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Abstract—In this paper, we investigate the cross-layer optimiza-
tion of caching and fast video delivery for enhanced video streaming
quality of experience (QoE) in two-hop relaying networks, where
a base station supplies video data to multiple users with the help
of relays. Different from conventional systems, each half-duplex
relay node is equipped with a cache and a buffer to facilitate joint
scheduling of video fetching and delivery. This introduces channel
diversity gains and facilitates fast video delivery. In particular,
we investigate two-stage caching and delivery control schemes for
the minimization of the overall video delivery time. An offline
caching and delivery optimization problem, which assumes full
knowledge of user requests and channel state information (CSI), is
formulated but turns out to be functional and non-convex. However,
we unveil a hidden quasi-convexity and convexity in the two layers
of the decomposed problem and hence solve the offline problem
optimally and efficiently. Moreover, online video delivery control
exploiting statistical CSI is investigated under a stochastic dynamic
programming (DP) framework. To mitigate the high computational
complexity of DP, we further propose a low-complexity online video
delivery algorithm, which achieves close-to-optimal performance in
the high buffer capacity regime. Simulation results show that our
offline and online schemes can significantly reduce the overall video
delivery time due to the degrees of freedom enabled by caching and
buffering. Besides, an interesting trade-off between caching and
buffering gains in exploiting the diversity of the wireless channel
is revealed.

I. INTRODUCTION

THE surge of video-on-demand (VoD) streaming traffic in
cellular networks [2] poses two major challenges for cellu-

lar operators. On the one hand, VoD streaming imposes stringent
requirements on transmission rate and latency. Supporting VoD
streaming with the limited cellular frequency spectrum thus
demands highly spectrally efficient transmission and resource
allocation schemes in the radio access network (RAN). On
the other hand, as VoD servers are usually located at the
“Internet edge”, a high-capacity backhaul is required to convey
the aggregate VoD data from the Internet to the RAN. However,
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recent studies suggest that the network performance still suffers
from backhaul capacity bottlenecks during VoD streaming even
if state-of-the-art fourth generation (4G) Long Term Evolution
(LTE) networks are deployed [3].

Instead of a traditional bottom-up upgrade from RAN to
backhaul, low-complexity cost-effective solutions employing
wireless caching have been proposed to address VoD streaming
challenges [4]–[8]. The principle of wireless caching is similar
to caching in content-centric networking (CCN) [4], [5], i.e., the
most popular files are pre-stored into a cache memory deployed
at the base stations (BSs) or access points (APs) of the RAN.
The interest in wireless caching, however, is mainly explained
by its benefits ranging from traffic offloading on the backhaul
[6], through delivery capacity enhancement and delay reduction
in the RAN [7], to energy savings in the entire network [8].
These benefits result from the content reuse gains in the video
delivery phase, which are caused by the often highly correlated
user preferences. Empirical measurements confirming these high
correlations have been reported in [9]. Furthermore, the burden
on the network introduced by caching can be kept low since
the cache placement usually takes place during periods of low
cellular traffic (such as early mornings).

Recently, the integration of wireless caching into the fifth gen-
eration (5G) physical layer technologies, including small cells
[10], [11], cooperative multiple-input multiple-output (MIMO)
[12]–[15], and cross-layer resource allocation [16], for ad-
vanced cellular video delivery has been advocated. In [10],
FemtoCaching was proposed as a substitute for the backhaul
in small cell networks, where the optimal file placement for
the minimization of the average download delay subject to a
cache capacity constraint was investigated. In [11], cooperative
caching in relay nodes and user equipments was considered
for the minimization of the energy consumption. Both [10]
and [11] have shown that caching can effectively relieve the
(wireless/wireline) backhaul capacity bottleneck in small cells
by exploiting content reuse and the cellular traffic pattern in the
upper layers. Moreover, the reduced cell sizes lead to additional
gains in spectral efficiency in the physical layer. These gains
constitute macroscopic caching gains in cache-enabled small
cells, which are achievable without knowledge of the underlying
channel characteristics and irrespective of the adopted physical
layer.

Meanwhile, wireless caching has been combined with physical
layer transmission techniques and scheduling protocols in [12]–
[16]. Different from caching in CCNs, wireless caching has
the potential to combat fading and alleviate the radio resource
scarcity [12]–[16]. In [12], by caching the same data across
different BSs, the authors exploited cooperative MIMO trans-
mission for the minimization of the transmit power subject to a
data rate constraint. Appealingly, caching reduces the payload
sharing overhead of opportunistic cooperative MIMO trans-



mission and thus introduces inexpensive spatial multiplexing
gains. Similar ideas were investigated for cooperative relaying in
[13], cooperative small cell transmission in [14], and multicast
beamforming in [15]. In [16], the authors proposed a channel-
aware scheduling scheme for transmitting cached data in a one-
hop wireless network, which enabled multi-user diversity gains.
These cache-induced benefits in physical layer transmission and
resource allocation are referred to as microscopic caching gains
and are tightly coupled with the wireless channel characteristics.

From both the macroscopic (mostly upper-layer) and the mi-
croscopic (physical-layer) perspectives, wireless caching shows
great promise for VoD streaming in future cellular networks.
In fact, wireless caching has been part of a wider trend towards
user-centric networking in 5G [17]. For either purpose, the same
problem has gained significant importance, i.e., how to utilize
wireless caching for providing premium streaming quality of
experience (QoE) such as low streaming latency and high grade
of service, which are highly dependent on the delivery time. This
problem has not been well addressed in the existing works [4]–
[8], [10]–[16]. In particular, orthogonal delivery of cached and
uncached video data has been considered in [4]–[8], [10]–[16]
and the resulting performance gains only manifest themselves
in the delivery of cached data. Whenever the requested files are
uncached or only partially cached, e.g. due to insufficient cache
capacity or inaccurate user preference profiles1, the delivery
of the uncached video data still suffers from the capacity
limitations in the backhaul/RAN. Consequently, the streaming
QoEs can vary significantly across the users in the network. To
address the QoE issues, joint wireless caching and buffering
is proposed in this paper for enabling fast video delivery,
which reduces the overall video delivery time with a minimum
delivery rate guarantee. Our work also meets the recent paradigm
shift from Real-Time Streaming Protocol (RTSP)-based [18] to
Hypertext Transfer Protocol (HTTP)-based [19], [20] wireless
VoD streaming in the industry. The new streaming method
advocates “as-fast-as-possible” download for video data delivery
and meanwhile provides deterministic quality of service (QoS)
guarantees [19]. To the best of our knowledge, however, the
cross-layer optimization of fast video delivery has not been
systematically studied even for non-caching networks.

We consider small cell networks where half-duplex relay
nodes (RNs) serve as small cell BSs, cf. Fig. 1(a). Fast delivery
is achieved by exploiting the cache and the buffer equipped at
each RN to overcome both the backhaul capacity bottleneck
and the half-duplex relaying constraint2. Thereby, the cache is
used as a long-term memory to store a certain amount of video
data at the RNs before delivery starts. The cached video data
can be instantly delivered to the requesting users in only one
wireless hop, without the involvement of the backhaul. The
uncached video data, however, has to be fetched and delivered
in two wireless hops. Thus, the delivery of uncached video data
constitutes a performance bottleneck, which is mitigated to some
extent by the buffer.

1Compared to CCNs, learning the users’ preferences in wireless caching
networks is more difficult due to the lack of traffic aggregation [5]. Yet, joint
caching and buffering can reduce the performance loss caused by inaccurate
knowledge of the users’ preferences.

2For example, the RNs can be roadside units (RSUs) in wireless vehicular
networks. Joint buffering and caching can be applied at these RSUs to improve
the QoS of vehicular video streaming and location-based services in mobile
environments [21], [22].

The buffer is activated during delivery and serves as a short-
term memory to temporally store the data packets fetched from
either the video server (referred to as “wireless fetching”)
or the cache before delivery to the requesting users. If the
requested files are uncached, the buffer enables buffer-aided
relaying (BaR) [23], [24], where wireless fetching and delivery
links are adaptively scheduled in each time slot based on the
instantaneous channel state information (CSI) and the video data
buffered at the RNs. BaR leads to significant performance gains
compared to conventional half-duplex relaying and avoids the
self-interference typical for full-duplex relaying [24]. For the
problem at hand, the channel diversity gains introduced by BaR
can effectively improve the delivery of uncached video data. On
the other hand, if the requested files are (partially) cached, the
probability of an empty buffer for BaR is decreased as the cached
video data can feed the buffer with negligible delay. Hence,
the joint design of the cache and buffer operation facilitates
additional diversity gains for fast delivery of the uncached video
data because of the increased flexibility.

To strike a balance between system performance and hardware
cost, the cache and the buffer are implemented in a two-level
memory architecture. Specifically, the cache requires a larger
memory capacity that matches the sizes of the requested video
files, while a lower input/output (I/O) speed can be tolerated
since the user preferences usually vary slowly; thus, the cache
is allotted in the cheap secondary memory such as a hard disk.
In contrast, the buffer requires a higher I/O speed to respond
to the instantaneous variations of the wireless/backhaul channel,
but a moderate memory capacity that depends on the capacity of
the wireless/backhaul channel as well as its rate of variations is
sufficient; therefore, the buffer is alloted in the expensive primary
memory, e.g. a random access memory (RAM) or a dynamic
RAM. Given the memory architecture, what portion of a file is
cached and thereafter how to adjust the resource allocation have
to be carefully optimized in order to ensure fast video delivery
via joint caching and buffering. In the conference version of this
work, we have investigated joint caching and buffering for non-
HTTP VoD streaming in [1], where the optimal offline control
is studied. In this paper, we extend [1] to address HTTP VoD
streaming. The main contributions are summarized as follows:

• We investigate the cross-layer optimization of fast video
delivery in a two-hop relay network where a buffer and a
cache are utilized to minimize the overall delivery time.
Different from [1], where only offline solutions were con-
sidered, we study both the optimal offline and the optimal
online solutions for fast video delivery control.

• We formulate the caching and delivery control as a two-
stage optimization problem. In the first stage, the cache
status is optimized based on historical profiles of user
requests and CSI. In the second stage, cross-layer fast
delivery control aims to minimize the delivery time of the
users in the network for a given cache status.

