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Abstract

This thesis considers simultaneous wireless information and power transfer (SWIPT) in multi-

user multiple-input multiple-output (MIMO) systems where a transmitter serves an information

receiver (IR) and multiple energy harvesting receivers (ERs). It is foreseen that SWIPT technol-

ogy will serve as a key to unlock the potential of Internet-of-things (IoT) in the fifth-generation

(5G) communication systems, via supplying wireless energy to energy limited wireless de-

vices. This thesis aims to design a resource allocation algorithm to maximize the achievable

rate of IR. The design is formulated as a non-convex optimization problem which takes into

account the minimum required energy at each ER, the maximum transmit power at the trans-

mitter, and the need of secrecy communication measure against potential eavesdropping. Due

to non-convexity of the problem, in Thesis A, maximum ratio transmission (MRT) is adopted

as a suboptimal resource allocation policy to depict the non-trivial trade-off between average

total system data rate and average total system harvested power. In Thesis B, semidefinite pro-

gramming relaxation (SDR) is applied to solve the non-convex optimization problem optimally.

Simulation results show that a substantial performance gain can be achieved by the proposed

optimal scheme compared to the MRT-based suboptimal scheme.
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Chapter 1

Introduction

With the rapidly growing amount of wireless communication devices and appliances such as

automated control in smart cities, monitoring in e-health systems and remote security sensing

[1], it is expected that the amount of wireless devices would reach up to 50 billion by 2020

around the world [2]. As a result, providing much more than faster data rate, defined as the

unifying connectivity fabric, 5G also targets on enhancing mobile broadband (e.g. tactile in-

ternet), connecting massive Internet-of-Things (IoT) (e.g. wireless wearables) and enabling

new mission-critical controls (e.g. autonomous vehicles). Among all 5G emerging technolo-

gies (e.g. massive multiple-input multiple-output (MIMO), millimeter wave [3] etc.) thriving

to fulfill stringent quality of service (QoS) requirements, MIMO technology is used to reduce

the transmit power in order to satisfy the rocketing demand of energy in both transmitters and

receivers [4]. Apart from offering extra degrees of freedom to improve flexibility in resource

allocation to reduce energy cost, MIMO can also enable communication security by generating

energy signal for jamming the channels of potential eavesdroppers deliberately. Besides, in-

formation signal beamforming can be adopted to reduce the potential information leakage [5].

Due to high computational complexity at receivers, traditional MIMO architecture may not be

suitable for portable devices. As an alternative solution, multi-user MIMO with a multiple-

antenna transmitter serving multiple receivers equipped with single-antenna [6], [7], is adopted

as it can shift the signal processing burden from receivers to the transmitter, and allows simple

designs and cheap receiver structure.

In practice, various QoS requirements of wireless communication networks under 5G back-

ground also deserve our attention. In particular, an increasing number of mobile devices such
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as wireless sensors for IoT applications is gaining their popularity among the industry and

becoming essential parts of wireless communication networks recently [8]. As most of these

devices are battery-powered with finite battery capacity, inconvenience of battery charging or

replacement are few of the major obstacles in realizing practical IoT implementation [9]. Con-

sequently, energy harvesting technology has been proposed as a promising solution to provide

ubiquitous and self-sustainable networks. Although traditional energy harvesting technology,

which collects energy from natural renewable energy sources (e.g. tide and solar), enables self-

sustainable networks to a certain extent, it is usually climate-dependent and location-dependent,

which makes renewable energy a perpetual but intermittent energy supply [10]. Therefore, di-

rectly integrating conventional energy harvesting technology into communication devices may

result in unstable communication service e.g. [10], [11]. Instead of exploiting renewable en-

ergy for energy-limited systems, a “promising” solution , radio frequency based (RF-based)

energy harvesting is considered as a building block for enabling sustainable wireless sensor

systems to unlock the potential of networks in IoT [12, 13, 14].

