ2
s

Nc

Nc−1∑
k=0

Φ̃−1
km

)
=

M∑
m=1

log2

(
σ2
s

Nc

Nc−1∑
k=0

exp
(
− log Φ̃km

))
.

(C.4)

Since − log Φ̃km is the composition of a convex decreasing function, − log x, and a

concave function, Φ̃km, from the composition rule, it is a joint convex function w.r.t.

Pr,km and Ps,km. On the other hand, note that log2

(
σ2
s

Nc

∑Nc−1
k=0 exp yk

)
is a convex

increasing function w.r.t. yk [101], therefore, by using the composition rule, fGMSE(Φ̃)

is a jointly convex function w.r.t. Pr,km and Ps,km. Based on the above results, along

with the fact that the power constraints are all a�ne w.r.t. Pr,km and Ps,km, we

conclude that the problem in (3.40) with Φkm approximated by Φ̃km is a convex

optimization problem.
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Proof of Proposition 4.1

The Hessian matrix of Φ̄
(u)
k w.r.t. Pku, ∀k, u is a diagonal matrix whose diago-

nal entries are given by
∂2Φ̄

(u)
k

∂P 2
ku

=
∑NR

i=1

−A
(u)
ik B

(u)
ik C

(u)
ik

(PkuA
(u)
ik +B

(u)
ik )3

≤ 0. Therefore, Φ̄
(u)
k is a

concave function in Pku, ∀k, u. For OFDMA, since log2(x) is a concave increas-

ing function, according to the composition rule [101], log2(Φ̄
(u)
k + 1) is a concave

function, implying that f
[OFDMA]
1 (p) is concave w.r.t. Pku, ∀k, u. For SC-FDMA,

we rewrite log2

[
1
Q

∑Q
k=1(Φ̄

(u)
k + 1)−1

]
as log2

[
1
Q

∑Q
k=1 exp(− log(Φ̄

(u)
k + 1))

]
. Since

− log[(Φ̄
(u)
k + 1)] is convex w.r.t. (Φ̄

(u)
k + 1), and log2

(
1
Q

∑Q
k=1 exp yk

)
is convex

and increasing w.r.t. yk [101], the composition of the two is also convex. Thus,

f
[SC−FDMA]
1 (p) is a concave function in Pku, ∀k, u. On the other hand, the constraints

are a�ne functions in Pku, ∀k, u. Hence, problem (5.33) is a concave maximization

problem with a�ne constraints, i.e., (5.33) is a convex optimization problem.
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Proof of Proposition 4.2

We �rst show that the objective function f
[Y]
2 (a,X) is a convex function in its opti-

mization variables {a,X}. Given that Z
(u)
k is a Hermitian positive semide�nite matrix

and Xku ≥ 0, ∀k, u, it can be shown that
a
(u)T
k Z

(u)
k a

(u)
k

Xku
is convex in a

(u)
k and Xku [101],

which further implies that (1− a
(u)T
k Z

(u)
k a

(u)
k

Xku
) is a concave function in a

(u)
k and Xku. For

OFDMA, the composite function of − log(·) and (1 − a
(u)T
k Z

(u)
k a

(u)
k

Xku
) is convex due to

the composition rule and the fact that − log(·) is a convex decreasing function. The

convexity of f
[OFDMA]
2 (a,X) follows since the weighted sum of convex functions is also

convex. On the other hand, for SC-FDMA, 1
Q

∑Q
k=1

(
1− a

(u)T
k Z

(u)
k a

(u)
k

Xku

)
is concave in

a
(u)
k and Xku because it is an average of Q concave functions. Based on this fact and

by applying the same argument as for OFDMA, the convexity of f
[SC−FDMA]
2 (a,X)

follows.

Next, we consider the convexity of the constraints in problem (4.48). The �rst

constraint (4.48b) is convex in {|a(u)ik |} because the second-order derivative of the

function on the left hand side of (4.48b) is strictly greater than zero w.r.t. |a(u)ik |,∀k, u.