• The offline caching and delivery optimization problem for
given user requests and deterministic CSI is functional
(i.e., the feasible set dynamically varies with the values of
the optimization variables [25]) and non-convex. However,
a novel solution method exploiting the underlying quasi-
convex and convex structures is proposed to solve the
problem efficiently. We prove the global optimality of the
obtained solution under mild conditions, where, different
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Fig. 1. Joint caching and buffering at the relay nodes for improving the delivery of both cached and uncached video data: (a) network model; (b) schematic of
cache and buffer operations at the relay nodes; (c) illustration of two-stage cross-layer control at the controller at the BS.

from [1], a self-contained proof is provided.
• The online delivery optimization for statistical CSI (i.e., the

CSI distribution) knowledge is solved based on a stochastic
dynamic programming (DP) framework. We also propose
a low-complexity suboptimal delivery scheme, which only
requires instantaneous CSI and achieves close-to-optimal
performance in the high buffer capacity regime.

• Simulation results show that caching and buffering can
effectively reduce the overall video delivery time by more
efficiently utilizing the radio resources. The trade-off be-
tween caching and buffering gains is also investigated.

The remainder of this paper is organized as follows. We
present the system model in Section II. The offline cache place-
ment and the online cross-layer delivery optimization problems
are investigated in Sections III and IV, respectively. In Section V,
simulation results are provided and finally, Section VI concludes
the paper.

Notation: Throughout the paper, vectors are denoted in bold
lower case letters; N and R+ are the sets of natural numbers
and non-negative real numbers, respectively; P and E are the
probability and expectation operators, respectively; ⌈·⌉ denotes
the ceiling function; X × Y denotes the Cartesian product of
sets X and Y; and x ≽ y indicates that each element of x− y
is non-negative.

II. SYSTEM MODEL

In this section, the system model of the cache- and buffer-
enabled two-hop relaying network is presented.

A. Cache- and Buffer-Enabled Delivery System

Consider a time-slotted video delivery system, which consists
of a BS and M overlaid half-duplex RNs (with index set M =
{1, . . . ,M}), cf. Fig. 1(a). The time index t ∈ N is a non-
negative integer and the duration of a time slot ∆ is fixed. The
video server located in the Internet has N video files (with index
set N = {1, . . . , N}) available for delivery. Assume that file
n ∈ N consists of Vn bits, which are encoded a priori into
segments. Each segment contains several seconds to minutes of
video data and can be decoded independent of other segments.

Each RN m ∈ M serves K(m) user equipments (UEs) (with
index set K(m) = {1, . . . ,K(m)}). We assume that there is no
direct communication between the UEs served by the RNs and
the BS. Instead, the RNs forward the user requests to the BS.

In response, the BS fetches video files from the video server
via a capacity-limited backhaul link and delivers them to the
(relay-assisted) UEs via the RNs. The RNs perform decode-and-
forward (DF) relaying and communicate with the UEs and the
BS by alternating between transmission and reception. Different
from the conventional systems, a cache and a buffer are deployed
at each RN for improving the overall delivery performance. We
generally assume finite memory capacities for both the cache
and the buffer.

The system adopts an HTTP-based VoD streaming protocol
with sever/BS side delivery control, as proposed in [19, Fig. 3(d)
therein]. The download of each requested file consists of a series
of HTTP sessions between the video server and the requesting
UE. One or multiple segments are streamed in a session so that
the UEs can decode and play them back without having to wait
for the whole file to be download. In this paper, only the delivery
time for the streaming (downloading) sessions is considered.
The latency caused by user triggered interrupts during video
delivery (e.g. video pause, forward, etc.) and the additional time
introduced in adaptation of the transmission process are ignored.

B. Two-Stage Caching and Delivery Control

The system operation has two stages: cache placement and
delivery. During placement, the portion of the video files to be
proactively cached are optimized for maximizing the efficacy of
the finite-capacity cache memory. Assume that each segment of
file n is further encoded via rateless maximum distance separable
(MDS) codes [10]. The encoded parity bits for each segment
have the same size as the original segment. For each segment
of file n, we can cache c

(m)
n ∈ [0, 1] portion of its parity bits

in RN m ahead of time. The cache allocation vector at RN m,
which is normalized with respect to the file sizes, is denoted by
c(m) = [c

(m)
1 , . . . , c

(m)
N ]. All cache placements have to satisfy

C1:
∑N

n=1
c(m)
n Vn ≤ C(m)

max, ∀m ∈ M, (1)

where C
(m)
max is the cache memory capacity of RN m. We assume

that the users’ preferences vary slowly over time. Hence, the
cache can be updated infrequently, e.g. during the off-peak
network traffic periods in the early mornings.

In the delivery stage, the cached video data and the buffer
are utilized to facilitate fast video delivery with QoS guarantee.
We assume that there are S synchronized downloading sessions



over time, where S ≥ 1. The session index is given by s ∈
{1, . . . , S}. Let ρ ≡ (m, k, n, s) represent a request for file n
by user k connected to RN m in session s and Vρ be the amount
of its requested video data, where Vρ ≤ Vn. For example, if the
video segments are equally divided across S sessions, we simply
have Vρ = Vn/S.

Denote the set of user requests in RN m by G(m)
s ⊆ K(m)

s ×
N , where Gs =

∪M
m=1 G

(m)
s is the set of user requests in the

network. When request ρ ∈ Gs is received, RN m searches the
file indices in its cache. According to the cache status, c(m)

n Vρ

parity bits of file n can be directly fetched from the cache for
delivery to UE k. For correct decoding of the video segments
at UE k, the remaining (1 − c

(m)
n ) portion has to be further

fetched from the video server [10], i.e., obtained via wireless
fetching. With the aid of the buffer, the video data from the
wireless fetching and the cache fetching as well as their delivery
are jointly scheduled at RN m to enable fast delivery. To this
end, efficient resource allocation and queue control schemes are
required and will be presented in the remainder of this section.
C. Cross-Layer Resource Allocation for Joint File Fetching and
Delivery

Consider a multi-RN multi-user delivery system with fading
wireless channels and possibly time-varying backhaul capacities.
The system employs orthogonal frequency division multiple
access (OFDMA) at the physical layer (e.g. as in the 4G LTE
standard [26]), which can effectively combat frequency-selective
fading in wireless channels. We investigate cross-layer resource
allocation, i.e., joint adaptive subcarrier (SC) assignment, link
scheduling, and power allocation at the physical/link layer, to
fully utilize the radio resources, the cache, and the buffer for
fast video delivery under a minimum delivery rate guarantee. The
optimal cross-layer solution provides a performance upper bound
for separate optimization of each layer. We note that cross-layer
control has been widely adopted for radio resource allocation
[27]–[29], particularly for supporting resource-intensive wireless
video transmission [30], due to its superior performance.

1) Joint SC Assignment, Link Scheduling, and Power Alloca-
tion: The RNs employ time-division duplexing and may switch
between transmission and reception within each time slot. In
general, we assume that the wireless BS-to-RN m, m ∈ M,
fetching links and the RN m-to-UE k, k ∈ K(m)

n , delivery links
are activated for η(m)

S,t ∈ [0, 1] and η
(m)
R,t ∈ [0, 1] fractions of time

slot t, respectively, where the subscript indices S and R stand
for “source” and “relay” transmissions, respectively. η(m)

S,t and
η
(m)
R,t satisfy η

(m)
S,t +η

(m)
R,t = 1, ∀t,m. Without loss of generality,

we assume that time t is reset before each downloading session
starts.

Meanwhile, the available frequency spectrum comprises F
orthogonal SCs (with index set F = {1, ..., F}), where each
SC has a bandwidth of W Hz. We consider flat fading on each
SC and assume that the duration of a time slot is less than the
channel coherence time. The SCs are assigned for each BS-to-
RN m-to-UE k link in each time slot. Due to time switching
at time t, each SC-time slot channel, denoted by (f, t), is split
into two subchannels, denoted by (f, t, i), i ∈ {S,R}, for use
on the BS-to-RN and RN-to-UE links, respectively. We use
µρ,f,t ∈ {0, 1} and µi

ρ,f,t ∈ [0, 1] to indicate the assignment
and the occupancy of channel (f, t) on the corresponding links
for serving request ρ ∈ Gs, respectively. To avoid interference,

orthogonal allocation of the SC-time resources to different links
is assumed, i.e.,

C2: µρ,f,t = µS
ρ,f,t + µR

ρ,f,t, ∀ρ ∈ Gs, f ∈ F , ∀t,

C3: 0 ≤ µi
ρ,f,t ≤ η

(m)
i,t , ∀ρ ∈ Gs, f ∈ F , i ∈ {S,R} , ∀t,

C4: µρ,f,t ∈ {0, 1} , ∀ρ ∈ Gs, f ∈ F , ∀t,
C5: η(m)

S,t + η
(m)
R,t = 1, ∀m ∈ M,∀t,

C6:
∑

f∈F
µρ,f,t ≤ 1, ∀ρ ∈ Gs, ∀t,

C7:
∑

ρ∈Gs

µρ,f,t ≤ 1, ∀f ∈ F , ∀t,

where C3 specifies that the BS-to-RN m link is active if η(m)
S,t >

0 and µS
ρ,f,t > 0; similarly, the RN m-to-UE k link is active

if η
(m)
R,t > 0 and µR

ρ,f,t > 0. C6 and C7 guarantee that each
SC is assigned only once in a time slot and to at most one
BS-to-RN-to-UE link. Moreover, let hi

ρ,f,t and pif,t denote the
instantaneous channel state and the transmit power allocation
on subchannel (f, t, i), i ∈ {S,R}, respectively, where pif,t ≥ 0

is subject to optimization. Note that, hS
ρ,f,t = hS

ρ′,f,t holds for
all user requests ρ,ρ′ ∈ G(m)

s in each RN m. The maximum
transmit power of the BS and the RNs are constrained to PS

and PR, respectively, i.e.,

C8:
∑

f∈F

∑
ρ∈Gi

s

µi
ρ,f,tp

i
f,t ≤ Pi, i ∈ {S,R}, ∀t, (2)

where the summation is taken over GS
s = Gs and GR

s = G(m)
s ,

respectively.
2) Cache/Buffer Management at the RNs: We assume that

the buffer uses two first-in first-out (FIFO) queues for wireless
fetching and cache fetching, respectively, cf. Fig. 1(b). The
two queues are cooperatively controlled, i.e., performing joint
fetching and delivery, in accordance with the proposed resource
allocation policy to exploit the channel diversity. Let bSρ,t, b

