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Abstract—Network slicing is a promising technique for
cloud radio access networks (C-RANs). It enables multiple
tenants (i.e., service providers) to reserve resources from an
infrastructure provider. However, users’ mobility and traffic
variation result in resource demand uncertainty for resource
reservation. Meanwhile, the inaccurate channel state information
(CSI) estimation may lead to difficulties in guaranteeing the
quality of service (QoS). To this end, we propose a two-timescale
resource management scheme for network slicing in C-RAN,
aiming at maximizing the profit of a tenant, which is the
difference between the revenue from its subscribers and the
resource reservation cost. The proposed scheme is under a
hierarchical control architecture, which includes long timescale
resource reservation for a slice and short timescale intra-slice
resource allocation. To handle traffic variation, we utilize the
statistics of users’ traffic. Moreover, to guarantee the QoS under
CSI uncertainty, we apply the uncertainty set of CSI for resource
allocation among users. We formulate the profit maximization as
a two-stage stochastic programming problem. In this problem,
long timescale resource reservation for a slice is performed
in the first stage with only the statistical knowledge of users’
traffic. Given the decision in the first stage, short timescale
intra-slice resource allocation is performed in the second stage,
which is adaptive to real-time user arrival and departure. To
solve the problem, we first transform the stochastic programming
problem into a deterministic optimization problem. We further
apply semidefinite relaxation to transform the problem into a
mixed integer nonconvex optimization problem, which can be
solved by combining branch-and-bound and primal-relaxed dual
techniques. Simulation results show that our proposed scheme
can well adapt to traffic variation and CSI uncertainty. It obtains
a higher profit when compared with several baseline schemes.

Index Terms—C-RAN, network slicing, two timescales, stochas-
tic programming, profit maximization.

I. INTRODUCTION

The fifth generation (5G) wireless systems are expected
to support diverse types of services and meet the increasing
traffic demands from the end users [1], [2]. This scenario
leads to higher network capital and operating expenditures,
as well as higher network resource consumption. To tackle
these problems, network slicing is introduced to virtualize
the common physical network into several logical end-to-
end networks. This process is enabled by software-defined
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networking (SDN) and network function virtualization (NFV)
[3], [4]. Each logical end-to-end network is called a network
slice. As a logical end-to-end network, each slice consists
of a part of core network resources, network functions, and
radio access network resources. Each slice can be dynamically
created, modified, and released by the centralized controller
located at the infrastructure provider. The service provider,
which is the owner of each network slice, is called a tenant.
Based on the network slicing paradigm, each tenant, equipped
with a local controller, is capable of managing the network
slice according to a specific type of service and quality
of service (QoS) requirements including data rate, latency,
reliability, and security. There are several crucial requirements
for network slicing. First, slice orchestration requires a unified
and flexible execution environment to run multiple slices.
Second, slice isolation requires separation of resources and
independent slice management without interference from other
slices. Third, optimized topology and resource allocation are
needed to achieve service fulfillment assurance.

According to different types of network resources, network
slicing can be categorized into two types: core network
slicing that partitions network nodes, links or topologies, and
radio access network (RAN) slicing that partitions baseband
resources, BSs, radio resources, and transmission power [5].
Each tenant estimates the resource demand from its subscribed
users and submits the resource reservation request to the
centralized controller. With the received resource reservation
requests, the centralized controller, located at the infrastructure
provider, dynamically performs inter-slice resource virtualiza-
tion and assigns the physical resources to each slice [6]. Then,
the tenant performs intra-slice resource allocation among
its subscribed users. From the perspective of each tenant,
resource reservation process and intra-slice resource allocation
process can be jointly considered. The resource reservation
decision made by the tenant should guarantee sufficient
resources for intra-slice resource allocation. Meanwhile, intra-
slice resource allocation, performed by the local controller
at each tenant, should achieve efficient resource utilization,
mitigate interference among users, and guarantee QoS of users.

Many works have been conducted on resource management
for core network slicing [7]–[9]. The standardization of
core network slicing has also been conducted within the
3rd Generation Partnership Project (3GPP) [10]–[12]. Several
key concepts, such as network slice, network slice instance,
and life-cycle management of network slice instance, are
specified. Compared with core network slicing, RAN slicing
is faced with new challenges due to time-varying channel
conditions, user mobility, and interference. Conventional



2

approaches mainly consider inter-slice resource virtualization
among tenants from the perspective of a centralized controller
to achieve fairness among tenants [13]–[18]. For example,
Gudipati et al. in [13] proposed the concept of SoftRAN,
which defines a virtual big-base station that is comprised
of a central controller and a group of geographically close
BSs. Caballero et al. in [14] focused on achieving desirable
fairness across network slices and users. They formulated an
optimization problem for dynamic resource allocation with a
weighted proportionally fair objective function. Zhang et al.
in [15] proposed a mobility management scheme and a joint
power and sub-channel allocation scheme for RAN slicing
to enhance resource efficiency. To achieve accurate resource
demand estimation and efficient resource utilization, some
studies have been conducted to design the resource reservation
and intra-slice resource allocation from the perspective of
each tenant [19], [20]. In [20], Zhu et al. proposed a
hierarchical combinatorial auction mechanism for resource
management, in which each tenant submits its bid to the
centralized controller for a certain amount of resources, and
executes an auction to allocate the reserved resources to
its subscribed users. Caballero et al. in [19] formulated a
network slicing game in which each tenant takes into account
the resource demand estimation of other tenants to make
a resource reservation decision so as to maximize its user
utility. However, these works consider the two processes in
a single timescale framework. To achieve real-time adaptation
to varying network conditions, the duration of the timescale
is designed to be short. In this case, performing resource
reservation and intra-slice resource allocation simultaneously
may lead to a high computational cost. To tackle this problem,
a two-timescale framework can be adopted. In this framework,
resource reservation is performed in a long timescale with
the estimated resource demand from the slice, and intra-
slice resource allocation is performed in a short timescale to
achieve adaptation to real-time network conditions. The two-
timescale framework is discussed in several works [21], [22].
Zhang et al. in [21] proposed a static spectrum reservation
and dynamic resource requesting scheme for each tenant to
maximize the aggregate utility of users. In [22], Chen et
al. designed a resource pre-allocation over a long timescale
and intra-slice resource scheduling over a short timescale
for resource efficiency maximization. However, these works
neglect the characterization of the profit of each tenant and the
impact of the uncertain and time-varying network conditions
on the profit. To achieve profit maximization, each tenant
should control the resource reservation cost and increase the
revenue obtained from its subscribed users under the scenario
of uncertain and time-varying network conditions.

Besides network slicing, cloud radio access network (C-
RAN) is also a novel mobile network architecture for 5G
wireless systems [23]. The main idea behind C-RAN is to
detach the radio signal transceiver module and baseband signal
processing module of conventional base stations (BSs) into
two parts. In C-RAN, the baseband signal processing module
is moved from BSs to a cloud server, which is referred to as a
baseband unit (BBU). Conventional BSs are replaced by light
and low-cost remote radio heads (RRHs) with radio signal

transmission and reception functions. To enhance the capacity
of C-RAN, coordinated multipoint (CoMP) transmission tech-
nique is deployed by which multiple RRHs can coordinate
together to serve each user. The group of RRHs serving each
user is called an RRH cluster, and the grouping process is
called user-centric RRH clustering. By implementing multiple
antennas at each RRH, the beamforming technique can be
deployed to mitigate interference experienced by each user.

In this paper, we propose a two-timescale resource man-
agement scheme for network slicing in C-RAN, aiming at
maximizing the profit of the tenant by long timescale resource
reservation for the slice and short timescale intra-slice resource
allocation among the subscribed users. We consider two
major challenges. First, user traffic varies over time, making
it difficult to accurately estimate the resource demand for
resource reservation. Second, due to fast fading, user mobility,
coding error, and delay, the uncertainty of channel state
information (CSI) of the subscribed users should be considered
during intra-slice resource allocation in order to guarantee the
QoS. To tackle these challenges and maximize the profit of the
tenant, the interaction between resource reservation and intra-
slice resource allocation is considered. The long timescale
resource reservation characterizes the statistics of user traffic
and ensures that sufficient resources are reserved for intra-
slice resource allocation. Meanwhile, the intra-slice resource
allocation is adaptive to the arbitrary arrival/departure of users
while characterizing the CSI uncertainty to achieve efficient
utilization of the reserved resources and guarantee the QoS.