1.1 Background

Proposed by Nikola Tesla back in the late nineteenth century, wireless power transfer (WPT)

was first implemented by a magnifying transmitter based on the Tesla coil transmitter [15]. Its

ultimate goal was to broadcast wireless power to any location around the globe avoiding the

shortcomings of conventional cabling such as being unaffordable and inconvenient to deploy

[15]. Under massive impact of the industrial revolution in late 1800s, WPT was originally de-

signed to apply on high-power machines. However, with public health concern about harmful

electromagnetic radiation caused by large power emission from the transmit tower [1], progress

on bringing WPT into practice was hindered in the last century. Besides, as antennas in rea-

sonable size are required in practical design to provide mobility for portable communication

devices, the wireless signal is modulated in a high carrier frequency resulting in severe path

loss, which leads to a relatively small amount of collected power at the receiver side. Therefore,

low power transfer efficiency is one of the challenges in implementing WPT [16]. Prevented

by these two major challenges, WPT was not able to realize its further development until ad-

vancing silicon technology and wireless communication theory bring it back to life recently

[1]. Therefore, collecting energy from background RF electromagnetic (EM) wave transmitted

from ambient transmitters is feasible via WPT technologies. In fact, various proof-of-concepts
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experiments and prototypes have been developed. For example, a commercial development

kit manufactured by [17], has demonstrated that a sufficient amount of harvested power (e.g.

26 µW) is enough to power up wireless IoT small sensors such as a LCD meter. Since then,

RF-based energy harvesting has been a focus in wireless charging which benefits the industry

with more possibilities on product design, usability, and realizability [18].

1.2 Communication Security

In the computer networking’s Open System Interconnect (OSI) model, the physical layer is the

lowest and also the first layer. Most of the conventional cryptographic encryption methods to

ensure secure communication implemented in the upper layers such as the application layer to

ensure secure communication [19]. Imperfection in physical layer such as the potential risk

of noise and fading used to “hide” messages from an eavesdropper calls for security solutions

at the physical layer to enhance communication security mechanisms [20]. Besides, RF-based

data transmission relies on the exchange of perfect secret key information which is not practi-

cal in some of wireless communication networks [1]. Furthermore, this secret-key cryptogra-

phy assumes that potential eavesdroppers have limited computational capabilities, which might

pose a future threat on itself as computers with ultra-high computational capabilities would be

the developing trend (e.g. quantum computers). As an alternative or a complementary solution,

physical layer security aims at protecting secure communication by making use of wireless

communication channels’ physical natures (e.g. channel fading, etc.) [21]. The secrecy rate

defining the actual data rate received by the target IR is as follows:

SecrecyRate = [A−B]+, (1.1)

where A is the capacity of the channel between the desired transmitter and receiving IR, while

B denotes the capacity between the legitimate transmitter and the eavesdropper.

On the other hand, severe path loss is an inevitable consequence of adopting high carrier fre-

quency of RF wave to maintain the transmit antennas in a reasonable size [22]. Hence, when

information signal transmit power is increased on purpose to improve the WPT by compen-

sating this loss, the susceptibility of eavesdropping by ERs would also be increased due to the

broadcast nature of wireless channels which arouses the security issue. In other words, commu-

nication security problem is more prominent in wireless-powered communication systems [1].

In order to fulfill these requirements, various methods such as energy beamforming or artificial
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jamming have been proposed. In particular, artificial jamming is an effective solution which is

generated on purpose for degrading the quality of eavesdroppers’ channels, which also helps

facilitate an efficient energy transfer to ERs [23].

1.3 Receiver Structure

Passive band 
pass filter

Rectifying 
circuit

Energy harvester

Information receiver

RF wave

Power splitting unit

Time

Information

Energy

Passive band 
pass filter

Rectifying 
circuit

Energy harvester

Information receiver

RF wave

Energy
 storage

Time

Information Energy Information

Energy
storage

Time switching receiver Power splitting receiver

(a) (b)

Figure 1.1: Two different receivers hardware structure; (a) Time-Switching receiver; (b) Power-

Splitting receiver.

Different feasible architectures of EH receivers to enable both energy and information trans-

mission are discussed here [5, 24, 25, 26].

• Time Switching (TS) Receiver: The working principle of TS receivers is to divide a

transmission slot into two orthogonal time frames with one for pure energy harvesting

and another one for pure information receiving, cf. Figure 1.1(a). Although this type

of receiver is relatively simple to implement in terms of hardware circuitries, it has a

stringent requirement on scheduling of information/energy and accurate timing synchro-

nization [27].

