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Abstract—Electric vehicles (EVs) have the potential to provide
frequency regulation service to an independent system operator
(ISO) by changing their real-time charging or discharging power
according to an automatic generation control (AGC) signal.
Recently, the Federal Energy Regulatory Commission has issued
Order 755 to ISOs to introduce a performance-based compensa-
tion scheme in the frequency regulation market. The goal is to
provide economic incentives for fast ramping resources such as
EVs to participate in the market. In this paper, we model the
EV frequency regulation service under the performance-based
compensation scheme. Thereby, a robust optimization framework
is adopted for the formulation of a frequency regulation capacity
scheduling problem. Our problem formulation takes into account
the performance-based compensation scheme, the random AGC
signal, and the dynamic arrival and departure times of the
EVs. We propose an efficient algorithm to solve the formulated
problem. Simulation results show that the proposed algorithm
improves the revenue under the performance-based compensation
scheme compared to a benchmark algorithm.

Keywords—Electric vehicles, frequency regulation, robust
optimization, scheduling algorithm.

I. INTRODUCTION

Electric vehicles (EVs) are among the potential candidates
to replace combustion engine vehicles in an effort to reduce
the emission of CO2 and other greenhouse gases. EVs have
the potential to provide additional services besides driving.
For example, when EVs are connected with the power grid,
they can be coordinated to change their real-time charging or
discharging power and provide frequency regulation service to
an independent system operator (ISO), such as the California
ISO (CAISO). Frequency regulation service helps ISOs to
keep the utility frequency around the nominal value (e.g., 50
Hertz or 60 Hertz) by compensating short term mismatches
between generation and load. The pilot projects in [1], [2]
show that EVs are able to provide frequency regulation service
by following an automatic generation control (AGC) signal
issued by the ISO. Fast ramping resources such as EVs can
reduce the overall frequency regulation capacity requirement
for ISOs and lead to lower costs for the consumers [3].

Most of the EV frequency regulation literature falls into one
of two categories. The works in the first category, e.g., [4]–
[7], propose control algorithms for EVs to provide frequency

Manuscript was received on Feb. 28, 2015, revised on July 7, 2015, Oct.
20, 2015, and Jan. 27, 2016, and accepted on Feb. 6, 2016. This work is
supported by the Natural Sciences and Engineering Research Council of
Canada (NSERC) under Strategic Project Grant (STPGP 447607-13). E. Yao,
V.W.S. Wong, and R. Schober are with the Department of Electrical and
Computer Engineering, The University of British Columbia, Vancouver, BC,
Canada, V6T 1Z4, email: {enxinyao, vincentw, rschober}@ece.ubc.ca.

regulation service autonomously, whereby EVs sense the util-
ity frequency deviation locally. In contrast, a market-based EV
frequency regulation service is considered by the papers in the
second category, e.g., [8]–[19]. In this case, the ISO purchases
hourly regulation capacities in a frequency regulation market
and the participating EVs are obliged to change their real-time
charging or discharging power according to an AGC signal.
An aggregator is typically used to serve as an agent between
the ISO and the fleet of EVs. In [8]–[10], algorithms for
the aggregator to distribute regulation tasks among EVs are
proposed. The interaction between the aggregator and EVs is
analyzed in [11]. Several algorithms for the aggregator and
EVs to schedule the hourly regulation capacities are reported
in [12]–[16]. The algorithm proposed in [12] aims to maximize
the revenue while satisfying the charging demand requirement.
In [13], a framework for unidirectional EV frequency regula-
tion service is proposed where the EVs track the AGC signal
by changing their real-time charging power around a baseline.
Unidirectional EV frequency regulation is of practical interest
as EV owners may not allow the discharging of their EVs
because of the negative impact of frequent discharging on
the lifetime of batteries. Moreover, EV manufacturers may
not honor the warranty for EV batteries, if the battery is
frequently discharged to provide frequency regulation service.
Furthermore, the algorithm proposed in [14] takes into account
the market rules for the wholesale electricity energy market
and the ancillary service market. In [15], a stochastic algorithm
is developed by considering the randomness of the prices
and the AGC signal. A bidding algorithm for the aggregator
to participate in the day-ahead market based on stochastic
optimization is proposed in [17]. In [18], a multi-layered
control algorithm to set the real-time charging rate of the EVs
based on their charging priority is reported.

We note that the authors of [8]–[18] consider capacity-
based frequency regulation compensation, where the revenue
depends on the hourly regulation capacity. However, the
Federal Energy Regulatory Commission (FERC) issued Order
755 [20] in Oct. 2011, which requires ISOs to introduce a
performance-based compensation scheme in their frequency
regulation market. Under this scheme, the compensation for
the frequency regulation service depends on the performance
of the EVs in following the AGC signal, i.e., whether the EVs
track the AGC signal closely or not. The goal is to encourage
the usage of fast ramping resources (e.g., EVs, battery systems,
flywheels) in the frequency regulation market. Performance-
based compensation schemes have been implemented by most
ISOs in the United States, e.g., the Pennsylvania Jersey
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Maryland Interconnection (PJM), CAISO, New York ISO,
and Midcontinent ISO. They provide economic incentives to
encourage the ramping resources to respond to the AGC signal
quickly, accurately, and reliably.

One method for improving the revenue of the EV frequency
regulation service under the performance-based compensation
scheme is to ensure that the EVs follow the AGC signal
reliably. However, an EV cannot follow the AGC signal
to charge if it is fully charged and it cannot discharge if
its battery is depleted of energy. On the other hand, the
batteries of the EVs may either get fully charged or depleted
unexpectedly when the EVs follow the random AGC signal
all the time. References [21], [22] show that a filtered AGC
signal can improve the reliability of the EVs in following
the AGC signal but can be used only by those ISOs (e.g.,
PJM) which require that the regulation up capacity be equal
to the regulation down capacity. Since the performance-based
compensation scheme has been implemented by the ISOs,
it is desirable to design new algorithms which improve the
revenue of the EV frequency regulation service for this new
compensation scheme. The main contributions of this paper
can be summarized as follows:

• We model the EV frequency regulation service under
the performance-based compensation scheme. This new
compensation scheme has been implemented recently by
the ISOs in the United States but its significance on the
EV frequency regulation service has not yet been studied.

• We develop a new problem formulation for scheduling
the regulation capacity of the EVs. Thereby, the revenue
under the performance-based compensation scheme is
introduced in the objective function. Moreover, we use
a robust optimization framework in the formulation to
encourage the EVs to follow the uncertain AGC signal
reliably most of the time. An efficient algorithm is
developed to solve the formulated problem.

• We evaluate the performance of the proposed algorithm
and the EV frequency regulation service by simulations.
To this end, real AGC signal and prices from PJM
are used in our simulations. The results show that the
proposed algorithm can improve the revenue of the EV
frequency regulation service by around 10% compared
to a benchmark algorithm under the performance-based
compensation scheme.

We note that our work is different from [15] and [16]. First, we
consider a performance-based compensation scheme whereas
[15] and [16] focus on capacity-based compensation. Second,
we use robust optimization to account for the uncertainty in the
AGC signal. The proposed robust optimization algorithm does
not require an hourly dynamic update of the capacity. On the
other hand, the authors of [15] and [16] use Markov decision
process and stochastic dynamic programming to model an
aggregator which dynamically updates its capacity at the
beginning of each hour. The ISOs in the United States have
different market rules and may or may not allow an hourly
dynamic update of the capacity [23], [24].

This paper is organized as follows. The system model is
introduced in Section II. In Section III, we formulate the

TABLE I
LIST OF NOTATIONS AND VARIABLES USED IN THIS PAPER.