For the second constraint, given that Z
(u)
k andD

(u)
k are Hermitian positive semide�nite

matrices, a
(u)T
k Z

(u)
k a

(u)
k and a

(u)T
k D

(u)
k a

(u)
k are both convex functions in a

(u)
k . This, along

with the fact that −Xku is an a�ne mapping of Xku shows that the second constraint

is convex in {a(u)
k , Xku}.
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Proof of Proposition 5.1

For �xed {Pk,i, ∀k, i ≥ 2}, we observe that the term
∑M

i=2

∑Nc

k=1Ψk,(i+1) in the objec-

tive function of (5.23) becomes a constant. Thus, the problem with respect to {Pk,1}

becomes

min
{Pk,1}

g0(p1) s.t.
Nc∑
k=1

Pk,1 ≤ P̄1, Pk,1 ≥ 0,∀k, (F.1)

where g0(p1) =
∑Nc

k=1Ψk,2, and p1 = {Pk,1,∀k}. From the �rst and second order

derivatives of g0(p1) with respect to {Pk,1},

∂g0(p1)

∂Pk,1

=
−|ĥk,1|2[

(|ĥk,1|2 + σ2
e,h1

)Pk,1 + σ2
e,l2
Pk,2 + σ2

e,g3
Pk,3 + σ2

n2

]2 < 0,

∂2g0(p1)

∂P 2
k,1

=
2|ĥk,1|2(|ĥk,1|2 + σ2

e,h1
)[

(|ĥk,1|2 + σ2
e,h1

)Pk,1 + σ2
e,l2
Pk,2 + σ2

e,g3
Pk,3 + σ2

n2

]3 > 0,

we �nd that g0(p1) is a monotonically decreasing convex function. As the power

constraints are a�ne functions, it follows that problem (F.1) is a convex problem.

Thus, from the Karush-Kuhn-Tucker (KKT) conditions [101], we can obtain the

solution of (F.1) given in (5.24).

195



Appendix F. Proof of Proposition 5.1

The Lagrangian of the problem is given by

L1(p1, λ1,β1) =
Nc∑
k=1

Ψk,2 + λ1(
Nc∑
k=1

Pk,1 − P̄1)−
Nc∑
k=1

βk,1Pk,1, (F.2)

where λ1 and {βk,1} are the Lagrange multipliers associated with the corresponding

constraints in (F.1). The Karush-Kuhn-Tucker (KKT) conditions [101] can then be

derived as

∂L1(p1, λ1,β1)

∂Pk,1

=
∂g0(p1)

∂Pk,1

+ λ1 − βk,1 =0, (F.3a)

λ1(
Nc∑
k=1

Pk,1 − P̄1) =0, (F.3b)

λ1 ≥ 0, (
Nc∑
k=1

Pk,1 − P̄1) ≤0, (F.3c)

βk,1Pk,1 = 0, βk,1 ≥ 0, Pk,1 ≥0. (F.3d)

Since ∂g0(p1)
∂Pk,1

< 0, βk,1 ≥ 0, in order for (F.3a) to hold, we must have λ1 > 0. This

implies that the transmit power constraint is met with equality, i.e.,
∑Nc

k=1 Pk,1 = P̄1,

due to the complementary slackness condition in (F.3b). Furthermore, from (F.3d),

we observe that if βk,1 = 0, then Pk,1 > 0, otherwise Pk,1 = 0. From (F.3a), we obtain

βk,1 = λ1 +
∂g0(p1)
∂Pk,1

. Therefore, the positive solution of Pk,1 can be found by solving

the equation λ1 +
∂g0(p1)
∂Pk,1

= 0 for a given λ1. If the equation has no positive solution,

we set Pk,1 = 0. Based on the above discussions, we obtain the solution for Pk,1 given

in (5.24).
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Proof of Proposition 5.2

