
A Semantics-based Multi-agent Framework for Vehicular
Social Network Development

Xiping Hu1, Jidi Zhao2, Dizhi Zhou3, Victor C.M. Leung1

1Dept. Electrical and Computer Engineering, The University of British Columbia, Vancouver, Canada V6T 1Z4
2Institute of System Engineering, Shanghai Jiaotong University, Shanghai, China 200052

3Faculty of Computer Science, University of New Brunswick, Fredericton, Canada E3B 5A3

xipingh@ece.ubc.ca, judyzhao33@gmail.com, a0kkh@unb.ca, vleung@ece.ubc.ca

ABSTRACT
This paper proposes a semantic-based multi-agent framework to
support development of vehicular social network applications. In
the programming model of the framework, software platforms of
vehicular social network systems can be developed by the
collaboration of mobile agents and service (or resident) agents,
where resident agents provide application services on devices and
mobile agents provide communication services on behalf of owner
applications. On top of the device infrastructure, the architecture
of the proposed framework consists of three layers: framework
service layer, software agent layer and application layer, to fully
support dynamic and collaborative tasks of vehicular social
networks. The multi-layer architecture design of the framework
fully supports self-adaptive applications in vehicular social
network environments, and is readily extensible to support new
features. Developers can easily and effectively develop diverse
applications for the vehicular social networks.

Categories and Subject Descriptors
C.2.4 [Computer Systems Organization]: COMPUTER-
COMMUNICATION NETWORKS - Distributed Systems -
Distributed applications.

General Terms
Algorithms, Design, Economics, Human Factors, Languages,
Theory.

Keywords
Vehicular social networks, software agent, semantic, service,
multimedia transmission, application development.

1. INTRODUCTION
Vehicular ad hoc networks (VANETs) are a special form of
mobile ad hoc networks (MANETs), which enable
communications among nearby vehicles, i.e., vehicle-to-vehicle
(V2V), and between vehicles and nearby roadside infrastructure,
i.e., vehicle-to-roadside (V2R). Every day, a large number of
people in areas of dense population spend hours travelling along
the same routes at the same time on their commute to/from work.
Their travel patterns are highly predicable and regular.

Consequently, there is an opportunity to form periodic virtual
mobile communication networks between these travelers or their
vehicles, which can be referred as vehicular social networks [1].
Furthermore, research has shown that knowledge of nodes’ social
interactions can help improve the performance of mobile systems
[2, 3], thus applications of vehicular social networks include many
fields. There are three general types of applications over vehicular
social networks: (a) Safety improvements, such as applications
that improve the safety of the passengers on the roads by notifying
the occupants of vehicles about any dangerous situation in their
neighborhood [4, 5, 6]; (b) Traffic management, applications that
provide users who join the vehicular social network with traffic
information enabling them to improve the traffic efficiency and
driving behavior [7]; (c) Entertainment, applications that enable
the drivers and passengers to share multimedia files in the
vehicular social network [8].

Because of the high speed of vehicles’ movements, the topology
of a VANET is highly dynamic, and connectivity status of the
VANET could also change frequently, which results in
dynamically changing environments and dynamic service
requirements of vehicular social networks. Thus, it is a challenge
to make the applications in vehicular social networks more
conscious of the dynamically changing environments. Meanwhile,
wireless links in a VANET tend to be unreliable and have short
lifetimes; consequently it is challenging to provide desirable
vehicular social network applications to users (i.e., drivers and
passengers), as well as efficient multimedia transmission
techniques tailored for the context of vehicular networks.

A software agent can be seen as a composition of software and
data, which is able to work autonomously. It can also transport its
state from one environment to another with its data intact, and be
capable of performing appropriately in the new environment.
When an agent decides to move, it can save its current state,
transfer this saved state to a new host, e.g., a mobile device, and
then recover from the saved state [9]. Mobile agents are software
agents that act on behalf of their creators and move independently
among hosts [10]. After being dispatched, a mobile agent
becomes independent of the process that created it and can operate
asynchronously, reacting dynamically and autonomously to
environmental changes, and requiring little interaction with users.
Furthermore, mobile agents have the capability to coordinate
among themselves, resulting in collaborating services and
resources among the devices, e.g., in a vehicular social network.
Consequently, mobile software agents are very suitable to execute
applications for vehicular social networks.

Dynamism is an intrinsic feature of VANETs. Traditional
approaches require the mobile agent to know the availability and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DIVANet’11, November 4, 2011, Miami, Florida, USA.
Copyright 2011 ACM 978-1-4503-0904-2/11/11...$10.00.

every detail of the services in advance. This usually limits the
flexibility of applications based on a service-oriented architecture,
particularly in such a dynamic environment. The Semantic Web
was first introduced by Tim Berners-Lee as an evolutionary
extension of the World Wide Web, in which a well-defined
meaning of Web content is provided through semantic markup,
making it more machine interpretable [11]. Through W3C led
initiative, the Semantic Web touts technologies like Resource
Description Framework (RDF) [12], Web Ontology Language
(OWL) [13] and Rule Interchange Format (RIF) [14] as
knowledge representation formalisms for the semantic markup.
These semantic based technologies have been experiencing
intensified interest in the Internet, such as Web 2.0 and Web 3.0,
and in different application domains such as matchmaking in Web
services [15], classification of genes in bioinformatics [16],
multimedia annotation [17], and travelling planning [18].
However, to the best of our knowledge, few researchers have
investigated the possibility of and challenges of their applications
in a vehicular social network.

There is a broad range of infrastructure that can support vehicular
social networks [19, 20]. For example, drivers or passengers may
carry smart phones with various forms of wireless communication
capabilities (e.g., 3G cellular, WiFi, WiMAX), or vehicles may be
equipped with embedded computing systems, which support V2V
and V2R communications, with deployed roadside infrastructures
in the latter case, using Dedicated Short Range Radio (DSRC)
communications. In order to develop a vehicular social network
system, we should first develop a VANET connecting the
hardware devices onboard vehicles, and determine its
specifications. The second step is to develop a software platform
on which to develop and install different applications that work in
the vehicular social network. In this paper, we only consider the
software development for vehicular social networks. We consider
the following three main goals for developing a software platform
for vehicular social networks: to support high-level application
programming, to provide a systematic approach and model of
vehicular social network applications, and to support easy and
effective application development for vehicular social networks.