C
ρ,t,

and bRρ,t be the instantaneous rates of wireless fetching, cache
fetching, and delivery in serving request ρ ∈ Gs at time t,
respectively. For given hi

ρ,f,t and pif,t, the capacity of subchannel
(f, t, i) is log2(1+ pif,th

i
ρ,f,t/(N0W )) bps/Hz, where N0 is the

noise power spectral density and i ∈ {S,R}. Hence, for wireless
fetching and delivery, we have

biρ,t = W
∑

f∈F
µi
ρ,f,t log2

(
1 +

pif,th
i
ρ,f,t

N0W

)
, i ∈ {S,R}, (3)

and for cache fetching, we only require bCρ,t ≥ 0. Moreover, let
BS

ρ,t and BC
ρ,t be the total amount of video data fetched from

the server and the cache up to time t, respectively, and BR
ρ,t be

the total amount of delivered video data. The trajectory of the
queue evolution over time is then given by

Bi
ρ,t = Bi

ρ,t−1 +∆biρ,t = ∆
∑t

τ=1
biρ,τ , i ∈ {S,R,C}. (4)

In general, the queue evolution has to satisfy the following
boundary constraints,

C9: BR
ρ,t ≤ min

{
BS

ρ,t +BC
ρ,t, Vρ

}
, ∀ρ ∈ Gs, ∀t,

C10: BC
ρ,t ≤ c(m)

n Vρ, ∀ρ ∈ Gs, ∀t,

C11: B(m)
t +

∑
ρ∈G(m)

s

bSρ,t ≤ B(m)
max, ∀m, ∀t,

C12:
∑

ρ∈Gs

(
BS

ρ,t −BS
ρ,t−1

)
/∆ ≤ γt, ∀t,

where C9 and C10 guarantee data causality of the buffer/cache,
i.e., the amount of delivered video data cannot exceed the



aggregate cached/buffered video data nor the video file size;
C11 constrains the instantaneous queue length at the RNs to
be less than the buffer capacity B

(m)
max, where B

(m)
t is the

queue length of RN m at the beginning of time t satisfying
B

(m)
t =

∑
ρ∈G(m)

s
(BS

ρ,t−1+BC
ρ,t−1−BR

ρ,t−1); and C12 ensures
that during time slot duration ∆, the average sum rate of wireless
fetching does not exceed the backhaul capacity γt, i.e., the
backhaul is shared by all BS-to-RN links while fetching video
data from the video server.

3) Video Delivery with QoS Guarantee: In the application
layer, we assume that UEs have a large enough memory to store
the downloaded video segments during each session. After the
parity bits of a video segment are completely downloaded, the
video segment is decoded and played back. Due to the advan-
tages of MDS coding, the parity bits of each video segment can
be received in arbitrary order without any impact on the decoding
results. The cross-layer controller maintains a minimum delivery
rate νmin at the UEs to guarantee a certain QoS [31],

C13: BR
ρ,t ≥ νmin · {max {t− ϵρ, 0}} , ∀ρ ∈ Gs, ∀t, (5)

where ϵρ is the initial delivery delay and is known to the
controller through feedback. When t > ϵρ, C13 reduces to
BR

ρ,t/(t − ϵρ) ≥ νmin, i.e., a minimum time-averaged delivery
rate is maintained.

Denote the CSI on the wireless/backhaul channels and the
queue status information (QSI) by ht , [hS

ρ,f,t, h
R
ρ,f,t, γt] and

qt , [BS
ρ,t, B

R
ρ,t, B

C
ρ,t], respectively. We assume that a central

controller located at the BS is responsible for collecting the
CSI and QSI from the RNs and UEs. Moreover, the controller
optimizes over the resource allocation vector, denoted by dRA

t ,
[µρ,f,t, µ

i
ρ,f,t, η

(m)
i,t , pif,t]i∈{S,R}, for joint SC assignment, link

scheduling, and power allocation and the queue control vector,
denoted by dQC

t , [bSρ,t, b
C
ρ,t, b

R
ρ,t], for cache/buffer management.

The optimal decisions are then broadcast to the RNs3. The
proposed two-stage cross-layer control is illustrated in Fig. 1(c).
Note that vectors dRA

t and dQC
t are related by (3) and (4), or

dQC
t = g

(
dRA
t ,ht

)
for short. If treating bCρ,t as an auxiliary

variable, g is an (affine) surjective function [33]. Thus, dQC
t

is known once dRA
t is determined. This can be exploited for

system design in two manners: (i) by eliminating dQC
t according

to g, the offline optimization can be formulated as a single
resource allocation problem (with the aid of caching/buffering),
cf. Section III; (ii) by decomposing the optimization space of
dQC
t and dRA

t , the complexity of the online optimization can be
reduced, cf. Section IV.

Remark 1. Although the above model focuses on relay-assisted
UEs, it is general enough to also include UEs communicating
with the BS directly, cf. Fig. 1(a). Consider that user k′ is served
directly by the BS for delivering file n′. This is equivalent
to defining the request ρ′ = (m′, k′, n′, s) to be served by a
“virtual” RN m′ if and only if the CSI and the QSI satisfy
hS
ρ′,t = hR

ρ′,t and BS
ρ′,t = BR

ρ′,t, respectively. Hence, the one-
hop communication between UEs and the BS is included as a
special case of the considered two-hop communication model.

Remark 2. The considered system design improves performance

3The CSI and QSI feedback and the decision broadcasting may incur a
significant signaling overhead for highly dense RN deployments. In this case,
quantization methods can be applied to reduce the amount of information
exchange needed [32].

at the expense of an increased hardware cost and computational
complexity. In particular, the performance benefits enabled by
joint buffering and caching at the RNs introduce additional
hardware costs. Besides, compared to either separate optimiza-
tion conducted in each layer or decentralized optimization,
the proposed centralized cross-layer optimization provides a
better performance but entails a higher computational complexity
as well as a higher feedback overhead. However, as will be
shown below, caching and buffering can effectively mitigate the
radio resource scarcity in wireless cellular networks by utilizing
a new type of resource, namely, storage memory. Moreover,
these benefits can be obtained via polynomial-time optimization
algorithms, which can be effectively implemented in practical
systems. Since the radio spectrum is limited, investing in mem-
ory and computing resources may be an appealing option to
enhance the QoE of video streaming.

III. OFFLINE CROSS-LAYER CACHING AND DELIVERY
CONTROL

In this section, the cross-layer caching and delivery control
is formulated as a two-stage optimization problem. In the first
stage, the cache controller optimizes the cache status based on
historical profiles of user requests and CSI measurements. For
given user requests and cache status, cross-layer delivery control
is performed in the second stage, which aligns the resource
allocation and the queue management decisions for minimizing
the overall delivery time. Assuming full knowledge of the CSI of
all links over a sufficiently long time period, an offline algorithm
is proposed to solve the two-stage optimization problem. The
offline caching algorithm is well suited for a historical data
driven caching control [34]. The offline delivery control provides
a performance upper bound for the minimum video delivery
time, based on which online delivery schemes requiring only
causal CSI knowledge are further studied in Section IV. In the
following, we first study the simpler delivery control problem
of the second stage before tackling the caching problem of the
first stage.

A. Second Stage Fast Delivery Control

For a given cache status, the delivery time is defined as
the number of time slots needed to complete the file delivery
for all users in each session. Denote the delivery time for
session s by Ta,s, where Ta,s ∈ N and s ∈ {1, . . . , S}. Let
d(Ta,s) = [dRA

t , bCρ,t]
Ta,s
t=0 be the delivery control vector (where

bSρ,t and bRρ,t are eliminated according to g) belonging to the
feasible set D(Ta,s) , {d | d ≽ 0, C2–C13}. Both d and D
depend on the delivery time Ta,s.

Given the delivery file sizes Vρ in session s, the cross-layer
scheduler computes the optimal delivery vector d that minimizes
Ta,s subject to the constraints at the physical, data link, and
application layers. Then, for each session s, the following offline
delivery time minimization problem is considered,

(P1) minimize
Ta,s∈N, d∈D(Ta,s)

Ta,s (6)

subject to C14: BR
ρ,Ta,s

= Vρ, ∀ρ ∈ Gs,

where constraint C14 indicates delivery completion at Ta,s.
Problem (P1) is a mixed-combinatorial and non-convex op-

timization problem. It involves the integer optimization vari-
ables µρ,f,t and Ta,s and non-convex constraints including C8,
which contains bilinear terms, and C9, C10, C11, C12, which



involve differences of convex functions. This type of problem
is generally intractable [35]. Moreover, different from typical
resource allocation problems defined over a fixed time period,
(P1) admits a free delivery time Ta,s [25, Section 3.4.3], which
is to be determined via optimization. This endows (P1) with the
functional attribute since the optimal delivery time T ∗

a,s hinges on
the profile of the CSI and the delivery control over the period
[0, T ∗

a,s], which in turn depends on T ∗
a,s itself. As a result, in

searching for the optimal value T ∗
a,s, the feasible set D(Ta,s)

and the set of relevant CSI vary dynamically with the values of
Ta,s, which further complicates the solution of (P1).

To overcome the above difficulties, a novel solution method
is proposed based on suitable decomposition and transformation
techniques. Rather than solving the functional problem (P1)
directly, we first decompose it into two layers of subproblems.
Thereby, the outer-layer subproblem is concerned with the
delivery time minimization while the inner-layer subproblem
is reduced to a typical resource allocation optimization for a
given delivery time. We find that the structure of the two-
layer decomposition is not unique by which several instances
of decomposition are constructed in Theorem 1; see (D1a) and
(D1b) below.