M Set of EVs
H Set of hours
T Set of time slots in one hour
i Index of an EV in set M
h Index of an hour in set H
t Index of a time slot in set T
xi(h) Baseline charging power of EV i at hour h
vui (h) Regulation up capacity of EV i at hour h
vdi (h) Regulation down capacity of EV i at hour h
q(h, t) AGC signal in time slot t at hour h
fu(h) Regulation up component of AGC signal at hour h
fd(h) Regulation down component of AGC signal at hour h
ei(h) Charged energy of EV i at hour h
mu(h) Summation of absolute changes of the AGC signal

for regulation up at hour h
md(h) Summation of absolute changes of the AGC signal

for regulation down at hour h
pe(h) Price of charged energy at hour h
pu(h) Price of regulation up capacity at hour h
pd(h) Price of regulation down capacity at hour h
pc(h) Price of following the AGC signal at hour h
Emax

i Maximum hourly charged energy of EV i
Emin

i Minimum hourly charged energy of EV i
fu,max Maximum value of fu(h)
fd,max Maximum value of fd(h)
µu Expected value of fu(h)
µd Expected value of fd(h)
λu Expected value of mu(h)
λd Expected value of md(h)
ai Arrival time of EV i
di Departure time of EV i
ψi Demand of charging energy of EV i
η Parameter to adjust the level of robustness
si(h) SOC of EV i at hour h
S Set of selected hours when the AGC signal

takes worst case values
|S| Cardinality of set S
∆ Positive arbitrarily large constant
α Parameter to indicate whether the ISO has separate

regulation up and regulation down markets
τ Arbitrary hour in set {1, . . . , h}
w(τ) Auxiliary variable which takes value in [0, 1]
y(τ), z Auxiliary dual variables in problem (14)
pb Price of the battery in EVs
l Life cycle of the battery
θ Temperature
δ(θ, si(h)) Severity factor map of the battery degradation cost
ε1,i(h) Auxiliary variable to replace [xi(h)]−

ε2,i(h) Auxiliary variable to replace [xi(h)− vui (h)]−

K Set of scenarios
ωk kth scenario (k ∈ K) for the arrival and departure times
P(ωk) Probability of scenario ωk

Pi Probability that EV i follows the AGC signal

frequency regulation capacity scheduling problem and develop
an efficient algorithm. Numerical results are given in Section
IV. The paper is concluded in Section V. For convenience, the
notations used in this paper are provided in Table I.
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Fig. 1. The EVs provide frequency regulation service by following an AGC
signal issued by the ISO. The AGC signal is generated by the ISO in real-time
and is random.

II. SYSTEM MODEL

An EV frequency regulation scheme is illustrated in Fig.
1. An aggregator coordinates EVs to provide frequency reg-
ulation service to the ISO. First, the aggregator aggregates
the hourly frequency regulation capacities of the EVs. The
ISO purchases the capacities and the aggregator enters into a
contract with the ISO to provide frequency regulation service.
Next, during the operation period, the aggregator retrieves
the AGC signal issued by the ISO every few seconds (e.g.,
every 2-6 seconds, depending on the ISO’s requirements) and
broadcasts the AGC signal to the EVs. The EVs are obliged
to provide frequency regulation service by changing their real-
time charging or discharging power based on the AGC signal.
The information exchange between ISO, aggregator, and EVs
is enabled by a two-way communication infrastructure.

We denote the operation hours by H = {1, . . . ,H} and
the set of EVs by M = {1, . . . ,M}. In each hour h ∈ H,
EV i ∈ M has a baseline charging power xi(h), regulation
up capacity vui (h), and regulation down capacity vdi (h). Our
goal is to optimize the values of xi(h), vui (h), and vdi (h) to
improve the frequency regulation revenue.

A. Randomness of the AGC Signal

The AGC signal is generated by the ISO according to the
real-time mismatch between generation and load in the power
grid. The AGC signal is updated in short intervals. We divide
one hour into multiple time slots. Each time slot corresponds
to the duration of one interval of the AGC signal, i.e., one
time slot lasts a few seconds. Let T = {1, . . . , T} denote the
set of time slots in one hour. The AGC signal in time slot
t ∈ T at hour h ∈ H is denoted by q(h, t) ∈ [−1, 1].

The AGC signal indicates the amount by which EV i ∈M
should increase or decrease its charging power, compared to
the baseline charging power xi(h). A positive AGC signal
(i.e., q(h, t) > 0) indicates that the power generation is lower
than the load. In this case, EV i provides the regulation up
service by multiplying the AGC signal with its regulation up
capacity vui (h) and decreasing the charging power accordingly.
A negative AGC signal (i.e., q(h, t) < 0) indicates that the
power generation is higher than the load. EV i provides the
regulation down service by multiplying the AGC signal with
its regulation down capacity vdi (h) and increasing the charging
power accordingly. Note that for chargers that comply with the
Society of Automotive Engineers (SAE) J1772 standard [26],
the charging power can be changed by adjusting the duty cycle
of the pulse width modulation in the charger’s pilot signal
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Fig. 2. Joint distribution of the hourly regulation up and regulation down
components of an AGC signal. The distribution is obtained by analyzing
the AGC signal data records in [25] for 2,208 hours. The figure reveals the
randomness of the regulation up and regulation down components.

[8]. In this paper, we assume that the charging power can be
continuously adjusted.1

We analyze the AGC signal on an hourly basis as ISOs
typically purchase hourly capacities. We denote the regulation
up component and the regulation down component of the AGC
signal within hour h by fu(h) and fd(h), respectively. We
have

fu(h) =
1

T

∑
t∈T

[q(h, t)]
+
, h ∈ H, (1)

fd(h) =
1

T

∑
t∈T

[−q(h, t)]+ , h ∈ H, (2)

where [x]
+

= max{x, 0}. Let ei(h) denote the charged energy
for EV i within hour h. Then, ei(h) can be expressed as

ei(h)=
1

T

∑
t∈T

(
xi(h)−vui (h) [q(h, t)]

+
+vdi (h) [−q(h, t)]+

)
=xi(h)− vui (h)fu(h) + vdi (h)fd(h). (3)

The terms vui (h)fu(h) and vdi (h)fd(h) represent the dis-
charged and charged energy due to following the regulation
up and regulation down components of the AGC signal during
hour h, respectively. Note that we assume EVs follow the
AGC signal in every time slot because EVs are fast ramping
resources that have zero lost opportunity cost [21], [24].

The random AGC signal leads to an uncertainty in the
charged or discharged energy of the EVs, as shown in (3).
Hence, we studied the statistical joint distribution of fu(h)
and fd(h), i.e., P(fu(h), fd(h)), by analyzing the AGC signal
data records of PJM [25], for the period from March 1, 2014 to
May 31, 2014. The results are shown in Fig. 2 and reveal that
fu(h) and fd(h) may deviate significantly from their expected
values.

1Some EVs may be equipped with simple chargers which can only be turned
on and off. These EVs are still able to provide frequency regulation service
and a corresponding dispatching algorithm based on a priority list has been
proposed in [8]. If the EV chargers can only be turned on and off, an EV either
has a zero baseline charging power when providing regulation down capacity
or has a full baseline charging rate when providing regulation up capacity.
Hence, vui (h), v

d
i (h), and xi(h) become integer variables if EV chargers

can only be turned on and off. In this case, we would have an additional
constraint xi(h), vui (h), v

d
i (h) ∈ {0, emax

i }, i ∈ M, h ∈ H, where emax
i

is the maximum charging rate of EV i, and an integer programming problem
is formulated.
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B. Performance-based Frequency Regulation Compensation

The ISO makes two payments under the performance-based
frequency regulation compensation scheme. First, the ISO
purchases the regulation up and regulation down capacities
at hour h at prices pu(h) and pd(h), respectively. Second,
the ISO makes another payment for EVs that follow the
AGC signal (e.g., the regulation market performance clearing
price (RMPCP) in PJM). The corresponding performance
price is denoted by pc(h). Let mu(h) and md(h) denote the
summation of the absolute changes of the regulation up and
regulation down elements of the AGC signal, respectively. We
have

mu(h) =
∑
t∈T

∣∣∣ [q(h, t)]+ − [q(h, t− 1)]
+
∣∣∣, h ∈ H, (4)

md(h) =
∑
t∈T

∣∣∣ [−q(h, t)]+−[−q(h, t− 1)]
+
∣∣∣, h ∈ H, (5)

where |·| denotes the absolute value. We assume the communi-
cation links between the ISO, aggregator, and EVs are reliable.
If EV i follows the AGC signal at hour h, it receives a perfor-
mance related payment of pc(h)(vui (h)mu(h)+vdi (h)md(h)).
Let 1i,h denote an indicator function, which is equal to 1 when
EV i follows the AGC signal in hour h, and is equal to 0
otherwise. We denote the price for purchasing energy at hour
h by pe(h). The revenue for EV i at hour h is denoted by
ri(v

u
i (h), vdi (h), xi(h)), and can be written as

ri(v
u
i (h), vdi (h), xi(h)) = −pe(h)