For given {Pk,j,∀k}, j ̸= i, the objective function with respect to {Pk,i}, i = 2, . . . ,M

is a di�erence of two convex functions. To show this, let use rewrite the objective

function of problem (5.16) as ti(pi) + gi(pi), where

ti(pi) =
2∑

u=1

Nc∑
k=1

(
1− Bk,i,u

Ak,i,uPk,i + Ck,i,u

)
, gi(pi) =

Nc∑
k=1

(
|ĥk,i|2Pk,i

σ2
e,hi
Pk,i + Tk,i

+ 1

)−1

,

(G.1)

with {Tk,i, Ak,i,u, Bk,i,u, Ck,i,u,∀k, i, u} and pi de�ned in (5.26). Next, we examine the

�rst-order and second-order derivatives of ti(pi) and gi(pi), respectively, as follows:

∂ti(pi)

∂Pk,i

=
2∑

u=1

Ak,i,uBk,i,u

(Ak,i,uPk,i + Ck,i,u)
2 > 0,

∂2ti(pi)

∂P 2
k,i

=
2∑

u=1

−2A2
k,i,uBk,i,u

(Ak,i,uPk,i + Ck,i,u)
3 < 0,

∂gi(pi)

∂Pk,i

=
−|ĥk,i|2Tk,i[

(|ĥk,i|2 + σ2
e,hi

)Pk,i + Tk,i

]2 < 0,

∂2gi(pi)

∂P 2
k,i

=
2|ĥk,i|2(|ĥk,i|2 + σ2

e,hi
)Tk,i[

(|ĥk,i|2 + σ2
e,hi

)Pk,i + Tk,i

]3 > 0. (G.2)

Therefore, ti(pi) and gi(pi) are concave increasing and convex decreasing functions

with respect to {Pk,i}, respectively. By letting fi(pi) = −ti(pi), we obtain the

di�erence of convex (d.c.) programming problem formulation in (5.25).
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Proof of Proposition 5.3

We �rst note the following relationship between the convex function fi(pi) and its

�rst order Taylor series expansion at a feasible point P
[ℓ]
k,i:

fi(pi) ≥
2∑

u=1

Nc∑
k=1

[
Bk,i,u

Ak,i,uP
[ℓ]
k,i + Ck,i,u

− 1−
Nc∑
k=1

Ak,i,uBk,i,u(Pk,i − P
[ℓ]
k,i)

(Ak,i,uP
[ℓ]
k,i + Ck,i,u)2

]
= f

[ℓ]
i (pi).

If we replace fi(pi) with f
[ℓ]
i (pi) in problem (5.25), we obtain a convex majorant of

the objective function as

h
[ℓ]
i (pi) ,gi(pi)− f

[ℓ]
i (pi)

=gi(pi)−
2∑

u=1

Nc∑
k=1

[
Bk,i,u

Ak,i,uP
[ℓ]
k,i + Ck,i,u

− 1 +
Ak,i,uBk,i,u(Pk,i − P

[ℓ]
k,i)

(Ak,i,uP
[ℓ]
k,i + Ck,i,u)2

]
. (H.1)

Since h
[ℓ]
i (pi) ≥ gi(pi) − fi(pi),∀ pi, the following convex problem minimizes the

upper bound of d.c. problem (5.25)

min
{Pk,i}

h
[ℓ]
i (pi), s.t.

Nc∑
k=1

Pk,i ≤ P̄i, Pk,i ≥ 0, ∀k. (H.2)

By further dropping the constant terms that are irrelevant to the optimization, we

can simplify the above convex problem as in (5.27). Let P
[ℓ+1]
k,i be the optimal solution

of (5.27). By replacing P
[ℓ]
k,i with P

[ℓ+1]
k,i (i.e., D

[ℓ]
k,i,u becomes D

[ℓ+1]
k,i,u ) and solving the

resulting convex problem again, an improved feasible solution P
[ℓ+2]
k,i for the original
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d.c. problem (5.25) can be found. This procedure is then repeated until the value of

the objective function in (5.25) converges.

