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Abstract—In cloud radio access networks, functional split
refers to a division of signal processing functionalities between the
baseband unit (BBU) pool and the remote radio heads (RRHs).
The functionality of baseband signal precoding can either be
performed by BBU pool or RRHs, which corresponds to different
functional splits. The compression-after-precoding (CAP) and
data-sharing (DS) strategies are the realizations of these two
functional splits. In this paper, we propose a flexible functional
split design to enable dynamic functional configuration of each
active RRH to use either CAP or DS strategy. Our goal is to
minimize the aggregate power consumption, while taking into
account limited fronthaul capacity, fronthaul power consumption,
and quality of service requirement. We formulate a joint RRH
mode (i.e., CAP, DS, sleep) selection, precoding design, and
fronthaul compression problem. The formulated problem is a
non-convex quadratically constrained combinatorial optimization
problem. Through sequential convex programming and ¢;-norm
convex relaxation, the problem is transformed into a sequence of
semidefinite programming problems. An efficient algorithm based
on the majorize minimization scheme is developed to solve the
problem. Simulations demonstrate the importance of considering
the limited fronthaul capacity and the performance improvement
of the proposed algorithm compared with the pure CAP and DS
strategies.

Index Terms—Cloud radio access network, flexible functional
split, capacity-constrained fronthaul, energy efficiency, semidefi-
nite relaxation.

I. INTRODUCTION

By improving the spatial frequency reuse and reducing the
distance between the user equipments (UEs) and the access
points, the ultra dense deployment of small cells is recognized
as an efficient and effective method to boost the network
capacity of the fifth generation (5G) wireless networks [1]].
However, with the densification of small cells, every new cell
adds to co-channel interference, which is a key performance-
limiting factor in radio access networks (RANs).
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With the virtualization of baseband signal processing func-
tionalities, cloud RAN (C-RAN) has been proposed as a
promising network architecture for 5G wireless networks [2].
In C-RAN, the baseband unit (BBU) pool, composed of mul-
tiple BBUs, performs centralized baseband signal processing
and coordinates the transmissions of low-cost remote radio
heads (RRHs). The digitized baseband inphase and quadrature
samples of radio signals between the BBU pool and the RRHs
are transmitted through low-latency optical fronthaul links.
C-RAN can enhance the spectrum and energy efficiency by
suppressing co-channel interference via cooperative transmis-
sion/reception [3]], [4]. It can also reduce the network capital
expenditure and operating expenditure by adapting to spatial
and temporal traffic variations via statistical multiplexing.

The aforementioned benefits of C-RAN are achieved at
the cost of imposing a significant burden on fronthaul links.
However, the fronthaul links are usually capacity-constrained
in practice [5]-[7]], which may become the bottleneck of
the centralized signal processing and affect the resource
allocation processes across RRHs. The compression-after-
precoding (CAP) and data-sharing (DS) strategies are two
fundamental cooperative strategies in C-RAN. In the CAP
strategy, the BBU pool performs centralized precoding and
compresses the precoded baseband signals before delivering
them to the corresponding RRHs through fronthaul links. On
the other hand, in the DS strategy, the BBU pool transmits
the precoding coefficients along with the original signals to
the RRHs, which perform local precoding. Based on these
two strategies, resource allocation [{8]], fronthaul compression
[9], RRH clustering [10]-[12], and device-to-device (D2D)
communications [13|] are studied to alleviate the fronthaul
capacity constraint. Specifically, Zhao ef al. in [8] propose
a joint transmit beamforming design and user data allocation
scheme to minimize the requirement on fronthaul capacity.
Given the finite capacity of fronthaul links, the weighted
sum-rate of the CAP strategy can be enhanced by jointly
compressing the precoded signals for different RRHs [9].
By balancing the tradeoff between the cooperation gain and
fronthaul capacity constraint, a dynamic user-centric clustering
scheme is investigated in [[10] to maximize the weighted sum-
rate. Under the fronthaul capacity constraint, we propose a
multi-timescale resource allocation mechanism to guarantee
efficient resource sharing among multiple service providers
as well as to address the user mobility issue [11]. Moreover,
the authors in [12] propose an approximate stochastic cutting
plane algorithm to address the short-term precoding and long-
term user-centric clustering problems for sum-rate maximiza-
tion. Taking into account dynamic traffic arrival, the authors in



[13] formulate a stochastic optimization problem to maximize
the overall throughput of C-RAN with D2D communications,
which allow direct communication between two adjacent UEs
without going through fronthaul links. However, the aforemen-
tioned studies focus on maximizing the spectrum efficiency
without considering the power consumption issue in C-RAN.

With an increasing number of RRHs, minimizing the power
consumption becomes an important design objective of C-
RAN due to the economic concern of network operators [14]—
[16]. By exploiting spatial and temporal traffic fluctuations,
power consumption can be significantly reduced by switch-
ing off idle RRHs to provide on-demand services for UEs
[17]. The authors in [[18]] and [19] propose dynamic RRHs
and virtual base stations clustering and resource provisioning
schemes to adapt to the fluctuations of UEs’ capacity demand,
which can enhance the energy efficiency and data rate. In C-
RAN, the power consumption introduced by fronthaul links is
comparable to that of RRHs and thus cannot be neglected. By
taking into account the fronthaul power consumption, a joint
RRH selection and precoding design problem is formulated in
[20] to minimize the aggregate power consumption. To effi-
ciently solve this problem, a low complexity algorithm based
on group sparse precoding is proposed. Such an optimization
framework is extended to account for both downlink and
uplink transmissions in [21]], and to address the generalized
sparse and low-rank optimization in [22]. By modeling the
fronthaul power consumption as a function of the fronthaul
data rate, the energy efficiency of C-RAN is investigated in
[23]]. The authors in [24] exploit the benefit of non-orthogonal
multiple access (NOMA) in C-RAN to enhance the energy
efficiency. Moreover, to address the channel uncertainty, a
robust beamforming problem is formulated in [25]], where an
alternating direction method of multipliers (ADMM)-based al-
gorithm is proposed to solve the problem. However, the impact
of the fronthaul capacity constraint on power consumption is
not studied in the aforementioned studies.

