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Abstract

This paper presents call admission control and bandwidth reservation schemes in wireless cellular networks that have

been developed based on assumptions more realistic than existing proposals. In order to guarantee the handoff

dropping probability, we propose to statistically predict user mobility based on the mobility history of users. Our

mobility prediction scheme is motivated by computational learning theory, which has shown that prediction is syn-

onymous with data compression. We derive our mobility prediction scheme from data compression techniques that are

both theoretically optimal and good in practice. In order to utilize resource more efficiently, we predict not only the cell

to which the mobile will handoff but also when the handoff will occur. Based on the mobility prediction, bandwidth is

reserved to guarantee some target handoff dropping probability. We also adaptively control the admission threshold to

achieve a better balance between guaranteeing handoff dropping probability and maximizing resource utilization.

Simulation results show that the proposed schemes meet our design goals and outperform the static-reservation and

cell-reservation schemes. � 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Future mobile communication systems are re-
quired to support broadband multimedia services

with diverse quality of service (QoS) requirements.
To utilize the radio spectrum efficiently, the cel-
lular architecture is used in wireless networks.
Since mobile users may change cells a number of
times during the lifetime of their connections,
availability of wireless network resources at the
connection setup time does not necessarily guar-
antee that wireless network resources are available
throughout the lifetime of a connection. Thus
users may experience performance degradations
due to mobile handoffs. This problem will be mag-
nified in future micro/pico-cellular networks [10],
where handoff events may occur at a much higher
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rate compared to today’s macro-cellular systems.
Call admission control (CAC) and bandwidth
reservation mechanisms are required to address
this problem. Since forced call terminations due to
handoff blocking are generally more objectionable
than new call blocking, in this paper we consider
Phd, the probability of handoff dropping, as the key
connection-level QoS metric provisioned by CAC
in wireless cellular networks. As it is impractical to
completely eliminate handoff call dropping, the
best one could do is to keep Phd below a target
level. Moreover, maximizing resource utilization
while keeping Pnb, the probability of new call
blocking, below a target value, is another critical
factor for evaluating CAC algorithms.

Based on the above considerations, several
schemes have recently been proposed for CAC
in wireless cellular networks. The guard channel
policy [15] and fractional guard channel policy [16]
determine the number of guard channels reserved
for handoffs by considering just the status of the
local cell. Users are assumed uniformly located in
any cell of the mobile network under these policies.
The distributed CAC scheme [13] considers not
only the status of the local cell but also that of
adjacent cells. The total required bandwidth for
both handoff and existing connections is calculated
under the assumptions of exponentially distributed
channel holding time and perfect knowledge of the
rate of handoff. These assumptions are unrealistic
in real networks. The shadow cluster scheme [11]
estimates future resource requirements in a col-
lection of cells in which a mobile is likely to visit in
the future. Admission control is performed based
on this estimate. However, this proposal lacks a
mechanism to determine the shadow cluster in real
networks, as it assumes either precise knowledge of
user mobility or totally random user movements.

There have also been some research efforts to
predict user mobility. In Ref. [12], the next cell to
which a mobile will move is predicted in an indoor
environment. But this scheme does not estimate
channel holding time and therefore cannot be di-
rectly applied for efficient bandwidth reservation.
In Ref. [5], handoff histories of mobile users are
observed over time, and the mobile’s move-
ment can be predicted by utilizing this observation.
However, in this scheme, prediction of each spe-

cific mobile’s movement is based on the aggregate
history of all users, and may not be accurate for
each individual user.

Under more realistic assumptions, we propose
CAC and bandwidth reservation schemes based on
the probabilistic prediction of each individual
user’s movements. Our mobility prediction ap-
proach is derived from data compression tech-
niques that are both theoretically optimal and
good in practice. Our motivation is recent research
work in computational learning theory [3,18],
which has shown that prediction is synonymous
with generalization and data compression. Similar
prediction approaches were applied previously to
the problems of prefetching in large-scale database
system [21] and location management of mobile
users in cellular networks [2]. Although the pos-
sibility of applying these approaches to QoS
provisioning was mentioned in Ref. [2], no fur-
ther development was reported. In this paper, we
extend that idea to the context of CAC and
bandwidth reservation. Our mobility prediction
approach is novel in that we predict not only to
which cell a mobile terminal will handoff but also
when the handoff will occur.