In this paper, we propose S-Aframe, a semantic-based multi-agent
framework for vehicular social networks. It is based on a multi-
layer architecture built on existing operating systems, and
implemented using Java and AmbientTalk [21]. S-Aframe
supports easy and effective application development for vehicular
social networks. It supports applications that are self-adaptive in a
dynamically changing environment, dynamic application services,
resources deployment, and communications among agents in a
coordinated manner. Application programmers can easily develop
their application services by extending S-Aframe’s services.

The outline of the rest of the paper is as follows. Section 2
introduces the programming model, architecture and services of
S-Aframe. Section 3 analyzes the challenges of developing
vehicular social network applications, and describes how they are
met with S-Aframe. Section 4 shows an application example of
vehicular social networking based on S-Aframe. Section 5
provides comparisons and evaluation of S-Aframe against other
projects. The paper ends with conclusions and prospects in
Section 6.

2. OVERVIEW OF S-AFRAME
2.1 Programming Model of S-Aframe
The programming model of S-Aframe is shown in Figure 1. Each
node contains the framework services, which are the generic
services of S-Aframe. Meanwhile, S-Aframe provides a series of
Java application program interfaces (APIs). Based on these Java
APIs, programmers can use Java to develop resident agents,
mobile agents, owner applications and specific application
services according to different application scenarios of vehicular
social networks. Table 1 shows the Java APIs of S-Aframe.

In general, the architecture of conventional agent systems depends
on specific applications. In those systems, mobile agents need to
contain all the relevant codes when they want to accomplish some
tasks, although some of the codes may never been used. It will
raise network overhead when mobile agents transfer such data. On
the other hand, programmers have to develop a new mobile agent
completely when implementing a new application of vehicular
social network; even both the new application and former
applications are closely related and use similar application
services. In this case, programmers have to spend much time
developing different applications for vehicular social networks,
resulting in low developing efficiency. Thus, in S-Aframe, we use
resident agents to provide all the application services to mobile
agents.

Mobile agents can automatically migrate around vehicular social
networks with their state and execution results. They can
dynamically use different application services provided by
resident agents on local nodes to accomplish specific application
tasks. Mobile agents are created by applications. An application,
as the owner of a mobile agent, can send the mobile agent to
travel in an underlying VANET and retrieve it back to the
application’s node.

2.2 Architecture of S-Aframe
The S-Aframe architecture has four layers: Framework Services
Layer, Resident Agent Layer, Mobile Agent Layer and Application
Layer. The architecture is shown in Figure 2.

Figure 1. Programming model of S-Aframe

Table 1. Java APIs of S-Aframe

Java APIs Introduction

public String executeService(); Execute application services

Public void getApplicationSpecificMobileAgent(String key, String
type);

Initialization of mobile agent

public void setAppName(String appName); Configure the ID name of mobile agents’ owner application

public void setOwner(String name); Configure the ID name of the node

public void execute(); Executing mobile agent

public void transitToNextNode (boolean clean, boolean takenAway); Migrating to next node

public void setTransitionSet(ArrayList <String> set); Configuration of the subset of migration nodes

public void setTransitionMode(String mode, Sequential); Configuration of migration mode

public String getResidenceAgentName(); Getting ID name of local node

public String getCurrentTime(); Getting current time of local node

public HashMap<Object, Object> getAgentList(); Classify the nodes

public void sendBinData(String targetID, File sourceFile); Transmission of common files

public void sendBinDataIndirect(String targetID, File sourceFile); Transmission of large files

A. Framework service layer
At the bottom of the framework, the framework service layer
provides the core functions and generic services to the upper layer,
so as to help applications of vehicular social networks self-adapt
to dynamically changing environments, such as adapting to
dynamic network topology as well as dynamic application
services requirements of the users in the vehicles. The framework
services are only accessed by the resident agent layer but not by
other layers. The resident agent layer can invoke any services
from this layer, and then provide them to mobile agents. More
details about the services in this layer will be given in Section 2.3.

B. Resident agent layer
Resident agents provide all the local application services to
visiting mobile agents. A resident agent can be automatically
deployed to a new mobile node when it is joining the underlying
vehicular network. Once a resident agent is deployed onto a
mobile node, it will stay there to provide application services.
Mobile agents can directly use all the services which the resident
agents provide. Application services provided by the resident
agent layer can be built on the services provided by the
framework services layer. Framework services only implement
basic and generic functions and services for applications.
Application developers of S-Aframe can develop new application
services and deploy them to this layer. Thus the services provided
by this layer contain two parts: services directly provided by the

framework services layer and specific application services
developed by application developers.

C. Mobile agent layer
Mobile agents run on top of resident agents and are used to
execute different application services provided by resident agents.
They do not contain different application services in their code.
All the services which a mobile agent needs to use come from
resident agent layer, such as the services for specific application,
communication, and migration, etc. It just contains some basic
information, such as its migration strategy, processing strategy of
executing results, as well as computation and communication
results. Meanwhile, mobile agents are also used to transfer
necessary resources or application services to some mobile
devices when they do not contain such resources or services.

D. Application layer
Applications are owners of mobile agents. An application
provides the user interface to its users who use mobile devices in
their vehicles. Using the user interface, the user can select and
release a mobile agent to execute a specific application of the
vehicular social networks, or release multiple mobile agents to
accomplish different applications simultaneously. S-Aframe
supports multiple agents with multiple application owners
working at the same time.

2.3 Services of S-Aframe
As mentioned in the previous section, the framework service layer
contains all the generic services (framework services) of the S-
Aframe framework. The following are more detailed descriptions
about the services in this layer.