To minimize the aggregate power consumption, it is neces-
sary to take into account the limited fronthaul capacity as it
affects the number of RRHs required to be active, which in
turn determines the circuit and fronthaul power consumption.
Hence, the effect of the limited fronthaul capacity on the ag-
gregate power consumption of C-RAN should be investigated.
The concept and benefit of flexible functional splits between
the BBU pool and RRHs in the physical (PHY) and medium
access control (MAC) layers are discussed in [26] and [27].
The authors in [28] formulate an integer linear programming
problem to minimize the inter-cell interference by dynami-
cally adjusting the functional split in PHY and MAC layers.
However, the radio transmission of data streams between the
RRHs and the UEs, as an indispensable component of C-
RAN, is not taken into account. Differently, the CAP and DS
strategies correspond to different divisions of signal processing
functionalities between the BBU pool and RRHs. Specifically,
the baseband signal precoding functionality in the CAP and DS
strategies is performed centrally by the BBU pool and locally
by the RRHs, respectively. The fronthaul capacity required by
the CAP and DS strategies depends on different parameters. In
particular, the fronthaul data rate of the CAP strategy depends

on the precoding gain, quantization noise, and the number
of antennas on the RRH, while the fronthaul data rate of
the DS strategy is determined by the number of UEs served
by the RRH. The maximizations of energy efficiency for
downlink C-RAN using DS and CAP strategies are separately
studied in [29]. Flexible functional split enables each RRH to
support either the CAP or DS strategy, so as to fully utilize
the fronthaul capacity based on the quality of service (QoS)
requirement of UEs and channel conditions. However, utilizing
flexible functional split design to reduce power consumption
has not been studied. Moreover, as most existing works (e.g.,
[30], [31]]) use the CAP strategy to maximize the spectrum
efficiency, the impact of fronthaul compression on the tradeoff
between the aggregate power consumption and the fronthaul
capacity requirement has not been investigated.

Different from the aforementioned studies, in this paper
we propose a flexible functional split design to minimize
the aggregate power consumption of downlink C-RAN, while
taking into account the fronthaul capacity constraint and the
quality of service requirement. The power consumption under
consideration includes the RRH transmit power, RRH circuit
power, and frontaul power consumption. Each RRH can be
switched off to save power, which corresponds to the sleep
mode. Each active RRH can flexibly be configured to support
either the CAP or DS strategy to further reduce the power
consumption, leading to a mixture of RRHs using the CAP and
DS strategies in the network. Such a flexible functional split
design takes the advantages of both the CAP and DS strategies,
and enables the full utilization of the fronthaul capacity for
given quality of service requirement. The main contributions
of this paper are summarized as follows:

1) We formulate a joint RRH mode (i.e., CAP, DS, sleep) se-
lection, precoding design, and fronthaul compression problem
to minimize the aggregate power consumption, while taking
into account the limited fronthaul capacity, per-RRH power
constraint, and QoS requirement.

2) To tackle the non-convex quadratical constraints, we
transform the formulated problem into a sequence of
rank-constrained semidefinite programming (SDP) problems
through sequential convex programming (SCP) and ¢;-norm
convex relaxation. We handle the combinatorial RRH mode
selection by using the group sparse precoding approach and
develop an efficient algorithm based on the majorize mini-
mization (MM) scheme to solve the problem.

3) Simulations demonstrate the convergence of the proposed
algorithm and show that the fronthaul capacity constraint has
a significant impact on the aggregate power consumption. In
addition, the CAP strategy performs better than the DS strategy
in the high target data rate and/or low fronthaul capacity
regimes. By taking advantages of both the CAP and DS
strategies, the proposed algorithm outperforms both baseline
strategies in terms of the energy efficiency.

The remainder of this paper is organized as follows. Sec-
tion [lI] presents the network topology, the CAP and DS
strategies, the signal reception model, and the power con-
sumption model. In Section we formulate a non-convex
quadratically constrained optimization problem to minimize
the aggregate power consumption and transform it into a



Fig. 1: An illustration of the architecture of a C-RAN, which consists of the
BBU pool, the optical fronthaul links of finite capacity, the multi-antenna
RRHs, the radio channels, and the single-antenna UEs. An RRH can either
be in the active or sleep mode. Each active RRH can flexibly be configured
to support either the CAP or DS strategy.

sequence of rank-constrained SDP problems. The proposed
algorithm is presented in Section The performance of the
proposed algorithm is evaluated in Section [V| Finally, Section
concludes this paper.

Notation: R and C denote the real and complex domains,
respectively. The absolute value of a scalar is denoted as
| - |. The conjugate transpose and ¢,-norm of a vector are
denoted as (-)% and || - |,, respectively. The inverse, trace,
determinant, and rank of a matrix are denoted as (-)~!, Tr(-),
det(-), and rank(-), respectively. Denote 1, and I, as the
unit vector of length = and the identity matrix of order z,
respectively. Indicator function 1y, equals to 0 if z = 0, and
1 otherwise. X > 0 and X > 0 indicate that matrix X is
positive semidefinite and definite, respectively.

II. SYSTEM MODEL

Consider the downlink transmission of a C-RAN, which
consists of one BBU pool, R RRHs, and U UEs, as shown in
Fig. 1] We denote R = {1,2,...,R} and Y = {1,2,...,U}
as the sets of the RRHs and UEs, respectively. The r-th
RRH is equipped with N, omni-directional antennas. Each
UE has a single omni-directional antenna and it receives a
single independent data stream from the BBU pool, which
performs centralized baseband signal processing, cooperative
strategy selection, and coordinated resource allocation. The
data streams for all UEs are assumed to be available at the
BBU pool. The BBU pool connects to each RRH via an
optical fronthaul link of finite capacity. In addition to the
radio frequency (RF) functionality (e.g., power amplification),
each RRH has baseband signal processing capabilities such
as precoding. After receiving the data streams from the BBU
pool, the RRHs forward the data streams to the corresponding
UEs over quasi-static radio channels. The global channel state
information (CSI) is assumed to be available at the BBU pool,
as in [8[]-[10].

To fully utilize the available resources (e.g., radio spectrum,
transmit power, and fronthaul capacity) to meet the UEs’
QoS requirement, we propose a flexible functional split design

for C-RAN. In particular, each active RRH can flexibly be
configured to support either the CAP or DS strategy, as shown
in Fig. 2(a). The block diagrams of the CAP and DS strategies
are illustrated in Figs. 2(b) and 2(c), respectively. In the CAP
strategy, based on the CSI and UEs’ QoS requirement, the
BBU pool performs centralized precoding and delivers the
compressed signals to the RRHs, as shown in Fig. 2(b). On
the other hand, in the DS strategy, the BBU pool delivers
both the signals and precoding vectors to the corresponding
RRHSs, which perform local precoding, as shown in Fig. 2(c).
The CAP strategy and DS strategy correspond to the PHY-
RF split and MAC-PHY split proposed for 5G RAN in [32],
[33]], respectively. The fronthaul interfaces supporting the CAP
and DS strategies follow the common public radio interface
(CPRI) and Fx interface [32], respectively. Hence, the fron-
thaul interface should change accordingly with the cooperative
strategy (i.e., CAP or DS) selected by its connected RRH. We
assume that the RRHs can switch among the sleep, CAP, and
DS modes with negligible delay. Due to the differences in
baseband signal processing and data sharing, the CAP and DS
strategies are different in terms of the fronthaul data rate and
the RRH transmit power, as discussed in detail as follows.