The rest of this paper is organized as follows.
System models employed in this paper that are
more realistic than those considered previously in
similar work are presented in Section 2. In Section
3, we describe and analyze our novel mobility
prediction scheme. Based on the mobility predic-
tion, efficient CAC and bandwidth reservation
schemes are proposed in Section 4. Simulation
results are presented and discussed in Section 5
demonstrating the effectiveness of our approach.
Finally, we conclude this study in Section 6.

2. Model description

We consider a mobile communication network
with a cellular wireless infrastructure. A handoff
could fail due to insufficient bandwidth in the new
cell, causing the handoff call to be dropped. In this
paper, we do not consider (1) soft handoff in code
division multiple access systems [20], in which a
mobile can communicate with two base stations
simultaneously; (2) delay-insensitive applications,
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which can tolerate long handoff time delay when
there is momentarily insufficient bandwidth. We
describe the network topology, channel holding
time distribution and user mobility pattern con-
sidered in our study in the following subsections.

2.1. Network topology

In solving the CAC and bandwidth reservation
problems, most researchers model cellular net-
works by structured graphs. Circular, hexagonal
or square cell configurations are often used in two-
dimensional models, and a linear model is com-
monly used in the one-dimensional case [11,13].
Although these network topologies simplify the
analyses, they do not accurately represent a real
cellular network, where the number of neighboring
cells varies from cell to cell, and the shape and size
of each cell may vary depending on the receiver
sensitivity, antenna radiation pattern of the base
station, and the propagation environment.

Our network topology model is not restricted to
a structured cell configuration such as hexagonal
or linear. We use a generalized graph model to
represent the actual cellular network. The network
is modeled as a connected graph G ¼ ðV ;EÞ, where
the vertex-set V represents the set of base stations,
each serving a single cell, and the edge-set E rep-
resents the adjacency between pairs of cells. Fig. 1
shows an example of a generalized graph model of
a network representation with vertex-set V ¼ fa; b;
c; . . . ; lg and edge-set E ¼ fða; bÞ; ða; cÞ; . . . ; ðk; lÞg.

2.2. Channel holding time

The channel holding time is defined as the time
during which a new or handoff call occupies a
radio channel in a given cell, and it is dependent on
the mobility of the user. While this is similar to the
call holding time in the fixed telephone network, it
is often a fraction of the total call duration in a
wireless cellular network and needs not have the
same statistical properties [7,8]. Most research
work on CAC and bandwidth reservation assumes
the channel holding times in all cells are indepen-
dent and identically distributed (i.i.d.) according
to an exponential distribution [6,11,16]. Like the
structured models for network topology, i.i.d. ex-
ponential distribution simplifies the analyses, but
does not give an accurate representation of the real
characteristics of cellular networks.

We assume that the channel holding time fol-
lows a general distribution, which allows the i.i.d.
exponential channel holding time assumption to
be relaxed.

2.3. User mobility pattern

The symmetric random walk model has been
quite popular among researchers in characterizing
individual movement behavior [13,16]. In such a
model, a mobile user will move to any one of the
neighboring cells with equal probability after
leaving a cell. This model does not take into ac-
count the trajectory and channel holding time of
a mobile.

In cellular mobile networks, the mobility of a
user during a call can be represented by a sequence
of events, N ;H1;H2;H3; . . . ;Hn; . . . ;E, where N
represents the event that a new call is admitted, Hn

represents the event of a mobile’s nth handoff and
E represents the call termination event. Note that
in some cases, there are no handoff events during
the lifetime of a call and thus no Hn in the sequence
of events. In this sequence, N ¼ ðm; i; tÞ, where m
represents the mobile requesting the call, i repre-
sents the original cell and t represents the time
when the call arrives; Hn ¼ ðTk; iÞ, where Tk is the
relative time elapsed since the beginning of the call
and i is the cell to which the mobile will handoff;
and E ¼ ðTkÞ. We quantize the relative time intoFig. 1. Modeling an actual cellular network.
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slots of equal duration T , a design parameter. So,
Tk is the kth time slot since the beginning of the
call.