(
xi(h)− vui (h)fu(h)

+ vdi (h)fd(h)
)

+ ξi

( (
pu(h)vui (h) + pd(h)vdi (h)

)
+ 1i,hp

c(h)
(
vui (h)mu(h) + vdi (h)md(h)

) )
, (6)

where−pe(h)(xi(h)−vui (h)fu(h)+vdi (h)fd(h)), pu(h)vui (h)
+pd(h)vdi (h), and pc(h)(vui (h)mu(h) + vdi (h)md(h)) repre-
sent the cost for the charged energy, payment for the regulation
capacity, and the payment for following the AGC signal,
respectively. The coefficient ξi ∈ [0, 1] in (6) is referred to
as the performance score in [24]. It is determined by the ISO
according to the performance of the EVs in following the AGC
signal in past hours. If EV i fails to follow the AGC signal at
hour h (i.e., 1i,h = 0), the ISO will degrade the score in future
hours. Note that the ISO takes into account the performance
over a long period (e.g., 100 hours in PJM) to calculate the
performance score. Hence, it is difficult to explicitly calculate
the degradation of the revenue and performance score when
EV i fails to follow the AGC signal at hour h. Instead, we
aim to attain a performance score close to 1 by ensuring that
EVs follow the AGC signal most of the time.

Equation (6) models the essence of the performance-based
compensation scheme in [24]. In practice, for the calculation
of the performance score, the ISO first compares the trajectory
of the EVs’ charging power with the AGC signal and uses a
correlation coefficient to measure the accuracy of the EVs’
frequency regulation service for each hour [24]. The delay
of the EVs in responding to the AGC signal is taken into
account by the ISO. The performance score is then calculated
by the ISO according to the performance of the EVs over the

past hours. In order to have a tractable problem formulation,
we model the revenue calculation method in [24] by equation
(6), which reflects several important characteristics of the
performance-based compensation scheme. First, the ISO uses
a performance score as a multiplier for the revenue. The EVs
should track the AGC signal quickly, accurately, and reliably to
improve the performance score. Second, an additional payment
for following the AGC signal is introduced in the performance-
based compensation scheme. Third, the payment for following
the AGC signal is calculated based on the absolute change of
the AGC signal, which is referred to as the mileage of the
AGC signal in [24]. Although the ISOs have implemented
different market rules under Order 755 issued by the FERC,
the above three characteristics are common to all performance-
based compensation schemes.

The EVs’ limited battery capacity makes it challenging to
follow the AGC signal reliably. An EV cannot charge when
its battery is fully charged, even if this is mandated by the
AGC signal. Similarly, it cannot discharge when its battery is
depleted. In the next section, we use a robust optimization
framework to obtain the hourly regulation capacities and
enable EVs to follow the AGC signal most of the time.

III. PROBLEM FORMULATION

In this section, we formulate an EV frequency regulation
capacity scheduling problem based on the robust optimization
framework in [27]. The formulated problem aims to select
vui (h), vdi (h), and xi(h) in order to maximize the revenue
under the performance-based compensation scheme. The un-
certain parameters of the AGC signal fu(h) and fd(h), h ∈ H
are considered in the formulated problem to ensure that the
EVs follow the AGC signal most of the time. We note that we
do not aim to guarantee that EVs always strictly follow the
random AGC signal, because such a guarantee may lead to
a very conservative solution (i.e., a small regulation capacity)
and reduce the revenue of the EVs.

We adopt the robust optimization framework in [27] to
formulate our problem. We use this framework because some
of the constraints in our problem include multiple uncertain
parameters and should be satisfied with a high probability.
Note that the framework in [27] is different from most of
the other robust optimization frameworks which consider hard
constraints (e.g., [28]). A robust optimization framework with
hard constraints ensures that the solution is always feasible
when the uncertain parameters are within their uncertainty sets.
Hard constraints are suitable only if the constraints are highly
critical. However, hard constraints are not suitable to our
problem because they may result in conservative solutions and
reduce the revenue obtained from the EV frequency regulation
service. Note that an alternative approach is to use chance
constraints in our formulation. We use the framework in [27]
instead of chance constraints because the formulated problem
can be solved efficiently.

The basic idea of the framework in [27] is that, although
a single uncertain parameter sometimes may take its worst
case value, it rarely happens that all the parameters take
their worst case values simultaneously. Hence, the framework
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in [27] introduces a tunable design parameter to adjust the
number of uncertain parameters which will take their worst
case values simultaneously. With an appropriate selection of
the number of parameters assuming worst case values, the
probability for the scenarios in practical systems to be worse
than the scenarios considered in the formulation is small. In
this case, the constraints which include uncertain parameters
are satisfied with a high probability. In this paper, we borrow
the basic idea of framework in [27] and introduce an integer
parameter η ∈ {0, 1, . . . ,H}. Our formulation ensures that the
EVs follow an AGC signal where the unknown parameters
fu(h) and fd(h) take worst case values in at most η hours
and take their expected values in the remaining hours.

Let τ represent an arbitrary hour in the set H(h) =
{1, . . . , h}. We denote S ⊆ H(h) as the set of hours when
fu(τ) and fd(τ) take their worst case values. The cardinality
of set S is denoted by |S|. The expected values of fu(τ) and
fd(τ) are denoted by µu and µd, respectively. The uncertainty
sets of fu(h) and fd(h) are denoted by fu(h) ∈ [0, fu,max],
fd(h) ∈ [0, fd,max]. The constants fu,max and fd,max denote
the maximum values of the regulation up and regulation down
components of the AGC signal, respectively. The values of
fu,max and fd,max can be obtained by analyzing historical
AGC signal data (see Section IV). We consider two cases
for fu(τ) and fd(τ). In the first case, fu(τ) and fd(τ) take
worst case values in the set of hours S to increase the SOC
of the EVs (i.e., fu(τ) = 0, fd(τ) = fd,max, τ ∈ S). Let
si(0) denote the initial SOC of EV i at the beginning of the
operation hours. We denote the battery capacity of EV i as
Bi. We assume the charging efficiencies of both charger and
battery are close to one. For EV i ∈M and hour h ∈ H, we
have the following constraint

si(0) + max{
S⊆H(h)

∣∣ |S|≤η}
(

1
Bi

∑
τ∈S

(
xi(τ)−vui (τ)0 + vdi (τ)fd,max

)
+

1

Bi

∑
τ∈H(h)\S

(
xi(τ)− vui (τ)µu + vdi (τ)µd

))
≤ smax, (7)

where smax is the maximum SOC of the EV battery (e.g.,
smax = 1). {S ⊆ H(h)

∣∣ |S| ≤ η} are all subsets of H(h)
where the number of elements is at most η. In the selected
hours τ ∈ S, the unknown parameters fu(τ) and fd(τ) take
worst case values (i.e., fu(τ)=0, fd(τ)=fd,max) to increase
the SOC of EV i, see the first term following the max in (7).
In the remaining hours (i.e., τ ∈ H(h) \ S), fu(τ) and fd(τ)
take the expected values, see the last term on the left hand
side of (7). Constraint (7) can be equivalently rewritten as

si(0) + max{
S⊆H(h)

∣∣ |S|≤η}
((

1
Bi

∑
τ∈S

(
xi(τ)+vdi (τ)fd,max

)
− 1

Bi

∑
τ∈S

(xi(τ)− vui (τ)µu + vdi (τ)µd)
)

+
(

1
Bi

∑
τ∈S

(xi(τ)− vui (τ)µu + vdi (τ)µd)

+ 1
Bi

∑
τ∈H(h)\S

(
xi(τ)− vui (τ)µu + vdi (τ)µd

)))
≤ smax. (8)

Constraint (8) is equivalent to (7) as we remove and then add
the same components in the second and third lines. Constraint
(8) can be simplified as

si(0) + max{
S⊆H(h)

∣∣ |S|≤η}
(

1
Bi

∑
τ∈S

vui (τ)µu+vdi (τ)(fd,max−µd)
)

+
1

Bi

∑
τ∈H(h)

(
xi(τ)− vui (τ)µu + vdi (τ)µd

)
≤ smax. (9)

We replace the max operator in (9) using max g(x) =
−min(−g(x)), where g(x) denotes an arbitrary function, and
obtain

si(0)− 1

Bi
min{

S⊆H(h)
∣∣ |S|≤η}

(∑
τ∈S
−vui (τ)µu+vdi (τ)(µd−fd,max)

)
+

1

Bi

∑
τ∈H(h)

(
xi(τ)− vui (τ)µu + vdi (τ)µd

)
≤ smax. (10)

Constraint (10) is equivalent to (7) as shown in (8) and (9).