• Power Splitting (PS) Receiver: The working principle of PS receivers is to spilt the re-

ceived signal into two different power streams via the introduction of a power splitter,

cf. Figure 1.1(b). Specifically, one stream is fed to an energy harvester to harvest power

while the other one is connected to an IR for signal detection. Although this type of

receiver provides a high flexibility in striking a balance between information decoding

and energy harvesting in SWIPT systems, extra noise would be introduced into the sys-

tem due to possible insertion loss or imperfect power splitting. Besides, power splitter is
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generally an active device requiring additional energy supply, despite an PS receiver is

an energy harvester itself [28].

• Separated Receiver: Each receiver is only responsible for either harvesting energy or

receiving information [29]. Compared with TS and PS receivers, the physical structure

of separated receivers which requires only off-the-shell components in terms of hardware

architecture makes it relatively simpler for implementation.

While advantages and disadvantages of these two types of receivers are manifest, separated

receiver is adopted in this thesis. In comparison, separated receiver requires only off-the-shell

components in terms of hardware architecture which makes it simple to implement in practice.

1.4 Notation

Key mathematical notations are given in Table 1.1. Boldface lower and capital case letters

are used to denote vectors and matrices, respectively. Rank(A), Tr(A), and AH are the rank,

the trace, and Hermitian transpose of matrix A, respectively. A � 0 means A is a positive

semi-definite matrix. HN represents a set of Hermitian matrix. CN×M and RN×M represent all

N×M sets with complex and real entries, respectively. E{·} denotes statistical expectation.

The circularly symmetric complex Gaussian (CSCG) distribution is represented by CN (m,ΣΣΣ)

with mean vector m and covariance matrix ΣΣΣ.

Table 1.1: Nomenclature adopted in this report.
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Chapter 2

System Model

We have one transmitter equipped with NT antennas, one IR, and J energy harvesting receivers

(ERs), with both the IR and ERs being single-antenna devices in a downlink SWIPT system

[21], cf. Figure 2.1. In the following, we assume that both the transmitter and receivers know

the perfect channel state information (CSI) for resource allocation.

In the considered SWIPT model [9], all receivers are separated receivers in terms of receiver

architecture. Viewing from the hardware point of view, off-the-shell components for EH circuit

and information decoding circuit can be used for implementation [1]. In our system model,

IR can only receive information while ERs can either harvest power or eavesdrop information,

which are served by the same transmitter.

Transmitter

Information receiver 

Energy harvesting receiver 2
(Potential eavesdropper)

Energy harvesting receiver 1
(Potential eavesdropper)

Figure 2.1: A downlink SWIPT model with one IR and J = 2 ERs. The ERs also act as

potential eavesdroppers eavesdropping information transmitted from the transmitter to the IR.

The following parts in this thesis are presented as follows. In Section 2.2.1, pure energy beam-
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forming is considered which is followed by Section 2.2.2, where we only consider informa-

tion beamforming. With communication security taken into account, Section 2.2.3 considers

SWIPT beamforming with both energy and information transmission.

2.1 Channel Model

2.1.1 Transmitted Signal

With energy signal adopted, the transmit signal vector x is given here as

x = ws+wE, (2.1)

where wE is a pseudo-random energy signal and modeled as a complex Gaussian random vector

with zero-mean and covariance matrix WE , i.e., wE ∼ CN (0,WE), w is the beamforming

vector of the information signal, and s is the information signal.

2.1.2 Received Signals

We consider slow time-varying frequency flat communication channels. In a single time frame,

the transmitter transmits energy and information to receivers concurrently. With the transmitted

signal x applied, the signals received at IR and ER j ∈ {1, . . . ,J} are given by

y = hH(ws+wE)+n and (2.2)

yER j = gH
j (ws+wE)+nER j ,∀ j ∈ {1, . . . ,J}, (2.3)

respectively, where hH , and gH
j are channel vectors between the transmitter and IR, transmitter

and ER j, respectively. Both vector variables capture the impact of small scale fading, path

loss, and large scale fading of the associated channels [30]. n,nER j are additive white Gaussian

noise (AWGN) of IR and ER j from the receiving antenna, respectively, with zero-mean and

variance σ2
ant and σ2

ant j
, respectively.