In general, a mobile user usually travels with a
specific destination in mind. So, the mobile’s lo-
cation and channel holding time in the future
are likely to be correlated with its movement his-
tory. Therefore, in our model, the sequence of
events N ;H1;H2;H3; . . . ;Hn; . . . ;E is assumed to
be generated by an mth order Markov source, in
which the states correspond to the contexts of the
previous m events. The probabilities of possible
next events can depend on a list of m previous
events.

3. Mobility prediction

We derive probabilistic prediction of user mo-
bility based on the accumulated behavior history
of each specific mobile. The rationale behind the
prediction scheme is the observation that a user’s
mobility pattern is a reflection of the routines of
his/her life and most mobile users have favorite
routes and habitual movement patterns. This re-
petitive nature of mobility patterns suggests the
stationarity of a sequence of events generated by
an mth order Markov source. Then, we can learn
those patterns from the mobility history of the
respective user and predict the user’s next move
when those patterns reappear.

Similar prediction approaches is used in Ref. [2]
to solve the location management problem in cel-
lular networks. The proposed method records only
the locations of mobile users to predict their future
locations [2]. This method cannot be used directly
to derive efficient CAC and bandwidth reservation
schemes. Although the possibility of using this
method for QoS provisioning in cellular networks
is mentioned in Ref. [2], as far as we know our
proposal is the first to realize this possibility. The
novelty of our proposal compared to the previous
proposal [2] is that we record both the locations
and the handoff times of the mobile users. There-
fore, we can derive a novel prediction method that
predicts not only where a mobile user will handoff
but also when the handoff will likely occur. Based
on this novel prediction method, we further pro-

pose CAC and bandwidth reservation schemes
that are more efficient than existing methods.

The prediction approach is motivated from
optimal data compression methods. In data com-
pression, a data set (e.g., a text file or an image) is
decomposed into a sequence of events, and en-
coded using as few bits as possible. Thus, short
codewords should be assigned to more probable
events and longer codewords should be assigned to
less probable events. So, in order to compress data
well, one has to be able to predict future data well,
and hence a good data compressor should also be
a good predictor. If a data compressor expects
a certain character to be next with a very high
probability, it will assign that character a relatively
short code. If the overall code length is small, then
the predictions of the data compressor must have
been good.

3.1. Optimal data compression

In this paper, we develop our mobility predic-
tion algorithm based on the Ziv–Lempel algo-
rithms for data compression, which are both
theoretically optimal and good in practice. The
original word-based Ziv–Lempel encoder [23]
breaks the input string into block-to-variable
codes. The algorithm parses each block of size n in
a greedy manner into distinct substrings x1;
x2; . . . ; xn with the following property. For each
jP 1, substring xj without its last character is
equal to some previous substring xi, where 06
i < j. Substring xj is encoded by the value i, using
dlgðj� 1Þe bits 2, followed by the ASCII encoding
of the last character of xj, using d lg ae bits, where
a is the size of the input sequence’s alphabet. Be-
cause of this prefix property, the substring parsed
so far can be efficiently maintained in a trie [9].

The equivalent character-based Ziv–Lempel al-
gorithm builds in an on-line fashion a probabilistic
model (or a trie) that feeds probability information
to an arithmetic coder [22], which encodes a se-
quence of probability of p using lgð1=pÞ ¼ � lg p
bits. We show by an example how these algorithms
work.

2 The base of the logarithm is 2 in this paper.
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Example 1. Let the alphabet be fa; b; cg. We
consider an input string ‘‘aababcbaccababa. . .’’
that the Ziv–Lempel encoder parses as ‘‘ðaÞðabÞ-
ðabcÞðbÞðacÞðcÞðabaÞðbaÞ . . . :’’ Each substring in
the parse is encoded as a pointer followed by an
ASCII character. In particular, the match ‘‘ab’’ of
the seventh substring ‘‘aba’’ is encoded using
dlgð6Þe bits with a value 2, since ‘‘ab’’ matches
the second substring, and the last character ‘‘a’’
is encoded using dlg 3e bits, since the alphabet size
is 3.