We now consider the second case when the unknown para-
meters take worst case values to reduce the SOC of the EVs
(i.e., fu(τ) = fu,max, fd(τ) = 0, τ ∈ S). For EV i∈M and
hour h∈H, the following constraint keeps the SOC above a
minimum

si(0) + 1
Bi

min{
S⊆H(h)

∣∣ |S|≤η}
∑
τ∈S

(
vui (τ)(µu−fu,max)−vdi (τ)µd

)
+ 1

Bi

∑
τ∈H(h)

(
xi(τ)− vui (τ)µu + vdi (τ)µd

)
≥ smin, (11)

where smin is the minimum SOC of the EV battery (e.g.,
smin = 0). Constraints (10) and (11) confine the SOC of EV
i to be within

[
smin, smax

]
at hour h. In this paper, we use

constraints (10) and (11) to enable the EVs to follow the AGC
signal most of the time.

EVs can provide frequency regulation service in two modes,
depending on whether discharging is allowed or not. If
discharging is allowed, then there is an additional cost of
battery degradation. In [29], a framework is proposed to
estimate the battery degradation cost using a severity factor
map. The severity factor map is a function which maps the
temperature and the SOC to a battery degradation factor. Let
δ(θ, si(h)) denote the battery degradation factor, where θ is
the temperature and si(h) is the SOC of EV i at hour h. In
[30], the values of the battery degradation factor δ(θ, si(h))
are provided for lithium-ion batteries, which are typically used
in EVs. We denote the price of the batteries in the EVs by
pb. The unit of pb is $ per kW. The life cycle of the batteries
is denoted by l. Furthermore, let ai, di, and ψi denote the
arrival time, departure time, and charging demand requirement
of EV i, respectively. We denote the expected values of the
summation of the absolute changes of the regulation up and
regulation down components mu(h) and md(h) in (4) and
(5) by λu and λd, respectively. The values of λu and λd can
be obtained based on (4) and (5), and the historical records of
the AGC signal. We can formulate an EV frequency regulation
capacity scheduling problem as follows:
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maximize
vui (h), v

d
i (h),

xi(h), i ∈ M,
h ∈ H

∑
h∈H

∑
i∈M

(
E [pu(h)] vui (h)+E

[
pd(h)

]
vdi (h)

+ E [pc(h)] (vui (h)λu + vdi (h)λd)
− E [pe(h)] (xi(h)− vui (h)µu + vdi (h)µd)

−p
b

l δ(θ, si(h))
(
[xi(h)]−+µu[xi(h)−vui (h)]−

))
(12a)

subject to xi(h) + vdi (h) ≤ Emax
i , i ∈M, h ∈ H, (12b)

xi(h)− vui (h) ≥ Emin
i , i ∈M, h ∈ H, (12c)

vui (h), vdi (h) ≥ 0, i ∈M, h ∈ H, (12d)
vui (h)−α∆ ≤vdi (h) ≤vui (h)+α∆, i ∈M,

h ∈ H, (12e)
−∆1ai≤h≤di ≤ xi(h) ≤ ∆1ai≤h≤di ,

i ∈M, h ∈ H, (12f)
−∆1ai≤h≤di ≤ vui (h) ≤ ∆1ai≤h≤di ,

i ∈M, h ∈ H, (12g)
−∆1ai≤h≤di ≤ vdi (h) ≤ ∆1ai≤h≤di ,

i ∈M, h ∈ H, (12h)
di∑

τ=ai

(xi(τ)− vui (τ)µu + vdi (τ)µd) ≥ ψi,

i ∈M, (12i)
constraints (10) and (11),

where [xi(h)]− denotes max{−xi(h), 0} and the term
pb

l δ(θ, si(h))
(
[xi(h)]− + µu[xi(h) − vui (h)]−

)
is the battery

degradation cost. [xi(h)]− and µu[xi(h) − vui (h)]− are used
to model the amount of the discharged energy due to a
negative baseline charging power xi(h) and the regulation
up service, respectively. Parameter ∆ is an arbitrarily large
constant, e.g., 1010. α ∈ {0, 1} in (12e) specifies whether the
ISO has separate regulation up and regulation down markets
(α = 1) or requires the regulation up capacity to match
the regulation down capacity (α = 0). On the other hand,
E [pu(h)], E

[
pd(h)

]
, E [pc(h)], and E [pe(h)] in (12a) denote

the expected prices for regulation up capacity, regulation down
capacity, following the AGC signal, and the charged energy at
hour h, respectively.

Objective function (12a) represents an upper bound on the
expected aggregate revenue of the EVs. An upper bound is
considered because using (6) as the objective function leads
to an intractable problem. Note that performance score ξi in
(6) can be a non-convex function with respect to the capacity.
The gap between the upper bound and the expected revenue is
obtained by subtracting (6) from (12a) and can be rewritten as∑
h∈H

∑
i∈M

(
(1−ξi)(E [pu(h)] vui (h)+E

[
pd(h)

]
vdi (h))+(

1 −
(
ξiP(1i,h)

))
E [pc(h)] (vui (h)λu + vdi (h)λd)

)
, where

P(1i,h) represents the probability of 1i,h = 1. The gap
approaches zero as ξi → 1 and P(1i,h) → 1. In this paper,
we aim to ensure 1i,h = 1 most of the time using constraints
(10) and (11).

Constraints (12b) and (12c) guarantee that the real-time
charging power in hour h is within the maximum Emax

i

and minimum Emin
i hourly charged energy of EV i. Emin

i

is 0 if the EV does not allow discharging. Otherwise, Emin
i

can be negative. With current battery technology, EV owners
may not allow discharging of their EVs because this may
degrade the battery lifetime. However, in the future, as battery
technology evolves and improves, we expect negative Emin

i

to become a viable option. Constraint (12d) ensures that
the frequency regulation capacities have non-negative values.
Constraint (12e) reflects the characteristics of two types of
frequency regulation markets. Some ISOs (e.g., PJM, New
York ISO) require the frequency regulation service provider to
provide the same capacities for regulation up and regulation
down services. In this case, α = 0, i.e., constraint (12e) can
be rewritten as vui (h) = vdi (h). On the other hand, some other
ISOs (e.g., CAISO, ERCOT) have separate regulation up and
regulation down markets. In this case, α = 1, i.e., constraint
(12e) is always satisfied as ∆ is very large. Constraints (12f)
(12g), (12h), and (12i) model the different charging periods
and demands of EVs. Constraints (12f), (12g), and (12h)
ensure that the EVs provide the regulation capacity only when
the EVs are connected with the power grid. Note that when
h ∈ [ai, di], constraints (12f), (12g), and (12h) are always
satisfied. Otherwise, when h 6∈ [ai, di], constraints (12f), (12g),
and (12h) confine xi(h), vui (h), and vdi (h) to 0. On the other
hand, constraint (12i) ensures that the EVs charge sufficient
energy before their departure.

Market prices pu(h), pd(h), pc(h), and pe(h) are unknown
parameters. Although including the price uncertainty in the
model can make the problem formulation more complete
and may further improve the revenue, it may also make the
formulation even more complicated. In this paper, we focus
on improving the ability of EVs to follow the AGC signal
under the uncertainty in the signal. The unknown prices also
lead to uncertainty in the revenue but may not prevent the EVs
from following the AGC signal. Hence, our model considers
the expected values of the prices to reduce the computational
complexity. Suboptimal solutions may result if the real values
of the prices deviate significantly from their expected values.