A. CAP Strategy

We denote s,, as the signal intended for UE u € Y. Without
loss of generality, the signals are assumed to be independent
and identically distributed (i.i.d.) Gaussian random variables
with zero mean and unit variance. In the BBU pool, the
precoded baseband signal for the r-th RRH supporting the
CAP strategy, denoted as X, € CN7*1  is given by

Xy = § WirySu,

ueU

VreRC, (1)

where w,., € CV»*1 denotes the precoding vector at RRH r
for UE u, and R€ C R denotes the set of active RRHs using
the CAP strategy. Note that the coefficients of the precoding
vector w,.,, should be set to O if RRH r is not serving UE w.

In order to reduce the amount of information delivered over
the fronthaul links, the BBU pool compresses and quantizes
the precoded baseband signals before transmitting them to the
RRHs. Each X, is independently compressed and quantized
across the RRHs. Note that it is possible to leverage joint
signal compression to further alleviate the fronthaul capacity
constraint as in [9], which is out of the scope of this paper. The
compressed signal for the r-th RRH using the CAP strategy
can be expressed as

VreRC, 2

Xy = Xp + qr,

where q, € CN-x1 denotes the quantization noise vector,
which is independent of X, and is assumed to be Gaussian
distributed with zero mean and variance 0(2”1 N,.. According
to the rate-distortion theory [34], the achievable compression
rate equals to the mutual information between the compressed
signal x,. and the precoded baseband signal X,.. As a result, for
the CAP strategy, the data rate of the r-th fronthaul, Vr € RC,
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Fig. 2: An illustration of the block diagram of the flexible functional split between the BBU pool and RRHs, where COMPR, MUX, and DEMUX represent

the compression, multiplexer, and demultiplexer, respectively.

can be calculated by

Blog, det <Z WTuWELJrag,TINT) — N, Blog, (0(21770) , (3
ucl
where B denotes the channel bandwidth. According to (3),
the fronthaul data rate of the CAP strategy depends on the
values of the precoding coefficients w,.,, and the quantization
noise 05774 as well as on the number of the antennas of
RRH 7. In particular, a higher precoding gain and smaller
quantization noise lead to smaller signal distortion, but also
a higher fronthaul data rate. In this paper, such a tradeoff is
balanced by jointly optimizing the precoding coefficients and
quantization noise.

B. DS Strategy

In the DS strategy, the BBU pool delivers both signal s,,
and its corresponding precoding vectors {w,,} to a cluster
of RRHs serving UE w through fronthaul links. Similar to
the CAP strategy, all coefficients of the precoding vector w,.,,
should be set to 0 if RRH r is not within the serving cluster
of UE u. After receiving the signals and the corresponding
precoding vectors, each RRH performs local precoding. As a
result, the signal transmitted by the r-th RRH can be written

as
Xr = E WoruSu,

ueU

VreRP, “

where RP C R denotes the set of active RRHs using the DS
strategy. As each active RRH can be configured to support
either the CAP or DS strategy, we have R N RP = ().
According to (@), as the signals and corresponding precod-
ing vectors are required to perform local precoding at each
RRH, the fronthaul data rate is the summation of the data
rates required by its serving UEs. For simplicity, the overhead
introduced by CSI estimation and precoding vector delivery

is ignored due to its negligible size compared with the data
stream. As a result, for the DS strategy, the data rate of the
r-th fronthaul can be expressed as

> 1w, 2} Blogs(1+7), VreRP, (5)
ucl

where ~, denotes the target signal-to-interference-plus-noise
ratio (SINR) of UE wu. According to (5), the fronthaul data
rate of the DS strategy is determined by the number of UEs
served by the RRH and the target SINR of all serving UEs.
In particular, having more serving UEs at each RRH leads
to a higher cooperation gain, but also a higher fronthaul data
rate. Comparing with (3)), different parameters influence the
fronthaul data rates of the CAP and DS strategies.

C. Signal Reception Model

With full spatial frequency reuse, each UE can simultane-
ously receive its own signal transmitted from both the RRHs
in R and the RRHs in R over radio channels. The signal
received at UE u is given by

H
E h,, X, + Ny,
reRCURP

Yu = Vuel, (6)

where h,, € CM*! denotes the channel fading vector
between RRH r and UE w and incorporates the effects of both
path loss and small-scale fading, and n,, denotes the additive
white Gaussian noise (AWGN) at UE u with zero mean and
variance o2

n,u*

By substituting (2) and (@) into (G), we have

Z hguwrusu + Z Z h}«{uwrksk

Yu =

reRCURP keU\{u} reRCURD
+ > hiq +n, Vuel, (7)
reRC

where the second term of the right hand side is the co-channel
interference.



By using single user detection (i.e., treating the co-channel
interference as noise), according to , the received SINR at
UE u € U can be written as

H
‘ZTERCURD hruwm

Iu—i—og’u

SINR,, = ®)

)

where [,, denotes the summation of the co-channel interference
and quantization noise power, given by

2 2
> Y blwa| | > hlog.ln,

keu\{u} lreRCURDP reRC

L, = €))

D. Power Consumption Model

The aggregate power consumption consists of RRH transmit
power, RRH circuit power, and fronthaul power consumption.
According to (2), the transmit power of the r-th RRH using
the CAP strategy is given by

P =" [weull3 + Noog,,
ueU

VreRC. (10)

Similarly, according to (), the transmit power of the r-th
RRH using the DS strategy can be expressed as

P = Z ”Wru”g»
ueU
Based on and (TI), the RRH transmit power of the
CAP strategy involves the quantization noise power, which
is different from that of the DS strategy.

The RRH circuit power consists of the RF circuit and basic
baseband processing power consumption. They depend on the
transmission mode of the RRH (i.e., being in either active
or sleep mode). In particular, the circuit power of RRH r €
RY,v € {C,D} is modeled by a piecewise function,

peew _ { P i P> 0,

a,r
P, if P =0,
where P70:" and FJ7 denote the circuit power of the r-th
RRH in R” in the active and sleep modes, respectively, and
Pss? > P,

Similarly, the power consumption of the r-th fronthaul in
the active and sleep modes are denoted as Pjhr and Phﬂ;,
respectively, and P, > P™. By denoting RS C R as the set
of the RRHs in the sleep mode, the total power consumption
of RRH circuits and fronthaul links is given by

Pt =" (PeC 4 PR+ N (Pl 4 P

VreRP. (11)

12)

reRC reRP

+ Z PCC, Pth
reRs

= > (P + P~ P - FLL)

rerRC

+ > (PP + B - P - F)
reRP
Z PCC + Pfh

rER

By denoting P = PoC + P — pec — P> 0,
P;h[f) = PP + P — FPg — Pf}; > 0, and omitting the
constant term ZTGR (PCC + P™), minimizing the aggregate
power consumption is equ1va1ent to minimizing P,g,, which
is given by

Py = Z Z |W7"u||2 + Z ( -+ Pdlf)
reRCURP uEM rerC
+ > P, (13)

reRP

where 7, > 0 denotes the drain efficiency [35] of the RF
power amplifier of the r-th RRH.