-ID name service: When there are multiple agents and multiple
applications working at the same time in a vehicular social
network system, naming collision will happen. In this situation, a
unique ID name of each mobile node is very important. Using this
service, once the resident agent is initialized in a mobile device in
the vehicle, it will generate a universally unique identifier (UUID)
as ID name to each mobile device. Upper layers can read this
information but not configure it. Meanwhile, in S-Aframe,
according to some parameters, such as the strength of connections
among the users, their common behaviors in social interests as
well as the frequency of recurring encounters, the nodes in the

Figure 2. Architecture of S-Aframe

local vehicular social network system will be classified to
different groups by using semantic technique.

-Data fetching and storage service: In order to reduce network
overhead and improve application efficiency in the vehicular
social network systems, S-Aframe divides data into two types:
shared and non-shared. The shared data only contains the local ID
name and available services of local device; resident agents will
share this information to the vehicular social network system. On
the other hand, non-shared data contains code of agents, specific
application services, existing data in local devices and executing
result of mobile agents, etc. Meanwhile, when programmers
develop mobile agents, they can decide whether mobile agents
should store the executing result in local devices, and what data
mobile agents need to carry away to the next migrating devices.

-Network status service: This service makes use of the network
information provided by AmbientTalk. In AmbientTalk, every
node can listen to the whole local network to determine how many
nodes are currently available in the local vehicular social network
system. Also, resident agents can share all the IDs of currently
connected nodes, as well as available services of local devices. By
using this service, the framework service layer can inform the
upper layer of the latest status of the vehicular social network
system, such as the ID names list and available services list. Then
agents can adapt to the dynamically changing environment.
Meanwhile, users of vehicular social network systems can access
the current available services from user interfaces based on this
service.

-Migration service: It provides the basic migrating environment to
the upper layer. Resident agents directly invoke this service and
provide it to mobile agents. Using this service, mobile agents can
migrate around the nodes in a vehicular social network. In S-
Aframe, we provide three migration strategies for application
developers to develop mobile agents: (i) migrating among all the
mobile nodes in the local vehicular social network; (ii) migrating
among some of the mobile nodes. For example, a mobile agent
only migrates around some nodes of a defined group in the local
vehicular social network; (iii) only migrating to a defined mobile
node. Consequently, based on the latest ID name list and available
services list from S-Aframe, developers can flexibly select a
migration strategy when they are developing mobile agents to
accomplish some specific applications. Combined with semantic
technique, mobile agents can also choose dynamically an efficient
migration sequence according to heterogeneous situations.

-Time service: In some situations, like a roadway, when a user
(e.g., passenger and driver) wants to join the local vehicular social
network system and start some applications in a defined period,
temporal information is very important. Therefore, using the time
service, the vehicular social network system can automatically
release mobile agents to execute any applications that the system
may provide at the scheduled time. Moreover, when a mobile
agent is migrating to another device, it can get the current local
time by invoking this service through the resident agent. On the
other hand, we can test the time efficiency of each application in a
vehicular social network by invoking this service.

-Deployment service: Since the network topology of a vehicular
network is dynamic and frequently changes, every mobile node
can join and leave the network anytime and anywhere. Using this
service, S-Aframe can dynamically and automatically deploy the
core functions and services to a new mobile node when it joins the
local vehicular social network. At the same time, if a mobile
device in the underlying vehicular network does not have the

necessary resources or services, mobile agents can also
automatically transfer the necessary resources or services between
mobile nodes by using this service through the local resident
agents.

-Dynamic invocation service: In a vehicular social network system,
diverse users usually have different services requirements, and the
service requirements may change during the mobile agents’
runtime. Meanwhile, because the dynamism of VANETs, it is
possible that the changing identities of the users in the local
vehicular social network system result in new services
requirements. In S-Aframe, we incorporate semantic techniques in
this service, so as to support mobile agents dynamically and
intelligently invoke different application services in different
mobile nodes according to practical scenarios, such as users’
identities and interests.

-Multimedia transmission service: Due to the large data stream of
multimedia (e.g., video and audio), as well as unstable links with
short lifetime of a vehicular network, an efficient transmission
strategy for multimedia transmission is very important in a
vehicular social network system. Thus, S-Aframe combines with
multipath transmission techniques and provides flexible
transmission strategies in this service. Based on this service,
mobile agents can automatically and dynamically choose
appropriate strategies when the users want to transfer (or share)
multimedia in the vehicular social network systems.

3. CHALLENGES/IMPLEMENTATION
S-Aframe is designed to satisfy the unique challenges of vehicular
social networks, such as supporting applications self-adaptation in
dynamically changing VANET environment, providing desirable
services to users of vehicular social network systems, as well as
providing efficient multimedia transmission techniques. S-Aframe
works as a software platform of vehicular social network systems
on which to deploy diverse applications. Furthermore, S-Aframe
aims to provide a systematic development approach and
programming model to developers, so as to enable them to
effectively develop applications for vehicular social network
systems. In this section we will first present and analyze the
design challenges of vehicular social network systems, and then
describe how to implement S-Aframe so as to address these
challenges.

3.1 Dynamic Changing Environment
VANET environments are characterized by their high dynamism.
The set of vehicles present in such an environment is constantly
changing, and consequently, the set of application services offered
by the devices in vehicles are varying as well [4, 22]. Therefore, it
is a challenge to let applications of vehicular social network
systems self-adapt to a dynamically changing environment. In S-
Aframe, we mainly consider two situations when mobile agents
are executing the applications while the environment of vehicular
social network systems changes:

• Mobile nodes get disconnected when mobile agents are
migrating around the local vehicular social network systems.

• New mobile nodes join the local vehicular social network
systems when mobile agents are executing applications.