A. Duality-based Problem Transformation
Problem (12) is a non-convex problem because

constraints (10) and (11) include combinatorial optimization
components. We first analyze constraint (10), which
includes the combinatorial optimization component

min{
S⊆H(h)

∣∣ |S|≤η}∑τ∈S
(
−vui (τ)µu + vdi (τ)(µd − fd,max)

)
.

This component can be rewritten as follows [27]

minimize
w(τ), τ ∈ H(h)

∑
τ∈H(h)

w(τ)
(
−vui (τ)µu+vdi (τ)

(
µd−fd,max

))
(13a)

subject to 0 ≤ w(τ) ≤ 1, τ ∈ H(h), (13b)∑
τ∈H(h)

w(τ) ≤ η, (13c)

where w(τ), τ ∈ H(h), are the variables. Note that the
optimal value of problem (13) is equal to the summation of
the η smallest values of (−vui (τ)µu + vdi (τ)(µd − fd,max))
over hours τ ∈ H(h), which is equivalent to the component

min{
S⊆H(h)

∣∣ |S|≤η}∑τ∈S(−vui (τ)µu + vdi (τ)(µd − fd,max)).
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Problem (13) is a linear program as it optimizes vari-
ables w(τ). Furthermore, problem (13) is both feasible (e.g.,
w(τ)=0, τ ∈H(h)) and bounded (

∑
τ∈H(h) min{−vui (τ)µu+

vdi (τ)(µd − fd,max), 0} is a lower bound of the objective
function). From the strong duality theorem, the optimal values
of problem (13) and its dual problem are the same. The dual
problem of (13) can be written as

maximize
y(τ), τ ∈ H(h), z

−zη −
∑

τ∈H(h)

y(τ) (14a)

subject to y(τ) + z ≥ vui (τ)µu − vdi (τ)
(
µd − fd,max

)
,

τ ∈ H(h), (14b)
y(τ), z ≥ 0, τ ∈ H(h), (14c)

where y(τ) and z are the dual variables for constraints (13b)
and (13c), respectively.

Problem (14) can be used to transform the combi-
natorial optimization components in constraints (10) and
(11). For constraint (10), we replace the component

min{
S⊆H(h)

∣∣ |S|≤η}∑τ∈S(−vui (τ)µu+vdi (τ)(µd−fd,max)) with

the objective function in problem (14) and add all constraints
in (14) to problem (12). We use a similar approach to convert
constraint (11) in three steps. First, we convert the combina-
torial optimization component in constraint (11) into a linear
program by substituting −vui (τ)µu + vdi (τ)(µd − fd,max) in
problem (13) with vui (τ)(µu − fu,max)− vdi (τ)µd. Then, we
convert the linear program obtained in the first step into its dual
problem. Finally, we substitute the combinatorial optimization
component in constraint (11) with the objective function of
the dual problem obtained in the second step and add the
constraints of the dual problem to problem (12). This leads to
the following equivalent problem

maximize
vui (h), v

d
i (h), xi(h),

z1,i(h), z2,i(h),
y1,i(h, τ), y2,i(h, τ)
i ∈ M, τ ∈ H(h),

h ∈ H

∑
h∈H

∑
i∈M

(
E [pu(h)] vui (h) + E

[
pd(h)

]
vdi (h)

+ E [pc(h)] (vui (h)λu + vdi (h)λd)
− E [pe(h)]

(
xi(h)− vui (h)µu + vdi (h)µd

)
−p

b

l δ(θ, si(h))
(
[xi(h)]−+µu[xi(h)−vui (h)]−

))
(15a)

subject to si(0) +
1

Bi

∑
τ∈H(h)

(
xi(τ)− vui (τ)µu + vdi (τ)µd

)
+

1

Bi

(
z1,i(h)η +

∑
τ∈H(h)

y1,i(h, τ)
)
≤ smax,

i ∈M, h ∈ H, (15b)
z1,i(h) + y1,i(h, τ) ≥ vui (τ)µu − vdi (τ)(µd

− fd,max), i ∈M, τ ∈ H(h), h ∈ H, (15c)

si(0) +
1

Bi

∑
τ∈H(h)

(
xi(τ)− vui (τ)µu + vdi (τ)µd

)
− 1

Bi

(
z2,i(h)η +

∑
τ∈H(h)

y2,i(h, τ)
)
≥ smin,

i ∈M, h ∈ H, (15d)
z2,i(h) + y2,i(h, τ) ≥ vui (τ)(fu,max − µu)

+ vdi (τ)µd, i ∈M, τ ∈ H(h), h ∈ H, (15e)

z1,i(h), z2,i(h), y1,i(h, τ), y2,i(h, τ) ≥ 0, i ∈M,

τ ∈ H(h), h ∈ H, (15f)
constraints (12b)–(12i),

where (z1,i(h), y1,i(h, τ)) and (z2,i(h), y2,i(h, τ)) are dual
variables corresponding to the combinatorial optimization
components in constraints (10) and (11), respectively. Linear
constraints (15b) and (15d) replace constraints (10) and (11)
by substituting the involved combinatorial optimization prob-
lems with the corresponding linear dual problems. Constraints
(15c), (15e), and (15f) are obtained from the constraints in
the dual problems. However, the objective function (15a)
contains a battery degradation cost −p

b

l δ(θ, si(h))
(
[xi(h)]−+

µu[xi(h)−vui (h)]−
)
, which makes problem (15) difficult to

solve. Note that the values of δ(θ, si(h)) can be measured
experimentally and be recorded in a table [30]. To the best
of our knowledge, there is no closed-form expression for the
calculation of δ(θ, si(h)) from θ and si(h). In order to make
problem (15) tractable, we introduce a parameter s̄i as the
expected SOC during the charging period of EV i and auxiliary
parameters ε1,i(h), ε2,i(h), i ∈ M, h ∈ H. Then, we rewrite
problem (15) as follows:

maximize
vui (h), v

d
i (h), xi(h),

z1,i(h), z2,i(h),
y1,i(h, τ), y2,i(h, τ)
ε1,i(h), ε2,i(h)
i ∈ M, τ ∈ H(h),

h ∈ H

∑
h∈H

∑
i∈M

(
E [pu(h)] vui (h) + E

[
pd(h)

]
vdi (h)

+ E [pc(h)] (vui (h)λu + vdi (h)λd)
− E [pe(h)]

(
xi(h)− vui (h)µu + vdi (h)µd

)
−p

b

l δ(θ, s̄i)
(
ε1,i(h) + µuε2,i(h)

))
(16a)

subject to ε1,i(h), ε2,i(h) ≥ 0, i ∈M, h ∈ H, (16b)
ε1,i(h) ≥ −xi(h), i ∈M, h ∈ H, (16c)
ε2,i(h) ≥ −xi(h) + vui (h), i ∈M, h ∈ H,

(16d)
constraints (12b)–(12i), (15b)–(15f).

Constraints (16b), (16c), and (16d) ensure that ε1,i(h) ≥
[xi(h)]− and ε2,i(h) ≥ [xi(h) − vui (h)]−. As the objective
function in (16a) is decreasing with respect to ε1,i(h) and
ε2,i(h), we have ε1,i(h) = [xi(h)]− and ε2,i(h) = [xi(h)−
vui (h)]− when the objective function is maximized.

With the solution obtained in problem (16), the EVs are
able to follow an AGC signal for which parameters fu(h)
and fd(h), h ∈ H, take their worst case values in at most η
hours and take their expected values in other hours. With an
appropriate value of η, the probability that the AGC signal in
a practical system is worse than the AGC signal considered
in problem (12) is small (see Section III-B). In this case, the
constraints in problem (12) are satisfied with a high probability
with the AGC signal in a practical system.

B. Probability Bound and Selection of Parameter η

Problem (16) aims to enable the EVs to follow the AGC
signal with a high probability. Let Pi denote the probability
that EV i follows the AGC signal. Assume that the values of
fu(h) and fd(h) in hour h are independent of their values in
other hours. According to [27, Theorem 3], a lower bound on
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probability Pi is given by

Pi ≥
1

di − ai + 1

di∑
h=ai

(
1− 1

2h−ai

(
(1− µi)

(
h− ai
bνic

)

+

h−ai∑
l=bνic+1

(
h− ai
l

)))
, (17)

where νi = η+h−ai
2 , µi = νi−bνic, and b·c denotes the floor

function. Equation (17) provides a lower bound such that the
probability that EV i follows the AGC signal is not less than
the right hand side of (17).