Discussions: There exist performance tradeoff between the
DS and CAP strategies in terms of the cooperation gain, the
fronthaul data rate, and the power consumption. The main
advantage of the DS strategy is that each RRH receives the
original signals of its serving UEs without distortion. However,
the cooperation gain that can be achieved by the DS strategy is
determined by the RRH cluster size (i.e., the number of RRHs
cooperatively transmitting the same signal). In particular, a
larger cluster size contributes to a higher cooperation gain, but
also leads to a larger fronthaul data rate, as each cooperating
RRH is required to receive a copy of the original signal. Note
that a larger cluster size for each UE corresponds to more
UEs served by each RRH. Therefore, the fronthaul capacity
constraint limits the cluster size and the cooperation gain. In
the high traffic load regime (e.g., high target data rate and large
number of UEs), the DS strategy may require more RRHs to be
active than the CAP strategy, so as to achieve a large enough
cooperation gain to meet the target data rate requirement of
UEs, leading to higher circuit power consumption. For the
CAP strategy, the RRHs can receive the precoded baseband
signal by utilizing all UEs’ signals, and hence, achieving full
cooperation. The fronthaul data rate of the CAP strategy can be
adjusted by changing the quantization noise, which determines
the compression resolution. Compared to the DS strategy, the
main disadvantage of the CAP strategy is the signal distortion
due to quantization noise, which leads to larger transmit power
consumption. In the low traffic load regime (e.g., low target
data rate and small number of UEs), the DS strategy is able to
achieve full cooperation, and hence can consume less power
than the CAP strategy, which suffers from quantization noise.

III. PROBLEM FORMULATION AND TRANSFORMATION

To minimize the aggregate power consumption, we need to
reduce both the RRH transmit power and the number of active
RRHs and corresponding fronthaul links. However, there exists
a tradeoff between these two aspects. Specifically, to reduce
the RRH transmit power, more RRHs are required to be active
to meet UEs’ QoS requirement. On the other hand, having less
active RRHs leads to lower RRH circuit and fronthaul power
consumption, but also higher RRH transmit power. Such a
tradeoff is further affected by other factors, including the ca-
pacity constraints of fronthaul links, maximum transmit power
constraints of the RRHs, and UEs’ QoS constraints. Hence,
the RRH mode (i.e., CAP, DS, sleep) selection, precoding
design, and fronthaul compression should jointly be optimized



to minimize the aggregate power consumption. Note that the
precoding coefficients and the quantization noise not only
affect the RRH modes for the reduction of RRH circuit power
and fronthaul power consumption, but also play an important
role in further reducing the transmit power consumption when
the RRH modes are fixed. Based on the above discussions,
the aggregate power consumption minimization problem is
formulated as
minimize Prgg

{Wru}v{aém}

subject to Z ||wm||§ + NTU?M < PM vreRC, (14b)

(14a)

ueld
> lwrally < PM, VreRP, (14c)
uel
> wrull; =0, VreRS, (14d)
uel
Blog, det <Z W W+ Ui,TINT>
uel
— N,Blog, (02,) <CM Vre RS, (l4e)
Z ]l{me“g}Blo&(l + ) < Civlv
ueU
VreRP, (14f)
h w,., 2
’Z’"GR;U_TDUJ” s vaeu, (g
RENRP =0, (14h)
(REURP)NR® =1, (14i)
REURPURS =R, (14j)

where PM and CM denote the maximum transmit power of
the r-th RRH and the capacity of the r-th fronthaul link,
respectively. Constraints (14D}, (I4c), and (I4d) represent the

maximum transmit power constraints of the RRHs in RC,
RP, and RS, respectively. Constraints (14h), (14i), and
ensure that each RRH can be configured to support one of the
CAP, DS, and sleep modes. The aggregate power consumption
minimization problem in (I4) is a non-convex quadratically
constrained combinatorial optimization problem, which is gen-
erally difficult to solve and imposes the following challenges:
First, the objective function is a combinatorial function
due to both the RRH selection (i.e., either being in the
active or sleep mode) and the cooperative strategy selection
(i.e., supporting either the CAP or DS strategy). Second, the
capacity constraints of fronthaul links supporting the CAP and
DS strategies (i.e., and (I41)), and the QoS constraints
of the UEs in terms of the SINR (i.e., (I4g)) are non-convex
quadratically constrained.

To address the aforementioned challenges, we transform
problem (I4) into a sequence of rank-constrained SDP prob-
lems. We define precoding matrix W, = w,wil € CNtxNr
as a new optimization variable for UE u € U, where Nt =
SR N, and w, = [wi wil wh 1 e CNtx1 We

r=11Vr u T Wauy - -5 Wiy :
have constraints W,, > 0 and rank(W,) = 1 for UE u € U.
Precoding vector w,, is given by the eigenvector of W,,. The

maximum transmit power constraints of the RRHs using the
CAP strategy (i.e., (I4b)) can equivalently be expressed as

> Tr(B.W.) + Neo2, < P, (15)
uel

VreRC,

where B, € RVt*Nt denotes a block diagonal matrix with
identity matrix I, as the r-th main diagonal block matrix
and zeros elsewhere.

Similarly, the maximum transmit power constraints of the
RRHs using the DS strategy and being in the sleep mode (i.e.,

and (T4d)) are, respectively, given by

Z Tr(B,W,) < PM VreRP, (16)
ueU
Z T (B,W,) =0, VreRS. (17)
ueU

By defining B, € RYT*Nr ag the matrix composed of
the columns from ZZ: Ni+1to Y ;_, Nj of matrix B,,
we have wmwgt :BETWUBM. The capacity constraints of

the fronthaul links with the CAP strategy (i.e., (T4€)) can be
expressed as

Blog, det (ZUGM BETWUBC,T + (Ué’r + e) IN,,)
—N,Blog, (0(2“. +e) <CM, VreRY (18)

where € > 0 is a small fixed regularization parameter.

By defining 2, =3 -, BETWUBC7T+(U§,T + e) In,,the
non-convex term in constraint (I8)) can be linearized by using
SCP [36]]. Hence, the non-convex fronthaul capacity constraint
can be tackled in an iterative manner. In the (m+1)-th iteration
(m=0,1,2,...), constraint (I8) can be rewritten as

e (900 1 Ly 1 () (o)

) cM c
— N, logy (07, +¢€) < PR VreR”, (19)
where
Q0D = 3" B WO"B,, + (03,‘33“ + 6) Iy, (20

ueU

and W&m) and 0’25:77’ ) are obtained from the m-th iteration.
Since ||WWH§ = Tr (B, W,,), the capacity constraints of
the fronthaul links supporting the DS strategy (i.e., (I4f)) can
be written as
CY e
Z LB, W)}y l0ga (1 +7u) < 5 VreR”.
ueU

2y

The indicator function in constraint (Z1]) can equivalently be
expressed as an fp-norm of a scalar, which indicates whether
or not this scalar is equal to zero. Thereby, constraint (21]) can
be written as

CM
> T (B, W)l logy (1 + ) < 5 Ve RP. (22)

ueU

Such a non-convex {y-norm can be approximated by a
convex reweighted ¢;-norm, which is widely used in compres-
sive sensing [37]. Similar to , in the (m+1)-th iteration,



constraint (22)) can be rewritten as

CM
> B Ty (B, W) log(1 + ) < — Vre RP,
uelU
(23)
where ﬁﬁzﬂrl) can be iteratively updated according to
ety = ! (24)

Tr (BTWSJ”)) to

and c¢; > 0 is a constant regularization factor.
To achieve the target SINR, the QoS constraint of UE u can
be rewritten as

hi'w, h,

Z /-YUJ
hif ( Preuriuy Wk [huthfAqhy 407

Vuel, (@5
where h,, = [hil,... bl 17 € CNv>1 and A, € RNTXNT

is a block diagonal matrix with identity matrix UEMI N, as the
r-th main diagonal block square matrix. Note that ag’r =0
for RRH r ¢ RC.