For notational convenience, let IA(x) be the indicator function
defined over set A,

IA(x) ,
{ 0, if x ∈ A,

∞, otherwise,

which indicates the membership of x in A. Theorem 1 is then
stated as follows.
Theorem 1. (Two-layer decomposition of (P1)) Let T ∗

a,s be the
optimal delivery time of (P1). Define

(D1) T ∗
i,s , min

Ti,s∈N∪{∞}
Ti,s + IAi,s(Ti,s). (7)

Then, T ∗
a,s = T ∗

i,s holds for the Ai,s given in the following: i)
A1,s ,

{
T1,s | βa(T1,s) =

∑
ρ∈Gs

Vρ

}
, where βa(T1,s) is the

maximum amount of data delivered within [0, T1,s],

(D1a) βa(T1,s) , max
d∈D(T1,s)

∑
ρ∈Gs

BR
ρ,T1,s

. (8)

ii) A2,s ,
{
T2,s |

∑
ρ∈Gs

BR
ρ,T2,s

=
∑

ρ∈Gs
Vρ

}
, that is, the

BR
ρ,T2,s

’s are feasible for the following problem

(D1b) maximize
d∈D(T2,s)

1

subject to
∑

ρ∈Gs

BR
ρ,T2,s

=
∑

ρ∈Gs

Vρ.
(9)

Several remarks are in order. First, applying the indicator
function IAi,s(Ti,s) in Theorem 1, the feasible set (as well as
the range of the objective function) of problem (D1) is extended
onto N∪{∞} while the set of delivery times (i.e., the set of Ti,s

satisfying IAi,s(Ti,s) = 0) is constrained to Ai,s ∩ N, i = 1, 2.
As a result, the feasibility of Ti,s in problems (D1a) and (D1b) is
indicated by the value of IAi(Ti,s) directly, where Ai,s depends
on the resource allocation policies defined in problems (D1a)
and (D1b), respectively.

Second, due to Theorem 1 and the fact that minx,y f (x, y) =
minx [miny f (x, y)] [36, Section 4.1.3], (P1) can be decom-
posed into two layers of subproblems: the inner-layer problems
(D1a) and (D1b), which are typical resource allocation opti-
mization or feasibility problems for a given delivery time, and
the outer-layer problem (D1), which seeks the optimal delivery

time. This result can be understood intuitively: (D1a) and (D1b)
construct two candidate sets of delivery trajectories, i.e., the
profiles of ϕ(T1,s) or

∑
ρ∈Gs

BR
ρ,T2,s

over time period [0, Ti,s]
satisfying the termination condition C14. Due to the (T ∗

i,s − 1)
degrees of freedom4 overall in D(T ∗

i,s), i = 1, 2, however, the
decomposition is non-unique. Nevertheless, the optimal delivery
trajectory, which achieves the delivery time T ∗

i,s, is subject to
the outer-layer optimization in (D1).

Finally, problem (D1a) also maximizes the effective through-
put in a given delivery time period [0, T1,s]. Problems (P1)
and (D1a) are dual in the sense that T ∗

a,s = T ∗
1,s, i.e., the

control policy that maximizes the amount of delivered video
data within a given time period also minimizes the time needed
for delivering the same amount of video data. A similar duality
between delivery time minimization and throughput maximiza-
tion was also established in the energy harvesting literature
[37]. However, we show here that such a duality holds even
for a general problem formulation with complicated boundary
constraints.

We now provide a sketch of the proof below.
Proof: We first prove ii). It is easy to verify that the delivery

completion condition C14 is equivalent to IA2,s(T2,s) = 0
or A2,s ̸= ∅, since IA2,s(T2,s) =

∑
ρ IA2,s,ρ(T2), where

A2,s,ρ(T ) , {T | T satisfying C14 for ρ}. When the com-
pletion condition is satisfied, the objective functions and the
feasible sets of (P1) and (D1) become the same for i = 2. Thus,
T ∗

a,s = T ∗
2,s holds.

Now, we can prove i) based on ii). From problem (D1a),∑
ρ B

R
ρ,T ≤ βa(T ) holds for any T ∈ N. If IA2,s(T ) = 0, then

IA1,s(T ) = 0 also holds, i.e., A1,s ⊆ A2,s. Thus, T ∗
1,s ≥ T ∗

2,s.
However, if T ∗

2,s ∈ A2,s ̸= ∅ and d∗ solves problem (D1b), then
d∗ is also feasible for problem (D1a) with T1,s = T ∗

2,s ∈ A2,s,
because A1,s, by its definition, contains all delivery control
vectors that can lead to delivery completion. Thus, T ∗

2,s ∈ A1,s.
We then have T ∗

1,s ≤ T1,s = T ∗
2,s since T ∗

1,s is the optimal
solution to (D1) for i = 1. Therefore, T ∗

1,s = T ∗
2,s holds, which

completes the proof.
Based on the above two-layer decomposition, we show in

Section III-C that the functional difficulty can be divided and
then conquered by exploiting the underlying convex and quasi-
convex structures. The inner-layer subproblems (D1a) and (D1b),
which, similar to problem (P1), are mixed-combinatorial and
non-convex optimization problems, can be transformed into
equivalent convex problems and then be solved efficiently.
Herein, either subproblem (D1a) or (D1b) can be solved in
the inner layer with comparable computational complexities.
The outer-layer subproblem can be solved via a simple one-
dimensional search. Particularly, an efficient bisection method
is applicable due to the underlying quasi-convexity of the outer-
layer subproblem [36]. The overall solution is shown to be
globally optimal for (P1) under mild conditions.

Remark 3. In (P1), we typically set

Vρ = Vn/S, ρ ∈ Gs, (10)

for simplicity [19]. (P1) is then solved independently for each
session s ∈ {1, . . . , S} to deliver partial files of size Vn/S.
We note that the overall delivery time increases with S as

4In the special case of T ∗
i,s = 1, the two candidate sets of delivery trajectories

are identical.



the dependencies from one session to the next are ignored,
i.e., single-session streaming with S = 1 is optimal. This
is confirmed by the simulation results in Section V. On the
other hand, although (P1) is tractable for arbitrary S ≥ 1,
the computational complexity decreases with S. The interesting
trade-off between performance and computational complexity by
leveraging S is further characterized and shown in Section V.

B. First Stage Cache Control

We advocate a historical data based cache control to guarantee
the streaming QoE for different user requests [34]. The cache
status is determined based on historical profiles of user requests
and CSI, which are referred to as “scenario” data. We assume
that each user requests only one file in a set of scenario data and
Ω sets of scenario data can be obtained from the system records.
The delivery decision for session s ∈ {1, . . . , S} of scenario
ω ∈ {1, . . . ,Ω} is denoted by ds,ω with the corresponding
feasible set Ds,ω(Ts,ω). However, the caching decisions c(m)

are scenario independent. To obtain a tractable problem formu-
lation, we assume that the caching decisions are optimized for
each session individually. We define c(m) , [c

(m)
1 , . . . , c

(m)
S ],

where the feasible set of c
(m)
s , [c

(m)
1,s , . . . , c

(m)
N,s ] is given by

C(m)
s , {c(m)

s |
∑N

n=1 c
(m)
n,s Vρ ≤ C

(m)
max/S, ∀m ∈ M, ∀ρ ∈ Gs}.

For providing ubiquitous QoE, the caching control aims to
minimize the worst-case delivery time over the Ω pre-selected
scenarios for each session s ∈ {1, . . . , S},

(P2) minimize
c
(m)
s ∈C(m)

s

max
{Ts,ω}∈NΩ

Ts,ω (11)

subject to C15: BR
ρ,Ts,ω

= Vρ, ∀ρ ∈ Gs,∀ω,
ds,ω ∈ Ds,ω(Ts,ω), ∀s, ∀ω,

where C15 guarantees delivery completion for each scenario.
Similar to (P1), we perform two-layer decomposition of (P2),

cf. Theorem 2.
Theorem 2. (Two-layer decomposition of (P2)) Let T ∗

b,s be the
optimal delivery time of (P2). Define

(D2) T ∗
i,s , min

Ti,s∈N∪{∞}
Ti,s + IBi,s(Ti,s). (12)

Then, T ∗
b,s = T ∗

i,s holds for the Bi,s given in the following:
i) B1,s ,

{
T1,s | βb(T1,s) =

∑
ω

∑
ρ∈Gs

Vρ

}
, where βb(T1,s)

is the maximal amount of data delivered within [0, T1,s],

(D2a) βb(T1,s) , maximize
c(m)∈C(m)

∑
ω

∑
ρ∈Gs

BR
ρ,T1,s,ω (13)

subject to ds,ω ∈ Ds,ω(T1,s), ∀ω;

ii) B2,s ,
{
T2,s |

∑
ω

∑
ρ∈Gs

BR
ρ,T2,s,ω

=
∑

ω

∑
ρ∈Gs

Vρ

}
. In

other words, the BR
ρ,T2,s,ω

’s are feasible for problem
(D2b) maximize

c(m)∈C(m)
1 (14)

subject to
∑

ω

∑
ρ∈Gs

BR
ρ,T2,s,ω=

∑
ω

∑
ρ∈Gs

Vρ

ds,ω ∈ Ds,ω(T2,s), ∀ω.
Proof: Let maxω Ts,ω ≤ T1,s, ∀ω ∈ Ω, ∀s ∈ {1, . . . , S}.

By applying the epigraph transformation to (P2), we obtain
(D2a). Note that in (D2a), Ds,ω becomes dependent on T1,s

instead of Ts,ω. Then, (D2) can be proved in a similar manner
as Theorem 1. The details are omitted here.

Different from Theorem 1, the inner-layer subproblems in
Theorem 2 are joint optimization or feasibility problems for
cache control and resource allocation. However, the caching and

delivery decisions are only coupled via constraints C9, C10,
and C11 in (D2a). We reveal in Section III-C that, the same
solution techniques are applicable for both (D1a) and (D2a).
Thus, problem (P2) can be efficiently solved.

C. Solutions of Problems (P1) and (P2)

1) Solving Non-Convex Inner-Layer Subproblems: For the
inner-layer subproblems, taking (D1a) and (D2a) as examples,
we apply constraint relaxation to deal with the combinatorial
variables µρ,f,t and variable transformations to address the non-
convex constraints C8, C9, C10, C11, and C12. The solution is
summarized in two steps, which is also directly applicable for
solving (D1b) and (D2b).

Step 1: Binary Relaxation for the SC Assignment Variables:
We relax constraint C4 by extending the binary SC assignment
variables to µρ,f,t ∈ [0, 1]. The resulting relaxed problem is
solved below without adopting complex combinatorial solution
methods. We will show in Theorem 3 that the solution of the
relaxed problem becomes optimal for (D1a) and (D2a) when the
number of SCs is large, i.e., F → ∞. Moreover, as shown in
[38]–[40] for the same relaxation, in practical OFDMA systems
such as 4G LTE, the number of SCs is sufficiently large such
that the optimum solution is closely approached.