The main contributions of this paper are summarized as
follows:

• We propose a two-timescale resource management
scheme to achieve profit maximization for network slicing
in C-RAN. By modeling the problem as a two-stage
stochastic programming problem, the interaction between
resource reservation and intra-slice resource allocation is
achieved, and the user traffic variation is characterized.

• We design a profit model for the tenant, which captures
the revenue obtained from its subscribed users and the
cost of resource reservation. The revenue is modeled
as a piecewise function consisting of a reward obtained
by guaranteeing the QoS of users and a penalty due to
QoS violation. The cost is modeled as a linear function
consisting of the sub-channel and power reservation
cost. We characterize the QoS under CSI uncertainty by
applying the CSI uncertainty set.

• We transform the stochastic programming problem into
a deterministic mixed-integer optimization problem by
introducing a maximum interference threshold and ap-
plying semidefinite relaxation. We combine branch-and-
bound and primal-relaxed dual techniques to obtain the
suboptimal solution.

• We conduct extensive simulations to evaluate the prop-
erties and performance of the proposed scheme. Results
show that the proposed scheme can achieve a higher profit
when compared with four other baseline schemes.

This paper is organized as follows. In Section II, we present
the system model and the two-timescale framework, and
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Fig. 1: Illustration of a CoMP-based C-RAN. Multiple RRHs
cooperate together to transmit data to the users.

formulate the profit maximization problem. In Section III, we
present the suboptimal solution of the problem. We evaluate
the performance of the proposed scheme in Section IV, and
conclude the paper in Section V.

Notations: The following notations are adopted: XH, Tr(X),
and Rank(X) represent the conjugate transpose, trace, and
rank of matrix X, respectively; Rm×n is the set of m by n real
matrices, Cm×n is the set of m by n complex matrices; HN
denotes the set of N by N Hermitian matrices; E[·] denotes
the statistical expectation; X � 0 means that X is positive
semidefinite. In is the n × n identity matrix, 0n denotes the
n × 1 all-zero vector; ⊗ stands for the Kronecker product;
R{x} stands for the real part of complex number x; CN (0, σ2)
is the zero-mean complex Gaussian distribution with variance
σ2.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Architecture of Network Slicing in C-RAN

We consider network slicing in a CoMP-based C-RAN
system. As shown in Fig. 1, the system consists of a BBU
pool, multiple RRHs, and a group of users. Multiple baseband
signal processing modules are located at the BBU pool. The
RRHs are connected to the BBU pool via optical fibers. The
BBU pool connects to the core network via backhaul links.
Each RRH is equipped with multiple antennas. Each user
is equipped with a single antenna. The CoMP framework
enables each user to be served by multiple RRHs, which form
an RRH cluster. Meanwhile, the beamforming operation is
designed for antennas to mitigate interference. We apply the
data-sharing strategy for downlink data transmission. In this
strategy, the BBU pool sends messages of each user directly to
multiple RRHs by fronthaul links. The RRHs locally form the
beamforming vector and cooperatively transmit the messages
to each user. We denote the set of RRHs in the coverage area
as B = {1, 2, . . . , B}. Each RRH is equipped with A antennas.
There are N sub-channels, each with bandwidth W . Network
slicing is implemented in the CoMP-based C-RAN. Each slice
corresponds to a logical network with network resources and
network functions allocated by an infrastructure provider. As
shown in Fig. 1, each slice is owned and managed by a tenant
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Fig. 2: Two-timescale resource reservation and allocation.

(i.e., service provider) to support a specific type of service.
In this paper, we consider the management of a RAN slice.
According to 3GPP standards of 5G network slicing [10]–[12],
the 5G management system, tied to the network functions
virtualization management and orchestration (NFV-MANO)
architectural framework, is implemented for network slices
to achieve configuration, fault, lifecycle, and performance
management. Each RAN slice consists of a management
layer as well as layers of the radio interface protocol stack.
The management layer is responsible of slice activation,
configuration, and orchestration. The radio interface protocol
stack consists of control plane functions of radio resource
control (RRC), medium access control (MAC) layer, and
physical (PHY) layer. In a CoMP-based C-RAN, since each
RRH is only equipped with basic radio signal transmission and
reception functions, the management system of the RAN slice
is implemented in the cloud BBU pool, which is responsible
of resource management including resource reservation and
intra-slice resource allocation. In this paper, we assume that
each tenant owns and manages a single slice. The proposed
framework can be extended to the scenario where each tenant
owns and manages multiple slices.

We consider resource management for network slicing in
C-RAN from the perspective of a single tenant and its single
slice. The tenant performs resource reservation for its slice
to request radio resources of sub-channels and power from
an infrastructure provider, which is the owner of the physical
infrastructure of C-RAN. The tenant then performs intra-slice
resource allocation to allocate the reserved resources to its
subscribed users according to the channel conditions and QoS
requirements.

B. Two-Timescale Framework

As shown in Fig. 2, the lifecycle of resource management
for the considered slice is set to be one day. The reason that we
choose the resource management lifecycle of a slice as one day
is because this lifecycle exhibits the property of periodicity.
The user traffic may vary during different time of the day.
The variation of user traffic may follow a certain pattern
during the day. We divide 24 hours into K long timescale
slots (minutes). Each long timescale slot consists of T short
timescale slots with the same duration. Resource reservation
for the considered slice is updated at the beginning of each
long timescale slot with the statistical knowledge of user
traffic. Intra-slice resource allocation is performed over short
timescale under an arbitrary user arrival/departure process. The
choice of the duration of each long timescale slot should
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guarantee that the statistics of user traffic will not change
within the long timescale slot. Meanwhile, since that more
frequent submissions of resource reservation requests may lead
to higher computation and reconfiguration cost of the network,
the duration of each long timescale slot should be chosen to
avoid high computation and reconfiguration cost.

The choice of the duration of each short timescale slot
should guarantee that the real-time user traffic variation can
be captured so that the intra-slice resource allocation can be
adaptive to the arbitrary user arrival and departure. In order to
map the network slicing framework with the existing wireless
systems, we use the transmission time interval (TTI) of 1 ms
as the unit for a short timescale slot [24]. The duration of
each short timescale slot can be set to any value between 1
second and 5 seconds (i.e., between 1000 and 5000 TTI units).
Meanwhile, due to user mobility and fast channel fading, the
uncertainty of CSI within each short timescale slot should also
be considered. In this paper, we assume that the durations
of each long timescale slot and short timescale slot are
predetermined and do not change over time. The explanations
of notations in Fig. 2 will be given in the following part of
this section.

1) User Traffic Model: In this paper, we consider the
scenario where users arbitrarily arrive and leave the system
[25], [26]. In the coverage area of C-RAN, different regions
may have different statistics of user traffic. To address this
issue, we divide the network coverage area into M disjoint
regions, according to the density of user distribution [27].
Within the long timescale slot k = 0, 1, . . . ,K − 1, in region
m = 1, . . . ,M , we assume that the arrival of users follows a
general distribution with an average user arrival rate of χk,m
(number of arrived users per short timescale slot). The duration
that a user stays in region m, called the sojourn time, is a
random variable. It follows a general distribution with mean
µk,m, the unit of which is a short timescale slot. Since general
distributions for both the arrival of users and sojourn time are
assumed, we can design a resource management scheme that
is applicable for different statistical models of user traffic.

Within a long timescale slot k, we denote the set of users in
short timescale slot t as Ut =

⋃M
m=1 Ut,m, where Ut,m is the

set of users in region m and t ∈ Tk = {kT, . . . , (k+1)T−1}.
Users in set Ut,m are assumed to be uniformly distributed in
region m.

Based on the user traffic model, the arrival and departure
process of users can be depicted. Within the long timescale
slot k, in each short timescale slot t, in each region m,
there will be a random number of new user arrivals following
the general user arrival distribution with average user arrival
rate χk,m. Each user stays in the region with a random
sojourn time. After the sojourn time, the user will leave the
system. Since that general distributions for both the arrival
of users and the sojourn time are assumed, we can design
a resource management scheme that can be applicable for
different statistical models of user traffic. By recording the
service requests from the users and the service time for each
user, the tenant can estimate the statistics of the user arrival
process and sojourn time, as well as the user arrival rate χk,m
and the mean sojourn time µk,m.