In S-Aframe, the framework service layer can provide the latest
status of the vehicular social network system to the resident layer.
At the same time, there are two agent cooperation mechanisms in
S-Aframe: cooperation among resident agents and cooperation
between resident agents and mobile agents. By the cooperation

among resident agents, they can provide the latest network status
to mobile agents. With the cooperation between resident agents
and mobile agents, mobile agents become more flexible since
resident agents provide sufficient application services from local
nodes to support mobile agents’ application tasks. Thus, by
invoking the network status service of S-Aframe, developers can
get the latest ID name list and the latest available services list.
Based on these lists and migration service, developers can flexibly
select a migration strategy, define a migration list and get a
primary identification of service requirements when they are
developing mobile agents to implement applications of vehicular
social networks.

Therefore, for the first situation, there are two main issues: (a).
which mobile agents are migrating to a mobile node that gets
disconnected and (b) which mobile agents are currently visiting a
mobile node that gets disconnected. In S-Aframe, a mobile agent
can obtain the latest ID names list of the currently connected
nodes from the resident agent when it migrates to a new node. We
also use the strategy that a mobile agent can store the list of the
nodes which it has visited before. Thus, the mobile agent can
compare the mobile agent’s migration list, latest ID names list and
history list every time when it is migrating to a new node, to
decide the next migrating target automatically. Meanwhile,
because the migration time of a mobile agent from one node to
another is very short, the probability that the next visiting target
node will get disconnected during a mobile agent’s migration is
low. Moreover, if a node which a mobile agent is currently
visiting gets disconnected, we use the strategy that mobile agent’s
owner application will wait for some pre-assigned time, which is
decided by the developer. When the time runs out, the owner
application can automatically release a new mobile agent.
Consequently, in S-Aframe, mobile agents can self-adapt when
nodes get disconnected as they are executing applications in a
vehicular social network system.

On the other hand, connectivity situations will change and new
services requirements will arise when new nodes join the
vehicular social network system. As mentioned above, mobile
agents can get the latest connectivity status when they migrate to a
new node and automatically decide the destinations. Therefore it
will not impact mobile agents’ migration when new nodes join the
vehicular social network systems and the connectivity situations
change. The main issue for the second situation is the varying
services requirements. We first assume that all the nodes have the
initial executing environment of S-Aframe when they join the
vehicular social network system. Since S-Aframe provides the
deployment service, we use the strategy that when a new node
joins the vehicular social network system, it will automatically
send a request to other nodes by using AmbientTalk [8]. Once an
existing node of the system gets the message, it can automatically
deploy the framework service and the resident agent to the new
node. After that, as previously mentioned, based on the
framework service, the new node can get the latest status of
vehicular social network system, such as the latest ID name list of
the users and latest available services list. Therefore, based on
these services, when mobile agents are migrating to a new node
which just joined the vehicular social network system, and that
node does not contain the necessary services or resource for
mobile agents’ task, mobile agents can automatically transfer the
services and resources to it from other nodes through the local
resident agent, and thus help resident agents extend application
services. Meanwhile, a user of new node can release a mobile
agent to collect the necessary services and resources. Moreover, in
S-Aframe, mobile agents can also share their messages through

resident agents when they are cooperating to perform a task, so as
to finish the task faster.

3.2 Semantic Technique in S-Aframe
Dynamically changing environment and topology are intrinsic
features of a vehicular social network. Therefore, the ability to be
adaptive is critical for its performance and flexibility. We
introduce semantics and semantic web technologies into vehicular
social networks and explore the integration of semantics and
services. By introducing semantics into such networks, we try to
determine the meaning of various data and information, support
corporations between mobile agents in vehicular social networks,
and then help mobile agents automatically discover which
services are available and learn what they should do in such
dynamic environments. We propose semantic services using
semantic techniques as the services part of the S-Aframe. We
design and define an ontology for describing services, which we
call a service ontology and then we propose a system architecture
for applications using the service ontology.

A. The service ontology
What is the name of a service? What is the service about? Where
does the service come from? And what can the service do? These
are the questions naturally arising from end-users who want to
make use of a service. We first define a general service ontology
to address the above questions and then use it as a standard to
follow when defining a service instance.

A service identity is a unique name or Uniform Resource
Identifier (URI) for the service. We define the class Service and
specify a service identity as an instance of the class. We also
define the class Operation to represent the set of different
operations including Input and Output.

Basic properties for the service ontology include:

1. hasName, this property describes the service name of a
service. The domain of this property is the class SERVICE
and its range is a string value.

2. hasDescription, the value of this property is a string that
specifies any description of a service. This property is
optional.

3. hasProvider, the property specifies the creator of a service
and the value is a string.

4. hasOperation, this property specifies service operations.
The value of this property is an instance of the Operation
class. The service operation instance must have a value for
the hasInput property and the value must be an instance of
the Parameter class. This Parameter instance has a value for
the hasObjType property which resolves to the Input class.
The service operation instance must also have a value for
the hasOutput property and the value must be an instance of
the Parameter class. This Parameter instance has a value for
the hasObjType property which resolves to the Output class.

B. The system architecture of semantic service
The system architecture of the semantic services based approach
is shown in Figure 3. Mobile agents access semantic services
through the API/query transformation component and the
API/RDF transformation component. The service interface
definition must be an instance of the service ontology. Note that,
except for the query and the output, all the other communications
in the diagram are in RDF graphs or OWL files.

A mobile agent can perform two kinds of queries for a semantic
service. First, it gets the input parameters if any. A mobile agent
submits a query through some Java API which is then transformed
to a form in some semantic representation language, for example,
SPARQL. The transformed query includes one or more service
attributes: service identity, service name, service description. The
system searches the service interface definition. If its inference
engine finds one or more services, it resolves the value of its
hasOperation property to the Input class and returns the class to
the mobile agent. Most existing ontology reasoners such as Pellet,
Racer, KAON2, and OOjDrew can be adapted and integrated into
this architecture. Second, it gets the output. A mobile agent
configures an instance of the Input class and constructs and
submits a query. The system then performs reasoning on the
knowledge base and returns an instance or instances of the Output
class as the outcome.

