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Abstract. The scarcity and large fluctuations of link bandwidth in wireless networks have motivated the development of adaptive
multimedia services in mobile communication networks, where it is possible to increase or decrease the bandwidth of individual ongoing
flows. This paper studies the issues of quality of service (QoS) provisioning in such systems. In particular, call admission control and
bandwidth adaptation are formulated as a constrained Markov decision problem. The rapid growth in the number of states and the difficulty
in estimating state transition probabilities in practical systems make it very difficult to employ classical methods to find the optimal
policy. We present a novel approach that uses a form of discounted reward reinforcement learning known as Q-learning to solve QoS
provisioning for wireless adaptive multimedia. Q-learning does not require the explicit state transition model to solve the Markov decision
problem; therefore more general and realistic assumptions can be applied to the underlying system model for this approach than in previous
schemes. Moreover, the proposed scheme can efficiently handle the large state space and action set of the wireless adaptive multimedia
QoS provisioning problem. Handoff dropping probability and average allocated bandwidth are considered as QoS constraints in our model
and can be guaranteed simultaneously. Simulation results demonstrate the effectiveness of the proposed scheme in adaptive multimedia

mobile communication networks.
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1. Introduction

Recent years have witnessed a tremendous growth in the use
of mobile communications around the world. With the grow-
ing demand for integrated services supporting multimedia
such as video and audio in mobile communication systems,
quality of service (QoS) provisioning in mobile multimedia
networks is becoming increasingly important. Since radio
bandwidth is one of the most precious resources in wireless
systems, an efficient call admission control (CAC) scheme
is very important to guarantee QoS and to maximize radio
resource utilization simultaneously. Numerous CAC schemes
in mobile communication systems have been proposed in the
literature (e.g., [11,25]). Most strategies proposed previously
in the literature only consider non-adaptive traffic and
non-adaptive networks, which cannot change the bandwidth
of ongoing calls. However, in recent years, the scarcity and
large fluctuations of link bandwidth in wireless networks
have motivated the development of adaptive multimedia
services where the bandwidth of a connection can be
dynamically adjusted to adapt to the highly variable com-
munication environments. Some examples of these adaptive
multimedia services include the International Organization
for Standardization’s (ISO’s) Motion Picture Experts Group
(MPEG)-4 [12] and the International Telecommunication

“This work is based in part on a paper presented at BroadNet’s 04, San Jose,
CA, Oct. 2004.

fCorresponding author.

Union’s (ITU’s) H.263 [13], which are expected to be
used extensively in future mobile communication networks.
Accordingly, future mobile communication networks, e.g.,
third generation (3G) universal mobile telecommunication
systems (UMTS), can provide flexible radio resource
management functions. The bandwidth of an ongoing call in
these networks can be changed dynamically [9].

QoS provisioning for adaptive multimedia in mobile com-
munication networks requires the use of a bandwidth adapta-
tion (BA) algorithm in conjunction with the CAC algorithm.
BA reallocates the bandwidth of ongoing calls, whereas CAC
decides whether to admit or reject new and handoff calls.

There are several schemes in the literature addressing CAC
and BA for adaptive multimedia services [8,14,15,20,28].
Authors in [20] study the tradeoffs between network overload
and fairness in bandwidth adaptation. However, the proposed
scheme in [20] does not consider maximizing wireless
network utilization and may result in sub-optimal solutions.
A near optimal scheme is proposed in [14]. Zaruba et al.
[28] use simulated annealing algorithm to find the optimal
call-mix selection to maximize the total network revenue
under the assumption that future arrivals and departures are
known, which may not be realistic in practice. Only one
class of adaptive traffic is studied in [8] and [15], and the
extension of these schemes to the case of multiple classes
may not be an easy task.

In this paper, we formulate the QoS provisioning for adap-
tive multimedia as a Markov decision process (MDP) to
find the optimal CAC and BA algorithms that can maximize
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network revenue and guarantee QoS constraints. Moreover,
we propose a scheme using a form of real-time reinforcement
learning known as Q-learning [23] to solve the MDP. Distinct
features of the proposed scheme include the following:

It does not require a priori knowledge of the state transi-
tion probabilities associated with the mobile communication
networks, which are very difficult to estimate in practice due
to the irregular network topology, different propagation en-
vironment and random user mobility. Therefore, the assump-
tions behind the underlying system model can be made more
general and realistic than those in previous schemes.