2) Two-Timescale Resource Management: At the begin-
ning of a long timescale slot k, the tenant obtains the
knowledge of average user arrival rate vector χk =
(χk,1, . . . , χk,m, . . . , χk,M ), the average sojourn time vector
µk = (µk,1, . . . , µk,m, . . . , µk,M ), and the user set UkT .
The tenant then makes the resource reservation decision by
choosing nk, which is the number of reserved sub-channels,
and pk = (pk,1, . . . , pk,B), in which pk,b is the amount of
power reserved for RRH b ∈ B.

At the beginning of a short timescale slot t ∈ Tk, given the
resource reservation decision nk and pk, and an observation
of user set Ut, we design a beamforming scheme. For a user
u ∈ Ut, the beamforming decision is denoted as vt,u =
[vH
t,u,1 · · · vH

t,u,B ]H ∈ CAB×1, where vt,u,b ∈ CA×1, b ∈ B,
represents the beamforming vector from RRH b to user u
for each sub-channel. The precoded signal from RRHs to
user u is given by vt,usu = [vH

t,u,1su · · · vH
t,u,Bsu]H, where

su ∈ C denotes the data symbol for user u. We assume
that E[|su|2] = 1. Analog beamforming is used as the same
data symbol su is fed to each antenna. We consider a single
data stream for each user and each user is equipped with
only one antenna. Furthermore, based on the user location
distribution, the mean channel vector of user u ∈ Ut can
be estimated as h̄t,u = [h̄H

t,u,1 · · · h̄H
t,u,B ]H ∈ CAB×1, where

h̄t,u,b ∈ CA×1, b ∈ B, is the mean channel vector between
RRH b and user u. Due to user mobility and fast channel
fading, the instantaneous channel vector, denoted as ht,u, is
a random vector, with mean h̄t,u. Given the beamforming
decision vector vt = [vH

t,1 · · · vH
t,|Ut|]

H and channel vector
ht,u, the signal received at user u ∈ Ut can be written as

hH
t,uvt,usu +

∑
u′∈Ut\{u}

hH
t,uvt,u′su + nu, (1)

where the first term represents the desired signal and the
second term represents the interfering signal, nu ∼ CN (0, σ2)
denotes the noise at user u with power σ2. The data rate of
user u in short timescale slot t can be obtained as follows
[28]:

rt,u = nkW log

(
1 +

|hH
t,uvt,u|2∑

u′∈Ut\{u} |h
H
t,uvt,u′ |2 + σ2

)
, (2)

where the term
∑
u′∈Ut\{u} |h

H
t,uvt,u′ |2 represents the inter-

ference experienced by user u caused by data transmission
from all the RRHs to other users. Since the channel vector
ht,u is a random vector, rt,u is also a random variable.

By designing the sparse beamforming vector vt,u,b for
each user u ∈ Ut at each RRH b ∈ B, the tenant can
determine the power allocated to user u at RRH b. Meanwhile,
the beamforming vector can also indicate the user-centric
RRH clustering decision for each user. We note that when
vt,u,b = 0AB , user u is not associated with RRH b. When
vt,u,b 6= 0AB , user u is served by RRH b.

In this paper, we assume that resource reservation and intra-
slice resource allocation decisions made by the tenant will not
be affected by the decisions of other tenants. We also assume
that the infrastructure provider can always satisfy the resource
reservation requests from the tenant.
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3) QoS Requirement under CSI Uncertainty: In this paper,
the QoS requirement is the required data rate, denoted as rreq.
Since only the mean channel vector h̄t,u can be obtained, we
adopt the uncertainty set to capture the CSI uncertainty. In
short timescale slot t ∈ Tk, the CSI uncertainty set of user
u ∈ Ut is defined as

Rt,u , {ht,u | (ht,u − h̄t,u)H(ht,u − h̄t,u) ≤ ε2
t,u}, (3)

where εt,u is the radius of the uncertainty region of the channel
vector ht,u. We denote ε2

t,u as the size of the CSI uncertainty
set Rt,u. Then, based on (2) and (3), the QoS requirement
under the CSI uncertainty can be modeled as

rt,u ≥ rreq, ht,u ∈ Rt,u. (4)

Inequality (4) indicates that rreq should be satisfied for all
the realizations of ht,u in the set Rt,u. By introducing the
CSI uncertainty set, the QoS requirement can be depicted as
deterministic constraint (4) without the necessity of knowing
the statistical knowledge of the channel vector.

4) Revenue and Cost of a Tenant: One key motivation
of the tenant to perform resource reservation and intra-slice
resource allocation is to enhance the revenue obtained from
the subscribed users while controlling the resource reservation
cost so as to maximize the profit [29]–[31]. In this section, we
design a revenue model and a resource reservation cost model
for the tenant.

In a short timescale slot t ∈ Tk, k = 0, . . . ,K−1, with the
knowledge of Ut and vt, the revenue of serving user u ∈ Ut
is given as

Yt,u(vt) =

{
p(ε̃t,u)rreqα, rt,u ≥ rreq, ht,u ∈ Rt,u
−β, otherwise, (5)

where ε̃2
t,u =

ε2t,u
h̄H

t,uh̄t,u
is the normalized size of CSI uncertainty

set Rt,u, p(ε̃t,u) is the probability that the true channel vector
is within the CSI uncertainty set, rreqα is the revenue of
serving user u ∈ Ut if perfect CSI information is obtained, in
which α is the revenue obtained by offering the service with 1
Mb/s data rate. We also have β as the penalty of failing to serve
user u. According to revenue function (5), higher required data
rate rreq results in higher revenue obtained by the tenant, since
that users need to pay more for better service. Meanwhile,
satisfying QoS constraint (4) is not sufficient to guarantee
rt,u ≥ rreq with 100%, since that the true realization of channel
vector ht,u may be out of the CSI uncertainty set. Therefore,
we introduce the probability p(ε̃t,u), which is determined by
ε̃t,u of the CSI uncertainty set. Larger ε̃t,u may lead to a
higher probability that the true realization of channel vector is
included in the uncertainty set. Thus, higher probability of QoS
guarantee can be achieved for higher revenue. The probability
p(ε̃t,u) of user u can be summarized from historical channel
vector records of users located at the same place of user u.

At the beginning of long timescale slot k, given the resource
reservation decisions nk and pk, the cost function can be
defined as

Ck(nk,pk) = c1nk +
∑
b∈B

c2pk,b, (6)

where c1 and c2 are the costs of reserving one sub-channel and
one Walt of power for one long timescale slot, respectively.

C. Two-Stage Stochastic Programming for Profit Maximiza-
tion

The objective of long timescale resource reservation and
short timescale intra-slice resource allocation is to maximize
the expected profit of a tenant in each long timescale slot.
For each long timescale slot k = 0, 1, . . . ,K − 1, we
formulate a two-stage stochastic programming problem. The
first stage decision, i.e., resource reservation, is made at
the beginning of the long timescale slot k, with only the
knowledge of the average user arrival rate vector χk, average
sojourn time vector µk, and user set UkT . We denote U seq

k =
(UkT , . . . ,U(k+1)T−1). Then, with the first stage decision and
a realization of U seq

k , the second stage decision, i.e., intra-slice
resource allocation, is made over short timescale slot t ∈ Tk.
The problem is formulated as follows:

maximize
nk,pk

EU seq
k

[
Q(U seq

k )
]
− Ck(nk,pk) (7a)

subject to nk ∈ {0, . . . , N}, (7b)
0 ≤ pk,b ≤ Pb, b ∈ B, (7c)

where Pb is the maximum power a tenant can reserve for RRH
b ∈ B, Q(U seq

k ) is the optimal revenue obtained by the tenant
given the knowledge of U seq

k , EU seq
k

[Q(U seq
k )] is the expectation

of Q(U seq
k ) over all the realizations of U seq

k , Q(U seq
k ) is the

optimal value of the following intra-slice resource allocation
problem:

maximize
vt,t∈Tk

∑
t∈Tk

∑
u∈Ut

Yt,u(vt) (8a)

subject to nk
∑
u∈Ut

Tr(vt,u,bvH
t,u,b)≤pk,b, b ∈ B, t ∈ Tk. (8b)

Constraint (8b) represents the power constraint given the
decisions of nk and pk made in the first stage.