In the character-based version of Ziv–Lempel
encoder, a trie is built when the previous substring
ends. The trie at the start of the ninth substring is
pictured in Fig. 2. There are five previous sub-
strings beginning with an ‘‘a’’, two beginning with
an a ‘‘b’’ and one beginning with a ‘‘c’’. The
character ‘‘a’’ is therefore assigned a probability of
5
8
at the root, ‘‘b’’ is assigned a probability of 2

8
at

the root, and ‘‘c’’ is assigned of probability of 1
8
at

the root. Similarly, of the five substrings that begin
with an ‘‘a’’, three begin with an ‘‘ab’’ and one
begins with an ‘‘ac’’, giving the probability of 3

5
for

‘‘b’’ and 1
5
for ‘‘c’’ at node fa; ½5=8
g, and so on.

Any sequence that leads from the root of the trie
to a leaf traverses a sequence of probabilities of
p1; p2; p3; . . . ; whose product

Q
pi equals 1

8
. The

arithmetic coder encodes the sequence with
�1g

Q
i pi ¼ 1g 8 ¼ 3 bits. Note that the square

nodes in Fig. 2 denote the last nodes ending the
sequence.

3.2. Mobility prediction

Our mobility prediction scheme is based on
the character-based version of the Ziv–Lempel
algorithm. The sequence of events N ;H1;H2;
H3; . . . ;Hn; . . . ;E during the lifetime of a call cor-
responds to a substring in the Ziv–Lempel algo-
rithm. The mobility database of every mobile at a
specific time holds a mobility trie, which is a
probability model corresponding to that of the
Ziv–Lempel algorithm. Each node except for the
root in the mobility trie preserves the relevant
statistics that can be used to predict the probability
of following events. As in data compression, the
mobility trie of the mobile is built in an on-line
fashion. When a mobile requests a new call, the
predictor sets the current node to the root of the
trie according to the identity of the mobile, the cell
it is in, and the current time, and calculates the
probabilities of all possible events of this mobile.
Upon recording an actual event of the mobile, the
predictor walks down the trie and is ready for the
next prediction. When an event is not in the mo-
bility trie, a prediction fault is generated and
the trie is updated accordingly. A pseudocode de-
scription of the mobility prediction scheme is given
in Fig. 3.

Fig. 4 shows an example mobility trie of mobile
m at cell a in the time interval 9:00–9:01 a.m. When
the mobile requests a new call in cell a in the time
interval 9:00–9:01 a.m., we can use the statistics
preserved in the nodes of its mobility trie to predict

Fig. 2. The trie constructed in Example 1. Fig. 3. Pseudocode of mobility prediction.
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the probabilities of the next possible events of this
mobile: it will terminate the call without handoffs
in the second time slot with probability of 2/56,
handoff to cell b in the second time slot with
probability of 15/56, etc.

3.3. Analysis of the mobility prediction scheme

We first analyze the optimality of word-based
Ziv–Lempel algorithm and show that the charac-
ter-based Ziv–Lempel algorithm is as least as
good as the word-based approach. We then es-
tablish that our mobility prediction scheme in-
herits the optimality of these data compression
algorithms.

Given a sequence xn of length n over an alpha-
bet A of a letters and an information lossless (IL)
compressor C accepting inputs over A, let jCðxnÞj
denote the length, in bits, of the output that C
produces on xn. The compression ratio qCðxnÞ at-
tained by C for xn is [23]:

qCðxnÞ ¼
jCðxnÞj
n lgðaÞ : ð1Þ

Define qrðxnÞ as the best compression ratio at-
tainable for xn by any IL compressor of r states.
Sequence xn is parsed into different phrases:

xn ¼ x1; x2; . . . ; xt. The maximum possible number
of distinct phrases is tðxnÞ. Define

qðxnÞ ¼ tðxnÞ lgðtðxnÞÞ
n lgðaÞ : ð2Þ

A result in Ref. [23] shows that

qrðxnÞP qðxnÞ � dðr; nÞ with lim
n!1

dðr; nÞ ¼ 0:

ð3Þ

So, qðxnÞ is a lower bound on the compression
ratio attainable for xn by any codebook.