It can efficiently handle problems with large state spaces
and action sets. Since there will be several classes of traffic in
future mobile multimedia networks and each class of traffic
has several bandwidth levels, the state spaces and action sets
are very large in the QoS provisioning problem. The proposed
scheme can use stochastic approximation to eliminate the
need to compute the state transition probabilities and the
complex optimization algorithms.

Handoff dropping probability and average allocated band-
width are considered as QoS constraints in our scheme and
can be guaranteed simultaneously. This is in contrast with our
previous study [26], which does not take QoS constraint into
consideration.

Reinforcement learning has previously been used to solve
CAC and routing problems in wireline networks [7,16,21]
and channel allocation problem in wireless networks [17,19].
Moreover, there are some attempts to use model-independent
and self-learning approaches to solve mobility management
problems in mobile networks [6]. However, the primary fo-
cuses of [6,7,16,17,19,21] are different from the QoS provi-
sioning problem for adaptive multimedia considered in this
paper. Average reward reinforcement learning is used in [27]
to solve a similar problem as that in this paper. However, aver-
age reward problems are generally more difficult to solve than
discounted reward ones. In this paper, we formulate the QoS
provisioning problem using the classical discounted reward
Q-learning algorithm [23], which is simpler in formulation
than that in [27].

The rest of this paper is organized as follows. Section 2
describes the QoS provisioning problems. Section 3 gives the
problem formulation and our new approach to solve this prob-
lem. Section 4 presents and discusses the simulation results
to demonstrate the effectiveness of our approach. Finally, we
conclude this study in Section 5.

2. QoS provisioning for adaptive multimedia

2.1. Adaptive multimedia and adaptive mobile
communication systems

Originally, adaptive multimedia applications are introduced
in wireline networks. Congestion in wireline broadband
networks can cause fluctuations in the availability of network
resources, thereby resulting in severe degradation of QoS.
To overcome this problem, many techniques are proposed
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Figure 1. Bandwidth usage of adaptive multimedia.

such as the adaptation of compression parameters [22] and
layered coding [24]. The much more severe bandwidth
fluctuations in mobile wireless networks make it interesting
to consider the use of adaptive multimedia in future mobile
communication systems.

In our adaptive multimedia framework, a multimedia
call can dynamically change its bandwidth to adapt to
the fluctuating communication environment throughout its
call duration. Assume that there are K classes of ser-
vices in the network. A class i call uses bandwidth
among, {bila bi2, ey b,‘j, ey biN,-} where bU < bi(j+1) for
i=12,...,K,j=1,2,...,N;, and N; is the highest
bandwidth level that can be used by a class i call. For exam-
ple, using the layered coding technique, a raw video sequence
is compressed into several layers [24]; say, three layers con-
sisting of a base layer and two enhancement layers. The base
layer can be independently decoded and it provides basic
video quality; the enhancement layers can only be decoded
together with the base layer and they further refine the qual-
ity of the base layer. Therefore, a video stream compressed
into three layers can adapt to three levels of bandwidth us-
age. Assume this video stream is class 1 traffic in a mobile
communication system. The bandwidth usage of this video
stream is shown in figure 1.

Compared to wired networks, the fluctuations in resource
availability in mobile communication systems are much more
severe. This stems from two inherent characteristics of mo-
bile wireless networks: fading and mobility. The fading in
a wireless channel is highly variable with time and spatial
dependencies that result in a transmission link with highly
varying bandwidth. Moreover, mobile users are free to move
from one cell to another one. The availability of resources
in the original cell does not necessarily guarantee that the
resources are available in new cells. The change in network
resources can result in a major fluctuation in the availability
of network resources needed to service a call.

Due to the severe fluctuation of resources in wireless mo-
bile networks, the ability of adapting to the communication
environment is very important in future mobile communica-
tion systems. For example, in UMTS system, a radio bearer
established for a call can be dynamically reconfigured during
the call session. Figure 2 shows the signaling procedure be-
tween user terminal (UE) and universal terrestrial radio access
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Figure 2. Radio bearer reconfiguration in UMTS [5].

network (UTRAN) in radio bearer reconfiguration during a
call. Radio bearer information in UMTS includes most of the
information in layer 2 and layer 1 for that call, e.g., radio link
control (RLC), power control, spreading factor, diversity, etc.
By reconfiguring the radio bearer, the bandwidth of a call can
be changed dynamically during a call session.