Based on the above transformation, problem (]E[) can be
tackled by iteratively solving the following problem,

> niTr (B, W,)

reRCURD ueld "

P+ . minimize
RC,RD RS

Wult{od }
1 dif
+3 (Neh,  P)
rERC U
+ Z P (26a)
rerRP
subject to  constraints (TI4h), (T41), (T4j), (13),

rank (W,) =1, Vuel,
W, =0, Yuel.

(26b)
(26¢)

Problem P("+1) still cannot directly be solved due to the
combinatorial objective function (26a) and the non-convex
rank-one constraint (26b). Given RRH sets RS, RP, and
RS, problem P(™+1) is a rank-constrained SDP problem. By
dropping the rank-one constraint [38]], the convex relaxation
problem can be efficiently solved by using the interior-point
method [39]. Finally, the aggregate power minimization prob-
lem in (T4) can be solved by developing an MM algorithm to
iteratively update parameters {ng)} and {5&:7)} according

to (20) and (24) by solving (26).

IV. GROUP SPARSE PRECODING ALGORITHM
In this section, we develop an efficient algorithm to tackle
the combinatorial challenge based on the group sparse pre-
coding approach and mitigate the non-convex rank-one con-
straint. The proposed algorithm is composed of two stages, as
discussed in the following two sub-sections.

A. Stage One: Identify Active RRHs

In the first stage, we identify the RRHs that are required to
be active to meet UEs’ QoS requirement. Suppose all active

RRHs are initially configured to support the CAP strategy (i.e.,
RP = ), problem P("+1) can be simplified as

> (T mmw )

minimize
{U;(}J:?stu} rere ' \ueu
+ > Pl
reRC Q27

subject to  constraints (13), (17), (19), 23),

(26b), (269,

RENR® =1,

REURS =R.

When RRH r is switched off, all coefficients of precoding

vector w,, = [wil ..., wil 5 should be set to 0, yielding
%3 = Suey Tr(B,W,) = 0 and a group-sparsity
structure of precoding vector w = [wil ... WHH As a

result, problem (27) can be expressed as

3 1 (ZTr (BTWU)+NTU§_T>
I ueU ’

reR

dif
LD DRI RN NCR R EI cts
reR

constraints (I3), (19, @3). (26b), 264),

where Vr € R in constraints and is replaced by
Vr € R. Problem (28) is non-convex due to the indicator
function in the objective function. An indicator function is
equivalent to the /y-norm of a scalar, which can further be
approximated by a convex reweighted ¢;-norm. Thus, we have

minimize
{Wul{oZ .}
(28)

subject to

1
{ S Tr(B, W) + Nro?w}
uweU

~ plmtD) (Z Tr (B, W,) + NTU(21,T> ,

ueU
where /M(nmﬂ) can be iteratively updated according to
1
it = .9

S er T (BoWE) 4 N2 e

and cg > 0 is a constant regularization factor.
Through convexifying the indicator function in the objective

function, we need to solve the following optimization problem,

1 )
minimize Halrs M£m+1)P;ilf>
{Wu}’{Ugyr} TEZ’R (771” ,C

2
(BB i)
constraints (I5), (T9), (25). (26b). (267),

where V7 € R€ in constraints and is replaced by
Vr € R. After dropping rank-one constraint (26b), problem
(30) is an SDP problem, which can be efficiently solved by
convex programming solver (e.g., CVX [40]). We show the
tightness of the rank-one constraint relaxation as follows.

(30)

subject to

Theorem 1. Let W, denote the precoding matrix of UE u €
U as the solution of problem (30) without rank-one constraint



Algorithm 1: An algorithm for identifying active
RRHs.
1 Initialize variables {W(O)} and {oi(?’} satisfying
co(n;tralnts (T5) for all r€R and 23], and calculate
P Algl*
2m:=0and A{™ =1
3 while Al™ > 5, and m < ¢1 do
(m+1) (m+1)
4 | Update parameters {Q } and {uy }

according to and (29), respectively.
(

010,

5 Solve problem (30) with parameters {Q(m+1 } and

{1 and obtain {W{™ TV}, {520
m—+1)

and P/(\l 1

Angrl . ‘P (m+1)

6 Algl Algl ’

7 m:=m+ 1.
s R9:={r| (2
9 RE:=R\ RS.

e T (ByWE™) 4 No20) <)

26D)), then rank (W?) = 1 always holds.
Proof. Please refer to Appendix A. O

The MM algorithm [41]] can be used to solve a sequence
of convex optimization problems (i.e., problem (30) without
the rank-one constraint) in an iterative manner. We denote
ngl) as the value of the objective function of problem l|
in the (m+1)-th iteration. The convergence threshold and the
maximum number of iterations are denoted as §; and ¢q, re-
spectively. The proposed algorithm based on the MM scheme
to identify the active RRHs is summarized in Algorithm [I] It
is shown in [41]] that the MM algorithm always converges to a
stationary point of the original problem. After solving problem
(27) by using Algorithm [T} we can obtain the set of RRHs in
sleep mode as RS = {r | (Y ey Tr (By W) + N, rog, 2)<e}
and set of RRHs using the CAP strategy as RS =R\RS, where
o is a predefined small constant. Be31des, we obtain the con-
verged objective value of problem (27) denoted by P%g nd

quantization noises for active RRHs given by {77 ., r eRCY.