The Ziv–Lempel incremental parsing algorithm
achieves for any sequence xn given to it a com-
pression ratio that is (asymptotically) equal to
qðxnÞ, and thus the algorithm is universal and as-
ymptotically optimal [17].

In Ref. [1], it has been shown that the code
length obtained in the character-based version of
the Ziv–Lempel algorithm is as least as good
as that obtained using the word-based approach.
Hence, the optimality result in Ref. [23] holds
without change for the character-based approach.

We define the event fault rate to be the total
number of event faults incurred by our mobility
prediction algorithm divided by the total num-
ber of events. Also, we define the expected event
fault rate to be the best possible event fault
rate achievable by any prediction algorithm which
makes its prediction based only on the past his-
tory.

A result in Ref. [21] shows that, if the source is a
stationary mth order Markov source, the expected
event fault rate of our prediction algorithm is
within an additive factor of Oð1=

ffiffiffi
n

p
Þ from the

expected event fault rate of the source, where n is
the length of the event sequence.

From these, we see that our mobility prediction
algorithm inherits the asymptotic optimality of the
Ziv–Lempel algorithm. By modeling the sequence
of events during the lifetime of a call as that gen-
erated by a stationary mth order Markov source
and predicting next events using the mobility pre-
diction scheme derived from the Ziv–Lempel al-
gorithm, we can predict not only to which cell a
mobile will handoff but also when the handoff will
occur.

Fig. 4. A mobility trie used for mobility prediction.
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3.4. Implementation considerations

The mobility prediction scheme proposed above
maintains the statistics in a trie. An important is-
sue is how this model can be implemented. In fact,
a trie is a multiway tree with a path from the root
to a unique node for each string represented in
the tree. There are many ways to implement the
nodes of a trie. The fastest approach for processing
is to create an array of pointers for each node in
the trie with a pointer for each character of the
input alphabet (Fig. 5a). This method can waste
considerable memory space, particularly if some
characters of the alphabet are rarely used. An al-
ternative is to use a linked list at each node, with
one item for each possible branch (Fig. 5b). This
uses memory economically, but can be more pro-
cessing intensive. Some improvement may be
achieved by moving an item to the front of the list
each time it is used. A trie can also be implemented
as a single hash table with an entry for each node.
The memory consumed by a trie can be reduced by
truncating it prematurely at a shallow depth, and
using some other data structure for subsequent
characters. For further details, the reader can
consult books on algorithms and data structures.

In practice, in order to reduce the memory and
computation complexity, it is desirable to limit the

size of the data structure for prediction. Several
techniques are known for limiting data structure
size [19]. An explicit upper bound M is placed
on the size of the data structure. The data struc-
ture is either frozen when its size reaches M, flu-
shed and rebuilt when its size reachesM, or frozen
when its size reaches M=2 and a new one is
built while the old one is used for prediction.
There are also more sophisticated techniques that
use least-recently-used (LRU) strategy [4] on the
data structure to maintain its size. In our simula-
tions in Section 5, we set upper bound 200 bytes to
the trie size and use LRU strategy to maintain its
size.

4. Call admission control and bandwidth reservation

4.1. Calculation of Pi;jðTkÞ

Our approach is based on the predicted mobil-
ity of each user. We calculate Pi;jðTkÞ, the proba-
bility that a mobile originally in cell i will visit cell j
during time slot Tk. From the mobility trie, we can
see that a mobile taking different paths can visit
certain cell in the same slot. Using the total prob-
ability theorem [14], we must add all of these
probabilities to get Pi;jðTkÞ. We show by an ex-
ample how to get this probability.

Example 2. A mobile m requests a new call at cell
a in the time interval 9:00–9:01 a.m. From the
mobility trie in Fig. 4, we can see that m can take
several different paths to visit cell b. We describe
these paths by sequences of events:
Path 1: Nðm; a; 9:00–9:01 a:m:Þ, HðT1; bÞ, EðT2Þ.
By path 1, m will visit cell b in T1 and T2 with

probability: 3
56
� 3

3
¼ 3

56
.

Path 2: Nðm; a; 9:00–9:01 a:m:Þ, HðT2; bÞ, EðT4Þ.
By path 2, m will visit cell b in T2, T3 and T4 with

probability: 15
56
� 5

15
¼ 5

56
.