2.2. QoS provisioning in adaptive multimedia framework

The goal of QoS provisioning in the adaptive multimedia
framework is to maximize the long-term revenue and guaran-
tee the QoS constraints. We consider two important modules
for QoS provisioning: CAC and BA, in this study. When a
cell is in an under-loaded condition, CAC tries to accept every
call and BA tries to allocate as much bandwidth as possible
to each call. However, when network congestion occurs, QoS
constraints may be violated. In this case, arriving calls could
be rejected by CAC and arriving/existing calls could be de-
graded to a lower bandwidth by BA. On the other hand, if a
call releases its allocated bandwidth due to either call com-
pletion or handoff to another cell, some of the calls left in
that cell may increase their bandwidth. To decide which call
to accept and which call(s) to change the bandwidth are the
roles of CAC and BA in the adaptive multimedia framework.

Two QoS constraints are considered in this paper. Since
it is generally believed that forced call terminations due
to handoff dropping are more objectionable to users than
new call blocking, the first QoS constraint in mobile
communication networks is to keep Pyq, the probability of
handoff dropping, below a target level. In addition, although
adaptive applications can tolerate decreased bandwidth, it
is desirable for some applications to have a bound on the
average allocated bandwidth. Therefore, we need another
QoS parameter to quantify the average allocated bandwidth.
The normalized average allocated bandwidth of class i calls,
denoted as AB', is the ratio of the average bandwidth received
by class i calls to the bandwidth with un-degraded service.
In order to guarantee the QoS of adaptive multimedia, AB’
should be kept above a target value. These two constraints
are formulated in Section 3.

We formulate the QoS provisioning problem as a Markov
decision process (MDP) [18]. There are several well-known
algorithms, such as policy iteration, value iteration and linear
programming [ 18], which find the optimal solution of a MDP.
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Figure 3. A reinforcement learning model.

However, traditional model-based solutions require explicit
state transition probabilities and suffer from two “curses’:
the “curse of dimensionality” and the “curse of modeling”.
The curse of dimensionality is caused by the fact that the
algorithms require computation time that is polynomial in
the number of states. QoS provisioning in mobile multimedia
networks involve very large state spaces that make traditional
solutions infeasible. The curse of modeling occurs in that in
order to apply traditional methods, it is first necessary to ex-
press state transition probabilities explicitly; however, they
are very difficult to estimate in real networks due to the ir-
regular network topology, different propagation environment
and random user mobility. Therefore, we choose to solve the
problem using a form of real-time reinforcement learning
known as Q-learning [23]. This method does not require the
explicit expression of the state transition probabilities and
can handle MDP problems with large state spaces efficiently.
The formulation of this method in solving QoS provisioning
for adaptive multimedia is presented in Section 3.

3. Solving QoS provisioning for adaptive multimedia
by Q-learning

3.1. Q-learning algorithm

In recent years, reinforcement learning (RL) has become a
topic of intensive research. Reinforcement learning is a way
of teaching agents (decision makers) optimal policies by as-
signing rewards and punishments for their actions based on
the temporal feedback obtained during active interactions of
the agent with the system environment. In the RL model de-
picted in figure 3, a learning agent selects an action for the
system that leads the system along a unique path till another
decision-making state is encountered. At this time, the sys-
tem needs to consult with the learning agent for the next state.
During a state transition, the agent gathers information about
the new state, immediate reward and the time spent during the
state-transition, based on which the agent updates its knowl-
edge base using an algorithm and selects the next action.
The process is repeated and the learning agent continues to
improve its performance.

Reinforcement learning combines concepts from dynamic
programming, stochastic approximation via simulation and
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function approximation. This method has two distinct advan-
tages over model-based methods. The first is that it can handle
problems with complex transitions by making use of stochas-
tic approximation, thereby eliminating the need to compute
the transition probabilities and the complex optimization al-
gorithms. Secondly, RL can integrate within it various func-
tion approximation methods (e.g., neural networks), which
can be used to approximate the value function even when the
size of the state space is gargantuan. Q-learning [23] is one
of the most popular reinforcement learning algorithms. We
use this algorithm to solve the QoS provisioning problem in
this paper.