The lower bound on probability Pi in (17) is tuned by design
parameter η. To be specific, increasing η increases the lower
bound and enables the EVs to follow the AGC signal more
reliably. On the other hand, decreasing η enables the EVs
to provide more frequency regulation capacity. The optimal
choice of η depends on the characteristics of the AGC signal
(especially whether the AGC signal will deviate in the same
direction repeatedly in multiple hours), and may vary from one
ISO to another. As the statistical characteristics of the AGC
signal may not change frequently, a simulation study can be
used to select an appropriate value of η, see Fig. 8 in Section
IV.

On the other hand, the lower bound on probability Pi in
(17) is helpful for selecting an appropriate value of η. We first
select a desired value for Pi, e.g., 95%. Then, as (17) can be
calculated efficiently, we find the largest value of η (denoted
by η̂) for which (17) is satisfied. The appropriate value of η
should be selected from [0, η̂] because the right hand side of
(17) is a lower bound on probability Pi. We use the above
method in our simulations in Section IV.

C. Trajectory of the AGC Signal in Hour h

In this section, we verify that the uncertainty sets of fu(h)
and fd(h) contain the worst-case trajectories of the AGC sig-
nal in hour h. Note that two different AGC signal trajectories
in hour h with the same values of fu(h) and fd(h) may have
different effects on the SOC of the EV battery during hour h.
On the other hand, it is difficult to directly model the trajectory
as there are a large number of possible trajectories. In this
section, we study the AGC signal trajectory on an hourly basis
and have the following remark.

Remark 1: For an arbitrary hour h, if an EV is able to
follow the AGC signal in the two extreme cases, namely the
case when (fu(h) = fu,max, fd(h) = 0), and the case when
(fu(h) = 0, fd(h) = fd,max), then the EV is able to follow
the AGC signal under other possible trajectories within hour
h, as long as fu(h) and fd(h) are in the ranges of fu(h) ∈
[0, fu,max] and fd(h) ∈ [0, fd,max], respectively.

We first consider two trajectories Ω1 and Ω2 of the AGC
signal within hour h, for which the battery SOC of an EV
has the largest deviation. For the first trajectory Ω1, the AGC
signal has all the regulation up component fu,max since the
beginning of the hour to a certain time t̂1 and regulation down
component fd,max since t̂1 to the end of the hour, c.f. Fig.
3(a). For the second trajectory Ω2, the AGC signal has all the
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(e) AGC signal trajectory Ω3
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(f) AGC signal trajectory Ω4
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Fig. 3. Different trajectories of the AGC signal and the corresponding SOC
of the EV battery. The initial SOC is set to be 0.5.

regulation down component fd,max since the beginning of the
hour to a certain time t̂2 and the regulation up component
since t̂2 to the end of the hour, c.f. Fig. 3(b). Ω1 and Ω2 are
the worst case trajectories of the AGC signal in hour h. The
battery SOC of an EV has the largest downward and upward
deviations under Ω1 and Ω2, c.f. Figs. 3(c) and 3(d).

For trajectory Ω1 in hour h, the SOC of an EV battery
reaches a minimum at t̂1, c.f. Fig. 3(c). In our problem
formulation, we consider a case when fu(h) = fu,max and
fd(h) = 0. A possible trajectory Ω3 of the AGC signal with
fu(h) = fu,max and fd(h) = 0 is illustrated in Fig. 3(e). The
SOC of an EV battery at the end of hour h under trajectory Ω3

is equivalent to the minimum SOC in hour h under trajectory
Ω1, c.f. Figs. 3(c) and 3(g). Note that an EV has the largest
downward deviation of the battery SOC under trajectory Ω1

in hour h. If the battery SOC of an EV remains above the
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minimum value under trajectory Ω3 at the end of hour h,
the SOC will remain above the minimum value for other
trajectories with fu(h) ∈ [0, fu,max] and fd(h) ∈ [0, fd,max].
Similarly, for the second trajectory Ω2 in hour h, we show
that the maximum SOC in hour h under Ω2 is the same as
the SOC at the end of hour h in a case when fu(h) = 0 and
fd(h) = fd,max, see Figs. 3(d) and 3(h).

As explained in Remark 1 in the above, for a single hour
h, the worst case trajectory of the AGC signal in hour h is
contained in the uncertainty sets of fu(h) and fd(h). On
the other hand, note that the EVs need to follow the AGC
signal in multiple hours. Our problem formulation considers
the scenario where parameters fu(h) and fd(h), h ∈ H, of
the AGC signal can take their worst case values in a limited
number of hours (at most η hours).

D. Stochastic Arrival and Departure of the EVs

In this section, we extend our problem formulation to a
case where EVs have stochastic arrival and departure times. In
Section III-A, we have assumed that the arrival and departure
times are known. In practice, the arrival and departure times
of the EVs can be uncertain parameters.

Two issues need to be considered when the EVs have
uncertain arrival and departure times. The first issue concerns
the entity to perform the scheduling of regulation capacity.
When the arrival time is known, the aggregator schedules
the regulation capacity in a centralized manner. However, if
the arrival time is unknown, the regulation capacity needs
to be determined by the EVs independently. Second, if the
arrival time is unknown, the EV needs to consider differ-
ent scenarios. A scenario is a possible realization of the
future arrival time, departure time, and charging demand
requirement. The scenarios can be generated based on the
historical records of the EVs. Let ωk, k ∈ K denote a
scenario where K = {1, . . . ,K} is the set of scenarios. The
scenarios can be generated based on historical records of EVs
arrival and departure times. The probability for scenario ωk
is denoted by P(ωk). We denote the arrival time, departure
time, and charging demand requirement of EV i for scenario
ωk by ai(ωk), di(ωk), and ψi(ωk) respectively. Let vui (h, ωk),
vdi (h, ωk), xi(h, ωk), z1,i(h, ωk), z2,i(h, ωk), y1,i(h, τ, ωk),
y2,i(h, τ, ωk), ε1,i(h, ωk), and ε2,i(h, ωk) denote the values
of vui (h), vdi (h), xi(h), z1,i(h), z2,i(h), y1,i(h, τ), y2,i(h, τ),
ε1,i(h), and ε2,i(h) under scenario ωk, respectively. For EV
i ∈ M, the problem to schedule the regulation capacity can
be rewritten as
maximize
vui (h, ωk),

vdi (h, ωk),
xi(h, , ωk),
z1,i(h, , ωk),
z2,i(h, ωk),
y1,i(h, τ, ωk),
y2,i(h, τ, ωk),
ε1,i(h, ωk),
ε2,i(h, ωk),
τ ∈ H(h),
h ∈ H

∑
k∈K

P(ωk)
∑
h∈H

∑
i∈M

(
E [pu(h)] vui (h, ωk)

+E
[
pd(h)

]
vdi (h, ωk)

+ E [pc(h)] (vui (h, ωk)λu + vdi (h, ωk)λd)
− E [pe(h)]

(
xi(h, ωk)

−vui (h, ωk)µu + vdi (h, ωk)µd
)

−p
b

l δ(θ, s̄i)
(
ε1,i(h, ωk) + µuε2,i(h, ωk)

)
(18a)

subject to −∆1ai(ωk)≤h≤di(ωk) ≤ xi(h, ωk)

≤ ∆1ai(ωk)≤h≤di(ωk), h ∈ H, k ∈ K,
(18b)

−∆1ai(ωk)≤h≤di(ωk) ≤ v
u
i (h, ωk)

≤ ∆1ai(ωk)≤h≤di(ωk), h ∈ H, k ∈ K,
(18c)

−∆1ai(ωk)≤h≤di(ωk) ≤ v
d
i (h, ωk)

≤ ∆1ai(ωk)≤h≤di(ωk), h ∈ H, k ∈ K,
(18d)

di(ωk)∑
τ=ai(ωk)

(xi(τ, ωk)− vui (τ, ωk)µu+vdi (τ, ωk)µd)

≥ ψi(ωk), k ∈ K, (18e)
constraints (12b)–(12e), (15b)–(15f), and

(16b)–(16d).