10



2.2 Problem Formulation

2.2.1 Energy Beamforming

In this section, we only consider energy transmission with the generated energy signal to facil-

itate WPT from the transmitter to the ERs. Figure 2.2 shows the block diagram of an ER. Since

RF-based EH circuits can be implemented via various hardware architectures [31], we do not

assume a specific hardware design. Instead, we adopt an information theoretic approach which

can isolate the proposed beamforming design from any particular hardware implementation.

We also assume without loss of generality that E{|s|2} = 1. Without considering information

transmission, the transmitted signal is given as x = wE, the harvested energy at ER j, ΦLinear
ER j

,

is typically modelled by the following linear model [32], [10]:

Φ
Linear
ER j

= η jPER j , (2.4)

PER j = E{|gH
j x|2} (2.5)

= Tr
(
E{wEwH

E }g jgH
j

)
(2.6)

= Tr
(

WEg jgH
j

)
, (2.7)

cf. equation (2.4), where η j ∈ [0,1] is the RF-to-electrical energy conversion efficiency, WE is

the transmit covariance matrix of the energy signal and PER j denotes the received power from

the channel.

Passive band
pass filter Rectifying circuit

Output to load

RF-to-DC power conversion

RF wave RF energy harvesting receiver

Figure 2.2: Block diagram of an ER.
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From ERs perspectives, we can formulate Problem 1:

Problem 1. Total Harvested Power Maximization

maximize
WE∈HNT

Tr(WEG) (2.8)

s.t. C1 : Tr(WE)≤ Pmax,

C2 : WE � 0 .

where Pmax is the maximum transmit power budget offered by the transmitter and

G = ∑
J
j=1 η jg jgH

j represents the equivalent channel between the transmitter and J ERs.

In Problem 1, we target at maximizing the total harvested power of ERs while guaranteeing the

total transmit power is no larger than the maximum transmit power budget.

2.2.2 Information Beamforming

In this section, we only consider information transmission between the transmitter and the

IR. Without considering energy transfer, the transmitted signal is given by x = ws. Similar

to the case of pure energy transfer, it is assumed that without loss of generality which means

E{|s|2} = 1. Indicating how much information is successfully transmitted to the IR from the

transmitter, the achievable rate (bit/s/Hz) between the transmitter and the IR is given by [33]

R = log2

(
1+

Tr(WH)

σ2
ant +σ2

s

)
, (2.9)

where W is the covariance matrix of the information signal and the term Tr(WH)

σ2
ant+σ2

s
represents the

signal-to-noise ratio (SNR) of the IR.
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From the IR point of view, the achievable rate maximization design can be formulated as prob-

lem below:

Problem 2. Achievable Rate Maximization

maximize
W∈HNT

R = log2

(
1+

Tr(WH)

σ2
ant +σ2

s

)
(2.10)

s.t. C1 : Tr(W)≤ Pmax,

C2 : W� 0,

C3 : Rank(W) = 1.

In Problem 2, we try to maximize the achievable data rate of IR while guaranteeing the transmit

power from the transmitter is no larger than the transmit power budget.

2.2.3 SWIPT Beamforming

In this section, we consider the SWIPT system with both information and energy transfer. In

particular, the transmit signal is given as x = ws+wE when information and energy transmis-

sion are considered. For ERs, the total harvested power is to be maximized while for the IR, the

achievable data rate is to be maximized. However, it is possible for ERs to eavesdrop informa-

tion transmitted from the transmitter to the IR. As a result, to guarantee secure communication,

the achievable data rate of ER j should be below a tolerable level.

Problem 3. Achievable Rate Maximization [Generalization]

maximize
W,WE∈HNT

R = log2

(
1+

Tr(WH)

σ2
ant +σ2

s

)
(2.11)

s.t. C1 : Tr((W+WE)G)≥ Pmin,

C2 : Tr(W+WE)≤ Pmax,

C3 : RER
j ≤ RER

tol ,∀ j ∈ {1, . . . ,J},

C4 : W� 0,

C5 : WE � 0,

C6 : Rank(W) = 1.
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where RER
j = log2

(
1+ Tr(WG j)

Tr(GjWE)+σ2
ant+σ2

s

)
is the achievable rate of ER j, C1 means the total

system harvested power should be no less than Pmin, the minimum required total system power

transfer, C2 denotes the total system transmit power should be no larger than Pmax, the max-

imum transmit power budget offered by transmitter, C3 constrains the the achievable rate of