Assume that the environment is a finite-state discrete-time
stochastic dynamic system. Let S = {s1, 57, ..., s, } be the set
of possible states, and A = {a, a, ..., a,} be a set of pos-
sible actions, Based on the state s, € S, the agent interacting
with the environment chooses an action a; € A to perform.
Then the environment makes a transition to the new state
s;+1 = s’ € § according to probability Py (a) and gives a
reward r, to the agent. The process is repeated.

The goal of the agent is to find an optimal policy 7 *(s) € A
for each s, which maximizes some cumulative measure of the
rewards received over time. The total expected discounted
reward over an infinite time horizon is:

t=0

V() =E{ Y y'rs, m(s))lso = S} : (D

where 0 < ¢ < 1 is a discount factor and E denotes the ex-
pectation. Equation (1) can be rewritten as:

Vi(s) = R, () +y Y Pu@E)VT(), ()

s'eS

where R(s, w(s)) = E {r(s, m(s))} is the mean value of re-
ward r(s, 7 (s)). The optimal policy 7 * satisfies the optimality
criterion:

Vis) =V (s) = max (R(s, a+yy, Pssr(a)V*(s’)).

s'eS

3)

However, it is difficult to get R(s, a) and Pyy(a) in many
practical situations such as the QoS provisioning problem in
this paper. Q-learning is one of the most popular and effec-
tive algorithms for learning from delayed reinforcement to
determine the optimal policy. For a policy , define a Q value
as:

Q"(s.a) = R(s.a)+y Y _ Py(@V™(s) )

s'eS

which is the expected discounted reward for executing ac-
tion a at state s and then following policy 7 thereafter.
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Let

Q*(s,a)= Q" (s,a) = R(s,a) + v »_ Pw(@V"™ (s))
s'eS
5)

So V*(s) = max,ca Q*(s, a).Q*(s, a) can therefore be
written recursively as:

0*(s.a) = R(s,a) +y ) Puw(@)max(Q*(s'. a)) (6)

s'eS

Then, we have 7*(s) = argmax,c (Q*(s, a)) as an opti-
mal policy. The Q-learning process tries to find Q*(s, @) in a
recursive manner using available information. The Q-learning
rule is

Qi(s,a) +aAQ(s,a)
Qi(s, a)

ifs =s;,anda = a,

Oit1(s,a) = {

otherwise
7

where AQ,(s,a) =r; + ymaxyea Qi(s', a’) — Qi(s, a) and
« is the learning rate.

3.2. Q-learning formulation to solve QoS provisioning

In solving the QoS provisioning problem, the mobile com-
munication system can be considered as a discrete-time event
system. These events are modeled as stochastic variables with
appropriate probability distributions. We assume that call ar-
rivals including new call arrival events and handoff events
follow Poisson distributions. Call holding time is assumed to
be exponentially distributed. The call arrival distribution and
the service time distribution are independent of each other. In
order to utilize the Q-learning algorithm, we need to identify
the system states, actions, rewards, and constraints.

3.2.1. System states
An event e can occur in a cell ¢, where e is either a new
call arrival, a handoff call arrival, a call termination, or a
call handoff to a neighboring cell. At this time, cell c is in a
particular configuration x defined by the number of each type
of ongoing calls in the cell; x = (x11, X12, ... Xjj, - . . Xgwy )
where x;; denotes the number of ongoing calls of class i using
bandwidth b;jincellcfor1 <i < Kand1 < j < N;.Recall
that K is the number of service classes in the system and N;
is the highest bandwidth level of class i defined in Section 2.
The configuration and event together determine the state,
s = (x,e),of cell c.