Step 2: Equivalent Convex Problem: We introduce two new
variables bSρ,f,t and bRρ,f,t which denote the effective fetching
and delivery rates on subchannel (f, t, i), respectively, i.e.,

biρ,f,t = Wµi
ρ,f,t log2

(
1 +

pif,th
i
ρ,f,t

N0W

)
≥ 0, i ∈ {S,R}. (15)

We have biρ,f,t → 0 when µi
ρ,f,t → 0. Eliminating pSf,t and pRf,t

in C8 based on (15), we have

C8 ⇐⇒
∑
ρ,f

µi
ρ,f,t

hi
ρ,f,t

[
exp

(
biρ,f,t ln 2

µi
ρ,f,tW

)
− 1

]
≤ Pi

WN0
,

i ∈ {S,R}, ∀t,
which is a convex set, cf. Lemma 1.

Lemma 1. The function θ(ax + b, y) = (ax+ b) exp
(

y
ax+b

)
is jointly convex in (x, y) ∈ {x | ax+ b ≥ 0} × R+.

Proof: When a = 1, b = 0, θ(x, y) is a perspective function
and thus jointly convex in (x, y) ∈ R2

+. Then, θ(ax + b, y) is
the composition of θ(x, y) with an affine function, which is also
jointly convex [36].

Moreover, based on (15), we can transform BS
ρ,t and BR

ρ,t into
affine functions of bSρ,f,t and bRρ,f,t, respectively,

Bi
ρ,t = ∆

∑
f∈F

∑t

τ=1
biρ,f,τ , i ∈ {S,R}, ∀t. (16)

Accordingly, the cache/buffer management constraints
C9, C10, C11, and C12 are convex. Based on these relaxation
and transformation steps, (D1a) and (D2a) can be reformulated
as equivalent convex problems for which strong duality holds.
Thus, efficient polynomial-time algorithms, e.g. interior point
methods [36], can be employed to obtain the optimal solution.

2) Solving Quasi-Convex Outer-Layer Subproblems: For the
outer-layer subproblems (D1) and (D2), we reveal their quasi-
convex structures in Proposition 1 and then adopt the bisection
method to solve them [36]. Without loss of generality, let T be
the delivery time, which corresponds to Ta,s for (D1a) and Tb,s
for (D2a). For mathematical rigor, the domain of T is extended
onto R+ ∪ {∞} by defining T = ⌈tc⌉, where tc ∈ R+.



Proposition 1. (Quasi-convexity of outer-layer subproblems)
Problems (D1) and (D2) are quasi-convex programs in tc.

Proof: It is easy to verify that βa(·) and βb(·) defined in
(D1a) and (D2a) are non-decreasing and quasi-linear in tc (and
also in T ). Then, A1,s and B1,s are convex sets (specifically
rays) in tc. Moreover, the objective functions of (D1) and (D2)
are quasi-convex in tc as they are non-increasing on N\A1,s and
N\B1,s but non-decreasing on A1,s∩N and B1,s∩N, respectively
[36, Section 3.4.2]. Therefore, the outer-layer subproblems are
quasi-convex.

Based on the above, both subproblems are solvable now. The
overall solution procedure for (P1) and (P2) is summarized in
Algorithm 1, which performs a doubling search from line 2 to
line 7 to determine an upper bound on the delivery time (i.e.,
an initial search range [l0, u0]), and a bisection search from line
8 to line 17 to optimize the delivery time. During each iteration
of the search, an inner problem (e.g. (D1a) and (D2a)) needs
to be solved [36], [41]. For an initial step size Tstep = 1 and
delivery time bound [l0, u0], both the doubling search and the
bisection search terminate after ℓ , ⌈log2(u0 − l0)⌉ iterations.
Appealingly, under mild conditions, Algorithm 1 converges to
the global optimum, as stated in Theorem 3.

Theorem 3. (Global optimality condition) Algorithm 1 con-
verges to the unique global optimal delivery time in a finite
number of iterations, if F → ∞ and IA(l0) = IB(l0) = ∞ (i.e.,
l0 is small enough such that video delivery is not completed at
T = l0).

Proof: Please refer to the Appendix.
Upon obtaining the optimal delivery time, the corresponding

caching or delivery decisions are also available. Thus, (P1)
and (P2) are solved. The hidden convexity of the inner-layer
subproblem guarantees that the obtained caching and delivery
decisions are optimal for a given delivery time during each
iteration of the bisection search and that, together with the quasi-
convexity of the outer-layer subproblem, the overall solution is
globally optimal upon reaching convergence.

Remark 4. Assume that the interior-point method, which has
been implemented in various numerical solvers such as CVX
[42], is applied for solving inner-layer problems (D1a) and (D1b)
in line 4 and line 11 of Algorithm 1 [41]. Let TS be the total
delivery time for solving problem (P1) with S-session streaming,
where TS1 ≤ TS2 generally holds for S1 ≤ S2. To estimate the
computational complexity of Algorithm 1, we assume that the
average delivery time per session, TS

S , satisfies TS

S ∈ [l0, u0]
and cSTS

S = u0, i.e., the initial search bounds for session s ∈
{1, . . . , S} are given by [l0,

cSTS

S ], where cS ≥ 1 is a parameter
dependent on the value of S. In each step of the bisection or
doubling search with T ∈ [l0, u0], the computational complexity
of solving problem (D1a) with the interior-point method is
approximated in the big-O notation as O

(
(KFT )3.5

)
[41], since

the size of the optimization problem scales with the number
of UEs K, the number of SCs F , and the delivery time T .
Moreover, the series of delivery times generated by the bisection
(doubling) search iterations in the worst case is approximated
by {T} = {u0, u0 − u0−l0

2ℓ
, u0 − u0−l0

2ℓ−1 , . . . , u0 − u0−l0
20 = l0},

where ℓ = ⌈log2 (u0 − l0)⌉. Since at most (ℓ + 2) problems of
sizes KFT ≤ KFu0 = KFcSTS/S have to be solved during
the bisection and doubling searches, respectively, the overall
computational complexity of Algorithm 1 for solving problem

Algorithm 1 Search for the Optimal Offline Delivery Time
1: initialization: Given l; Tstep ← 1, T ← l, tolerance ϵ← 1;
2: %Phase 1: Doubling search for delivery time bound;
3: repeat
4: Solve inner-layer problems (D1a) (or (D1b)) and (D2a) (or

(D2b)) in [0, T ];
5: l← T , T ← T + Tstep, Tstep ← 2 ∗ Tstep;
6: until IA(T ) = 0 or IB(T ) = 0.
7: u← T ;
8: %Phase 2: Bisection search for optimal delivery time;
9: repeat

10: T ← ⌈(l + u)/2⌉;
11: Solve inner-layer problems (D1a) (or (D1b)) and (D2a) (or

(D2b)) in [0, T ];
12: if IA(T ) = 0 or IB(T ) = 0 then
13: u← T ;
14: else
15: l← T ;
16: end if
17: until u− l < ϵ.

(P1) can be approximated as

O
(
2S(KFu0)

3.5(ℓ+ 2)
)

=O
(
2S−2.5 (cSKFTS)

3.5
log2

(
cSTS

S

))
, (17)

where the factor “2” accounts for both the bisection and the
doubling searches. We observe from (17) that multi-session
streaming (S > 1) has a much lower computational complexity
than single-session streaming (S = 1) as long as the difference
in the respective values of cSTS is small. Similarly, the com-
putational complexity of Algorithm 1 for solving (P2) can be
approximated as O

(
2S−3.5 (cSKFTSΩ)

3.5
log2

(
cSTS

S

))
since

the problem size of (P2) is Ω times that of (P1) and the S
subproblems of (D2a) and (D2b) can be solved in parallel.

IV. ONLINE CROSS-LAYER DELIVERY CONTROL

In this section, we consider online fast delivery control
schemes which require causal CSI only. The optimal online
delivery scheme is first studied in Section IV-A for providing a
performance benchmark. Due to the causality requirement, the
offline optimization technique is not fully applicable. Instead,
by decomposition and discretization techniques, we could cast
the optimal online delivery control as a stochastic shortest path
(SSP) problem and thereby solve it by a stochastic DP algorithm.
However, due to its exponential computational complexity, it is
difficult to apply the proposed DP algorithm in a large system.
To resolve this problem, a suboptimal online delivery scheme
having polynomial-time computational complexity is further
proposed in Section IV-B. Throughout this section, the cache
status is assumed to be pre-determined by the historical cache
control in Section III-B, cf. (P2) and Algorithm 1. For a succinct
presentation, single-session streaming is assumed below. The
session index s is hence omitted. The delivery control problem
associated with multi-session streaming can be addressed by just
applying the developed model and algorithm to each session
individually.

A. Optimal Online Fast Delivery
Assume a given user request scenario and statistical CSI.

Before delivery starts, the optimal delivery policy is computed as
a function of user requests and CSI values. During online VoD
streaming, specific delivery control decisions are instantaneously
obtained by evaluating the delivery policy according to the
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Fig. 2. State transition diagram for online delivery control.

current user requests and the instantaneous CSI realizations,
cf. Fig. 2. However, finding the optimal online delivery policy
involves a nontrivial optimization over a space of functions
rather than that of variables. This new challenge is due to the
CSI causality requirement and will be tackled below.

1) Problem Decomposition: The delivery process for serving
user request ρ involves two dynamical FIFO queues to coor-
dinate wireless fetching, cache fetching, and next-hop delivery
(cf. Fig. 1(b)) subject to constraints C2–C14. We note that
the queue management control, whose decisions are coupled
over time due to constraints C9, C10, C11, C13, and C14,
constitutes the major difficulty for online delivery optimization.
Nevertheless, the underlying resource allocation decisions are
easily solvable based on the techniques in Section III. Therefore,
a decomposition as in Theorem 1 is worthwhile to separate
the resource allocation subproblem from the online delivery
problem.

Specifically, for a given queue control vector dQC
t , there exists

a feasible resource allocation (fulfilling constraints C2–C8 and
C12) if and only if

dQC
t ∈DQC (ht),{dQC

t =g
(
dRA
t ,ht

)
| dRA

t ∈DRA (ht)}, (18)

or equivalently, the following resource allocation subproblem
(RASP) is feasible,

(P3) maximize
dRA

t ∈DRA(ht)
1 (19)

subject to g
(
dRA
t ,ht

)
= dQC

t ,

where we define DRA (ht) , {dRA
t ≽ 0 | C2–C8,C12}

(C12 is rewritten as
∑

ρ∈G
∑

f∈F bSρ,f,t ≤ γt∆). The online
control problem is then decomposed into the RASP (19) in
the inner layer, and a queue control subproblem (QCSP) in
the outer layer; the latter determines the optimal queue control
policy that minimizes the expected delivery time subject to (18)
and the remaining (queuing) constraints C9, C10, C11, C13,
and C14. The RASP given in problem (P3) is non-convex but
can be efficiently solved by an equivalent convex problem as
in Section III. The formulation and solution of the QCSP is
addressed next.