Figure 3. System Architecture of Semantic Services

3.3 Multimedia Transmission Strategy
The amount of multimedia service in mobile market is growing
quickly in recent years. It is a big challenge for S-Aframe to
provide efficient, stable transmission service to multimedia
application with quality-of-service (QoS) assurance in highly
dynamic vehicular social network. Thus, two multipath methods
will be introduced in this section which can be seen as two
approaches to implement the multimedia transmission service. We
will also discuss the upcoming issues when introducing those
methods in vehicular social networks.

The first class of multipath transmission method is called peer-to-
peer (P2P)-like transmission. In this approach, a subset or all of
mobile devices receive data from base station and share the
portion they get with other mobile devices in vehicular social
network by short-distance radio, such as Wi-Fi. The typical
application scenario of this approach is video streaming, in which
several mobile devices are requesting the same video data. Thus,
each of them can receive a portion of video and sends their own
portion to others [23, 24]. By this way, each user does not need to
download all video data so that it can decrease the traffic in the
wireless network and aggregate the bandwidth of all P2P nodes.
Usually, it needs a control node in such a cooperative community
so that this control node can allocate the download mission for
each P2P nodes and manage the join and leave event in this P2P
network. However, different from the control node in traditional
P2P network, which is usually a server with a public IP, the
control node in vehicular social network must be deployed in
ordinary mobile node because of highly dynamic topology. In
addition, once this control node leaves the vehicular social
network, the control function must be transferred to other
available node immediately (precisely, normal P2P nodes will
periodically communicate with the control node; thus, if we can
migrate the control function to other nodes and notify the new
control node’s ID to others within this period, there is little harm

on the whole P2P network. This time varies from several seconds
to several minutes, depending on the implementation).

Therefore, how to use current service to setup and maintain such s
control function is a key challenge for using P2P-like multimedia
transmission scheme in vehicular social network. One possible
solution is to use the migration service to setup the control
function. For example, when the mobile user wants to see a movie
online, the S-Aframe first sends a request message to control node
asking whether there is any existing P2P network containing such
a movie. Once it gets the reply from the control node, it will join
this P2P network. In addition, the control node will also re-assign
the download mission among related nodes who request the same
video. On the other hand, once one P2P node fails to connect to
the control node, while it can still detect other nodes (means that it
is still in the network), this node will send a P2P control node
searching message to other P2P node and this message will be
transmitted one by one using migration service. Specifically, each
middle node will add information of its capability (such as signal
strength, computing ability) and ID to this message and transmit it
to the next available P2P node which can be determined by
checking the left nodes on the local ID list. Once the last node
receives this message, it will choose a best node that has biggest
capability, and transmit a control request message to it. Therefore,
using migration service, we can achieve the P2P control function
reassignment once the original control node leaves the network.
However, the performances of such scheme still need to be tested
in the real network.

The second class of multipath transmission method is called pure
relay. In this approach, intermediate mobile device acts as pure
relay node to destination mobile device [25, 26]. For example, in
one vehicular social network, mobile device A sends a video to
mobile device B. Mobile device A can setup a temporal relay
relationship including intermediate mobile devices C and D who
can receive and forward video data to B. Those mobile devices do
not need to exchange different portion of video data as they do in
P2P-like transmission approach. The key technical issues in this
approach include how to find the relay node, what is the principle
of assigning the packet delivery mission to each relay node, and
what are the motivations for other mobile device to relay packet
for others although they are located in one vehicular social
network. Another way to consider this relay reassignment issues is
to consider relay as a function and can be transferred to other
nodes using migration service. This scheme is very similar to
what we do for P2P control node migration. However, the
migration duration in this case is stricter than it in P2P-like
transmission because of potential high packet loss rate.

Obviously, P2P-like transmission and pure relay transmission
complement with each other. P2P-like transmission aims to
improve the performance of multimedia service from public
server to vehicular social network. On the other hand, pure relay
transmission is targeted to enhance the multimedia QoS between
different nodes within vehicular social network. Therefore, these
two schemes can be combined together to achieve the maximum
performance gain.

4. APPLICATION EXAMPLE
With the development of mobile social network techniques, more
forms of such technology are used in VANETs. For example,
Toyota Motor Corporation (TMC) had proposed a private social
network system for Toyota customers and their cars named
‘Toyota Friend’ which works in vehicular network environment
[27]. As discussed above, S-Aframe is designed to address the

unique challenges of vehicular social networks, such as the
cooperation between agents in VANETs to improve the efficiency
of performing various tasks. Especially due to the high dynamism
of VANETs, the time efficiency is very important. Also, we can
imagine that in a local social network, one major requirement is a
common picture about the positions of the people, as well as some
relative information of them. Therefore, we designed and
developed a demonstration application of vehicular social network
with S-Aframe about searching friends.

Figure 4. Portion of the resident agent

Figure 5. Portion of the mobile agent

For this application, we first developed a resident agent to provide
all the necessary application services at a local node to a visiting
mobile agent. In order to help the visiting mobile agent
dynamically and self-adaptively migrate around the underlying
vehicular network, the resident agent provides the migration
service and the network status service. These two services can be
directly invoked from S-Aframe's framework service layer. Also,
in a vehicular social network scenario, the identities of users and
timestamps of them when they participate in the systems are also
very important. Thus, the resident agent also invokes two other
framework services: ID names service and current time service.
By using these two services, the resident agent provides the name
or identity of the local node to the visiting mobile agent, as well as
the time stamp when the owner of the device or node is found. On
the other hand, because the framework service layer does not

provide device position service, thus we developed a position
service in the resident agent to provide the position service to the
visiting mobile agent. Second, we developed the mobile agent and
its owner application for this application. The mobile agent's task
is to automatically collect the names (or identities), positions and
the local time of each mobile device in the underlying VANET by
visiting each of them one by one. The application creates and
sends the mobile agent to execute the task in the underlying
VANET and display the devices' positions and some related
information on the Google Map. Figure 4 shows a portion of the
resident agent program. Figure 5 shows a portion of the mobile
agent program. Figure 6 shows a portion of the owner application.