We now show that by using the above iterative procedure, a stationary point

(KKT point) of the d.c. problem can be obtained. First, we note that the d.c.

problem and the convex problem share the same feasible set and are both strictly

feasible. Thus, any point p
[ℓ]
i which is feasible for problem (5.27) is also feasible for

problem (5.25). Therefore, the sequence {ĥ[ℓ]i (pi)} generated by the convex problem

monotonically decreases as the number of iterations ℓ increases. Since ĥ
[ℓ]
i (pi) is lower

bounded by zero, the convergence of the sequence {ĥ[ℓ](pi)} and thus the convergence

of the iterative algorithm for the d.c. problem is guaranteed. Due to the convexity

of the problem, there is a unique correspondence between the sequences {ĥ[ℓ]i (pi)}

and {p[ℓ]
i }. Thus, the sequence {p[ℓ]

i } also converges to a limit point denoted by p⋆
i .

Furthermore, it can be veri�ed that the limit point p⋆
i with the optimal Lagrange

multipliers {λ⋆i , β⋆
k,i} also satis�es the KKT conditions of the original d.c. problem

and is thus a stationary point (KKT point) of problem (5.25). From convex analysis,

the limit point p⋆
i with the optimal Lagrange multipliers {λ⋆i , β⋆

k,i} satis�es the KKT

conditions

∂gi(pi)

∂P ⋆
k,i

+ λ⋆i +
2∑

u=1

Ak,i,uBk,i,uP
⋆
k,i

(Ak,i,uP ⋆
k,i + Ck,i,u)2

− β⋆
k,i = 0 (H.3a)

λ⋆i (
∑
k

P ⋆
k,i − P̄i) = 0, β⋆

k,iP
⋆
k,i = 0. (H.3b)

For the original d.c. problem, we know that a stationary point, P stat
k,i , satis�es the
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following KKT conditions

∂gi(pi)

∂P stat
k,i

+ ζi +
2∑

u=1

Ak,i,uBk,i,uP
stat
k,i

(Ak,i,uP stat
k,i + Ck,i,u)2

− ηk,i = 0 (H.4a)

ζi(
∑
k

P stat
k,i − P̄i) = 0, ηk,iP

stat
k,i = 0, (H.4b)

where ζi and ηk,i are the Lagrangian multipliers for the constraints of the d.c. problem.

By choosing ζi = λ⋆i , and ηk,i = β⋆
k,i, the above two sets of KKT conditions become

identical. Therefore, the limit point p⋆
i with the associated Lagrange multipliers

{λ⋆i , β⋆
k,i} satis�es the KKT conditions of the d.c. problem and is thus a stationary

point (KKT point). It is known that a stationary point can be a saddle point, a local

minima and a local maxima. Due to the fact that the objective function of the d.c.

problem is non-convex, we can not guaranteed that the obtained solution is a local

minima. Instead, we claim we can at least �nd a stationary point solution to the d.c.

problem. In the following, we provide a closed-form solution for problem (5.27). To

this end, we write its Lagrangian as

L (pi, λi,βi) =
Nc∑
k=1

(
|ĥk,i|2Pk,i

σ2
e,hi
Pk,i + Tk,i

+ 1

)−1

+
∑
k,u

D
[ℓ]
k,i,uPk,i + λi(

Nc∑
k=1

Pk,i − P̄i)

−
Nc∑
k=1

βk,iPk,i,

where λi and {βk,i,∀k, i} are the Lagrange multipliers associated with the correspond-

ing constraints in (5.27). The dual problem of (5.27) can be written as

max
λi

min
{Pk,i},{βk,i}

L (pi, λi,βi) = max
λi

g(λi), (H.5)

where g(λi) is the dual function. The dual problem can be further decomposed into
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Nc subproblems as follows

min
{Pk,i},{βk,i}

(
|ĥk,i|2Pk,i

σ2
e,hi
Pk,i + Tk,i

+ 1

)−1

+

(
2∑

u=1

D
[ℓ]
k,i,u + λi − βk,i

)
Pk,i, ∀k. (H.6)