We assume that each cell has a fixed channel capacity C.
The state space is defined as:

K N;

S = s=(x,e):22x,;ib,;f§C : (®)

i=1 j=1
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3.2.2. Actions

When an event occurs, the agent must choose an action
according to the state. An action can be denoted as: a =
(aq, aq, a,), where a, stands for the admission decision, i.e.,
admit (a, = 1), reject (a, = 0) or no action due to call de-
parture (a, = —1), ad stands for the action of bandwidth
degradation when a call is accepted and a, stands for the
action of bandwidth upgrade when there is a departure (call
termination or handoff to a neighboring cell) from cell c. a4
has the form

adz{(dllz,...,d;,...,

dgi)) 1 <i <K,
1<j§Nl’1§n<j}’

where dj; denotes the number of ongoing class 7 calls using
bandwidth b;; that are degraded to bandwidth b;,- a, has the
form

1§j<Ni,j<n§Ni},

where u'}; denotes the number of ongoing class i calls using
bandwidth b;; that are upgraded to bandwidth b;,.
After the action of degradation, the configuration (x1y, x12,

<. s Xjj, ..., XKN,) becomes

Ny N
d} d> —d!
X1+ 1m> X12 + m — Qs -+ -5 Xij
m=2 m=3

Nl Nkl
+ Y d, =l Xk — Y d?zv,()

m=j+1 m=1 m=1

Similarly, after the action of upgrading bandwidths, the
configuration (x;y, X2, - . .., Xgn, ) becomes

N] Nl
m 2 m
X11 — E uyy, Xpp +uj — E Ulpy ooy Xij
m=2

m=3

.,)C,'j,.

j—1 N; Ng—1

§ J E m § Nk
-+ U, — ul-j,...,xKNK+ Uk

m=1 m=j+1 m=1

3.2.3. Rewards

Based on the action taken in a state, the system earns deter-
ministic revenue due to the carried traffic in the cell. Let 7;; be
the reward rate of class 7 call using bandwidth b;;. The reward
rate, r(s,a) , can be calculated as:

K N
r(s,a) = Z Zx,jr,-j. 9)

i=1 j=I

Note that all ongoing calls in the cell, including those that
have been degraded and upgraded, contribute to the reward.
Therefore, we do not need an extra term to formulate the
penalty related to the bandwidth degradation.
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3.2.4. Constraints

For a general MDP with L constraints, the optimal policy for
at most L of the states is randomized [1]. Since L is much
smaller than the total number of states in the QoS provision-
ing problem considered in this paper, the non-randomized
stationary policy learned by reinforcement learning is often
a good approximation to the optimal policy [10]. To avoid
the complications of randomization, we concentrate on non-
randomized policies in this study.

The first QoS constraint is related to the handoff drop-
ping probability. Upon the nth decision epoch, the measured
handoff dropping ratio, Ppq(s,), should be kept below a target
value. Let TPyq denote the target maximum allowed handoff
dropping probability. The constraint associated with Ppg can
be formulated as:

Z,]lv:o Pra(s,)T,
N
Zn:O Tn
where 7, is the time interval between decision epochs.

The Lagrange multiplier formulation relating the con-
strained optimization to an unconstrained optimization [4,5]
is used in this paper to deal with the handoff dropping con-
straint. To fit into this formulation, we need to include the
history information in our state descriptor. The new state de-
scriptor is 5§ = (N, Nig, T, 5), where Ny, and Npg are the
total number of handoff call requests and handoff call drops,
respectively, from each class, 7 is the time interval between
the last and the current decision epochs, and s is the original
state descriptor. In order to make the state space finite, quan-
tified values of Py = Npa/Npe and T are used in the state
aggregation approximation in the following subsection.

A Lagrange multiplier w is used for the parameterized re-
ward7(5',5,a) =r(§,5,a)—wz(5, 5, a), wherer(3', 5, a) is
the original reward function and z(5/, §, a) = P,a(3)t (5, 5, @)
is the cost function associated with the constraint. The mul-
tiplier w is chosen so that the constraint is met in a fashion
consistent with the desired optimization. A nice monotonicity
property associated with w shown in [4] facilitates the search
for a suitable w.

The second QoS constraint is related to AB’, the normal-
ized average allocated bandwidth of class i calls. Let B; denote
the bandwidth allocated to class i calls. AB' can be defined
as the mean of B! /bin, over all class i calls in the current
cell. Recall that by, is the bandwidth of a class i call with
un-degraded service.