B. Stage Two: Identify Cooperative Strategies and Optimize
Precoding Matrices and Quantization Noise

In the second stage, we determine the set of active RRHs
switching to support the DS strategy, and optimize the pre-
coding matrices and quantization noise, to further reduce the
power consumption. We utilize the following ordering criterion
to determine the priorities of RRHs using the CAP strategy to
be switched to support the DS strategy,

0, an 52, VreRC. 31

The RRH with a larger 6, has a higher priority to support
the DS strategy. In particular, the RRHs with more transmit
antennas, smaller drain efficiency, and larger quantization
noise are likely to consume more power and generate higher
interference according to and (I0). We denote the number
of active RRHs (i.e., cardinality of RC) as «. Based on the

ordering criterion (31)), we order the RRHs in a descending
order, ie., 0, > 0., > --- > 0., to determine the set
of active RRHs using the DS strategy. For simplicity, we
iteratively select the active RRHs to support the DS strategy.
Thus, we introduce another iteration which is outside the
iterations used to update QY and 6TZH1 The RRH sets
supporting the DS and CAP strategies in the 7-th outer iter-
ation are denoted as RP(") = {7}, 7my,...,7,} and RC(") =
{741, Try2,. .., Mo}, respectively. Based on the above def-
initions, we have RP(™ U RC(M = RC. Given RRH sets
RE™) R RD (7). and T\’,S, the RRH circuit and fronthaul power
consumption is fixed. Hence, Y, _zc() PIE+Y" caoe) Pib
is a constant and can be omitted in the objective function. As
a result, we can solve the following problem in the (m + 1)-th
inner iteration to reduce the aggregate power consumption,

1 <Z Tr (B, W,,) + N,0? r>
T :

minimize Z
{Wu}7{a-g,r} 'fiC(T) ueU
n Z ZTr (B,W,) (32)
TERD(T M ueU

constraints (I3), (16), (I7), (19), 23),

where V r € R® and V r € RP in all constraints are
replaced by V r € RE() and V r € RP(), respectively.
Similarly, problem (32) without rank-one constraint (26b) is
an SDP problem and can efficiently be solved. The tightness
of the rank-one constraint relaxation is shown in the following
theorem.

subject to

Theorem 2. Let W denote the precoding matrix of UE u €
U as the solution of problem without rank-one constraint
26D), then rank (W) = 1 always holds.

Proof. Please refer to Appendix B O

We denote Pgﬁrl) as the value of the objective function of
problem in the (m~1)-th inner iteration. The convergence
threshold and the maximum number of iterations are denoted
as do and_¢o, respectively. The proposed algorithm to solve
problem is summarized in Algorithm |2 We denote Pégg);
as the converged objective value of problem (32) for the 7-
th outer iteration. Finally, combining the above two stages,
the algorithm for solving the aggregate power consumption
minimization problem (I4) is given in Algorithm [3] The set
of RRHs using the DS strategy, RPO) and the iteration index,
T, are initialized in Step 1. By using Algorithm 1, we solve
problem to check the feasibility and identify the set
of RRHs required to be active (Step 2). If problem is
feasible, then we determine the set of RRHs using the CAP
strategy, R, the set of RRHs in the sleep mode, RS, the
quantization noise, {cr -1, as well as the aggregate power
consumption, Pagg, and then sort the ordering criterion (31)
in a descending order (Steps 3 — 5). Otherwise, the algorithm
terminates (Steps 6 and 7). We initialize RCWO) jn Step 8. In
the 7-th iteration, we move one active RRH from set RE)
to set RP(") based on the ordering of active RRHs (Steps 10
and 11), and solve problem (32) using Algorithm [2] to obtain



Algorithm 2: An algorithm for optimizing precoding
matrices and quantization noise.

1 Initialize Variables {W(O } and {oq } satisfying
constraints (15) for all € R, (16) for all
reRPM, and , and calculate PAIQQ m:= 0,
Agm) = 1019,

2 while Aém) > Jy and m < ¢ do

3 Update parameters {Q("LJrl)} nd {B%H_l)}

according to (20) and (24), respectlvely

4 Solve problem 1) with parameters {Q m+1) } and

(B4 and obtain {W{™ TV}, {o2(m D

! . F}%ﬂ;l)' (m+1) _ pm)
m+1 m—+1 m

5 A ‘PAIgZ Ppiga)-
6 m:=m+ 1.

dgg (Step 12). If the aggregate power consumption in the 7-
th iteration is smaller than PaC then we update the values
of PC and 7 (Steps 13 — 15). Otherwise we break the loop
(Ste;;s 16 and 17). The loop stops when either 7 > « or

Pagg + Zrena ) PIE + ZTERD( ) Pﬁg > Pa%g In Step 18,
we determine sets RC(T) and RP(™) and recover precoding
vectors {w,, } and quantization noise {cArq -1 to serve all UEs.
Note that the final precoding vector w, is the eigenvector
of WmVu € U. By using the iteratively reweighted method
and the MM-based algorithm, the solution of the proposed
algorithm is always a stationary point of the original problem
[42]].

The overall algorithm (i.e., Algorithm [3) runs Algorithm [I]
once and Algorithm 2] at most R times. Algorithms [1] and
solve a sequence of SDP problems, i.e., problems and
(32) without rank-one constraint, respectively. To solve the
SDP problem with U matrix optimization variables of size
Nt x Nr, the interior-point method takes O(v/U N log(1/¢))
iterations and O(UN¥) floating point operations to achieve
an optimal solution with accuracy ¢ > 0. Note that the
maximum number of SDP problems required to be solved for
Algorithms [1| and |2 are ¢; and ¢, respectively. Hence, the
overall computational complexity of the proposed algorithm is
given by O ((¢1 + Re2) U NES log(1/¢)).

V. PERFORMANCE EVALUATION

In this section, we evaluate the energy efficiency of the
proposed flexible functional split design for downlink C-RAN
and compare the aggregate power consumption with that of
the pure CAP and DS strategies. Specifically, in the CAP
and DS strategies, all active RRHs work in the CAP and DS
modes, respectively. In the simulations, the RRHs and UEs
are randomly distributed in a circular network coverage area
with radius 500 m. We consider quasi-static Rayleigh fading
channels and set the path loss exponent to be 4. The channel
bandwidth B and noise power o2, are set to be 10 MHz and
—100 dBm, respectively. The number of RRHs (i.e., R) in the
network coverage area is 10. The maximum transmit power
of the r-th RRH (i.e., PM,Vr € R) is 80 mW. Each RRH

Algorithm 3: Aggregate power minimization algo-
rithm.

1 Initialize RRH set RP() := () and 7 := 1.

2 Solve problem using Algorithm

3 if problem is feasible then
4
5

Obtain RC RS, {52,}, a, and P,
Calculate the orderrng criterion l.) and sort them

in a descending order: 0., > 0r, > --- > 0,

¢ else
L Go to End.

RCO) = RC,
9 while « — 7 > 0 do

0 | REM .= REC-D\ {71},

n | RPM .= RPC-D ).