Constraints (18b)–(18e) extend constraints (12f)–(12i) under
scenario ωk. Problem (18) can be solved to obtain the schedul-
ing results under different scenarios.

E. Aggregate Capacity in the Day-ahead Market

The aggregator participates in the day-ahead market (DAM)
of an ISO to sell the aggregate capacity of the EVs. In
this section, we develop a method to determine the amount
of regulation capacity submitted in the DAM. We aim to
ensure that the EVs can provide the capacity on the next day
according to the amount submitted in the DAM. Let vu(h) and
vd(h) denote the regulation up capacity and regulation down
capacity submitted in the DAM, respectively. The aggregator
needs to determine control variables vu(h) and vd(h) in order
to participate in the DAM.

The uncertain aggregate capacity of the EVs can be modeled
as normal distributed based on the Lyapunov central limit the-
orem (CLT) [31]. Note that the Lyapunov CLT does not require
the involved random variables to have identical distributions,
and hence, it is applicable to the regulation capacity of the
EVs. According to the Lyapunov CLT, the aggregate capacities∑
i∈M vui (h) and

∑
i∈M vdi (h) follow normal distributions

when the number of EVs is large and both vui (h) and vdi (h)
satisfy the following condition.

Lyapunov condition: There exists a parameter ε > 0,
such that the following equalities hold [31, p. 362].

lim
M→∞

1(
δv,u(h)

)2+ε ∑
i∈M

E
[∣∣vui (h)− E [vui (h)]

∣∣2+ε] = 0,

(19)
lim
M→∞

1(
δv,d(h)

)2+ε ∑
i∈M

E
[∣∣vdi (h)− E

[
vdi (h)

] ∣∣2+ε] = 0,

(20)
where δv,u(h) =

√∑
i∈M(δv,ui (h))2 and δv,d(h) =√∑

i∈M(δv,di (h))2. Here, δv,ui (h) and δv,di (h) are the stan-
dard deviations of vui (h) and vdi (h), respectively. The values
of δv,ui (h) and δv,di (h) can be obtained based on the results
of problem (18).

Next, we show that both vui (h) and vdi (h) satisfy the Lya-
punov condition. We introduce a parameter F = max

i∈M
(Emax

i −
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Algorithm 1 Frequency regulation capacity scheduling algo-
rithm executed by EV i before the operation hours

1: Initialize α, η,M,H,K,E[pe(h)],E[pu(h)],E[pd(h)],E[pc(h)],
h ∈ H, fu,max, fd,max, µu, µd, Emax

i , Emin
i , smax, smin, pb,

and l
2: Generate scenarios ωk, k ∈ K based on historical records of the

arrival and departure times of the EV
3: Solve problem (18) to obtain vui (h, ωk), vdi (h, ωk), and
xi(h, ωk), h ∈ H

4: Send the values of vui (h, ωk), vdi (h, ωk), and xi(h, ωk), h ∈ H,
k ∈ K to the aggregator

Emin
i ). F takes a finite value because the maximum hourly

charged energy Emax
i and minimum hourly charged energy

Emin
i of an EV i ∈M are finite. We have 0 ≤ vui (h), vdi (h) ≤

F based on (12b) and (12c). Then, we have

−F ≤ vui (h)− E [vui (h)] , vdi (h)− E
[
vdi (h)

]
≤ F. (21)

According to [31, p. 362], since random variables vui (h)
and vdi (h) are bounded, c.f. (21), the Lyapunov condition is
satisfied for both vui (h) and vdi (h).

Let N (µ, δ2) denote the normal distribution with mean µ
and variance δ2. The aggregate regulation up capacity and
regulation down capacity are modeled as normal distributions,
which are given by∑

i∈M
vui (h) ∼ N

( ∑
i∈M

E[vui (h)],
(
δv,u(h)

)2)
, (22)∑

i∈M
vdi (h) ∼ N

( ∑
i∈M

E[vdi (h)],
(
δv,d(h)

)2)
, (23)

where E[vui (h)] =
∑
k∈K P(ωk)vui (h,ωk) and E[vdi (h)] =∑

k∈K P(ωk)vdi (h,ωk). The values of vui (h,ωk) and
vdi (h,ωk) are obtained by solving problem (18).

The aggregator determines the capacities submitted in
the DAM based on the distributions of

∑
i∈M vui (h) and∑

i∈M vdi (h). In particular, the values of the regulation up
capacity vu(h) and regulation down capacity vd(h) submitted
in the DAM are given by

vu(h) =
∑
i∈M

E[vui (h)]− Φ−1(β)δv,u(h), (24)

vd(h) =
∑
i∈M

E[vdi (h)]− Φ−1(β)δv,d(h), (25)

where β is the desired confidence level (e.g., β = 0.99) and
Φ−1 is the inverse of the cumulative distribution function of
a standard normal distribution N (0, 1).

F. Algorithm and Implementation Issues

An algorithm for the EVs to schedule the frequency regu-
lation capacity is presented in Algorithm 1. In the algorithm,
the EV first initializes the parameters (Line 1). Then, the EV
generates scenarios based on its historical arrival and departure
times (Line 2). Subsequently, problem (18) is solved and the
results are sent to the aggregator (Lines 3 – 4).

The implementation of the proposed algorithm requires an
autonomous scheduler, a data collecting and storage system, a
charging rate controller, and user interface. A block diagram

EV
Autonomous

Scheduler

Data Storage

User

Interface

Charging Rate 

Controller

Aggregator ISO

Scheduling 

results

Scheduling 

results

Bid

AGC signal

Historical records The actual arrival time, 

departure time, and charging

 demand specified by user

Contract

Fig. 4. A diagram of different components for the EV frequency regulation
service.

for these components is shown in Fig. 4. The arrival and
departure times of the EVs should be collected and stored
in a database as records. These records can be used by an
autonomous scheduler to generate scenarios for the proposed
algorithm. On the day before the operation hours, the EVs
schedule their capacity under different scenarios according to
the proposed algorithm and send the results to an aggregator.
The aggregator can generate a bid based on the EVs regulation
capacity using (24) and (25). The bid will be submitted to the
ISO in the market and the ISO will award a contract to allow
the EVs to provide frequency regulation service. Then, during
the operation hours on the next day, when an EV owner has
parked the EV and plugged-in its charger, the user interface
on the charger will be shown and encourage the EV owner to
specify the departure time and charging demand requirement.
If the EV owner skips this step, it means the departure time
is unknown and the EV should be charged as fast as possible.
Otherwise, if the EV owner specifies the departure time and
charging demand requirement, these values are sent to the data
storage. The arrival time is sent to the data storage without
user intervention. Then, the EV generates a new scenario
based on the actual value of the arrival time and the value
of departure time specified by the user. Then, the EV runs
the proposed algorithm with the new scenario and sends the
results to the charging rate controller. The regulation capacity
of an EV is uncertain because of the EV’s random arrival and
departure times. Equations (24) and (25) take into account
the uncertainty of the regulation capacity and can be used to
determine the values of the capacities submitted in the DAM.
Finally, the aggregator retrieves the AGC signal from the ISO
and controls the real-time charging rate of the EVs. When
the AGC signal is positive in time slot t in hour h (i.e.,
q(h, t) > 0), the task of the aggregator is to decrease the
charging rate of the EVs by |q(h, t)|vu(h). Otherwise, when
q(h, t) < 0, the task is to increase the charging rate of the EVs
by |q(h, t)|vd(h). The aggregator assigns the charging rates to
the EVs according to the regulation capacity of each EV. In
particular, each EV i ∈ M should adjust its charging rate to
be xi(h)− vui (h)|q(h,t)|v

u(h)∑
i∈M vui (h)

or xi(h)+
vdi (h)|q(h,t)|v

d(h)∑
i∈M vdi (h)

, when
q(h, t) is positive or negative, respectively. In this manner, the
aggregator provides exactly the amount of regulation capacity
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submitted in the DAM.
Next, we discuss the advantages and limitations of the pro-

posed approach compared to the existing literature [8]–[18].
The advantage of the proposed approach is that it takes into
account the performance-based compensation scheme, which
was not considered in [8]–[18]. On the other hand, since the
proposed approach leverages the probabilistic robust optimiza-
tion framework [27], which includes a heuristic parameter η
to control the level of conservativeness, the limitation of the
proposed approach is that it cannot guarantee that the EVs
always follow the AGC signal. Instead, the proposed approach
guarantees that the EVs follow the AGC signal with a certain
probability, c.f. Section III-B.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
algorithm based on historical records of the AGC signal from
PJM. We conducted a statistical analysis of the AGC signal
data records [25] and obtained parameters fu,max = 0.249,
fd,max = 0.302, µu = 0.134, µd = 0.145, λu = 9.336, and
λd=8.585. A sample of the AGC signal is shown in Fig. 5.
The uncertainty of the AGC signal is taken into account in the
proposed algorithm. We compare the proposed algorithm with
a benchmark algorithm which has a deterministic formulation
where the expected values of fu(h) and fd(h) are used in
the formulation and uncertainty of the AGC signal is ignored.
We compare with this benchmark algorithm to study the effect
of the uncertain AGC signal on the EV frequency regulation
service under the performance-based compensation scheme.