Figure 6. Portion of the owner application

In the experiment, we used two laptops and one Android cell
phone (Motorola-Milestone) for testing, all of which contain GPS
components to get their local positions. Firstly, we deployed the
resident agent and the services of S-Aframe to two of the mobile
devices. Then we assumed that a new user named Judy using the
laptop to register in the local vehicular social network system.
Once Judy had registered in this system, as mentioned above, the
former mobile devices can automatically deploy the agents and
generic services to her laptop by using the deployment services of
S-Aframe. From the user interface of her laptop, Judy selects
some service to collect the information about other users in the
same group of the local vehicular social network system, then S-
Aframe will automatically releases a specific mobile agent to
execute this service in this system. As introduced before, resident
agents can provide necessary application services to mobile agent
when it is visiting them. Thus, the mobile agent can automatically
migrate around all the three mobile devices, automatically
executing there and finishing this task and back to its owner.
Finally, from Figure 7, we can find that the mobile agent had
successfully collected the user list and information (e.g., their
positions and photos) relative to its owner, and Figure 8 shows a
common picture about their positions and the related information.

1: public class PositionlistMobileAgent {

2: public void launch() {

3: mobileAgent.execute();

4: mobileAgent.transitToNextNode(true, true); // which mobile agent should travel through

5: }

6: public void init(String owner, String mode, String appName,

7: Collection<String> subset) {

8: mobileAgent.setOwner(owner); // id name of the mobile agent’s owner

9: mobileAgent.setTransitionMode(mode); // migration strategy of mobile agent

10: mobileAgent.setAppName(appName); // application name which releases this mobile agent

11: mobileAgent.setTransitionSet(subset); //only valid when node parameter set to "subSet"

12: }

13: }

1: public transitionService (target, owner, appName, Type, executedList, takenAway, mode)

2: //1 targetName; 2 owner ID; 3 appName; 4 mobileAgentType; 5 mobile agent history;

3: //6 takenAway data; 7 migration strategy;

4: public HashMap<Object, Object> getAgentList();

5: //return the hashmap contains the IDs of all nodes in vehicular networks

6: public class NameAndTimeService implements IApplicationService {

7: //get name(or identity) and local time

8: public String executeService() {

9: return “application service about get time and name”;

10: def mobileAgentGetNameAndTimeService := /.aframe.generalMobileAgent.new();

11: mobileAgentGetNameAndTimeService.getApplicationSpecificMobileAgent

12: (“nameAndTimeService”);

13: application.addMobileAgent

14: (“nameAndTimeService”, mobileAgentGetNameAndTimeService);

15: //invokes the application services and provides to mobile agent

16: }

17: }

1: public class App {

2: public PositionlistMobileAgent getPositionlistMobileAgent() {

3: return positionlistMobileAgent;

4: }

5: public void setPositionlistMobileAgent(PositionlistMobileAgent

6: positionlistMobileAgent) {

7: this.positionlistMobileAgent = positionlistMobileAgent;

8: }

9: public void setResidenceAgent(IResidenceAgent residenceAgent) {

10: this.residenceAgent = residenceAgent;

11 : } // resident agent is an object offering application services

12: public void launch () {

13: mobileAgent.execute():

14: mobileAgent.transitToNextNode(true, ture);

15: } //launch the application

16: public void mobileAgentComeBack(String key, String data) {

17: String[] array = data.split("#takenAwayDataSplit#");

18: String text = "mobile agent executing result: \n";

19: for (int i = 0; i < array.length; i++) {

20: String line = array[i];

21: text = text + line + "\n"; //this method is invoked by mobile agents, implement

22: //it to process result taken back by mobile agents

Figure 7. Users’ information collected by mobile agent

Figure 8. Common picture for users displayed by application

5. COMPARISON AND EVALUATION
Recently there is an increasing trend towards mobile social
networks, and several types of applications and systems have been
proposed for vehicular social networks, thus in this part we
compare with some other techniques which can be used for
vehicular social networks. MobiSN is a semantic based
framework for mobile ad-hoc social network [28]. It is
implemented in Java 2 Micro Edition (J2ME), and supports users
using their mobile devices to form mobile ad-hoc social networks,
which are self-configuring. Meanwhile, MobiSN provides core
implemented core functions and services for a mobile ad-hoc
social network, such as the profile generating, friend
matchmaking etc. However, due to the high dynamism of the
vehicular social networks, it is hard to track down every possible
scenario in advance, while MobiSN does not provide the
extensibility support to developers, thus it is difficult for it to
provide sufficient applications and services to users of vehicular
social network systems.

Table 2. Projects summary

Project Programming
model

Systematic
approach

Effectiveness

AmbientTalk Actor Partial support Low

MobiSN None Partial support Low

RoadSpeak None Partial support Middle

S-Aframe Multi-layer Support High

RoadSpeak is a framework for vehicular social networks, which
allows users to automatically join voice chat groups along their
roadways [1]. Different from traditional social networks,
RoadSpeak also considers the time and location besides the
interests of users in the users’ definition when their groups are
formed. Meanwhile, RoadSpeak partial supports extensibility. It
provides some Java APIs to application developers, based on
which developers can extend RoadSpeak clients to provide
enhanced functionality. Nevertheless, applications of RoadSpeak
rely on a server of this system. In a VANET environment, it is
difficult to provide a stable server among the vehicles all the time.
Also, RoadSpeak just provides voice chat service, but does not
provide other services; thus it can hardly fulfill the diverse service
requirements of users in the vehicular social network systems.