Path 3: Nðm; a; 9:00–9:01 a:m:Þ, HðT2; bÞ,
HðT2; dÞ . . .

By path 3, m will visit cell b in T2 with proba-
bility: 15

56
� 6

15
¼ 6

56
.

Path 4: Nðm; a; 9:00–9:01 a:m:Þ, HðT2; bÞ,
HðT5; dÞ . . .

Fig. 5. Implementation of trie nodes for Fig. 2: (a) array and

(b) linked list.
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By path 4, m will visit cell b in T2, T3, T4 and
T5 with probability: 15

56
� 4

15
¼ 4

56
.

So,

Pa;bðT1Þ ¼
3

56
;

Pa;bðT2Þ ¼
3

56
þ 5

56
þ 6

56
þ 4

56
¼ 18

56
;

Pa;bðT3Þ ¼
5

56
þ 4

56
¼ 9

56
;

Pa;bðT4Þ ¼
5

56
þ 4

56
¼ 9

56

and

Pa;bðT5Þ ¼
4

56
:

4.2. The most likely cell-time

When a mobile is active in cell i, we can get the
most likely cell-time (MLCT) of that mobile, a
cluster of time units at a cluster of cells when and
where a mobile will most likely visit in the future.
We select cell j and time slot Tk with Pi;jðTkÞ greater
than zero to form the MLCT of this mobile.

4.3. Bandwidth reservation

Using Pi;jðTkÞ, the probabilities of handing off
from cell i into cell j during time slot Tk of mobile
m, we can obtain the required bandwidth Breserved

ðj; Tk;mÞ to be reserved in cell j for the expected
handoff of m from cell i:

Breservedðj; Tk;mÞ ¼ Pi;jðTkÞBðmÞ; ð4Þ
where BðmÞ is the bandwidth required by m.
Moreover, the reserved bandwidth Breservedðj; TkÞ,
which is the aggregate bandwidth to be reserved
in cell j during Tk, is calculated as

Breservedðj; TkÞ ¼
X
m2M

Breservedðj; Tk;mÞ; ð5Þ

whereM is the set of mobiles which will handoff to
cell j from cell i during Tk. Finally, the free band-
width left after the reservation is

Bfreeðj; TkÞ ¼ B� Breservedðj; TkÞ; ð6Þ
where B is the total bandwidth in cell j.

4.4. Call admission control and bandwidth reserva-
tion for new calls

When a new call arriving at mobile m with a
bandwidth requirement BðmÞ requires admission
to cell i, the CAC algorithm first checks if the
current free bandwidth of cell i can support the
call. The call is rejected if the cell does not have
enough free bandwidth. Otherwise, the CAC al-
gorithm will check the availability of free band-
width in the MLCT of this mobile. The checking
result can be written as

Checkðj; Tk;BðmÞÞ ¼
1; Bfreeðj; TkÞPBðmÞ;
Bfreeðj; TkÞ

BðmÞ ; otherwise:

8<
:

ð7Þ
Based on these values, the new call will be ad-

mitted if the following holds:X
j;k2MLCT

Pi;jðTkÞCheckðj; Tk;BðmÞÞP a
X

j;k2MLCT

Pi;jðTkÞ;

ð8Þ
where a is the admission threshold and should
be controlled adaptively. We will describe how to
control this threshold in the next subsection.

When a new call is admitted, bandwidth is re-
served in the mobile’s MLCT, and the free band-
width in the MLCT is updated accordingly.

4.5. Adaptive control of admission threshold

The mobility prediction functions may not
work well for some mobile users, especially those
who do not have favorite routes. Moreover, if the
admission threshold a is too small, the handoff
dropping probability may exceed the target value;
if a is too large, resource utilization will be de-
creased. So, admission threshold a should be con-
trolled adaptively.

We calculate PhdðmÞ, the handoff dropping
probability of mobile m, by dividing the number of
handoff drops to the total number of its calls re-
corded in the mobility trie. Let Phd;targetðmÞ denote
the target value of handoff dropping probability
of mobile m. If PhdðmÞ < Phd;targetðmÞ, admission
threshold a is decreased by e, a design parameter;
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otherwise a is increased by e. The calculation of
PhdðmÞ and update of the admission threshold are
done upon call completion.