2) Stochastic Shortest Path (SSP) Formulation of QCSP: We
consider discrete-valued CSI ht ∈ Ĥ and QSI Bi

ρ,t ∈ V̂i ,
{v0 = 0, v1, v2, . . . , vLi−1 = αiVρ} (i ∈ {S,R,C}) for ease of
derivation, where v0 < v1 < . . . < vLi−1, αS = 1 − c

(m)
n ,

αR = 1, αC = c
(m)
n , and Li is the discretization level. The queue

control vectors are also discretized based on the discrete-valued
QSI and we have dQC

t ∈ D̂QC (ht), where

D̂QC (ht) ,
{
dQC
t ∈ DQC (ht) | biρ,t = vj+k − vj ,

j, k ∈ N, j + k ≤ Li, i ∈ {S,R,C}
}
. (20)

A sufficient condition is provided in the sequel to guarantee that
the online problem remains feasible after discretization, i.e., the
discretization in (20) is proper [25, Chapter 6].

As a starting point, the evolution of the instantaneous QSI qt

along an arbitrary sample path, i.e., a time series of the CSI
values and the queue control vectors as shown in Fig. 2, is
considered. Given the instantaneous CSI, ht, and queue control
vector, dQC

t ∈ D̂QC (ht), qt evolves according to C9 and C10,
i.e.,

Bi
ρ,t+1 = min

{
Bi

ρ,t + biρ,t, αiVρ

}
, ρ ∈ G, i ∈ {S,C}, (21)

BR
ρ,t+1 = min

{
BR

ρ,t + bRρ,t, B
S
ρ,t +BC

ρ,t, αRVρ

}
, ρ ∈ G,

where qt has to further fulfill the buffer capacity constraint C11
and the QoS constraint C13. The queues defined in (21) are
non-decreasing, i.e., qt+1 − qt ≽ 0, and non-stationary, e.g.,
the sets of feasible queue states and queue control vectors are
time-varying due to C13. As a result, the time evolution accom-
panying the queue evolution should be considered explicitly. For
this purpose, we define the system time index (STI) t ∈ T as
the number of time slots elapsed since delivery started. The STI
increases by 1, i.e., from t to t + 1, for each transition of the
QSI or the CSI. We have T ⊂ N and |T | < +∞ because the
file sizes are finite.

To capture both the queue and the time evolution, the system
state is defined as ϕt , [q,h, t] (or alternatively ϕt , [qt,ht]).
Using the notation of ϕt, we denote (21) as ϕt+1 = f(ϕt,d

QC
t ).

The state space, i.e., the set of feasible system states, is given
by S , {ϕt ≽ 0 | C11,C13}. The values of ϕt are observed
and provided as side information for online delivery control. The
control space, i.e., the set of dQC

t satisfying constraints C2–C13,
is defined for each state ϕt,

Q (ϕt) =
{
dQC
t ∈ D̂QC (ht) | f(ϕt,d

QC
t ) ∈ S

}
, ϕt ∈ S. (22)

Note that the null action 0 ∈ Q (ϕt) holds trivially for any ϕt.
The state transition terminates, when the delivery is completed,
upon reaching the “terminal state” defined as φ , {ϕt ∈ S |
minρ B

R
ρ/Vn = 1}. Here, φ is an aggregation of the states

satisfying C14. Thus, the state and control spaces are defined
with all relevant constraints taken into account. Note that we
have assumed fixed CSI in the derivations so far.

Next, the statistical transitions of system states under online
delivery control and statistical CSI are studied. Assume that the
channel process {ht} is independent over time and that the
probability distribution at each time is given. Then, for given
dQC
t ∈ Q (ϕt), the state transitions are Markovian, i.e., the

transition is independent of all the previous states except for
the current state ϕt. Consequently, the probability of transition
from ϕt to its next state ϕt+1 is given by

P
{
ϕt+1 |ϕt,d

QC
t

}
=P {ht+1}·1

{
ϕt+1= f(ϕt,d

QC
t )
}
,

(23)
where dQC

t ∈ D̂QC (ϕt) and we have 1 {X} = 1 if condition X
holds true and 1 {X} = 0 otherwise.

Finally, let us assign an immediate cost of c(ϕt) = 1 to
state ϕt if ϕt is non-terminating, and c(ϕt) = 0 otherwise,
i.e., c(ϕt) , 1 {ϕt ∈ S\φ}. Denote the initial system state by
ϕ0 , [0, ·, 0]. The QCSP can then be formulated as seeking the



optimal control policy π∗ that achieves the minimal expected
cost, or equivalently the minimal expected delivery time T ∗,
starting from ϕ0. We have

(P4) T ∗ (ϕ0) = min
π

E
[∑∞

t=1
c(ϕt)

]
, (24)

and π∗ = argminπ E [
∑∞

t=1 c(ϕt)], where the expectation is
taken with respect to the probability distribution of the state
transitions. Due to the Markovian property, delivery policies of
the form π ,

[
dQC
t (ϕt)

]
ϕt∈S

, where dQC
t (·) : S → Q are

deterministic functions mapping ϕt ∈ S to dt ∈ Q, can be
considered without loss of optimality [25].

However, if D̂QC and V̂i are not properly discretized, a
control policy that leads to delivery completion in a finite
delivery time irrespective of the channel process may not exist.
That is, (P4) becomes infeasible. To resolve this problem, a
sufficient condition is stated in Proposition 2 to guarantee proper
discretization.
Proposition 2. (Sufficient condition for proper discretization)
The discretization is proper if, for each QSI qt, there exists
some CSI h0

t ∈ Ĥ, such that Q
(
[q,h0, t]

)
\{0} is non-empty,

i.e.,
∪

h (Q([q,h, t])\{0}) ̸= ∅ holds for all ϕt = [q,h, t].
The properness is obvious since, under the condition of

Proposition 2, we can always traverse from QSI q to some QSI
q′, where q′ ≽ q and q′ ̸= q, in a finite number of state
transitions using a non-zero control policy. On the contrary, if
there exist some QSI qt such that Q ([q,h, t]) \{0} = ∅ holds
for all ht ∈ Ĥ, the state transition may possibly end in an
infinite-loop within the subset of states {[q,h, t)] | ht ∈ Ĥ}.
Based on these discussions, by starting from any non-terminating
state ϕ ∈ S\φ, the terminal state φ can be achieved after some
finite number of transitions; moreover, it remains in the terminal
state thereafter with probability 1, i.e., P

{
φ | φ,dQC

t

}
≡ 1.

This ensures that (P4) is a well-defined SSP problem if properly
discretized [25, Chapter 7], [43, Chapter 2].

3) Bellman Optimality Equation and Solution: The SSP
formulation in (P4) allows us to compute the optimal online
delivery policy via DP algorithms. Let T ∗ (ϕt) be the optimal
cost-to-go functional at state ϕt ∈ S, which determines the min-
imal expected delivery time or the minimum expected number
of steps for transition from state ϕt to terminal state φ. The DP
equation is given as
T ∗(ϕt)= min

dQC
t ∈Q(ϕt)

ct(ϕt) +
∑

ϕt+1∈S

P
{
ϕt+1 |ϕt,d

QC
t

}
T ∗(ϕt+1),

ϕt ∈ S. (25)

If ϕt = φ, we have T ∗(φ) = P
{
φ | φ,dQC

t

}
T ∗(φ) = 0.

Otherwise, vector [T ∗(ϕt)]ϕt∈S\φ, appearing on both sides of
(25), defines the fixed point of (25), which is unique and can
be obtained by the successive approximation (value iteration)
method [43, Chapter 2]. In particular, by solving the problem in
(26) at iteration step k,
Tk+1(ϕt)= min

dQC
t ∈Q(ϕt)

ct(ϕt)+
∑

ϕt+1∈S

P
{
ϕt+1 |ϕt,d

QC
t

}
Tk(ϕt+1),

ϕt ∈ S\φ, (26)

the successive approximation can approach the (unique) fixed
point of the DP equation (and thus the online optimum) in the
limit as k → ∞, i.e., T ∗(ϕt) = limk→∞ Tk(ϕt). Upon obtain-
ing T ∗ (ϕt), the optimal online delivery policy is obtained by

Algorithm 2 Computation of the Optimal Online Delivery
Policy

1: %Phase 1: Initialization of control space, state space, and state
transition tables;

2: given Discretization level Li, cache status c(m), request scenario
ω ∈ Ω;

3: repeat
4: Discretize state space S and control set D̂QC according to (20);
5: Check feasibility of each control vector dQC

t ∈ D̂1 and determine
control space Q(ϕt) (cf. (22));

6: Increase discretization level Li, i ∈ {S,R,C};
7: until

∪
h (Q(q,h, t)\{0}) ̸= ∅ for all ϕt = (q,h, t) (cf.

Proposition 2);
8: Build state transition tables for all dQC

t based on (23);
9: %Phase 2: Successive approximation for obtaining optimal online

policy;
10: given tolerance ϵ > 0 and initial value functionals T0(ϕt), k ← 0;
11: repeat
12: Update Tk+1(ϕt) based on (26);
13: Update iteration index k ← k + 1;
14: until maxϕt

|Tk+1(ϕt)− Tk(ϕt)| < ϵ;
15: Obtain delivery policy based on (27).

the deterministic policy π∗ = [dQC∗
t (ϕt)]ϕt∈S\φ [43, Chapter

2], where

dQC∗
t (ϕt)= argmin

dQC
t ∈Q(ϕt)

[ ∑
ϕt+1∈S

P
{
ϕt+1 | ϕt,d

QC
t

}
T ∗(ϕt+1)

]
,

ϕt ∈ S\φ. (27)
The computation steps for obtaining the optimal online de-

livery policy are summarized in Algorithm 2. From line 1 to
line 7, discretization of the state and the control spaces is
repeatedly performed using an increasingly finer granularity until
the properness condition in Proposition 2 is satisfied. Then, a
state transition table associated with the discrete state space is
built for each discrete delivery control in line 8. Applying the
obtained transition tables and the discrete control space in the
successive approximation procedure between line 9 and line 15,
the optimal policy is finally obtained. Algorithm 2 can run offline
and bears a computational complexity of O

(
(LSLRLC)

K
)
,

which depends on the number of discretization levels Li, i ∈
{S,R,C}, and the number of users K. The obtained policies are
stored in the controller as a look-up table, from which online
delivery decisions for different system states can be retrieved
instantaneously.