12 Solve problem using Algorithm I and obtain
Pigs.

13 if Pégg) + 2 eRem Pﬁ% + 2 reRin P,ff% < P’Sgg
then

agﬁg )

Page + 2 cqmen P,

~

o

14
dif _ dif
r,C + ZTERD(") PT;D’

15 T:=7+1.
16 else
17 L Break.

18 Use RRHs given in sets R(™ and RP(™), precoding
vectors {W, }, and quantization noise {52 .} to serve
all UEs.

19 End

using the DS strategy only needs to superimpose the received
signals weighted by the corresponding precoding coefficients,
which is a simple operation and consumes less power than the
quantization codebook based signal decompression operation
performed by each RRH using the CAP strategy. Hence, the
power differences between the active and sleep modes for the
CAP and DS strategies (i.e., Pffié and P,ff%, Vr € R) are set
to be 500 mW and 400 mW, respectively. The drain efficiency
of the RF power amplifier of the r-th RRH (i.e., n,, V7 € R)
is 0.25. The constant regularization factors (i.e., ¢, c¢1, and c3)
are all set to be 107°. The convergence thresholds (i.e., &;
and J;) are set to 1, and the predefined small constant (i.e.,
) is set to 1073, The maximum number of iterations (i.e., ¢
and ¢2) used in Algorithms 1 and 2 are set to be 30 and 15,
respectively. Each RRH is equipped with two antennas and
each UE is equipped with a single antenna. We denote the
target data rate as k,, = Blogy(1 +7,),Vu € U.

In Fig. |3 we first evaluate the convergence of the proposed
algorithm for the flexible functional split design in downlink
C-RAN with different number of UEs (i.e., U) when C’}}/I =80
Mbps and k, = 20 Mbps, V r € R,u € U. According
to Algorithm [3] the convergence of the proposed algorithm
is guaranteed as long as Algorithms [I] and [2] converge. The
maximum number of iterations for the loops in Algorithms
and [2] are set as 30 and 15, respectively. The objective
values obtained by Algorithms [I] and 2] after each iteration
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Fig. 3: Convergence of Algorithms |1| and |2| for different number of UEs in
the network when Ci“ = 80 Mbps and K, = 20 Mbps, Vr € R,u € U.

are plotted in Figs. Bfa) and [3[b), respectively. As can be
seen, Algorithm |I| converges after about 12 to 18 iterations,
while Algorithm [2] converges after about 2 to 5 iterations. In
particular, the larger the number of UEs in the network, the
larger the number of iterations is required for the algorithm to
converge. Overall, Algorithm [3| always converges after a small
number of iterations.

In Fig. @ we then investigate the impact of the limited
fronthaul capacity on the aggregate power consumption when
U = 8 and k, = 20 Mbps, V v € U. With the variation
of the fronthaul capacity, the aggregate power consumption
changes significantly, which demonstrates the importance of
taking into account the limited fronthaul capacity. For the DS
strategy, the fronthaul capacity constraint limits the number
of cooperating RRHs for each UE, which in turn limits
the achievable cooperation gain. Hence, in the low fronthaul
capacity regime, the DS strategy is less likely to meet the
QoS requirement of all UEs due to the limited cooperation
gain. In particular, when CM = 40 Mbps or 60 Mbps, the
DS strategy is infeasible (i.e., the QoS requirement of all UEs
cannot be simultaneously satisfied). Hence, the corresponding
points are marked with stars, as shown in Fig. 4} On the other
hand, the CAP strategy is feasible in the low fronthaul capacity
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Fig. 4: Aggregate power consumption versus fronthaul capacity when U = 8
and Kk, = 20 Mbps, Vu € U.
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Fig. 5: Aggregate power consumption versus target data rate when U = 8
and C’}YI = 120 Mbps, V r € R.

regime. Hence, by transforming the advantage of generating
low fronthaul data rates to the requirement of activating less
RRHs, the CAP strategy outperforms the DS strategy when
the fronthaul capacity is small. With the increase of CM from
60 Mbps to 120 Mbps, the aggregate power consumption of
all considered strategies decreases as less RRHs are required
to be active to meet the QoS requirement of all UEs. When
CM > 120 Mbps, the aggregate power consumption cannot
be further reduced by increasing the fronthaul capacity. When
the fronthaul capacity is large enough to deliver multiple data
streams, the DS strategy not only requires a similar number of
active RRHs as that of the CAP strategy, but also consumes
less transmit power (e.g., no quantization noise in the DS
strategy) and processing power (e.g., no signal decompression
is needed in the DS strategy). As a result, the DS strategy
outperforms the CAP strategy when the fronthaul capacity is
large. The proposed flexible functional split design exploits the
advantages of both the CAP and DS strategies, i.e., activating
less RRHs and using a lower transmit power, respectively.
Hence, the flexible functional split design always achieves a
better performance than both the CAP and DS strategies for
all values of the fronthaul capacity.

Fig. [5] shows the impact of the target data rate of UEs on
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the aggregate power consumption when U = 8 and CM = 120
Mbps, V r € R. For a given number of UEs, the target data
rates of UEs reflect the traffic load in the network. As we
can see, the aggregate power consumption of all strategies
under consideration increases with the target data rates of UEs.
This is because supporting higher data rates requires higher
fronthaul data rates, which in turn requires more active RRHs
as each RRH is connected to a fronthaul link with limited
capacity. Hence, in the low traffic load regime, maximizing the
number of RRHs in the sleep mode is crucial in minimizing
the aggregate power consumption. As can be seen, neither the
DS nor CAP strategy dominates the other across the entire
target data rate regime. For example, when the target data
rate is less than 25 Mbps, the DS strategy achieves a better
performance than the CAP strategy. On the other hand, when
the target data rate is larger than 30 Mbps, the CAP strategy
achieves a better performance than the DS strategy. This is
because the fronthaul data rate of the DS strategy directly
depends on the target data rate and the number of serving
UEs, while the fronthaul data rate of the CAP strategy depends
on the logarithm of the SINR and increases slowly with the
target data rate. In the high traffic load regime (e.g., the target
data rate is 40 Mbps or above), the sets of RRHs using the
CAP and DS strategies are critical optimization variables. As
shown in Fig. 5] the DS strategy becomes infeasible in this
regime and the corresponding points are plotted with stars. By
appropriately setting the transmission mode for each RRH, the
flexible functional split design outperforms both the CAP and
DS strategies in terms of the energy efficiency.

In Fig. [f] we compare the percentage of RRHs in the DS
and CAP modes for the flexible functional split design with
different target data rates of UEs when U = 8 and CM =
120 Mbps, V r € R. As we can see, when the target data
rate is low (i.e., less than 15 Mbps), almost all active RRHs
are switched to the DS mode, as the fronthaul capacity is
not the dominant performance-limiting factor in the low data
rate regime. With the increase of the target data rate from 15
Mbps to 35 Mbps, the percentage of RRHs in the DS mode
decreases, while the percentage of RRHs in the CAP mode
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Fig. 7: Aggregate power consumption versus number of UEs when C’}}A =120
Mbps and Kk, = 20 Mbps, V7r € R,u € U.

increases, i.e., less active RRHs are switched to the DS mode.
This is because the fronthaul link is not able to support the
transmission of multiple data streams without compression. By
further increasing the target data rate, the percentage of RRHs
in the DS mode almost remains at about 34%. As we can see,
in the moderate and high target data rate regimes, the proposed
flexible functional split design adjusts the transmission modes
of all RRHs according to their channel conditions so as to
fully exploit the advantages of both DS and CAP modes.