Applying the KKT conditions to the subproblem in (H.6), the solution for Pk,i given

in (5.28) is obtained. The optimal Lagrange multiplier λi can be found by solving

the maximization problem with respect to λi. It can be veri�ed that the subgradient

of λi is given by
∑Nc

k=1 Pk,i − P̄i. Therefore, we can adopt the subgradient method in

(5.29) for updating λi.
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Proof of Proposition 5.4

From convex analysis, the following inequality holds between the convex function

ψi,u(pi) and its �rst-order Taylor series expansion at a feasible point {P [ℓ]
k,i},

ψi,u(pi) ≥
Nc∑
k=1

(
Bk,i,u

Ak,i,uP̂k,i + Ck,i,u

− 1−D
[ℓ]
k,i,u(Pk,i − P

[ℓ]
k,i)

)
= ψ

[ℓ]
i,u(pi), (I.1)

Since ψ
[ℓ]
i,u(pi) is a convex function with respect to pi, replacing ψi,u(pi) with ψ

[ℓ]
i,u(pi)

in constraint (5.34a) leads to a stricter constraint which requires that the upper

bound of the MSE is no larger than t. The resulting problem is given in (5.35),

which is a convex optimization problem whose feasible set lies in the subset of the

original d.c. problem. Therefore, the optimal solution of (5.35), denoted as {p[ℓ+1]
i },

is also feasible for the d.c. problem. Then, by applying the �rst-order Taylor series

expansion at {p[ℓ+1]
i } and repeating the above process, the objective value can be

further decreased and a better approximate solution for the original d.c. problem

(5.34) can be found. Similar to the case of sum MSE minimization, we can show

that by iteratively solving (5.35), a stationary point (KKT point) of the d.c. problem

(5.34) can be obtained. The details are omitted here for brevity. It can be veri�ed

that Slater's condition is satis�ed for problem (5.35). Thus, we can solve (5.35) by

solving its dual problem. Upon rearranging the terms, the Lagrangian of (5.35) can
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be written as

L (pi, λi, γu,βi, t)

=
Nc∑
k=1

[
γ3

(
|ĥk,i|2Pk,i

σ2
e,hi
Pk,i + Tk,i

+ 1

)−1

+ (
2∑

u=1

γuD
[ℓ]
k,i,u − βk,i + λi)Pk,i +

2∑
u=1

γu(E
[ℓ]
k,i,u

+D
[ℓ]
k,i,uP

[ℓ])
k,i )

]
+

(
1−

3∑
u=1

γu

)
t− λiP̂2, (I.2)

where {γu, u = 1, 2, 3} are the Lagrangian multiplier associated with the constraints

(5.35b) and (5.35c), respectively. The dual problem of (5.35) is thus given by

max
{λi,γu}

min
t,{Pk,i},{βk,i}

L (pi, λi, γu,βi, t) = max
λi,γu

g(λi, γu). (I.3)

Note that the inner minimization problem is separable with respect to t and Pk,i,

respectively. For t, we have the following unconstrained minimization problem

min
t

(
1−

3∑
u=1

γu

)
t (I.4)

If 1 −
∑3

u=1 γu ̸= 0, the value of the dual function g(λi, γu) is unbounded from

below as t tends to negative in�nity. Therefore, to make the minimization problem

bounded from below, we should have 1−
∑3

u=1 γu = 0. On the other hand, the inner

minimization with respect to {Pk,i} can be decomposed into Nc subproblems as

min
{Pk,i},{βk,i}

γ3

(
|ĥk,i|2Pk,i

σ2
e,hi
Pk,i + Tk,i

+ 1

)−1

+

(
2∑

u=1

γuD
[ℓ]
k,i,u + λi − βk,i

)
Pk,i. (I.5)

Applying the KKT conditions to (I.5) and using the fact that γ3 = 1 −
∑2

u=1 γu,

which is the optimal condition for t, we obtain the solution of Pk,i given in (5.36).
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Next, we determine the optimal Lagrange multipliers by solving the dual problem in

(I.3) using the subgradient method.