The problem formulations (P3), (P4) and solution techniques
in Sections IV-A are valid for arbitrary user request scenarios (as
well as for all downloading sessions if multi-session streaming
is adopted). The delivery control policies for all request scenar-
ios can be obtained independent of each other in parallel, as
illustrated in Fig. 2. Note that the optimal online optimization
for S-session streaming control incurs an overall computational
complexity of O

(
S(LSLRLC)

K
)
, which scales linearly with

S. Due to the parallel implementation, however, the overall
computational time does not increase with Ω.

B. Suboptimal Scheme

The non-polynomial time computational complexity of the op-
timal DP approach prohibits its application in large systems with
tens or hundreds of VoD streaming users. Effective suboptimal
schemes are needed instead in these cases to leverage a better
trade-off between performance and computational complexity.
For example, at the cost of performance losses, the SSP opti-
mization problem can be alternatively solved by approximate DP



algorithms with low complexity [43, Section 2], [44, Sections 4
& 6].

Alternatively, exploiting the structure of the offline opti-
mization scheme, we propose here a greedy suboptimal online
scheme for the considered joint caching and buffering system.
Our approach is inspired by [23], where similar greedy heuris-
tics have been shown to be optimal for simple BaR systems
with sufficiently large buffer capacity. This optimality can be
explained by the fact that for large buffer capacities, the time-
coupled queuing constraints become inactive most of the time
(i.e., only active in a vanishing fraction of the delivery time) and
thus have a limited effect on the system performance.

In particular, rather than solving the non-causal inner-layer
problem given in Theorem 1, we propose to optimize the
effective instantaneous throughput based on the instantaneous
CSI only. To this end, the following problem is defined at each
time instance,

(P5) maximize
dt∈D

∑
ρ∈G

(
BR

ρ,t −BR
ρ,t−1

)
(28)

subject to C14: BR
ρ,t ≤ Vρ, ∀ρ ∈ G,

which is equivalent to maximizing the instantaneous total queue
length

∑
ρ B

R
ρ,t over the instantaneous delivery control vector

dt. Problem (P5) is non-convex but can be transformed into an
equivalent convex problem based on (15) in Section III-C. At
time t, the suboptimal algorithm solves problem (P5) and then
updates the queue status using the obtained optimal solutions.
This process continues as time increases until constraint C14
becomes active for all requests, i.e., the delivery is completed.
As a result, the instantaneous total queue length is maximized
in a greedy manner.

For given delivery time T , the proposed suboptimal algorithm
has a polynomial time computational complexity of Θsubopt =
O
(
T (KF )3.5

)
, where the optimization problem solved per

iteration has a size that scales with K and F . In addition, the
proposed suboptimal algorithm requires only instantaneous CSI
(and QSI) and is thus appealing for real-time implementation.
Note that Θsubopt scales with T linearly. This implies that the
proposed suboptimal scheme has even a much lower complexity
than the polynomial-time optimal offline scheme, cf. (17).

The suboptimal algorithm causes a performance degradation
compared to optimal DP as the time coupling in the queue
evolution is ignored. However, we find in Section V that the
proposed greedy suboptimal scheme is close-to-optimal in the
high buffer capacity regime.

V. PERFORMANCE EVALUATION

In this section, the performance of the proposed schemes is
evaluated for residential small cells where most of the VoD
streaming traffic is expected to occur [2]. Consider M = 3 RNs
equally distributed in a cell of radius 750 m. Each RN is located
at a distance of 500 m from the BS and provides coverage in a
radius of 250 m, e.g. to accommodate the VoD traffic for a few
households. We assume there are N = 5 video files, each of size
500 MB (Bytes), that have to be delivered to K = 3 users. The
UEs are uniformly and randomly distributed in the cell while
the minimum distance between UE and BS/RN is 50 m. Each
user requests one file independently. Let θn be the probability
of file n ∈ N being requested and θ = [θ1, . . . , θN ] be the
probability distribution of the requests for the different files. We
set θ = [0.57, 0.20, 0.11, 0.07, 0.05], which follows the Zipf

TABLE I
SIMULATION PARAMETERS.

Parameters Settings
System bandwidth 20 MHz
Subcarriers F = 64
Bandwidth of a SC W = 313 kHz
Duration of time slot ∆ = 20 ms
Max. transmit power PS = 46 dBm, PR = 40 dBm
Noise power density N0 = −172.6 dBm/Hz
Backhaul capacity γt = 1 Gbps, ∀t
UE rate requirement νmin = 1 kbps
Initial delay ϵρ = 0

distribution [9]. Moreover, the 3GPP path loss model (“Macro
+ Outdoor Relay, NLOS scenario”) in [45] is adopted. The
small-scale fading coefficients are independent and identically
distributed (i.i.d.) Rayleigh random variables. The other relevant
system parameters are given in Table I. Before video delivery
starts, Ω = 50 scenarios are randomly generated based on the
user preference distribution and the channel model to optimize
the initial cache status, cf. (P2).

First, the offline scheme (cf. Algorithm 1) is considered as-
suming perfect knowledge of the user requests and the CSI. Un-
less specified otherwise, we consider single-session streaming,
i.e., S = 1. For comparison, we consider two heuristic caching
policies and one suboptimal delivery scheme as baselines:

• Baseline 1 (Preference-based Caching): In this case, the
most popular files are cached. Assuming θ is known, the
cache control decision is made based on

max
c(m)∈C(m)

∑
m,n

θnc
(m)
n Vn. (29)

• Baseline 2 (Uniform Caching): In this case, the same
amount of data is cached for each file, i.e., c(m)

n Vn = 1
N ×

min{C(m)
max,

∑N
n=1 Vn}, ∀m,n, and the user’s preference is

not taken into account. For both Baselines 1 and 2, the
optimal delivery scheme in (P1) is adopted.

• Baseline 3 (Joint SC Assignment and Power Allocation
with Fixed Link Schedule): This scheme is basically the
same as the one obtained from (P1) except that a fixed
link schedule as in the conventional half-duplex relaying
protocol [24] is assumed, i.e., µS

ρ,f,2t = µR
ρ,f,2t−1 = 0,∀t,

holds. Hence, the benefits of BaR cannot be exploited, but
joint SC assignment and power allocation is performed for
minimizing the delivery time. For Baseline 3, the same
initial cache status as for the optimal delivery scheme is
adopted. We note that Baseline 3 focuses on the delivery
design in the physical layer only and does not require
the exchange of QSI. The computational complexity of
Baseline 3 is O

(
TS(KF )3.5

)
for S-session streaming.

In Figs. 3(a) and 3(b), the maximum delivery time of all
considered offline schemes is evaluated for different values of
the buffer and cache capacities, respectively. For a small cache
capacity, we observe from Fig. 3(a) that the performance of
the optimal scheme can be significantly improved by increasing
the buffer capacity, which increases the joint scheduling oppor-
tunities of (wireless) fetching and delivery for uncached data
in the two-hop relaying system. The buffering gains saturate at
large buffer capacities when the maximal benefits are achieved.
As the cache capacity increases, smaller buffer capacities are
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Fig. 3. Maximum delivery time versus (a) buffer capacity and (b) cache capacity for the proposed scheme (solid line), Baseline 1 (dashed line), Baseline 2 (dotted
line), and Baseline 3 (dash-dotted line).

sufficient to achieve the maximal buffering gains. This is because
the amount of uncached data decreases, which reduces the
joint control opportunities for wireless fetching and delivery of
uncached data.

The caching gains are further investigated in Fig. 3(b). For
a small buffer capacity, the performance of the optimal scheme
improves significantly by increasing the cache capacity. This
is expected since, on the one hand, the cache facilitates the
macroscopic gains of content reuse and reduced delivery distance
for the delivery of cached data. Unlike the buffering gains,
the macroscopic caching gains do not diminish for large buffer
capacities, i.e., they cannot be compensated by buffering gains.
On the other hand, similar to the buffer, the cache improves the
microscopic diversity gains for uncached data because of joint
(wireless and cache) fetching and delivery control. Therefore,
some trade-off between the buffering and the (microscopic)
caching gains can be observed in Figs. 3(a) and 3(b).

From Figs. 3(a) and 3(b) we observe that the optimal scheme
achieves a significant performance gain in terms of the maxi-
mum delivery time compared to Baseline 3, which underlines
the benefits of cross-layer delivery optimization compared to
optimizing each layer separately. Indeed, the optimal scheme
has a

(
TS

S

)2.5
log2

(
TS

S

)
times higher computational complexity

than Baseline 3, cf. (17), and requires the exchange of QSI;
however, as will be shown in Fig. 6(b), by increasing the number
of sessions S, the computational cost of the optimal scheme
can be significantly reduced without degrading the performance
noticeably. We note that the results in Figs. 3(a) and 3(b) seem
to contradict the common belief that BaR achieves a throughput
gain at the expense of an increased transmission delay [24].
However, considering the dual relation between throughput and
delivery time, cf. Theorem 1, it is not surprising that an improved
throughput also benefits the delivery time.

Comparing the optimal scheme with Baselines 1 and 2, our
results suggest that preference-based caching is least efficient in
utilizing the cache capacity for overall delivery enhancement,
particularly when the cache and buffer capacities are small.
The reason is that the uncached files constitute the performance
bottleneck. For example, considering (29), the less popular files
would not be cached unless Cmax > V1, where V1 is the size
of the most popular file, i.e., file 1 for the given probability
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Fig. 4. Average amount of delivered video data versus delivery time for the
proposed scheme (solid line) and Baseline 2 (dashed line). Results for Baseline
2 are only shown for Bmax = 10 MB.

distribution θ. This explains why the performance of Baseline 1
does not improve when Cmax increases from 50 MB to 400 MB
in Fig. 3(b). On the other hand, uniform caching combined with
the optimal delivery scheme in (P1), i.e., Baseline 2, performs
very close to the optimal scheme. For a detailed analysis of this
phenomenon, the average amount of delivered video data with
respect to the delivery time is illustrated in Fig. 4. We observe
that the delivered data of Baseline 2 increases steadily with the
delivery time because the cache status is independent of the user
requests and the delivery process. With both the users’ requests
and the delivery process considered in the caching decisions, the
optimal scheme shows a seemingly faster delivery progress than
Baseline 2. However, in an i.i.d. channel fading environment,
the optimal scheme only improves the delivery completion time
slightly compared to Baseline 2.