By solving problem (7), the amount of reserved resources
and the corresponding cost are determined, based on which
second stage problem (8) determines the optimal revenue
Q(U seq

k ) by making the beamforming decision vt. Therefore,
by solving the two-stage stochastic programming problem, the
expected profit can be maximized.

III. SOLUTION FOR THE PROFIT MAXIMIZATION PROBLEM

A. Transformation into a Deterministic Problem

The two-stage stochastic programming problem cannot
be solved directly due to the expectation of Q(U seq

k ) in
problem (7). Meanwhile, resource reservation in the first
stage and intra-slice resource allocation in the second stage
build a hierarchical control architecture. Therefore, we first
transform the two-stage stochastic programming problem into
a deterministic optimization problem [32]. Based on the
traffic model in Section II-B, at the beginning of the long
timescale slot k, with the knowledge of (χk,µk,UkT ), we
can obtain the realizations of the user set sequence U seq

k .
The l-th (l ∈ L = {1, . . . , L}) realization of U seq

k is
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denoted as U seq
k,l = (UkT ,UkT+1,l, . . . ,U(k+1)T−1,l). The

corresponding probability of the occurrence of realization U seq
k,l

is denoted as ωl. The corresponding beamforming decision
sequence is denoted as vseq

k,l = (vkT,l, . . . ,v(k+1)T−1,l), in
which vt,l = [vH

t,l,1 · · · vH
t,l,u · · · vH

t,l,|Ut,l|]
H, and vt,l,u =

[vH
t,l,u,1 · · · vH

t,l,u,B ]H, u ∈ Ut,l, t ∈ Tk, l ∈ L. Then, the two-
stage stochastic programming problem can be transformed into
the following problem:

maximize
nk,pk,v

seq
k

L∑
l=1

ωl
∑
t∈Tk

∑
u∈Ut,l

Yt,u(vt,l)− Ck(nk,pk) (9a)

subject to nk
∑
u∈Ut,l

Tr(vt,l,u,bvH
t,l,u,b) ≤ pk,b,

b ∈ B, t ∈ Tk, l ∈ L (9b)
constraints (7b) and (7c),

where vseq
k = (vseq

k,1, . . . ,v
seq
k,L).

Problem (9) cannot be solved directly due to the noncon-
vexity of Yt,u(vt,l). Based on the discussion in Section II-B4,
the revenue function (5) can be equivalently depicted under a
user admission control scenario. For user u ∈ Ut,l, the tenant
can obtain the revenue p(ε̃t,u)rreqα from the user if the QoS
requirement constraint (4) is satisfied. The tenant will need to
pay a penalty of β if constraint (4) is not satisfied. To further
save the resources, the tenant will then assign no resources to
this user, which indicates that the service request of the user is
rejected. In this case, we introduce the user admission control
variable at,l,u ∈ {0, 1} to indicate whether the service request
of user u is accepted. Then, for the l-th realization of U seq

k ,
the revenue function (5) is equivalent to

Y new
t,l,u(at,l,u) = at,l,up(ε̃t,l,u)rreqα− (1− at,l,u)β, (10)

with QoS constraint

nkW log

(
1 +

|hH
t,l,uvt,l,u|2∑

u′∈Ut,l\{u}
|hH

t,l,uvt,l,u′ |2+σ2

)
≥ at,l,urreq,

ht,l,u ∈ Rt,l,u, u ∈ Ut,l, t ∈ Tk, l ∈ L, (11)

where ht,l,u, Rt,l,u, and ε̃2
t,l,u are the channel vector, CSI

uncertainty set, and its normalized size for the l-th realization
of U seq

k , respectively. We reformulate problem (9) as follows:

maximize
aseq
k ,nk,pk,v

seq
k

L∑
l=1

ωl
∑
t∈Tk

∑
u∈Ut,l

Y new
t,l,u(at,l,u)− Ck(nk,pk)

(12a)
subject to at,l,u ∈ {0, 1}, u ∈ Ut,l, t ∈ Tk, l ∈ L (12b)

constraints (7b), (7c), (9b), (11),

where aseq
k = (aseq

k,1, . . ., aseq
k,L), aseq

k,l = (akT,l, . . ., a(k+1)T−1,l),
and at,l = (at,l,1, . . . , at,l,|Ut,l|).

Problem (12) is a mixed integer optimization problem
due to integer variables aseq

k and nk. We use branch-and-
bound technique [33] to determine the optimal solution of
aseq
k . We first relax each integer variable at,l,u ∈ {0, 1} to

0 ≤ at,l,u ≤ 1, and solve the relaxed problem to obtain
nk,pk,v

seq
k , and relaxed aseq

k . We randomly choose a variable
at,l,u /∈ {0, 1}, the two new constraints developed from this

variable are at,l,u = 1 and at,l,u = 0, forming two child
nodes of the current node. We then proceed to the node with
the greatest optimal value and apply the same procedure. If
there is an integer solution of aseq

k with the greatest optimal
value among other ending nodes, then the process stops. For
the integer variable nk, we relax it to a continuous variable
and obtain the relaxed optimal solution of nk. Then, we simply
compare the optimal profits based on the two integer values
of nk that are most close to the relaxed optimal solution of
nk, and pick the optimal integer solution.

B. QoS Constraint Approximation and Semidefinite Relaxation

Based on the branch-and-bound technique, we focus on
solving problem (12) with the relaxation of integer variables at
each node. The relaxed optimization problem is still difficult
to be solved as QoS constraint (11) is nonconvex. To tackle
this challenge, we introduce a maximum interference threshold
to achieve the QoS constraint approximation. The relaxed
problem of (12) is formulated as follows:

maximize
ϕseq

k ,a
seq
k ,nk,pk,v

seq
k

L∑
l=1

ωl
∑
t∈Tk

∑
u∈Ut,l

Y new
t,l,u(at,l,u)− Ck(nk,pk)

(13a)

subject to ϕt,l,u ≤
|hH
t,l,uvt,l,u|2

I + σ2
,

ht,l,u ∈ Rt,l,u, u ∈ Ut,l, t ∈ Tk, l ∈ L
(13b)∑

u′∈Ut,l\{u}

|hH
t,l,uvt,l,u′ |2 ≤ I,

ht,l,u ∈ Rt,l,u, u ∈ Ut,l, t ∈ Tk, l ∈ L
(13c)

nkW log (1 + ϕt,l,u) ≥ at,l,urreq,

u ∈ Ut,l, t ∈ Tk, l ∈ L (13d)

0 ≤ at,l,u ≤ 1, u ∈ U relax
t,l , t ∈ Tk, l ∈ L

(13e)

at,l,u = dt,l,u, u ∈ Ut,l\U relax
t,l , t ∈ Tk, l ∈ L

(13f)
0 ≤ nk ≤ N, (13g)
constraints (7c) and (9b),

where ϕt,l,u is an auxiliary variable serving as a lower bound
of the signal-to-interference-plus-noise ratio (SINR), ϕseq

k =
(ϕseq

k,1, . . . ,ϕ
seq
k,L), ϕseq

k,l = (ϕkT,l, . . . , ϕ(k+1)T−1,l), ϕt,l =
(ϕt,l,1, . . . , ϕt,l,|Ut,l|). I is a predefined maximum interference
threshold. The optimal solution of problem (13) is required to
guarantee that the interference experienced by each user is no
larger than threshold I . By introducing ϕseq

k and I , the QoS
constraint (11) is relaxed as constraints (13b) (13c) and (13d)
[34]. We also have that U relax

t,l ∈ Ut,l is the set of users whose
at,l,u is relaxed at the current node. dt,l,u ∈ {0, 1} is the value
of at,l,u that has been determined at the current node, in which
u ∈ Ut,l\U relax

t,l , l ∈ L, t ∈ Tk.
Due to the CSI uncertainty, constraints (13b) and (13c)

involves infinite number of constraints, making it difficult to
directly solve problem (13). To tackle this problem, we apply
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S-procedure [35] to transform constraints (13b) and (13c) into
finite number of linear matrix inequality (LMI) constraints.
The S-procedure is introduced in Lemma 1:

Lemma 1. (S-Procedure): Let A1, A2 ∈ HN , d1, d2 ∈
CN×1, and y1 y2 ∈ R. Consider the following two quadratic
functions of vector x ∈ CN×1:

f1(x) = xHA1x + 2R{d1x}+ y1, (14)
f2(x) = xHA2x + 2R{d2x}+ y2. (15)

The implication f1(x) ≤ 0 ⇒ f2(x) ≤ 0 holds if and only if
there exists a θ ≥ 0 such that

θ

[
A1 d1

dH
1 y1

]
−
[
A2 d2

dH
2 y2

]
� 0. (16)

We denote that ∆ht,l,u = ht,l,u − h̄t,l,u. Then, by
applying Lemma 1 to constraint (13b), we obtain the following
implication:

∆hH
t,l,uIAB∆ht,l,u + 2R{0H4hu} − ε2

t,l,u ≤ 0

⇒ −∆hH
t,l,uVt,l,u∆hu − 2R{(Vt,l,uh̄t,l,u)H∆hu}
− h̄H

t,l,uVt,l,uh̄t,l,u + ϕt,l,u(I + σ2) ≤ 0, (17)

if and only if there exists a υt,l,u ≥ 0 such that the following
LMI holds:[
υt,l,uIAB 0AB

0H
AB −ϕt,l,u(I + σ2)− υt,l,uε2

t,l,u

]
+ QH

t,l,uVt,l,uQt,l,u � 0, u ∈ Ut,l, t ∈ Tk, l ∈ L, (18)

where Qt,l,u = [IAB h̄t,l,u], Vt,l,u = vt,l,uv
H
t,l,u, ε2

t,l,u is the
size of the CSI uncertainty set for the l-th traffic realization.

Similarly, by applying Lemma 1 to constraint (13c), we
obtain the following implication:

∆hH
t,l,uIAB∆ht,l,u + 2R{0H4hu} − ε2

t,l,u ≤ 0

⇒ ∆hH
t,l,u

(∑
u′∈Ut,l\{u}Vt,l,u′

)
∆ht,l,u

+2R

{(
(
∑
u′∈Ut,l\{u}Vt,l,u′)h̄t,l,u

)H
∆ht,l,u

}
+ h̄H

t,l,u

(∑
u′∈Ut,l\{u}Vt,l,u′

)
h̄t,l,u − I ≤ 0, (19)

if and only if there exists a ξt,l,u ≥ 0 such that[
ξt,l,uIAB 0AB

0H
AB I − ξt,l,uε2

t,l,u

]
−QH

t,l,u

(∑
u′∈Ut,l\{u}Vt,l,u′

)
Qt,l,u � 0,

u ∈ Ut,l, t ∈ Tk, l ∈ L. (20)

Then, problem (13) is equivalent to

minimize
ok

Ck(nk,pk)−
L∑
l=1

ωl
∑
t∈Tk

∑
u∈Ut,l

Y new
t,l,u(at,l,u)

(21a)
subject to constraints (7c), (13d)−(13g), (18), (20),

nk

|Ut,l|∑
u=1

Tr(BH
bBbVt,l,u) ≤ pk,b,

b ∈ B, t ∈ Tk, l ∈ L (21b)

υt,l,u ≥ 0, u ∈ Ut,l, t ∈ Tk, l ∈ L (21c)
ξt,l,u ≥ 0, u ∈ Ut,l, t ∈ Tk, l ∈ L (21d)
Vt,l,u � 0, u ∈ Ut,l, t ∈ Tk, l ∈ L (21e)
Rank(Vt,l,u) ≤ 1, u ∈ Ut,l, t ∈ Tk, l ∈ L, (21f)

where ok = (ϕseq
k ,υseq

k , ξseq
k ,aseq

k , nk,pk,V
seq
k ), Bb ,

(0Tb−1, 1,0
T
B−b) ⊗ IA, so that vt,l,u,b = Bbvt,l,u and

Tr(vt,l,u,bvH
t,l,u,b) = Tr(BH

bBbVt,l,u). For constraint (21f),
Rank(Vt,l,u) = 0 happens when at,l,u = 0, meaning that the
service request of user u is rejected and there is no resource
assigned to that user.

Problem (21) is still nonconvex due to constraint (21f).
We adopt semidefinite relaxation (SDR) [36] by removing
constraint (21f) to arrive at a tractable problem, given as:

minimize
ok

Ck(nk,pk)−
L∑
l=1

ωl
∑
t∈Tk

∑
u∈Ut,l

Y new
t,l,u(at,l,u)

subject to constraints (7c), (13d)−(13g), (18), (20),
(21b)−(21e).

(22)
For the optimal solution of problem (22), if the rank of
Hermitian matrix Vt,l,u is no larger than one for all u ∈ Ut,l,
l ∈ L and t ∈ Tk, then problems (21) and (22) have the
same optimal solution and the same optimal objective value.
Otherwise, the optimal objective value of problem (21) serves
as the lower bound of problem (22).

C. Primal-Relaxed Dual Technique

Problem (22) is still difficult to be solved directly due to the
nonconvexity of constraints (13d) and (21b). One observation
is that by fixing variables nk and pk, problem (22) is convex
with respect to variables ϕseq

k , υseq
k , ξseq

k , aseq
k , Vseq

k . By fixing
variables ϕseq

k , υseq
k , ξseq

k , aseq
k , Vseq

k , problem (22) is linear
with respect to nk and pk. One classical technique to solve
this type of optimization problem is the primal-relaxed dual
technique [37]. The main idea of the primal-relaxed dual
technique is to convert the original problem into primal and
relaxed dual subproblems, which correspond to the upper
and lower bounds, respectively, on the global optimal value.
By iteratively solving the primal subproblem and the relaxed
dual subproblem, the upper and lower bounds converge to
the optimal value. Specifically, in each iteration, the primal
subproblem is obtained by fixing variables ϕseq

k , υseq
k , ξseq

k ,
aseq
k , Vseq

k of problem (22) as constant values, which are
obtained from the solution of the relaxed dual subproblem
in the previous iteration. The primal problem is a linear
programming problem with variables nk and pk. The relaxed
dual subproblem is obtained by first deriving the Lagrangian
of the original problem, then fixing pk as a constant value
and choosing nk between its valid upper and lower bounds.
The value of pk is obtained from the solution of the primal
problem in the previous iteration.

We fix variables ϕseq
k ,υseq

k , ξseq
k ,aseq

k ,Vseq
k and solve the

primal problem of (22) with respect to nk and pk, which is
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formulated as follows:

minimize
nk,pk

Ck(nk,pk)−
L∑
l=1

ωl
∑
t∈Tk

∑
u∈Ut,l

Y new
t,l,u(at,l,u)

subject to constraints (7c), (13d), (13g), (21b).
(23)

The obtained optimal value is denoted as f upper, serving as
an upper bound of problem (22). The corresponding solutions
of Lagrange multipliers for constraints (13d), (21b), (13g), and
(7c) are denoted as λ1,t,l,u, λ2,t,l,b, (for all u ∈ Ut,l, b ∈ B,
t ∈ Tk, l ∈ L), λ3, λ4, λ5,b, λ6,b (for all b ∈ B). We use λ as
the vector of all Lagrange multipliers.