The basic idea of the AmbientTalk programming paradigm is that
it can incorporate network failures in its programming model [21].
Meanwhile, AmbientTalk employs a purely event-driven
concurrency framework based on actors. In AmbientTalk, actor
executions can be concurrent, with asynchronous actor method
invocations, thus AmbientTalk is very suitable for high dynamism
networks. Also, AmbientTalk combines the Java virtual machine
(JVM) as a platform, so it is easy for AmbientTalk programs to
use Java libraries. However, AmbientTalk is a completely new
language, which means that programmers have to spend a long
time to become familiar with it before using it to develop
applications for vehicular social network systems. Furthermore,
AmbientTalk does not provide implemented application services,
so the developing efficiency by AmbientTalk is low. S-Aframe
makes use of the mechanism of AmbientTalk symbiotic
programming with Java, and integrates generic services in its
framework, thus S-Aframe supports programmers easily and
effectively develop applications for vehicular social network
systems by using Java.

6. CONCLUTION AND FUTURE WORK
In this paper, we have presented S-Aframe, a semantic based
multi-agent framework for vehicular social networks. By
integrating software agent and semantic techniques, as well as
multi-layers framework, S-Aframe provides a high level software
platform to developers of vehicular social network systems.
Meanwhile, S-Aframe combined with multipath transmission
technique provides an efficient strategy for multimedia
transmission. Based on S-Aframe, a demonstration application
used in vehicular social networks was designed and implemented.

S-Aframe hides the complexity of handling different connectivity
status, varying services requirements and diverse devices in
vehicular social networks, as well as with extensibility support.
Thus it simplifies the development of applications for vehicular
social network systems. Meanwhile, S-Aframe provides a multi-
layer architecture, integrates with semantic technique, and
supports cooperation among multiple owner applications with

multiple agents working at the same time. Thus applications can
be more autonomous and adaptive to dynamically changing
environments. Moreover, S-Aframe provides sufficient
framework services for supporting application developers using
the Java programming language with standard API format to
develop applications. Consequently, S-Aframe improves
efficiency and effectiveness of application development of
vehicular social networks systems.

Further work of developing S-Aframe can be considered in many
aspects. For example, security and privacy are important
considerations in mobile social networks. We plan to use two
strategies to address security issues. One is the identification of
the ID names when a new mobile node wants to access the
vehicular social network system. The other strategy is the
dynamic services security identification. By integrating some
techniques, such as semantic and data mining, S-Aframe can
authorize only specific applications services to each mobile node
according to its identity (or some other parameters). When a user
releases a mobile agent, it can only use the authorized application
services. S-Aframe can also analyze the activity of each mobile
agent, then based on the mobile agent’s activity history and its
owner’s identity, to decide whether the mobile agent is secure or
not.

Also, since the framework service layer of S-Aframe is
implemented by AmbientTalk, the layers below application layer
are transparent. However, the relay selection for multimedia
transmission is usually below the application layer. For instance,
some research uses channel condition as measurement to find the
best relay for source node [29]. One available solution is that we
redevelop the lower layers of AmbientTalk, so as to extend the
network status service to these layers and attain some useful
parameters from them, such as the signal strength between the
nodes. Meanwhile, we can compare the different network status
obtained at different time and choose the relays that their network
performance is most stable. In addition, when the relay nodes are
disconnected with vehicular social network, the source node or
destination node must select new relay node as soon as possible to
prevent packet losses. In order to limit the data loss caused by
relay failure to the minimum extent, we can use some redundant
transmission schemes that send multiple copies using different
relay nodes.

7. ACKNOWLEDGMENTS
This work is support in part by the NSERC DIVA Strategic
Research Network.

8. REFERENCES
[1] S. Smaldone, L. Han, P. Shankar, and L. Iftode. 2008.

RoadSpeak: Enabling Voice Chat on Roadways using
Vehicular Social Networks. In Proceedings of the First
International Workshop on Social Network Systems
(SocialNets'08, in conjunction with EuroSys).

[2] C. Boldrini, M. Conti, and A. Passarella. 2007. Impact of
Social Mobility on Routing Protocols for Opportunistic
Networks. In Proc. of AOC Workshop.

[3] A. G. Miklas, K. K. Gollu, K. K. W. Chan, S. Saroiu, K. P.
Gummadi, and E. de Lara. 2007. Exploiting Social
Interactions in Mobile Systems. In Proc. of Ubicomp.

[4] F. Li, and Y. Wang. 2007. Routing in vehicular ad hoc
networks : A survey. IEEE Vehicular Technology Magazine,
vol. 2, no. 2, pp. 12-22.

[5] T. Nadeem, S. Dashtinezhad, C. Liao, and L. Iftode. 2004.
TrafficView: A Scalable Traffic Monitoring System. In Proc.
of MDM.

[6] M. Roccetti, M. Gerla, C. E. Palazzi, S. Ferretti, and G. Pau.
2007. First Responders’ Crystal Ball: How to Scry the
Emergency from a Remote Vehicle. In Proc. of IPCCC
2007/NetCri07.

[7] L. Wischhof, A. Ebner, and H. Rohling. 2005. Information
dissemination in self-organizing intervehicle networks. IEEE
Transactions on Intelligent Transportation Systems 6 (1)
(2005) 90–101.

[8] J.-S. Park, J.-S. Park, J. Yeh, G. Pau, and M. Gerla. 2006.
CodeTorrent: Content Distribution using Network Coding in
VANETs. In Proc. of MobiShare.

[9] IEEE Foundation for Intelligent Physical Agents (FIPA).
Agent Management Specification.

[10] R. Bindhu. 2010. Mobile Agent Based Routing Protocol with
Security for MANET. International Journal of applied
engineering research, dindigul, Volume 1, No1.

[11] T. B. Lee, J. Hendler, and O. Lassila. The semantic web.
Scientific American 284 (2001), no. 5, 34 - 44.

[12] D. Brickley, and R. Guha. 2003. RDF vocabulary description
language 1.0: RDF schema, Tech. report, W3C
Recommendation 10 February 2004.