Lemma 1: The subgradients of the Lagrange multipliers (dual variables) λi and

γ1 are given by (
∑Nc

k=1 Pk,i−P̄i) and
∑Nc

k=1D
[ℓ]
k,i,u(Pk,i−P (ℓ)

k,i )+E
[ℓ]
k,i−

(
|ĥk,i|2Pk,i

σ2
e,hi

Pk,i+Tk,i
+ 1

)−1

,

respectively.

Proof. According to the de�nition in [101], s is a subgradient of a function f(x) (not

necessarily convex) at x if

f(y) ≥ f(x) + s(y − x), ∀y. (I.6)

Let {λ̃i, γ̃1, γ̃2} and {λ̂i, γ̂1, γ̂2} be two feasible solutions of the dual problem, maxλi,γu

g(λi, γu). Assume that {p̃i, β̃2, t̃} and {p̂i, β̂i, t̂} are the optimal solutions of the

primal variables corresponding to these two sets of dual variables. Then, we have

g(λ̃i, γ̃1, γ̃2) = min
t,{Pk,i},{β̃k,i}

L
(
pi, t,βi, λ̃i, γ̃1, γ̃2}

)
= L

(
p̃i, t̃, β̃2, λ̃i, γ̃1, γ̃2

)
(a)

≤L
(
p̂i, t̂, β̂i, λ̃i, γ̃1, γ̃2

)
=L

(
p̂i, t̂, β̂i, λ̂i, γ̂1, γ̂2,

)
+ L

(
p̂i, t̂, β̂i, λ̃i, γ̃1, γ̃2

)
− L

(
p̂i, t̂, β̂i, λ̂i, γ̂1, γ̂2

)
=L

(
p̂i, t̂, β̂i, λ̂i, γ̂1, γ̂2,

)
+ (λ̃i − λ̂i)

(
Nc∑
k=1

P̂k,i − P̄i

)
+ (β̃i − β̂i)P̂k,i

+ (γ̃1 − γ̂1)

 Nc∑
k=1

(
|ĥk,i|2P̂k,i

σ2
e,hi
P̂k,i + Tk,i

+ 1

)−1

− t


+ (γ̃2 − γ̂2)

[
Nc∑
k=1

(
E

[ℓ]
k,i +D

[ℓ]
k,i,u(P̂k,i − P

[ℓ]
k,i)
)
− t

]
, (I.7)

where inequality (a) is due to the fact that {p̃i, β̃2, t̃} is the global minimizer of the

Lagrangian for the given set of dual variables {λ̃i, γ̃1, γ̃2}. Next, by substituting the
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optimality condition for t, i.e., γ2 = 1− γ1, into the (I.7), we get

g(λ̃i, γ̃1, γ̃2) ≤ L
(
p̂i, t̂, β̂i, λ̂i, γ̂1, γ̂2,

)
+ (λ̃i − λ̂i)

(
Nc∑
k=1

P̂k,i − P̄i

)
+ (β̃i − β̂i)P̂k,i

+ (γ̃1 − γ̂1)

 Nc∑
k=1

(
E

[ℓ]
k,i +D

[ℓ]
k,i,u(P̂k,i − P

[ℓ]
k,i)
)
−

Nc∑
k=1

(
|ĥk,i|2P̂k,i

σ2
e,hi
P̂k,i + Tk,i

+ 1

)−1
 . (I.8)

According to the de�nition of subgradient [101], it can be veri�ed that
∑Nc

k=1

[
D

[ℓ]
k,i,u(Pk,i−

P
(ℓ)
k,i )−E

[ℓ]
k,i,u −

(
|ĥk,i|2Pk,i

Ak,i,uPk,i+Tk,i
+1

)−1]
is a subgradient of γu, u = 1, 2. Consequently,

we can use the subgradient method in (5.37) to obtain the optimal dual variables.