In order to obtain the relaxed dual problem of problem (22),
we derive the Lagrangian of problem (22) with constraints
(13d), (21b), (13g), and (7c), given as

L(ϕseq
k ,aseq

k ,Vseq
k , nk,pk,λ)

= nkG1(ϕseq
k ,Vseq

k ,λ) +G2(aseq
k ,pk,λ), (24)

where

G1(ϕseq
k ,Vseq

k ,λ) =

c1 −
L∑
l=1

∑
t∈Tk

∑
u∈Ut,l

λ1,t,l,uW log(1 + ϕt,l,u)

+

L∑
l=1

∑
t∈Tk

∑
b∈B

λ2,t,l,b

∑
u∈Ut,l

Tr(BH
bBbVt,l,u)− λ3 + λ4,

and

G2(aseq
k ,pk,λ) =∑

b∈B

pk,b

(
c2 −

L∑
l=1

∑
t∈Tk

λ2,t,l,b − λ5,b + λ6,b

)

−
L∑
l=1

ωl

∑
t∈Tk

∑
u∈Ut,l

(
at,l,up(ε̃t,l,u)rreqα− (1− at,l,u)β

)
+

L∑
l=1

∑
t∈Tk

∑
u∈Ut,l

λ1,t,l,uat,l,ur
req − λ4N −

∑
b∈B

λ6,bPb.

With the Lagrangian, we further have

inf
0≤nk≤N

L(ϕseq
k ,aseq

k ,Vseq
k , nk,pk,λ)

= inf
0≤nk≤N

nkG1(ϕseq
k ,Vseq

k ,λ) +G2(aseq
k ,pk,λ)

=
N − δN

2
G1(ϕseq

k ,Vseq
k ,λ) +G2(aseq

k ,pk,λ), (25)

where δ ∈ {−1, 1} such that δG1(ϕseq
k ,Vseq

k ,λ) ≥ 0.
It indicates that when G1(ϕseq

k ,Vseq
k ,λ) ≤ 0, δ will be

equal to −1, which is equivalent to have nk = N that
achieves the minimization of Lagrangian over nk. When
G1(ϕseq

k ,Vseq
k ,λ) ≥ 0, δ will be equal to 1, which is

equivalent to have nk = 0 that achieves the minimization of
Lagrangian over nk.

By fixing Lagrange variables λ and pk, based on the
analysis in [37], we obtain the relaxed dual problem of
problem (22) as follows:

minimize
ϕseq

k ,υ
seq
k ,ξseq

k ,aseq
k ,V

seq
k ,δ

N − δN
2

G1(ϕseq
k ,Vseq

k )+G2(aseq
k )

(26a)
subject to constraints (13e), (13f), (18), (20),

(21c)−(21e)
δG1(ϕseq

k ,Vseq
k ) ≥ 0, (26b)

δ ∈ {−1, 1}. (26c)

The optimal value of problem (26) is denoted as f lower, serving
as a lower bound of problem (22). We iteratively solve the
primal problem (23) and the relaxed dual problem (26) until
the gap between the upper and lower bounds is below a
predetermined threshold.

We present a flow chart to depict the whole process of
our problem transformation, as shown in Fig. 3. In order to
efficiently solve the profit maximization problem, which is
originally formulated as a two-stage stochastic programming
problem, several transformation and approximation steps
should be taken. The two-stage stochastic programming
problem consists of problems (7) and (8). We first transform
the problem into deterministic optimization problem (9).
Due to the nonconvexity of revenue function (5), then we
transform the revenue function into a linear function with
QoS constraint (11) by introducing a user admission control
variable at,l,u for each user. Moreover, problem (9) can be
transformed into problem (12). Due to the nonconvexity of
QoS constraint (11), we introduce a maximum interference
threshold I to achieve QoS approximation. We also relax
the integer variables to continuous variables and obtain the
relaxed optimization problem (13). Then, we apply the branch-
and-bound technique to obtain the optimal integer solution
of at,l,u for each user. In the framework of the branch-and-
bound technique, we solve the relaxed optimization problem
(13) for each node. To solve this problem, we apply S-
procedure and SDR to obtain problem (22), solved by applying
primal-relaxed dual technique. In Fig. 3, a bidirectional arrow
represents a transformation into a equivalent problem. The
unidirectional arrows from problem (12) to problem (13), and
from problem (21) to problem (22), represent transformations
involving approximations.

D. Joint Resource Reservation and Allocation Algorithm

In this section, we design an algorithm to achieve the
two-timescale resource management for network slicing in
C-RAN, with the objective of maximizing the profit of the
tenant. We first design an algorithm shown in Algorithm 1,
which applies the primal-relaxed dual technique for each node.
We then design the global algorithm for resource reservation
and intra-slice resource allocation in long timescale slot k =
0, . . . ,K based on the branch-and-bound technique and a call
of Algorithm 1 in the inner iteration. This algorithm is shown
in Algorithm 2.

In Algorithms 1 and 2, we introduce set D(i) at node i to
record the determined value dt,l,u and the corresponding index
for the user admission control variable at,l,u. In Algorithm
2, steps 7 − 14 depict the process to calculate the optimal
solutions for the two child nodes generated from the last
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Problems 

(7) and (8)

Problem 

(9) 

Transformation 

into a deterministic 

problem
Problem 

(12) 

Revenue 

function 

transformation
Problem 

(13) 

Problem 

(13) 

Problem 

(13) 

Problem 

(13) 

Problem 

(13) 

Branch-and-bound technique framework

Node 1

Node 2

Node 3

Node 4

Node 5

Problem 

(13) 

Node i

QoS 

approximation

Problem 

(21) 

S-procedure
Problem 

(22) 

SDR

Problem 

(26) 

Problem 

(23) 

Primal-relaxed dual technique

Fig. 3: The transformation and relaxation steps taken from problems (7) and (8) to obtain the solutions of the profit
maximization problem.

Algorithm 1 Primal-Relaxed Dual Technique for Node i

1: Input D(i), aseq
k (i), and U relax

t,l (i), t ∈ Tk, l ∈ L.
2: Set j := 1.
3: Initialize ϕseq

k (i, j),υseq
k (i, j), ξseq

k (i, j),Vseq
k (i, j) subject to con-

straints (18), (20), (21c)−(21e); Set ε := 10−3.
4: aseq

k (i, j) := aseq
k (i).

5: f lower(i, j) := −∞, f upper(i, j) := 0.
6: while |fupper(i, j)− f lower(i, j)| ≥ ε do
7: Solve problem (23) with fixed ϕseq

k (i, j), υseq
k (i, j), ξseq

k (i, j),
aseq
k (i, j), Vseq

k (i, j), update nk(i, j + 1), pk(i, j + 1) and
f upper(i, j + 1) with the optimal solutions.

8: Solve relaxed dual problem (26) with fixed pk(i, j) and dual
variables obtained in Step 7, with D(i) and U relax

t,l (i), t ∈ Tk,
l ∈ L; update ϕseq

k (i, j + 1), υseq
k (i, j + 1), ξseq

k (i, j + 1),
aseq
k (i, j + 1), Vseq

k (i, j + 1), f lower(i, j + 1).
9: j := j + 1.

10: end while
11: Return f upper(i, j), f lower(i, j), and optimal solution ok(i, j)

:= (ϕseq
k (i, j),υseq

k (i, j), ξseq
k (i, j), Vseq

k (i, j), aseq
k (i, j), nk(i, j),

pk(i, j)).

chosen node. Steps 15 − 18 depict the process of choosing
the ending node with the greatest optimal objective value
and initializing the two child nodes. Theoretically, the worst
case time complexity of Algorithm 2 is dominated by the
branch-and-bound technique, and is in O(2n), where n is the
total number of user admission control variables. However, in
practice, the algorithm can run fast as only a small number of
nodes are searched before reaching the optimal solutions.

E. Discussion of Implementation Aspects

Based on the 3GPP standard on 5G network slicing
[10]–[12] and the architecture of CoMP-based C-RAN, we
now discuss the implementation aspects of our proposed
framework. At the beginning of each short timescale slot,
each user provides the network slice selection assistance
information (NSSAI) parameters to the network to help it
select the RAN slice. After the user has been granted access to
the slice, the RRC function of the control plane implemented
at the BBU pool starts to collect the CSI feedback sent by the

Algorithm 2 Global Algorithm for Resource Reservation and
Intra-Slice Resource Allocation in Long Timescale Slot k

1: Set i := 1, in which i represents the index of the node of the
branch-and-bound technique.

2: Initialize the admission control decision vector aseq
k (i) for the

outer iteration by randomly assigning a value within [0, 1] to
each at,l,u(i), u ∈ Ut,l, t ∈ Tk, l ∈ L.

3: U relax
t,l (i) := Ut,l, t ∈ Tk, l ∈ L.