[13] D. L. McGuinness, and F. van Harmelen. 2004. Owl web
ontology language overview,
http://www.w3.org/TR/2004/REC-owl-features-20040210/.

[14] H. Boley, and M. Kifer. 2008. RIF framework for logic
dialects. W3C Working Draft, Tech. Rep.
http://www.w3.org/TR/rif-fld/.

[15] F. Martin. Recuerda, and D. Robertson. 2005. Discovery and
uncertainty in semantic web services. In Proceedings of
Uncertainty Reasoning for the Semantic Web. p. 188.

[16] G. Stamou, J. van Ossenbruggen, J. Z. Pan, and G. Schreiber.
2006. Multimedia annotations on the semantic web. IEEE
MultiMedia 13 (2006), 86{90.

[17] R. Stevens, M. E. Aranguren, K. Wolstencroft, U. Sattlera, N.
Drummond, M. Horridge, and A. Rectora. 2007. Using owl
to model biological knowledge. International Journal of
Human-Computer Studies 65 (2007), no. 7, 583{594.

[18] TripIt. http://www.tripit.com/, accessed June 2011.

[19] M. Wellens, B. Westphal, and P. Mahonen. 2007.
Performance evaluation of IEEE 802.11 based WLANs in
vehicular scenarios. In Proceedings of IEEE Vehicular
Technology Conference (VTC) Spring, pp. 1167–1171.

[20] D. Gray (Ed.). 2007. Mobile WiMAX Part I: A Technical
Overview and Performance Evaluation v2.8, Apr 2006.

[21] J. Dedecker, T. Van Cutsem, S. Mostinckx, T. D'Hondt, and
W. De Meuter. 2006. Ambient-oriented Programming in
AmbientTalk. In Proceedings of the 20th European
Conference on Object-Oriented Programming (ECOOP),
Dave Thomas (Ed.). Lecture Notes in Computer Science Vol.
4067, pp. 230-254, Springer-Verlag.

[22] E. Hossain, G. Chow, V.C.M. Leung, R. McLeod, J. Misic,
V.W.S. Wong, and O. Yang. 2010. Vehicular Telematics
Over Heterogeneous Wireless Networks: A Survey.
Computer Communications, vol. 33, no. 7, pp. 775–793.

[23] M. Ramadan, L. El Zein, and Z. Dawy. 2008.
Implementation and evaluation of cooperative video
streaming for mobile devices. In Proceeding of IEEE 19th
International Symposium on Personal, Indoor and Mobile
Radio Communications (PIMRC).

[24] F. Albiero, M. Katz, and F.H.P. Fitzek. 2008. Energy-
Efficient Cooperative Techniques for Multimedia Services
over Future Wireless Networks. In Proceeding of IEEE
International Conference on Communications (ICC).

[25] G. Ananthanarayanan et al. 2007. COMBINE: leveraging the
power of wireless peers through collaborative downloading.
In Proceedings of the 5th international conference on Mobile
systems, applications and services. pp. 286-298.

[26] T. Seenivasan, and M. Claypool. 2011. CStream:
neighborhood bandwidth aggregation for better video
streaming. Multimedia Tools and Applications, pp. 1-30.

[27] http://pressroom.toyota.com/releases/toyota+friend+social+n
etwork.htm

[28] J. Li, and S. U. Khan. 2009. MobiSN: Semantics-based
Mobile Ad Hoc Social Network Framework. In Proceeding
of IEEE Global Communications Conference (Globecom
2009), Honolulu, HI, USA.

[29] Y. Zhao, R. Adve and T. J. Lim. 2007. Improving amplify-
and-forward relay networks: optimal power allocation versus
selection. IEEE Transactions on Wireless Communications,
vol. 6, no. 8, pp. 3114-3123.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064506390020064506420627064A064A0633002006390631063600200648063706280627063906290020062706440648062B0627062606420020062706440645062A062F062706480644062900200641064A00200645062C062706440627062A002006270644062306390645062706440020062706440645062E062A064406410629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd00630068002000700072006f002000730070006f006c00650068006c0069007600e90020007a006f006200720061007a006f007600e1006e00ed002000610020007400690073006b0020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003b103be03b903cc03c003b903c303c403b7002003c003c103bf03b203bf03bb03ae002003ba03b103b9002003b503ba03c403cd03c003c903c303b7002003b503c003b903c703b503b903c103b703bc03b103c403b903ba03ce03bd002003b503b303b303c103ac03c603c903bd002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405E605D205D4002005D505D405D305E405E105D4002005D005DE05D905E005D4002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D905D505EA05E8002E002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata pogodnih za pouzdani prikaz i ispis poslovnih dokumenata koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF00410020006800690076006100740061006c006f007300200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d0065006700740065006b0069006e007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200073007a00e1006e0074002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c00200068006f007a006800610074006a00610020006c00e9007400720065002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f0020006e00690065007a00610077006f0064006e00650067006f002000770079015b0077006900650074006c0061006e00690061002000690020006400720075006b006f00770061006e0069006100200064006f006b0075006d0065006e007400f300770020006600690072006d006f0077007900630068002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e007400720075002000760069007a00750061006c0069007a00610072006500610020015f006900200074006900700103007200690072006500610020006c0061002000630061006c006900740061007400650020007300750070006500720069006f0061007201030020006100200064006f00630075006d0065006e00740065006c006f007200200064006500200061006600610063006500720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f043e04340445043e0434044f04490438044500200434043b044f0020043d0430043404350436043d043e0433043e0020043f0440043e0441043c043e044204400430002004380020043f04350447043004420438002004340435043b043e0432044b044500200434043e043a0443043c0435043d0442043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020007000720069006d00650072006e006900680020007a00610020007a0061006e00650073006c006a00690076006f0020006f0067006c00650064006f00760061006e006a006500200069006e0020007400690073006b0061006e006a006500200070006f0073006c006f0076006e0069006800200064006f006b0075006d0065006e0074006f0076002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005400690063006100720069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900720020015f0065006b0069006c006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