ER j such that it is smaller than RER
tol , the maximum tolerable achievable rate of ER j, and the

highlighted terms are non-convex functions.
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Chapter 3

Resource Allocation Design

3.1 Suboptimal Solution

As Problem 3 is a generalization of both Problems 1 and 2 with security issue taken into ac-

count. In fact, once the structure of the optimal beamforming for Problem 3 is derived, it is able

to be used to obtain the optimal solution of Problems 1 and 2. However, with two non-convex

terms in Problem 3, it is difficult to directly derive the optimal solutions for Problem 3. As in

non-convex functions, there might be multiple local maximum points [34]. In general one can

the apply exhaustive search method to find the globally optimal solution. However, the compu-

tational complexity grows exponentially with respect to the number of antennas and ERs which

is not suitable for medium and large size of systems. In the following, we first consider some

simple suboptimal designs by using MRT [35]. Then we design the optimal solution based on

SDP-relaxation.

MRT-based Suboptimal Solution:

In fact, the key to solve the problem suboptimally is to transform the non-convex problem

into a convex one and then solve the transformed problem via existing convex optimization

techniques. The suboptimal algorithm is presented in Table 3.1 on the top of next page. After

the first two steps, we already use MRT to convert the non-convex problem into a convex one,

which facilitate the use of CVX, a convex problem solver, for solving the problem [36]. It

is note-worthy that the first two steps of adopting MRT to solve Problem 3 are tantamount to

solving Problem 2 solitarily, as we fix the beamforming direction pointing right the IR to get a

maximum achievable data rate for IR.

15



Table 3.1: Suboptimal Resource Allocation Algorithm

Algorithm Suboptimal Optimization
1: Initialize the minimum required total system power transfer Pmin = 0 and δ is a small

positive constant

2: repeat {Loop}

3: Adopt a fixed beamforming direction pointing at h∗
‖h‖

4: Optimize the transmit power of the beamforming vector

5: Solve Problem 3 numerically with convex problem matlab solver, e.g. (CVX), [36], [37]

6: if Problem 3 is still feasible then

7: Pmin = Pmin +δ

8: end if

9: until Problem 3 becomes infeasible

3.2 Optimal Solution

Problem 3 is non-convex because of constraint C3 and rank-one matrix constraint C6. SDP re-

laxation is applied to derive a tractable problem formulation by relaxing constraint 6 Rank(W)=

1 from Problem 3 [38]. Therefore, the studied problem changes into a convex SDP problem

and we can apply convex problem solver CVX to solve it [39]. Before we can directly apply

CVX for problem solving, we need to study the tightness of the SDP relaxation in Theorem 1.

Problem 3. Achievable Rate Maximization [Generalization]

minimize
W,WE∈HNT

−Tr(WH) (3.1)

s.t. C1 : Pmin−Tr((W+WE)G)≤ 0,

C2 : Tr(W+WE)−Pmax ≤ 0,

C3 : Tr(WG j)− (2RER
tol −1)Tr(G jWE +σ

2
tol)≤ 0,∀ j ∈ {1, . . . ,J},

C4 : −W� 0,

C5 : −WE � 0,

((((((((((
C6 : Rank(W) = 1.
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Theorem 1: We assume that channels H and G j are statistically independent and Equation

3.1 is feasible. The optimal information beamforming matrix W is rank-one with probability

one, i.e. Rank(W) = 1.

Proof 1: Please refer to Appendix B. �

Thus, the applied SDP relaxation is proven tight as long as the channel state assumptions in

Theorem 1 are fulfilled. Therefore, the considered information beamforming is optimal for the

maximization of achievable data rate under the considered framework [40].
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Chapter 4

Simulation

4.1 Simulation Parameters

In this section, numerical examples are used to present us the non-trivial trade-off between

the total system data rate and the total system harvested power for the considered SWIPT

model. Unless further specified, Table 4.1 below lists some important parameters adopted in

the simulation. In the following scenario, the IR is placed 100 meters away from the transmitter

while all the ERs are 10 meters away from the transmitter.