AR — E{B_’} _E(B) XL xby
biNi biN; biN, Z;VI:I X,’j’
K.

lim

N—o00

< TPyq, (10)

i=1,...
AB' should be kept larger than the target value TAB':

AB' >TAB, i=1,...,K. (11)

AB' is an intrinsic property of a state. With the current state
and action information (5, @) we can forecast AB' in the next
state 5, AB'(5').If AB'(3') < TAB',i =1, ..., K, the action
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is feasible. Otherwise, this action should be eliminated from
the feasible action set A(S).

It is also interesting to consider the constraint of time-
averaged allocated bandwidth of a call throughout its life-
time. Assume that the call holding time is H and B/(f) is the
bandwidth allocated to a class i call at time ¢. The normalized
mean bandwidth allocated to this call while in the system is:

Jy' 50

0 b

H

i

Then B! = E{B'} is a measure of the performance as far as
time-averaged allocated bandwidth is concerned.

A very nice result in [2] shows that the average bandwidth
allocated to a call during its lifetime is equal to the expected
bandwidth allocated to the call at the moment it arrives to the
system and independent of its holding time, i.e., AB = B,
in a system with one class of traffic. For the above reasons
and to avoid any complications, we use equation (11) as the
normalized average allocated bandwidth constraint.

3.2.5. Trading off action space complexity with state space
complexity

We can see that the action space in our formulation is quite
large. It will be time-consuming to find the suitable action
given a specific state using RL. We propose a method to trade
off action space complexity with state space complexity in
the QoS provisioning scheme using a scheme described in
[3]. The advantages of doing this are that the action space
will be reduced and the extra state space complexity may still
be dealt with by using the function approximation.

Suppose that a call arrival event occurs in a cell with state

s, the action that can be chosen from is a = (a,, dllz, el

d;jl ...,dﬁ’j\,:l), where there are at most W =1 + Z,K=1
Z;V;z (j — 1) components. We can break down the action
a into a sequence of W controls a,, dllz, e, dl’j' e, d,lgﬁvzl,

and introduce some artificial intermediate “states” (5, a,),
G.au.dly), ... G ae. dly, ... d}, ... dgy "), and the cor-
responding transitions to model the effect of these ac-
tions. In this way, the action space is simplified at the
expense of introducing W—1 additional layers of states
and W—1 additional Q values Q(5, a,), O, aa,dllz), e,
— Niy=2- - .. —
0@, aq,d}s, ..., df, ..., dgy") in addition to Q(5, aq, d},,

el dl’j’ el dllgﬁ\,zl). Actually, we view the problem as a de-
terministic dynamic programming problem with W stages.
For w =1, ..., W, we can have a W-solution (a partial so-
lution involving just w components) for the wth stage of the
problem. The terminal state corresponds to the W-solution (a
complete solution with W components). Moreover, instead of
selecting the controls in a fixed order, it is possible to leave
the order subject to choice.

In the reformulated problem, at any given state § =
(Nhr, Nig, TX, e) where e is a call arrival of class 7, the control
choices are:
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(1) Reject the call, in which case the configuration x does
not evolve.

(2) Admit the call and no bandwidth adaptation is
needed, in which case the configuration x evolves to
()C]l,xlz,.. .,xiN,+1,...,xKNK).

(3) Admit the call and bandwidth adaptation is needed. In
this case, the problem can be divided into W stages. On
the wth stage (w =1, ..., W), one particular call type
that has not been selected in previous stages, say the one
using bandwidth b; with x;; > 0, can be selected and
there are following options:

<y Xijy - s

(a) Degrade one call using bandwidth b; one level,
in which case the configuration x evolves to (xyy,
X125 o v es Xij—1 + 1,x,~_,~ 1,...,x,‘NI. + 1,...,
XK Ng)-

(b) Degrade two calls using bandwidth one level, in
which case the configuration x evolves to (xqi,
X125 o+ o5 Xij—2 + 2, Xij — 2,0, Xin; + 1, XKNK).

(c) Increase the number of calls being degraded until the
call arrival can be accommodated. Please note that
the number of options depends on specific selected
call type and the class of call arrival.

The similar trade-off can be done when a call departure
event occurs.