Fig. [7) illustrates the impact of the number of UEs on
the aggregate power consumption of all strategies under con-
sideration when CM = 120 Mbps and x, = 20 Mbps,
Vr € R,u € U. With the increase of the number of UEs, the
traffic load in the network increases, which imposes a higher
requirement on the fronthaul capacity. As a result, more RRHs
are required to be active to support the QoS requirement of
all UEs in the network, leading to higher power consumption.
When the number of UEs is small, the required fronthaul data
rate of the DS strategy is smaller than the fronthaul capacity,
and hence, the DS strategy outperforms the CAP strategy in
terms of the energy efficiency. When the number of UEs is
large, the DS strategy becomes infeasible, while the CAP
strategy becomes more favourable by activating less RRHs.
Overall, the proposed flexible functional split design adapts to
the network traffic load and outperforms both the CAP and
DS strategies for all values of the number of UEs.

Fig. 8 shows the impact of the number of UEs on the
fraction of active RRHs in downlink C-RAN when CM = 120
Mbps and k,, = 20 Mbps, V r € R,u € U. Similar to the
trends observed in Fig. [7] the fraction of the active RRHs
increases with the number of UEs. As we can see, the fraction
of the active RRHs of the proposed flexible functional split
design is always smaller than that of the DS strategy due
to its better utilization of the fronthaul capacity. When the
number of UEs reaches 14 or more, the DS strategy becomes
infeasible, while the proposed flexible functional split design
can still guarantee the QoS requirement of all UEs. Moreover,
the gap in terms of the active RRHs between the DS strategy
and the flexible functional split design also increases with the
number of UEs.
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VI. CONCLUSIONS

In this paper, we proposed a flexible functional split between
the BBU pool and the RRHs in downlink C-RAN with limited
fronthaul capacity. We formulated a joint RRH mode (i.e.,
CAP, DS, sleep) selection, precoding design, and fronthaul
compression problem to minimize the aggregate power con-
sumption. We took into account both the fronthaul capacity
constraint and fronthaul power consumption, and tackled the
non-convex fronthaul capacity constraints by using the SCP
and /1-norm convex relaxation techniques. We transformed
the non-convex optimization problem into a sequence of
rank-constrained SDP problems. An iterative algorithm based
on group sparse precoding approach and MM scheme was
proposed to solve the problem. Simulation results showed
that the fronthaul capacity constraint has a significant impact
on aggregate power consumption and the proposed flexible
functional split design outperforms both the pure CAP and
DS strategies in terms of aggregate power consumption. For
future work, we will consider the uncertainty of radio channels
and the millimeter wave-based fronthaul, and investigate their
impact on the energy efficiency of C-RAN.

APPENDIX

A. Proof of Theorem 1

For notational simplicity, we denote g, = u£m+1)Pfir +
%,Vr € R. In addition, we denote (., \.,v, > 0, and
Hermitian matrix X, > 0 as the Lagrangian multipliers

of constraints (T3), for all r € R, @3), and (26d),
respectively. Hence, the Lagrangian of problem is given

by
Ly ({Wu}v {Ug,r}v {Gh A vl {XU})

=) Tr (Wu (Z (gTBrwa ATET)

uel reR

+ > wyhihi —v,h bl -X,
keU\{u}

+F17

() B

where =2, = er» 't depends on
)

In2
{02}, {¢:} {\}, {vu}. and other constant parameters in
problem (30). The dual problem of problem (30) is given by

wBer (

maximize inf
{Cw‘}7{kr‘}7{’/u}v{xu} {Wu}v{ffﬁ,r}

We denote ®* = ({W;},{02%}) and ¥* =
(¢} (N {ve},{X%}) as the solutions of primal and

dual problems, respectively. Hence, the Karush-Kuhn-Tucker
(KKT) conditions can be written as

Vw.L1| g . =0, Vu€elU, (34a)
X:Wri =0, Yu€el, (34b)
G z0,AT=0p >0, VreRr, (34¢)

where Vw L1 ‘ &+ - denotes the gradient of the Lagrangian
in with respect to W, at &* and ¥*. According to (34a)),
for UE u € U, we have

> (gTBT +¢B+ A;ET)

reR
+ > viwhih —vih bl - X5 =0, Yuelu.
ket\{u}
(35)

Based on and (33), for UE u € U, we have

W}, (Z (9B, + (B, + N5,

reR
+ Z vivshgh) — v2h,hll | = WiXE =0. (36)
keU\{u}
Hence, we have,
Wi (Y:—ZY)=0 < rank W)Y )=rank (W3ZY), (37)
where Y= )" (gTBT—i—C;‘BT—I—/\:ET)—i— > (y,:'ykhkhlki)
re€R keu\{u}

and Z* = vh,h!l. By taking into account g, > 0, constraint
(34c), and the definition of B,, we have Y > 0, and thus
rank (Y}) = Np,Vu € U. As a result, we have

rank (W3Y%) = rank (W) = rank (W2 Z>)
<rank(Z;)=1, Vuel.

As W, = 0 cannot be the solution of problem due to
UEs’ QoS requirement, we conclude that solving problem
without the rank-one constraint always achieves rank (W?) =
1,V u € U. Hence, the proof of Theorem 1 is complete.

B. Proof of Theorem 2

The Lagrangian of problem (32) without constraint (26b)
can be written as

Lo({Wou b {og FAC I HGCH LA ) (X))

=3 m (Wu< > (BT + CSBT+)\SET>

ueld reRC(™)
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+(PB, + AP+ Jog, (1 + 'yu)>

reRDP(T)
+ > CBrt Y wenhihif - vhhy - X,

reRS ket\{u}
+ Do, (38)
where (€, A\C (P AP ¢5 v, > 0, and X > 0 are the

Lagranglan multlphers for constraints (I3), (I9) for all r €
RC(T , . for all » € RP(™) s 1.) for all r € RS
(23), and (26¢), respectively, and I's includes all other terms
unrelated to W,, and X,,. Following similar steps in the proof
of Theorem 1, for UE u, we have

Wi (P, —Q7)=0 < rank (W P7) = rank (W7Q7), (39)
where
* BT CH\x Cyxm
Pu = Z 7+(Cr) B’F+()‘r) =
= Mk
reRC(™)
=Y (BB Ry o (140 )
reRP() M
+ > (C)Be+ > viwhkhy, (40)
reRS ket\{u}

and Q) =v;h, byl and {(¢F)" 1 {(A)" 1 {(CP) 1 AAG)
{(¢3)*}, and {V;} denote the solution of the dual problem.
Thus, we have P} > 0 and rank (W}P%) = rank (W7).
As rank(W7 Q) <rank(Q}) =1, we obtain rank (W}) <
1. Due to QoS requirement of UEs, we have rank (W) =
1, VuelU. Hence, the proof of Theorem 2 is complete.
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