Table 4.1: Parameters in simulation.
Centre frequency of carrier signal 915 MHz

Bandwidth 200 kHz

Gain of transceiver antenna 10 dBi

Transmit antenna number NT 3,6,9

Noise power σ2 −95 dBm

Maximum transmit power Pmax 1 W

gj fading distribution Ricean with Ricean factor 3 dB

h fading distribution Rayleigh
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4.2 Simulation Results

Figure 4.1 shows the non-trivial trade-off between the total system data rate and the total system

harvested power for the SWIPT model under the proposed suboptimal beamforming scheme.

In general, the area enclosed by the curve of a certain transmit antenna number is the achiev-

able region which means that all points lie inside or on the curve can be achieved by tuning the

relevant system parameters. By comparing intersecting points of both y and x-axis for different

transmit antenna numbers, it can be observed that with increasing number of transmitter anten-

nas, the maximum total system data rate of IR and the maximum total system harvested power

of ERs increase due to extra spatial degrees of freedom supplied by multiple transmit antennas

which improve the accuracy in beamforming. On the other hand, by making comparison be-

tween two enlarged regions (i.e. region between NT = 3 and NT = 6, region between NT = 6 and

NT = 9), it is manifest that with increasing number of transmitter antennas, the increasing rate

of the enlarged region decreases due to channel hardening [33].
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Figure 4.1: Average total system data rate (bit/s/Hz) versus average total system harvested

power (dBm).

19



Figure 4.2 below displays a comparison of the non-trivial trade-off between the total system

data rate and the total system harvested power for the SWIPT model under proposed subopti-

mal and optimal beamforming scheme. It can be verified from the graph that with the optimal

beamforming design the achievable region enclosed by the optimal curve of a certain NT is fur-

ther enlarged due to its more flexibility in beamforming. It can also be seen that the suboptimal

scheme cannot achieve the maximum system data rate as communication security is taken into

account.
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Figure 4.2: Average total system data rate (bit/s/Hz) versus average total system harvested

power (dBm).

Figure 4.3 and Figure 4.4 below show the relationships between the average data rate, the

average total harvested power of the system, and the average total transmit power, respectively.

Both the average data rate of the system and the average total system harvested power increase

when there is more transmit power available in the system. This is because a larger amount

of radiated power is available in the system for the IR to receive and ERs to harvest, which

means more resources for IR and ERs to utilize [21]. In particular, in Figure 4.4, by making

comparison between two performance gains, the enlarged regions (i.e. region between NT = 8

and NT = 10, region between NT = 10 and NT = 12), it is manifest that with increasing number

of transmitter antennas, the increasing rate of the enlarged region decreases due to channel

hardening [33].

20



30 32 34 36 38 40 42 44 46
Average total transmit power (dBm)

9

10

11

12

13

14

15

16

17

A
ve

ra
ge

 to
ta

l s
ys

te
m

 d
at

a 
ra

te
 (

bi
t/s

/H
z)

Optimal Scheme, N
T
 = 12

Optimal Scheme, N
T
 = 10

Optimal Scheme, N
T
 = 8
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Figure 4.5 illustrates a relationship between the average data rate of the system and the aver-

age total transmit power with different numbers of ERs present in the system. Under a given

amount of total transmit power, the average total system data rate decreases when there are

more ERs in the system. In fact, when there are more ERs in the system, both the QoS re-

quirements on communication security and minimum required harvested power become more

stringent. Particularly, the transmitter is forced to steer the direction of information signal to-

wards the ERs. This will decrease the received signal strength of the desired signal at the IR.

Besides, the transmitter would also increase the transmit power of energy signal to neutralize

the higher potential of information leakage, which leads to a further reduction in the data rate.

Furthermore, the proposed suboptimal scheme is able to guarantee both the QoS requirements

of min. required harvested power and communication security.
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Chapter 5

Future Development

Upon the completion of my thesis B, here are some possible future developments. The first

one is to consider the use of non-linear EH model. Recently, it has been shown on simulation

results that non-linear EH model is closer to real-life measured data than linear EH model is, as

non-linear EH model can accurately characterize the non-linearity of practical EH circuits [41].