3.3. Implementation considerations

To guarantee the convergence of the Q-learning algorithm,
each action should be executed in each state an infinite num-
ber of times. Therefore, with a small probability p,, upon the
nth decision-making epoch, a decision other than the highest
Q value is taken. This is called exploration [3].

In practice, an important issue is how to store the Q values
in the Q-learning algorithm. There are several approaches to
representing the Q values, among which the lookup table is
the most straightforward method. A lookup table representa-
tion means that a separate variable Q(s, a) is kept in memory
for each state-action pair (s, a). Obviously, when the number
of state-action pairs becomes large, the lookup table repre-
sentation will be infeasible, and some compact representation
method is necessary. In this paper, we use the state aggrega-
tion approximation method [3]. In this method, the state space
S is partitioned into G disjoint sub-states Sy, Sy, ..., Sg. The
Q value function for all state s € S, under action a is a con-
stant ¢(g, a) such that

0(s,a, ¢) = ¢(g,a),

Then a lookup table can be used for the aggregated
problem.

The process of the Q-learning-based QoS provisioning is
shown in figure 4. First, when an event (either a call arrival
or a call departure) occurs, a state s can be identified by
getting the status of the local cell. Then, a set of feasible
actions {a} can be found. Second, look up the aggregated

if s € S,.
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State
s || Lookup (Choose an action with
the |—p| thelargest O value || The next
O value with probability 1-p,,. state s’
\ 4 table Otherwise, preform
Action [ the exploration
{a} 7Y

O value update |

Figure 4. The process of Q-learning-based QoS provisioning scheme.

Figure 5. The cellular network used in simulations.

Q value table and find a set of Q values corresponding to
the state s and action set {a}. Third, with probability 1 —
Pn, choose one action from set {a} with the maximum Q
value; otherwise, perform the exploration. According to the
chosen action, the network makes the admission decision
and resource adaptation. Fourth, another event occurs and
the system reaches another state s’. Finally, the Q value is
updated according to equation (7).

4. Simulation results and discussions

We use a cellular network of 19 cells in simulations, as shown
in figure 5. To avoid the edge effect of the finite network size,
wrap-around is applied to the edge cells so that each cell has
six neighbors. Each cell has a fixed bandwidth of 2 Mbps.
Two classes of flows are considered (see Table 1). Class 1
traffic has three different bandwidth levels, 128, 192 and
256 Kbps. 64, 96 and 128 Kbps are the three possible band-
width levels of class 2 traffic. The reward generated by a call
is a linear growing function of the bandwidth assigned to the

Table I
Experimental parameters.
Traffic class Bandwidth level (Kbps) Reward
Class 1 b11:128 128
b12:192 192
b13:256 256
Class 2 b1:64 64
b22:96 96
by3:128 128
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call. Specifically, r;; = b;;. We assume that the highest pos-
sible bandwidth level is requested at the time of call arrival.
That is, call arrivals of class 1 always request 256 Kbps and
call arrivals of class 2 always request 128 Kbps. Then the
network will make the CAC decision and decide which band-
width level the call can use if it is admitted. 30% of the offered
traffic is from class 1. Moreover, call holding time and cell
residence time are assumed to follow exponential distribu-
tions with mean 180 seconds and 150 seconds, respectively.

The mobile communication system can be simulated as a
discrete-time event system. A list of future events is main-
tained dynamically and a simulation clock is advanced ac-
cording to the future events. The proposed scheme is trained
and the Q values are learnt by running the simulation for 20
million steps with a constant arrival rate of 0.1 call/second.
The discount factor y is chosen to be 0.5, and the learning
rate y varies with the state-action over time as follows. Each
state-action is associated with a learning rate that is inversely
proportional to the frequency of the state-action being visited
up to the present time. The probability of a user handing off to
any one of the six adjacent cells is equally likely. The mono-
tonicity property associated with w is used to search for a suit-
able w, which is 157560 in the simulations. The target maxi-
mum allowed handoff dropping probability, TPygq, is 1%. Ppg
is quantified into 100 levels. 7 is quantized into 2 levels, i.e.,
T less than or equal to the average inter-decision time and ©
greater than the average inter-decision time. The average allo-
cated bandwidth constraint is changed for evaluation purpose.