The prices of the performance-based compensation scheme
from PJM [25] are used in the simulation. We averaged the
regulation market capacity clearing price (RMCCP) and the
regulation market performance clearing price (RMPCP) of
PJM from Dec. 1, 2014 to Dec. 31, 2014. The average prices
are shown in Fig. 6. The RMCCP (i.e., pu(h)+pd(h)) is the
price of providing the frequency regulation capacity. The RM-
PCP (i.e., pc(h)) is introduced under the performance-based
compensation scheme to reimburse the market participants
(e.g., EVs) for following the AGC signal. Note that the revenue
for following the AGC signal is the product of RMPCP, the
mileage of the AGC signal (i.e., λu + λd), and the capacity.
On the other hand, the revenue of providing the capacity is the
product of the RMCCP and the capacity. Hence, in Fig. 6, we
present the price pc(h)(λu+λd) in order to compare with RM-
CCP fairly. As shown in Fig. 6, the price of following the AGC
signal is significant for the performance-based compensation
scheme and needs to be considered in the problem formulation
and the simulations. Furthermore, we generate values of ξi
using the following method to simulate the performance score
in the performance-based compensation scheme. First, we test
the algorithm outputs (i.e., xi(h, ωk), vui (h, ωk), vdi (h, ωk)) for
the historical AGC signal from PJM. If EV i fails to follow the
AGC signal in hour h under scenario ωk, we have 1i,h(ωk)=0,
where 1i,h(ωk) is the value of 1i,h in (6) under scenario ωk.
We denote Di,k as the set of hours when 1i,h(ωk) = 0 and
|Di,k| as its cardinality. As the performance score is based
on the average performance of following the AGC signal in
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Fig. 5. A sample of the AGC signal in an hour obtained from PJM.
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Fig. 6. The average hourly prices of frequency regulation service from PJM
in Dec. 2014.

historical hours [24], we simulate the performance score by
generating values as follows

ξi = 1−
∑
i∈M

∑
k∈K |Di,k|

MHK
.

We consider a fleet of 1000 EVs. The maximum charged
energy in one hour is 10 kWh [32]. We first consider the case
when the EVs have unidirectional chargers (charging only).
The battery capacity of an EV is typically tens of kWh (e.g.,
20 kWh for a Honda Fit and 85 kWh for a Tesla Model S). We
assume a battery capacity of 40 kWh for simulation purpose.
We consider an overnight charging case where EVs charge at
night and are used for driving on the next day. The random
arrival and departure times are generated according to [33] and
there are 50 scenarios for each EV. The demand for charging
energy is selected from [10, 30] kWh. We use β = 0.99 in
(24) and (25) for simulation purpose.

In Fig. 7, we compare the proposed algorithm with the
benchmark algorithm. As shown in Fig. 7, the proposed
algorithm achieves a higher revenue than the benchmark
algorithm under the performance-based compensation scheme.
In particular, when the maximum hourly charged energy is
10 kWh, the average daily revenue increases from $133 to
$151. This is because the proposed algorithm yields a solution
which enables EVs to follow the AGC signal most of the time.
On the other hand, with the benchmark algorithm where the
uncertainty of the AGC signal is ignored, the EVs sometimes
stop following the AGC signal when the EVs are fully charged.
This will reduce the revenue under the performance-based
compensation scheme. Additionally, as can be observed from
Fig. 7, for both algorithms, the revenue increases as the
maximum hourly charged energy increases. This is because the
EVs can provide more regulation capacity when the chargers
have higher charging power.
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Fig. 8. (a) The revenue with respect to parameter η. (b) The regulation
capacity and the performance score as a function of parameter η.

We study the effect of the tunable design parameter η on
the proposed algorithm in Fig. 8. We first use the probability
bounds in Section III-B to determine that η ≤ 5 is needed,
given that the EVs need to follow the AGC signal with a
probability of 95%. The revenue as a function of parameter
η is shown in Fig. 8(a). As can be observed from Fig. 8(a),
when η increases, the revenue first increases when η is small
and then decreases when η is large. This is because of the
tradeoff between the regulation capacity and the performance
score, which is shown in Fig. 8(b). As can be observed from
Fig. 8(b), as η increases, the performance score increases
while the regulation capacity decreases. Note that under the
performance-based compensation scheme, the revenue de-
pends on both the regulation capacity and the performance
score for following the AGC signal. Based on the results in
Fig. 8, parameter η is selected to be η=1 in this paper.

In Fig. 9, we show the probability that an EV follows the
AGC signal. Thereby, we compare Pi obtained via simulations
with its lower bound obtained from (17). For an arbitrary EV
i, we assume parameters ai = 1 and di = 13. Fig. 9 confirms
that the probability that an EV follows the AGC signal is not
less than the right hand side of (17).

Next, we consider the situation when the EVs have bidi-
rectional chargers which allow both charging and discharging.
There is a battery degradation cost for the discharging. We
assume the battery lasts for 800 life cycles, which is inferred
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Fig. 9. Probability Pi obtained via simulations and its lower bound obtained
from (17).
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Fig. 10. Revenue as a function of the price of the battery. Note that we
assumed a bidirectional charger in this figure.

from a battery limited warranty [34]. The battery degradation
severity factor is obtained from [30] where the temperature
is assumed to be 25 centigrade (◦C). According to [35], the
prices of EV batteries have dropped from $1000 per kWh to
$500 per kWh from year 2007 to year 2014. For the prices
of $500 per kWh, we found that the simulation results when
the EVs have bidirectional chargers are actually similar to
the results when the EVs use unidirectional chargers. This
is because the battery degradation cost is taken into account
in the objective function of our problem formulation. As the
battery degradation cost is relatively high compared to the
gain obtained from discharging, the solution obtained from
the proposed algorithm will not instruct the EVs to discharge
their batteries, if the price of the battery is $500 per kWh.
On the other hand, the prices of the battery are expected to
drop further in the future. In Fig. 10, we present the expected
daily revenue as a function of the price of the battery. Fig. 10
reveals that, the revenue of the frequency regulation service
increases if the price of the battery can be decreased in the
future. On the other hand, if the price of the battery is high, the
EV batteries are not discharged for the frequency regulation
service. As a result, the curve of the revenue becomes flat in
Fig. 10 when the price of the battery is high.

V. CONCLUSION

In this paper, we studied the EV frequency regulation ser-
vice under the performance-based compensation scheme. We
first developed a model for the performance-based compen-
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sation scheme by taking into account the market rules of the
ISOs in the United States. Then, we formulated a problem to
schedule the regulation capacity of the EVs and maximize the
revenue under the performance-based compensation scheme.
A robust optimization framework was used in the formulation
to enable the EVs to follow the uncertain AGC signal most of
the time. We performed numerical experiments using historical
records of the AGC signal and prices from PJM. Simulation
results showed that EVs can improve their revenue under
the performance-based compensation scheme by taking into
account the uncertainty of the AGC signal in their capacity
scheduling. For future work, an interesting topic is to consider
the scheduling of the EV regulation capacity when EVs are
equipped with simple chargers which can only be turned on
and off.
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