Secondly, an extension can be done on my thesis by considering different types of receivers (e.g.

time-switching receivers and power-splitting receivers) as the receiver type focused in the thesis

is separated receiver. Furthermore, we can extend the current study of perfect CSI to the case of

imperfect CSI [42, 43, 44]. In practice, it is over optimistic in assuming perfect CSI for resource

allocation design. However, the consideration of imperfect CSI would complicate the problem

on hand. Besides, the current multi-user MIMO system can be extended to the massive MIMO

system where further research could focus on improving computational efficiency of precoding

design [45].
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Chapter 6

Conclusion

WPT has been shown to be a feasible solution to enable sustainability of wireless low-power

devices. With extra spatial degrees of freedom and a designed energy signal generation offered

by multiuser MIMO, SWIPT is enabled to provide self-sustainable and secure communication.

In this thesis, we aimed at designing a resource allocation algorithm to ensure secure SWIPT

by considering the linear EH model. We formulated the beamforming design for secure SWIPT

systems as a non-convex optimization problem. Realizing the non-convexity of Problem 3, we

adopted the MRT-based scheme as a suboptimal solution to the optimization problem. By ex-

ploiting SDP-relaxation, we solved the non-convex optimization problem optimally. Then, we

illustrated the performance of the proposed suboptimal algorithm via Matlab simulation. Sim-

ulation results depicted a non-trivial trade-off between achievable data rate of the IR and total

harvested power of the ERs. Besides, advantages offered by equipping more transmit antennas

at the transmitter in enlarging achievable region was demonstrated by our simulation results.

We also observed that with more ERs present in the system, the achieved information rate by

the IR decreases under a fixed amount of transmit power as the constraints on energy harvest-

ing and security become stringent. Additionally, possible future developments on extending

our current work is discussed.
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Appendix A

Appendix A–Optimization in

Communication

Mathematical optimization is a process to select a best decision variable subject to some con-

straints or criterion from few sets of available alternatives [46]. An optimization problem nor-

mally includes maximizing or minimizing an objective function by opting given sets of allowed

inputs systematically and compute the regarding output values of that function [47].

In communication, optimization is often linked to physical meaning, which is a powerful ana-

lytic tool to turn real-life complicated communication systems into discrete mathematical mod-

els for problem solving [48]. For example, it is useful in representing and using system informa-

tion, guaranteeing the requirements from the applications of the information such as accuracy

and throughput are met, regulating competition among users and handling communication be-

tween multiple transmitters and multiple receivers [49]. Optimization can often be seen in this

form:

maximize
x

f(x) (A.1)

s.t. g(x)≤ 0,

h(x) = 0,

where x is the optimization variable and f is the objective function.

After optimization problem formulation based on the real-life scenario of the physical system,

we now look at how to solve an optimization problem. It is widely known that linear pro-

gramming is easy to solve. However, linearity is not the distinguished line between a hard and
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an easy optimization problem, but convexity, which sometimes indicates if this optimization

problem can be solved uniquely and globally, and how we can solve it in a robust, efficient and

distributed way [34].

A.1 Convexity

In the research area of communication system, if the optimization problem is recognized and

proved to be a convex optimization problem which is to minimize a convex function over a

convex set, the local minimum of the objective function f is the global minimum of f over sub-

jected constraints [50]. In other words, the solution of solving a convex optimization problem

is optimal. That’s why it is important to know how to recognize and utilize convex functions.

However, in real life after problem formulation we often encounter some problems which do

not preserve convexity, i.e. non-convex optimization problem, whose locally optimal solutions

might not be the globally optimal ones [51]. In these cases, some techniques are required and

very useful in finding the globally optimal solutions such as SDP-relaxation [52].

A.2 KKT

Under particular circumstances [53], Karush-Kuhn-Tucker (KKT) conditions are sufficient and

necessary for optimality in convex optimization problems. However, KKT conditions become

only necessary when it comes to non-convex optimization problems [54]. In general, plenty

of optimization algorithms can be understood as methods for numerically solving the KKT

equations and inequalities [55]. Let y, u be the dual and x be the primal variables for the

Lagrangian function. Consider applying general KKT conditions on Lagrangian function A.1:

y� 0,u� 0, (A.2)

yg(x) = 0, (A.3)

Of(x)+yOg(x)+uOh(x) = 0, (A.4)

where equation A.3 relates to dual feasibility, and equation A.4 refers to complementary

slackness.
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A.3 SDP Relaxation