4: Initialize D(i) := ∅ to record the set of (dt,l,u, t, l, u) at the
current node.

5: Initialize Fnode := ∅ to record the optimal values and solutions
of ending nodes and the indexes of the nodes.

6: while ∃ at,l,u(i) 6∈ {0, 1}, ∀u, t, l, do
7: s := 1.
8: while s ≤ 2 do
9: Call Algorithm 1, with input D(i), aseq

k (i), and U relax
t,l (i),

t ∈ Tk, l ∈ L.
10: f := fupper(i,j)+f lower(i,j)

2
.

11: ok := ok(i, j).
12: Fnode := Fnode

⋃
{(f,ok, i)}.

13: i := i+ 1, s := s+ 1.
14: end while
15: (f∗,o∗, i∗) := argminf∗{Fnode}; update aseq

k (i) and aseq
k (i+

1) based on o∗; Randomly choose at∗,l∗,u∗ /∈ {0, 1} in o∗.
16: D(i) := D(i∗)

⋃
{(0, t∗, l∗, u∗)}, D(i + 1) := D(i∗)

⋃
{(1, t∗, l∗, u∗)}.

17: U relax
t∗,l∗(i) := U relax

t∗,l∗(i
∗)\{u∗}, U relax

t∗,l∗(i + 1) :=
U relax
t∗,l∗(i

∗)\{u∗}.
18: Fnode := Fnode\{(f∗,o∗, i∗)}.
19: end while
20: Return −f∗.

user to each RRH, based on which the beamforming algorithm
is invoked for the user at the BBU pool for resource allocation.
The BBU pool then sends the user data messages and resource
allocation decisions to multiple RRHs by fronthaul links,
based on which RRHs cooperatively form the beamforming
vector and transmit the downlink data messages to the users. In
the meantime, the sojourn time and the number of users which
accessed the slice are recorded in the management system
for the estimation of user traffic statistics. The estimated
information is then used for the resource reservation decision
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made at the beginning of each long timescale slot.

IV. PERFORMANCE EVALUATION

A. Simulation Environment

The coverage area of a C-RAN is 300×300 m2. It is divided
into nine regions. Each region is 100× 100 m2 with an RRH
at its center. Thus, the number of RRHs is 9. Each RRH is
equipped with two antennas. The total bandwidth is 20 MHz,
which is divided into 20 sub-channels. The channel model
consists of path loss and small scale Rayleigh fading. The
reference distance for path loss estimation is 2 m. The path
loss exponent is 3.6. The mean channel vector h̄t,u of user
u ∈ Ut in short timescale slot t ∈ Tk is determined by the path
loss. The noise power σ2 is −101 dBm, and the noise of each
user follows the zero-mean complex Gaussian distribution with
variance σ2. We set the interference threshold I = 28σ2. The
duration of each long timescale slot and short timescale slot
are 20 minutes and 5 seconds, respectively. The sub-channel
reservation cost c1 is set to be $0.05. The power reservation
cost c2 is set as $0.05. The reward α is $0.005. The penalty
β is $0.003. The arrival process of users follows Poisson
distribution. The average user arrival rate χk,m, m ∈ M
is chosen uniformly within [χ̄ − ∆χ, χ̄ + ∆χ], ∆χ = 1
(number of users per short timescale slot). The sojourn time
of users follows the uniform distribution within [2, 10], the
unit of which is a short timescale slot. The normalized
size ε̃2

t,l,u of CSI uncertainty set is chosen uniformly within
[ε̄2−∆ε̄2, ε̄2+∆ε̄2], ∆ε̄2 = ε̄2

2 . In our simulation, dividing the
coverage area into disjoint regions is only for characterizing
different statistics of user traffic in different regions. The
RRHs located in different regions are still able to coordinate
together to serve each user. The simulations are performed
using Matlab.

B. Algorithm Properties

In this section, we evaluate the properties of the proposed
algorithm. We first conduct simulations to evaluate the impact
of user traffic on the convergence of Algorithms 1 and 2. The
simulation results are shown in Figs. 4, 5 and 6. Fig. 4 shows
the convergence of Algorithm 1. Each iteration represents the
process of solving problems (23) and (26) to obtain an upper
bound and lower bound. The algorithm converges when the
gap between the upper bound and lower bound is smaller than
a predetermined threshold. As the average user arrival rate χ̄
(number of arrived users per short timescale slot) increases, the
convergence rate becomes slower. This is because that larger
χ̄ leads to a larger number of users in the coverage area, thus
a larger number of variables to be solved at each iteration
in Algorithm 1. However, the difference among convergence
rates under different χ̄ is negligible. So we can conclude
that the user traffic variation only has a minor impact on the
convergence of Algorithm 1.

Figs. 5 and 6 show the outer iteration convergence of
Algorithm 2 with the average user arrival rate χ̄ = 2
(number of arrived user per short timescale slot) and χ̄ = 4
(number of arrived user per short timescale slot), respectively.

2 4 6 8 10 12 14 16 18 20

-60

-50

-40

-30

-20

-10

0

10

20

Fig. 4: Convergence of Algorithm 1 with different average
user arrival rate χ̄ (number of users per short timescale slot),

rreq = 1.5 Mb/s, ε̄2 = 0.05.
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Fig. 5: Outer iteration convergence of Algorithm 2,
rreq = 1.5 Mb/s, ε̄2 = 0.05, χ̄ = 2 (number of users per

short timescale slot).

Each iteration consists of obtaining the converged solution of
Algorithm 1 at the two child nodes generated from the last
node, preceding to the node with the greatest optimal objective
value, and generating two new child nodes. The algorithm
converges when we obtain an integer solution of aseq

k with
the greatest optimal objective value among all ending nodes.
In Fig. 6, χ̄ = 4, which is larger than χ̄ = 2 in Fig. 5.
So, there is a larger number of users in the system, which
leads to a larger number of user admission control variables
of at,l,u. Therefore, for branch-and-bound technique, it takes
longer time to find integer solutions for all at,l,u, u ∈ Ut,l,
l ∈ L, t ∈ Tk. In this case, the convergence rate in Fig. 6
is slower than that in Fig. 5. However, the convergence is
still fast in practice, compared with the theoretical worst case
complexity of O(2n). This is because that at the first iteration
of Algorithm 2, at,l,u for those users with good channel quality
are directly assigned to be one. Meanwhile, for those users
with really bad channel quality, at,l,u are directly assigned
to be zero. Then, the branch-and-bound technique only needs
to justify the optimal integer solutions of at,l,u for a small
number of users.
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Fig. 6: Outer iteration convergence of Algorithm 2,
rreq = 1.5 Mb/s, ε̄2 = 0.05, χ̄ = 4 (number of users per

short timescale slot).
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Fig. 7: Average run time of the proposed algorithm with
different average user arrival rate χ̄ (number of users per

short timescale slot), rreq = 1.5 Mb/s, ε̄2 = 0.05.

In order to show the time complexity of the proposed
approach, results of the average run time or execution time
of the proposed algorithm under different average user arrival
rates are plotted in Fig. 7. Results show the average run time
of the proposed algorithm increases linearly with the average
user arrival rate. Compared with the duration of each long
timescale slot, which is 20 minutes in our simulation, several
seconds of run time of the proposed algorithm is acceptable
for practical implementation.

As discussed in Section III-B, we cannot obtain the exact
optimal solution and the optimal profit for two reasons. First,
we introduced a maximum interference threshold. Second, we
applied semidefinite relaxation. We now evaluate the impact
of maximum interference threshold on the optimal profit. As
shown in Fig. 8, we find that the optimal profit increases and
then decreases slightly as I increases. Thus, a suitable I can
be obtained by running offline simulations. We can also find
that the changes of the optimal profit with different I/σ2 is
not obvious, so the optimal profit is not very sensitive to the
choice of I/σ2.
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Fig. 8: Impact of maximum interference threshold on the
profit, rreq = 1.5 Mb/s, ε̄2 = 0.05.

C. Profit Comparison
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Fig. 9: Profit comparison with different average user arrival
rate χ̄ (number of users per short timescale slot), rreq = 1.5

Mb/s, ε̄2 = 0.05.