By adaptive control of a, we can achieve a
better balance of guaranteeing Phd and maximizing
resource utilization.

4.6. Call admission control and bandwidth reserva-
tion for handoff calls

When a mobile m, with bandwidth requirement
BðmÞ, requires a handoff to cell i, the CAC algo-
rithm will admit it if the current free bandwidth of
cell i can support the call. Then, the CAC algo-
rithm will calculate Pi;jðTkÞ and get the MLCT of m
based on the mobility trie. Bandwidth is reserved
for m in its MLCT accordingly.

5. Simulation results and discussion

In this section, we present and discuss the sim-
ulation results of the proposed schemes as well as
the comparisons with two other CAC schemes.

We consider a coverage area that consists of
40 base stations, each having six neighbors on
average. The average distance between two base
stations is 1 mile. Since most mobile users have
favorite routes, we assume that each mobile user
has five possible different paths in the network.
The user will take these five paths with probability
of 0.5, 0.2, 0.1, 0.1, 0.1, respectively. Among the
cells within a path, mobile users can have a new
call request with equal probabilities. During a call,
the mobile will stay at the original cell or move
along the path. If a call does not terminate when
the mobile reaches the end of the path, it will stay
at the end cell of that path. The path is gener-
ated as follows: (1) Select two nodes in the graph
randomly as original and destination nodes. (2)
Whenever the mobile user leaves the current cell, it
moves to a neighboring cell which is closest to the
destination. Note that two paths with at least one
edge not in common are different paths and dif-
ferent mobile users can have the same paths.

Also, we apply the following assumptions in our
model:

1. Each cell has a fixed link capacity of 40 band-
width units (BUs).

2. Time is quantized into units of T ¼ 30 s.
3. A call is either for voice (requiring 1 BU) or

video (requiring 4 BUs).
4. Call durations are the same for all calls and

exponentially distributed with mean value of
120 s.

5. Call requests are generated according to a Pois-
son process with rate (calls/cell/s).

6. Two cases of mobility are considered: low user
mobility, in which case the speeds of mobiles
are uniformly distributed between 0 and 40
miles/h; and high user mobility, in which case
the speeds of mobiles are uniformly distributed
between 40 and 70 miles/h.

7. The target handoff dropping probabilities are
the same for all mobiles: Phd ¼ 0:01.

8. Admission threshold a is initialized to 1 in each
simulation and adaptive factor e ¼ 0:02.

The offered load is calculated as follows:

Offered Load ¼ 120 k ðð1� PvoiceÞ4þ PvoiceÞ;

where Pvoice is the percentage of voice calls in the
offered traffic.

Simulations start without any pre-memorized
information of mobiles. Long-term handoff drop-
ping probability, new call blocking probability and
utilization are obtained for a 100 h simulation time
duration. During each simulation, a mobility tries
is constructed for each mobile and its mobility is
predicted. Based on the prediction, a MLCT is
constructed. Then CAC algorithm will check the
availability of bandwidth and decide to admit or
reject the new call and handoff call requests using
the algorithms described in Section 4. If a call is
admitted, bandwidth is reserved in the mobile’s
MLCT accordingly.

Figs. 6 and 7 show Pnb and Phd as functions of
the offered load for two values of Pvoice:0.8 and 1
in the low mobility and high mobility cases. The
probabilities of handoff dropping are kept below
the target values 0.01 irrespective of the offered
load, Pvoice and user mobility. This shows that
the proposed CAC and bandwidth reservation
schemes achieve one of our goals: keeping Phd
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below a target level. We also observe that the Pnb
and Phd increase as Pvoice decreases under the same
offered load. This is because the video connections
need more bandwidth. Fig. 8 shows the average
utilization as a function of the offered load in the
low user mobility case.

Since the time slot is used in our mobility pre-
diction scheme, the selection of time slot duration
T will have influence on both the convergence
speed and the network utilization. We study this
issue in the following. In simulations, we choose
three values of T, 15, 30 and 90 s. Fig. 9 shows
the handoff dropping probabilities as functions of
simulation time with different time slot durations.