This completes the proof.
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Proof of Corollary 5.1

Consider the KKT conditions for the original Lagrangian in (I.2) as follows

−γ3|ĥk,i|2Tk,i[
(|ĥk,i|2 + σ2

e,hi
)Pk,i + Tk,i

]2 + λi +
2∑

u=1

γuD
[ℓ]
k,i,u − βk,i = 0, (J.1a)

1−
3∑

u=1

γu = 0, (J.1b)

λi(
Nc∑
k=1

Pk,i − P̄i) = 0, (J.1c)

βk,iPk,i = 0, (J.1d)

γ3

 Nc∑
k=1

(
|ĥk,i|2Pk,i

σ2
e,hi
Pk,i + Tk,i

+ 1

)−1

− t

 = 0, (J.1e)

γu

[
Nc∑
k=1

(
E

[ℓ]
k,i,u +D

[ℓ]
k,i,u(Pk,i − P

[ℓ]
k,i)
)
− t

]
= 0, u = 1, 2. (J.1f)

Now, we investigate whether the constraints (5.35b) and (5.35c) are active simultane-

ously at the optimal point. In other words, we are interested in whether the optimized

MSEs of three consecutive hops are equal. Note that due to (J.1b), γu should take val-

ues between zero and one. First, we observe that γ3 = 1, or equivalently, γ1 = γ2 = 0

holds provided that λi = βk,i − Yk,i, where Yk,i =
|ĥk,i|2Tk,i

[(|ĥk,i|2+σ2
e,hi

)Pk,i+Tk,i]2
. Then, by the
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complementary slackness conditions (J.1e) and (J.1f), we have

Nc∑
k=1

(
|ĥk,i|2Pk,i

σ2
e,hi
Pk,i + Tk,i

+ 1

)−1

= t,

Nc∑
k=1

(
E

[ℓ]
k,i,u +D

[ℓ]
k,i,u(Pk,i − P

[ℓ]
k,i)
)
< t, u = 1, 2.(J.2)

This means that the MSE of the three hops can be di�erent at the optimum of

problem (5.35). Next, we observe that γ3 > 0 is required, which can be proved by

contradiction. Assume that at optimality, we have γ3 = 0, then from (J.1a) we can

deduce that βk,i = λi +
∑2

u=1 γuD
[ℓ]
k,i,u,∀k, which is strictly positive due to the fact

that λi ≥ 0, D
[ℓ]
k,i,1 > 0 if σ2

e,li
> 0, D

[ℓ]
k,i,2 > 0 if σ2

e,gi
> 0, and that γ1 + γ2 = 1 > 0.

From the complementary slackness condition (J.1d), we obtain Pk,i = 0,∀k, i.e., there

is no transmission on the ith hop. Since γ3 = 0, by (J.1e) it follows that

Nc∑
k=1

(
|ĥk,i|2Pk,i

σ2
e,hi
Pk,i + Tk,i

+ 1

)−1

= Nc < t, (J.3)

where we have substituted Pk,i = 0,∀k. On the other hand, since γ1 + γ2 ≥ 0, at

least one of γ1 and γ2 should be strictly positive. Assume that γ1 is positive, we have

from (J.1f) that

Nc∑
k=1

(
E

[ℓ]
k,i,1 +D

[ℓ]
k,i,1(Pk,i − P

[ℓ]
k,i)
)
=Nc −

Nc∑
k=1

(
Bk,i,1

σ2
e,li
P

[ℓ]
k,i + Ck,i,1

+D
(ℓ)
k,i,1P

(ℓ)
k,i

)
= t < Nc.

(J.4)

It is clear from (J.3) and (J.4) that there is a contradiction for the value of t. There-

fore, we conclude that γ⋆3 > 0. From the complementary slackness condition (J.1e),

it can be inferred that the MSE in the ith hop always equals t, which is always larger

than or equal to the MSEs of the (i− 1)th and (i− 2)th hops due to the constraint

in (5.35b). Note that although the MSE of the (i− 1)th hop is not necessarily larger
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than that of the (i−2)th hop, the recursive nature of the AO algorithm will guarantee

that the MSEs in the later hops are always larger than those in the earlier hops after

the convergence of the algorithm, i.e., the ith hop will always have a larger MSE than

the (i− 1)th hop, i = 2, . . . ,M .
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