We applied four baseline schemes to evaluate the per-
formance of our proposed algorithm. Baseline schemes I
and II are developed from our proposed scheme. They both
maximize the profit of the considered tenant via long timescale
resource reservation and short timescale intra-slice resource
allocation. The profit models of these two schemes are similar
with that of our proposed scheme. Instead of addressing
the two issues of CSI uncertainty and user traffic variation,
baseline scheme I only addresses the issue of CSI uncertainty
and baseline scheme II only addresses the issue of user
traffic variation. The intention of comparing our proposed
scheme with baseline schemes I and II is to characterize
the impact of CSI uncertainty and user traffic variation on
the optimal solution separately. Baseline schemes III and IV
maximize the profit of the considered tenant while addressing
CSI uncertainty and user traffic variation. However, they use
different intra-slice resource allocation schemes from [28]
and [38]. In baseline scheme III, user admission control is
not considered and the beamforming algorithm from [28] is
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invoked. In baseline scheme IV, user-centric RRH clustering
is first performed, after which the beamforming scheme from
[38] is invoked. Note that in our proposed scheme, by
designing beamforming vectors, user-centric RRH clustering
is included in the beamforming scheme.

Fig. 9 shows that the profit of the proposed scheme is larger
than the profit of the four baseline schemes under different
average user arrival rate χ̄ (number of arrived users per short
timescale slot). Meanwhile, with the increasing of χ̄, the
superiority of the proposed scheme in terms of the profit is
more obvious compared with the four baseline schemes. It
is because that higher revenue can be obtained from serving
more users and the impact of the traffic variation and CSI
uncertainty become more significant. Moreover, as the average
user arrival rate increases, the increasing rate of the proposed
scheme becomes slower. The reason for this behavior is that
larger χ̄ leads to a larger number of users that may be close
to each other in the coverage area. To mitigate interference,
more resources need to be reserved, leading to higher resource
reservation cost. We also find that the profit of baseline scheme
III is close to the profit of the proposed scheme when χ̄
is no larger than 5. The reason is that when the number of
users in the coverage area is small, the proposed scheme
also tends to accept most of the users. The gap between
the proposed scheme and baseline scheme III is due to the
fact that the proposed scheme will reject users with really
bad channel quality to save resources. The gap between the
proposed scheme and baseline scheme IV is due to the fact
that our proposed scheme is more flexible to the network
condition variations by designing user-centric RRH clustering
and beamforming simultaneously.

Fig. 10 shows that the profit of the proposed scheme is larger
than the profits of the four baseline schemes under different
data rate requirement rreq. When rreq is large, the proposed
scheme can achieve more than 16% profit improvement
compared with the performance of the four baseline schemes.
It is because higher data rate leads to higher revenue per user,
making it more important to consider the user traffic variation
and CSI uncertainty to obtain higher revenue from all users.

Fig. 11 shows that the proposed scheme achieves a higher
profit compared with four baseline schemes under different
choices of average normalized size ε̄2 of CSI uncertainty set.
Meanwhile, for most choices of ε̄2, the proposed scheme can
achieve a higher profit compared with baseline scheme II,
which does not consider the CSI uncertainty. When ε̄2 is close
to zero, the CSI uncertainty is not fully considered for QoS
guarantee in the proposed scheme. Thus, the gap of the profits
between these two schemes is close to zero. With the increase
of ε̄2, higher profit can be obtained by the proposed scheme
according to revenue function (5). However, when ε̄2 is larger
than 0.15, the profit will not increase further. It is because
when ε̄2 is large, most of the CSI variations are considered
in the CSI uncertainty set, and it is unnecessary to further
increase ε̄2.

D. Resource Reservation and Allocation Performance
In this subsection, we evaluate the performance of the

proposed scheme in terms of the resource reservation and
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Fig. 10: Profit comparison with different QoS requirements
rreq (Mb/s), χ̄ = 3 (number of users per short timescale slot),

ε̄2 = 0.05.

0 0.05 0.1 0.15 0.2 0.25

4

5

6

7

8

9

10

Average normalized size ε̄
2 of CSI uncertainty set

P
ro
fi
t
p
er

lo
n
g
ti
m
es
ca
le

sl
o
t
($
)

 

 

Proposed scheme

Baseline scheme I

Baseline scheme II

Baseline scheme III

Baseline scheme IV

Fig. 11: Profit comparison with different average normalized
size ε̄2 of CSI uncertainty set, rreq = 1.5 Mb/s, χ̄ = 3

(number of users per short timescale slot).

allocation corresponding to different network conditions. Fig.
12 shows the decision of power reservation under different
conditions of user traffic and CSI uncertainty. The total amount
of reserved power increases as the average user arrival rate
χ̄ increases in order to guarantee QoS requirements of more
users. Meanwhile, the amount of reserved power increases
as the average normalized size ε̄2 of CSI uncertainty set
increases. When ε̄2 is getting smaller, the reserved amount
of power will converge to the value of the reserved amount of
power under the CSI certainty scenario. When ε̄2 is large, the
increasing rate of the reserved amount of power will become
small to avoid high power reservation cost.

Fig. 13 shows the power allocated to a certain user in
a certain short timescale slot from all the RRHs by intra-
slice resource allocation. From this figure, we notice that the
power allocated to the user varies with different RRHs. The
RRHs that are close to the user will allocate more power
to the user and the RRHs that are far away from the user
will almost allocate no power to the user to save energy and
reduce resource reservation cost. Therefore, the beamforming
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Fig. 12: Total reserved power with different average user
arrival rate χ̄ (number of users per short timescale slot) and
different average normalized size ε̄2 of CSI uncertainty set,

rreq = 1.5 Mb/s.
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Fig. 13: Power assigned to a user from all RRHs, rreq = 1.5
Mb/s, χ̄ = 3 (number of users per short timescale slot),

ε̄2 = 0.05.

designed in our proposed scheme can help achieve user-centric
RRH clustering.

Fig. 14 shows the sensitivity of the proposed scheme to
different values of resource reservation costs and penalty of
failing to serve a user in a long timescale slot. When the
resource reservation costs c1 and c2 or the penalty β increase,
the profit obtained by the tenant decreases. Compared with
users who are closer to the RRHs, users who are far away from
the RRHs may experience poor channel quality. In order to
guarantee the required data rate for the users who are far away
from the RRHs, more resources need to be allocated, leading to
higher resource reservation cost and low profit. When the value
of penalty is low, the tenant may decide to reject the service
requests from the users who are far away from the RRHs to
save resources. When the value of penalty becomes higher,
to avoid higher penalty, the tenant may decide to accept the
service requests from users who are far from the RRHs. This
may lead to higher resource reservation cost and low profit.
If the tenant rejects the service requests from users far away
from RRHs to save resources, it will incur a penalty and may
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Fig. 14: Profit with different values of resource reservation
costs c1 and c2, and penalty β, rreq = 1.5 Mb/s, χ̄ = 3
(number of users per short timescale slot), ε̄2 = 0.05.

also reduce the profit. Our proposed scheme is less sensitive
to the value of penalty when it is higher than $0.004 or lower
than $0.001. This is because when the penalty is low, it plays
a negligible role in the profit optimization framework. On the
other hand, when the penalty is higher than a certain value,
the penalty plays as a dominant role in profit maximization.
In this case, most of the service requests from users may be
accepted and it is not necessary to further increase the penalty.

V. CONCLUSION

In this paper, we proposed a two-timescale framework
for resource reservation and intra-slice resource allocation,
to maximize the profit of the tenant while guaranteeing
the QoS requirements under the CSI uncertainty and user
traffic variation. The problem was formulated as a two stage
stochastic programming problem. We transformed the stochas-
tic programming problem to a deterministic optimization
problem, and applied branch-and-bound and primal-relaxed
dual techniques to solve the problem. We evaluated the
properties of the designed algorithm to show that the algorithm
can solve the problem efficiently. Numerical results indicated
that the proposed scheme can well adapt to the variation of
user traffic to maximize the profit. By taking into account
the CSI uncertainty, the resource reservation and intra-slice
resource allocation can guarantee QoS even though real-
time channel vector varies. For future work, we will study
techniques that can further increase the number of supported
users. Examples include the use of millimeter wave frequency
band and non-orthogonal multiple access (NOMA) technique.
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