In the beginning of the simulation, the system
knows little about the mobility of mobile users and
the handoff dropping probabilities cannot be kept
below the target value 0.01. As the simulation goes
on, the prediction tends to converge and the target
handoff dropping probability can be guaranteed.
From Fig. 9 we can see that the convergence is
faster when T is 90 s than when T is 30 s, which is
in turn faster than when T is 15 s. The reason
is that the mobility sequence will be long when T is
small, and when T is large, the sequence will be
short. The longer the sequence, the slower the
convergence speed. It seems that it is better to have

Fig. 7. Pnb and Phd vs. offered load (high user mobility).

Fig. 8. Utilization vs. offered load.

Fig. 9. Phd vs. simulation time with different values of time slot

duration.

Fig. 6. Pnb and Phd vs. offered load (low user mobility).
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large value of T, since the convergence will be fast.
However, large value of T means that the predic-
tion is not accurate and will result in low utiliza-
tion, which can be seen clearly in Fig. 10. The
utilization is higher when T is 15 s than when T is
30 s, which is higher than when T is 90 s. There-
fore, choosing a suitable value of T according to
the real network condition is very important to get
the best performance from the proposed scheme.

We also compare the proposed CAC and
bandwidth reservation schemes with two other
schemes: (1) static reservation [15]; and (2) cell
reservation [12]. In the static-reservation scheme,
a set of bandwidth is reserved permanently for
handoff calls. In our simulation, we consider 4
BUs and 5 BUs reserved permanently for handoff
calls in each cell. In the cell-reservation scheme,
only the location of the mobile user but not the
visiting time is predicted. Bandwidth is reserved in
those cells that the mobile will visit during the
entire lifetime of the call. For comparison, we call
our scheme cell-time reservation. In these compar-
isons, we set Pvoice ¼ 0:8 in the low mobility case.

Figs. 11 and 12 show that the static-reservation
scheme with 4 and 5 BUs reserved for handoff calls
can keep Phd below the target value of 0.01 when
the network has a light load, but the reserved
bandwidth is not enough when the offered load
becomes heavier. Hence, this scheme cannot
achieve the design goal. Although the static-res-

ervation scheme has almost the same Phd compared
with our scheme when the network load is lighter,
its Pnb is higher in this area, i.e., it admits less new
calls than our scheme for any given Pnb. In the
static-reservation scheme, Phd may be kept below
the target value by permanently reserving more
bandwidth for handoff calls. However, this will
result in higher Pnb, which means lower utilization
if Pnb were to be reduced to an acceptable level.
Fig. 13 compares our cell-time reservation scheme
with the cell-reservation scheme. We can see that
the cell-reservation scheme can keep Phd below
the target value 0.01 at the expense of higher Pnb
compared with our scheme. This is because our

Fig. 10. Utilization vs. offered load with different values of time

slot duration.

Fig. 11. Comparison with static reservation (4 BUs).

Fig. 12. Comparison with static reservation (5 BUs).
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scheme predicts not only to which cell the mobile
will handoff but also when the handoff will occur.
Based on the mobility prediction, we can reserve
bandwidth more efficiently. From these results, we
can see that our proposed cell-time reservation
scheme achieves a better balance of guaranteeing
Phd and maximizing utilization.

6. Conclusions

In this paper, we have proposed CAC and
bandwidth reservation schemes for wireless cellu-
lar mobile networks based on assumptions more
realistic than existing proposals. The proposed
schemes are applicable to arbitrary cell topologies
and the channel holding time can follow a gen-
eral distribution. The sequences of events of new
call admission, handoffs and call termination are
modeled by stationary mth order Markov sources.
We derive novel probabilistic predictions of next
events based on the mobility history of users, using
an algorithm motivated by optimal data com-
pression. Based on the mobility prediction of
where and when the mobile will handoff to the
next cell, CAC and bandwidth reservation schemes
have been developed. The performance of the pro-
posed schemes have been studied using computer
simulations. Results show that our schemes can
achieve a better balance of guaranteeing handoff
dropping probability while maximizing resource

utilization, and they outperform the static-reser-
vation and cell-reservation schemes.
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