SDP relaxation is a technique which can be applied to relax the non-convex rank constraint

in rank-constrained optimization problem [56]. However, by applying SDP in optimization

problems, one can obtain an upper bound of the optimal value of the considered problem as the

rank constraint is removed. In general, the obtained solution by SDP relaxation may not satisfy

the original rank constraint. Hence, there is a need to study the tightness of the SDP relaxation,

which means, in this thesis, we aim at proving that the rank of the primal optimization matrix

variable is one, by exploiting the Lagrangian function of the optimization problem and KKT

conditions [57]. In some cases, SDP relaxation can be proven to be tight and the obtained

solution from the rank-constraint relaxed problem is also the globally optimal solution for the

original problem [58].
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Appendix B

Appendix B–Proof of Theorem 1

Since in Problem B.1 we intend to maximize the achievable data rate of the IR i.e. R =

log2

(
1+ Tr(WH)

σ2
ant+σ2

s

)
which is a logarithmic function, it is equivalent to maximizing Tr(WH)

as other variables are constants unrelated to W. Therefore, by applying SDP relaxation, we can

rewrite Problem B.1 as following:

Problem B.1. Achievable Rate Maximization [Generalization]

minimize
W,WE∈HNT

−Tr(WH) (B.1)

s.t. C1 : Pmin−Tr((W+WE)G)≤ 0,

C2 : Tr(W+WE)−Pmax ≤ 0,

C3 : Tr(WG j)− (2RER
tol −1)Tr(G jWE +σ

2
tol)≤ 0,∀ j ∈ {1, . . . ,J},

C4 : −W� 0,

C5 : −WE � 0,

((((((((((
C6 : Rank(W) = 1.

It can be verified that B.1 is convex and satisfied the Slater’s constraint qualification, the strong

duality holds for B.1 with SDP relaxation applied, solving the dual problem is tantamount to

solving the primal problem. In this section, we study the tightness of the SDP relaxation. To

this end, we prove this by first defining the Lagrangian function:

L = −Tr(WH)−λC1 Tr((W+WE)G)+λC2 Tr(W+WE)

+ λC3 Tr(WG j)−Tr(YW)+∆, (B.2)
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where ∆ represents the variables and the constants that are independent of W and therefore

irrelevant in the proof. Y and λC1, λC2, λC3 are dual variables related to the constraints C4 and

C1, C2, C3, respectively. Now, we can express the dual problem of B.1 with SDP relaxation

applied:

max
Y,λC1,λC2,λC3

min L
W,WE∈HNT

(B.3)

Then, we apply KKT conditions:

Y� 0,λC1,λC2,λC3 ≥ 0, (B.4)

YW = 0, (B.5)

Y =−H+B, (B.6)

where equation B.6 is derived by taking the derivative of the Lagrangian function with respect

to W and B =−λC1G+λC2I+λC3Gj. Equation B.4 is the complementary slackness property

which implies that the columns of matrix W fall into the null space of Y for W 6= 0. Hence, if

we can prove that Rank(Y) = NT−1, the optimal beamforming matrix W is a rank-one matrix.

To obtain the structure of Y, we prove by contradiction that B is positive definite but not posi-

tive semi-definite with probability one which means that B has no null space in the following.

Since YW = 0, YW =−HW+BW = 0. Besides, as by physical meaning the achievable data

rate of IR should be greater than 0, i.e., −HW≺ 0 and by KKT Y� 0, we know that BW 6= 0.

Since we know that W is positive definite, B can only be positive definite i.e. Rank(B) = NT

but not positive semi-definite which enables B to have null space to make BW = 0.

Before we further proceed, we introduce the following rank inequalities

Lemma 1: Let A and B be two matrices with same dimension. The inequality of matrix

Rank(A+B)≥ Rank(A)−Rank(B) holds.

Proof : By basic rule of inequality for the rank of matrix, Rank(A)+Rank(B)≥ Rank(A+

B) with both matrices of same dimension. Thus we have Rank(A+B)+Rank(−B)≥Rank(A).

Since Rank(B) = Rank(−B), we can now prove Lemma 1.
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Now, we can exploit equation B.6 and a transformation from a basic rule of inequality for the

rank of matrix (see Lemma1):

Rank(Y) = Rank(−Y) = Rank(−B+H)≥ Rank(−B)−Rank(H) = NT−1 (B.7)

To satisfy the minimum SINR requirement of IR, W 6= 0 is required. Thus, Rank(Y) = NT−1

and Rank(W) = 1.
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