Two other schemes are used for comparisons, the guard
channel (GC) scheme [11] and TBA98 [20]. In the GC
scheme, a set of bandwidth is reserved permanently for hand-
off calls. In our simulations, 256 Kbps is reserved for handoff
calls. In TBA9S, the average bandwidth of currently active
flows is used to determine which calls should be increased or
decreased in the BA operation. In order to perform fair com-
parisons, new calls may be admitted to an overloaded cell in
TBA9S8 scheme in our simulations.

Figure 6 shows the performance improvement during the
training phase. The reward is normalized by the GC scheme

08 .

0.4 -

Normalized reward
o
o

0.2 .

U i L 1
o 05 1 1.5 2 2E

Training steps x 10’

Figure 6. The learning curve.
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Figure 7. Normalized rewards.

with new call arrival rate of 0.1 calls/second. We obtain the
final control policy after 20 million steps. Figure 7 shows the
rewards of different schemes. Average allocated bandwidth
constraints are not considered here. It is clear the Q-learning-
based scheme yields more reward than the TBA98 or GC
schemes. The traditional GC scheme does not use bandwidth
adaptation and a call will be rejected if no free bandwidth
is available. TBA98 has bandwidth adaptation function and
therefore can gain more reward than GC. However, TBA98
does not consider the problem of maximizing the reward.
That is why it receives less reward than the proposed scheme.
We can also see from figure 7 that at low traffic loads, as
the new call arrival rate increases, the gain becomes more
significant. This is because the heavier the traffic load, the
more the bandwidth adaptation is needed when the cell is not
saturated. However, when the traffic is high and the cell is
becoming saturated, the performance gain of the proposed
scheme and TBA98 over GC is less significant.

Figure 8 plots the handoff dropping probability vs. new call
arrival rate. We can see that the Q-learning-based scheme can
keep the handoff dropping probability below the target value
regardless of the offered load. Although GC and TBA98 can
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Figure 8. Handoff dropping probabilities.
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keep it below the target value when the traffic is low, they fail
to do so when the traffic is high. We can reduce the handoff
dropping probability in GC scheme by increasing the number
of guard channel and in TBA98 scheme by rejecting new
calls in an overloaded cell. However, this will further reduce
the reward earned in these two schemes. Figures 9 and 10
show the new call blocking probabilities of class 1 and class
2 calls, respectively. Both TBA98 and the proposed scheme
have less new call blocking probabilities compared with GC,
because both of them have adaptation capabilities and can
accept more new calls.

Figures 11 and 12 show the normalized average allocated
bandwidth of class 1 and class 2 traffic, respectively, with a
target normalized average bandwidth value of 0.7. We ob-
serve that as the new call arrival rate increases, the average
bandwidths in both TBA98 and the proposed scheme de-
crease. This is the result of the bandwidth adaptation. It is
shown that the normalized average allocated bandwidth can
be bounded by the target value in the proposed scheme. In
contrast, TBA98 cannot guarantee this average bandwidth
QoS constraint. The average bandwidth of GC is always 1,
because no adaptation operation is done in GC. The achieve-
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ments of QoS guarantee come at a cost to the system. The
effects of different values of TAB on the reward are shown in
figure 13. We can see that a higher TAB, which is preferred
from users’ point of view, will reduce the reward.
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5. Conclusions

In this paper, we have formulated the QoS provisioning prob-
lem for adaptive multimedia in mobile communication sys-
tems as a constrained MDP to find the optimal CAC and
BA policies that can maximize network revenue and guar-
antee QoS constraints. We have further proposed a scheme
using Q-learning to solve the QoS provisioning problem.
This scheme does not require a priori knowledge of the state
transition probabilities associated with the mobile commu-
nication systems and can efficiently handle problems with
large state spaces and action sets. Two important QoS con-
straints, i.e., handoff dropping probability constraint and av-
erage allocated bandwidth constraint, have been considered.
The performance of the proposed scheme has been evaluated
by simulations. We have presented numerical results to show
that the proposed scheme employing Q-learning outperforms
existing schemes [11,20].

Future work includes studying other function approxima-
tions, such as neural networks, to approximate Q values. It is
also very interesting to perform more experiments to compare
our scheme with a new scheme recently proposed in [28].
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