Next, the optimal (cf. Algorithm 2) and suboptimal (cf. (P5))
online delivery schemes are evaluated assuming availability of
causal CSI only. Due to the limited scalability of DP, the
simulation is performed in a single-RN single-UE subsystem
of the relaying network, i.e., M = 1 and K = 1. The chan-
nel on each SC follows an independent two-point distribution
with P{h = 0.6} = 0.4 and P{h = 1.0} = 0.6. We



discretize the queue states and the delivery control vectors in
(20) uniformly using an initial step size δ = vk+1 − vk =

0.1×min{B(m)
max, C

(m)
max}, ∀k ∈ N.

Figs. 5(a) and 5(b) show the maximal delivery time of the con-
sidered online delivery schemes for different values of the buffer
and cache capacities, respectively. Figs. 5(a) and 5(b) show that
the optimal online and offline schemes can effectively exploit
the cache and the buffer capacity for reducing the maximal
delivery time of the users in the network. This behavior is similar
to the effects in Figs. 3(a) and 3(b). However, compared with
the optimal offline scheme, the optimal online scheme suffers
from a performance loss due to the lack of non-causal CSI.
It is interesting to note that the performance gap between the
optimal online and the offline schemes remains roughly constant
as the cache capacity increases, cf. Fig. 5(b). In contrast, the gap
quickly diminishes as the buffer capacity increases and becomes
negligible in the high buffer capacity regime, where the effect
of the queuing constraints on the system performance becomes
negligible, cf. Fig. 5(a). This result facilitates the design of
efficient online delivery schemes with low complexities and even
with no need for statistical CSI knowledge, as shown below for
the suboptimal online scheme. Recall that the suboptimal online
scheme has a much lower computational complexity compared
to the optimal online scheme. However, because of the ignorance
of the time coupling in the queue evolution, the suboptimal
online scheme suffers from a performance degradation as shown
in Fig. 5(b). The performance loss decreases slowly as the
cache capacity increases. Thus, compared to the optimal online
scheme, a larger cache capacity is needed for the suboptimal
online scheme to achieve a certain performance. Nevertheless,
the performance loss of the proposed suboptimal online scheme
becomes negligible in the high buffer capacity regime, cf.
Fig. 5(a).

Finally, we extend our consideration to larger systems and
discuss some alternatives for achieving scalable delivery control.
In Fig. 6(a), the proposed delivery schemes are evaluated for
different numbers of users in the system with M = 3 RNs.
The optimal online scheme is not considered due to its high
computational complexity. From Fig. 6(a), we observe that the
performance gap between the suboptimal online and the optimal
offline schemes increases with the number of users. However, for
the considered number of users, the performance gap remains
small when the buffer capacity per user is large. This result
suggests that scaling the buffer capacity at the RNs with the
number of users is necessary for the suboptimal online scheme
to achieve a close-to-optimal performance.

In Fig. 6(b), multi-session streaming (S > 1) is compared
with single-session streaming (S = 1), where the requested file
size for each session is chosen according to (10). The suboptimal
online scheme is not evaluated herein since both its performance
and computational complexity are independent of the value of S.
As can be observed from Fig. 6(b), for S ≤ 200 and large cache
or buffer capacities, the performance loss incurred by multi-
session streaming is negligible. On the other hand, (17) reveals
that the computational complexity can be significantly reduced
by increasing S. For example, when S is increased from 1 to
200, the average computation time per simulation scenario is
dramatically reduced from 20.5 minutes to 0.3 seconds, if CVX
is run on a desktop computer with an Intel(R) Core(TM) Quad
3.40-GHz CPU and 16 GB of memory.

VI. CONCLUSIONS

In this paper, cross-layer caching and delivery control was
investigated for minimizing the overall video delivery time in
a downlink network, where a BS sends video data to multiple
users via buffer- and cache-enabled relay nodes. A two-stage
offline optimization problem was formulated for given user
requests and full CSI knowledge, and turned out to be functional
and non-convex. Based on the proposed decomposition and
transformation techniques, a novel efficient offline algorithm
was developed to solve the problem. Moreover, online delivery
optimization under statistical CSI knowledge was investigated
based on the DP framework and optimal and suboptimal online
schemes were proposed. Simulation results revealed that joint
caching and buffering can effectively reduce the overall delivery
time by exploiting the channel diversity of the fetching and
delivery links. Besides, our results unveiled a trade-off between
the caching gain and the buffering gain in both the online and the
offline settings and suggested the existence of low-complexity
close-to-optimum online delivery schemes in the high buffer
capacity regime.

APPENDIX
PROOF OF THEOREM 3

The proof involves two steps. In the first step, we show that in
the limiting case of F → ∞, the binary relaxation in the inner-
layer subproblems becomes tight. Note that the binary constraint
C4: µρ,f,t ∈ {0, 1} is equivalent to µρ,f,t ∈ [0, 1] and ξ(x) ≥ 0
with ξ(x) ,

∑
ρ,f,t(µ

2
ρ,f,t −µρ,f,t). Without loss of generality,

the inner-layer subproblems (D1a), (D1b), (D2a), and (D2b) can
be written in general form as,

β∗ , minimize
x∈X

β(x) (30)

subject to ξ(x) ≥ 0,

where x, β(x), and X denote the optimization variable, the
objective function, and the remaining constraints of (D1a),
(D1b), (D2a), and (D2b). Note that X is a convex set but (30)
is non-convex due to constraint ξ(x) ≥ 0. Assume that (30) is
feasible and its primal optimal value is β∗.

The Lagrangian of (30) is given by L(x, λ) = β(x)− λξ(x),
where λ ≥ 0 is the Lagrangian multiplier for ξ(x). The dual
problem of (30) is

β+ , max
λ≥0

min
x∈X

L(x, λ), (31)

where β+ is the dual optimal value. In general, β∗ ≥ β+ holds
for the non-convex problem (30) due to weak duality and β∗ −
β+ is the duality gap of (30).

Define the perturbation function of (30) as [46, Chapter 6.2],

v(y) , minimize
x∈X

β(x) (32)

subject to ξ(x) ≥ y.

Note that v(y) is a non-decreasing function of y. Moreover, we
show below that v(y) is a convex function as F → ∞, i.e., for
any ϱ ∈ [0, 1], we have

v(ϱy1 + (1− ϱ)y2) ≤ ϱv(y1) + (1− ϱ)v(y2), ∀y1, ∀y2. (33)

Specifically, let x∗
1 and x∗

2 be the optimal control policy of
(32) for arbitrary perturbation variables y1 and y2, respectively.
We assume that both y1 and y2 are feasible for (32), since,
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Fig. 6. (a) Maximum delivery time versus number of users K for the optimal offline scheme (solid line) and the suboptimal online scheme (dotted line) and (b)
maximum delivery time versus number of streaming sessions S for the optimal offline scheme and K = 6.

otherwise, v(y) = +∞ and (33) trivially holds. For F → ∞,
the total bandwidth is divided into a set of infinitesimally
narrow SCs, where several adjacent SCs within the coherence
bandwidth have approximately the same channel gains. Now, we
construct a “frequency-sharing” policy by dividing the coherence
bandwidth into two portions, i.e., ϱ and (1 − ϱ), and apply
the control policies x∗

1 and x∗
2 in each portion, respectively.

It is easy to verify that the constructed policy, denoted by
xϱ, is feasible for v(ϱy1 + (1 − ϱ)y2) since X is convex and
ξ(xϱ) = ϱξ(x∗

1)+ (1− ϱ)ξ(x∗
2) ≥ ϱy1 +(1− ϱ)y2. Meanwhile,

xϱ achieves an objective value of ϱv(y1) + (1 − ϱ)v(y2). Due
to the minimization operation in (32), thus (33) is true.

Because of the monotonicity and convexity of v(y), there exist
λ ≥ 0 satisfying v(y) ≥ v(0) + λ(y), ∀y, where λ is the sub-
gradient of v(·). Let x ∈ X be the optimal solution of (30).
Then, according to [46, Theorem 6.2.7], (x, λ) is a saddle point
of L(x, λ), i.e., L(x, λ) ≤ L(x, λ) ≤ L(x, λ), ∀x ∈ X , ∀λ ≥ 0.
Moreover, we have β∗ = β+, i.e., the duality gap vanishes as
F → ∞, due to [46, Theorem 6.2.5].

On the other hand, the binary relaxation problem of (30) is
given by β− , minx∈X β(x), which is a convex problem and
strong duality holds. Moreover, based on Lagrangian duality
theory [36, Chapter 5], the dual problem of the relaxed problem
is identical to (31), i.e., β− = β+. Consequently, β− = β∗ as

F → ∞ and the tightness of the binary relaxation is proved.

In the second step, we prove the global optimality of Algo-
rithm 1 for the outer-layer subproblems based on Proposition 1.
Let lk and uk be the lower and upper bounds on the delivery time
in iteration step k ∈ N during the bisection search, respectively.
It is easy to verify that sequence {uk} is monotonically non-
increasing while {lk} is monotonically non-decreasing. As a
result, the delivery time bounds are improved in each iteration
of the algorithm. Moreover, the search region in the kth iteration
of the bisection search is given by Ik , ∩k

j=0[lj , uj ]. Based on
Proposition 1, Ik is a convex set. Specifically, we have Ik =
[lk, uk]. Thus, the search region shrinks in each iteration of the
algorithm, i.e., Ik+1 ⊆ Ik. If l0 satisfies IA(l0) = IB(l0) = ∞,
then the optimal delivery time T ∗ is contained in I0 = [l0, u0]
as the doubling search procedure terminates.

On the other hand, from the discussions above, the global
optimum of the inner-layer problems can be obtained in each
iteration of the bisection search (cf. line 11 of Algorithm 1)
by solving their equivalent convex problems. As a result, T ∗

is always contained in ∩k
j=0[lj , uj ] in the kth iteration of the

bisection search. Since u0 < ∞, the termination condition uk <
lk+1 will be satisfied in a finite number of iterations; moreover,
for sufficiently large J < ∞, the solution obtained ∩J

j=0[lj , uj ]
is globally optimal, where {T ∗} = ∩J

j=0[lj , uj ] ⊆ [l0, u0]. The



uniqueness of T ∗ is due to the monotonicity of the delivery time.
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