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Abstract—Many of the existing optimization-based transmit
power control algorithms suffer from high computational com-
plexity and require instantaneous global channel state informa-
tion (CSI), both of which hinder their practical implementation.
In this paper, we consider a wireless network with multiple
transmitter-receiver pairs, where each transmitter only has access
to its local CSI fed back from its intended receiver and does not
require local CSI exchange with its neighboring transmitters. In
such a network scenario, we propose a deep reinforcement learn-
ing based decentralized multi-agent power control (DEC-MAPC)
algorithm for sum-rate maximization, where each transmitter
acts as an intelligent agent. By leveraging the value decomposition
technique, we establish a nonlinear mapping from the local
reward of each agent to the global reward. Such a design allows
each agent to independently control its transmit power based
on its local CSI while enabling global collaboration among the
agents. The proposed algorithm is scalable to large-scale networks
as only local CSI is required, and is robust to the channel
and interference variations via interacting with the environment.
Simulation results show that the proposed DEC-MAPC algorithm
with local CSI achieves comparable sum-rate performance with
the centralized optimization algorithms with global CSI, while
significantly reducing the computational complexity.

Index Terms—Wireless communication, power control, co-
channel interference, deep reinforcement learning.

I. INTRODUCTION

To meet the ever-increasing traffic demand with scarce
spectrum resources, it is necessary to fully exploit the spatial
frequency reuse to enhance the spectral efficiency of the fifth-
generation (5G) and beyond wireless networks [1]–[3]. By
enabling concurrent transmissions on the same radio channel,
the transmit power of a transmitter affects both the signal
strength at the intended receiver and the co-channel interfer-
ence towards the unintended receivers. Different transmitter-
receiver pairs interact with each other due to the co-channel
interference, which is one of the performance-limiting factors
in wireless networks [4], [5].
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Transmit power control is an effective method to alleviate
the co-channel interference due to concurrent transmissions,
thereby enhancing the overall network performance. A variety
of optimization-based transmit power control algorithms have
been proposed in the literature [6]–[12]. For example, the
authors in [6] proposed to manage the co-channel interference
by leveraging the Lagrangian dual relaxation and the Lyapunov
theorem in functional analysis. Two iterative algorithms were
proposed in [7] to maximize the weighted sum-rate of cellular
networks via leveraging coordinated scheduling and discrete
power control. The authors in [8] proposed the weighted min-
imum mean squared error (WMMSE) algorithm to optimize
the transmit power for sum-rate maximization, where com-
plex operations (e.g., matrix inversion, bisection) have to be
performed in each iteration. Fractional programming (FP), as
another popular transmit power control algorithm, was studied
in [9], where quadratic transform is adopted to recast the
nonconvex optimization problem into a series of convex opti-
mization problems. Despite the achievable performance, these
optimization-based algorithms require instantaneous global
channel state information (CSI), which inevitably introduces
the following two challenges. First, obtaining instantaneous
global CSI, including the channel coefficients of all desired
and interfering links across the network, incurs a significant
amount of signaling overhead, which in turn reduces the spec-
tral efficiency and limits the algorithmic scalability. Second,
many optimization-based algorithms require solving a series
of convex optimization problems in each iteration and take a
number of iterations to converge. These methods suffer from a
high computational complexity. To further account for channel
variations, these iterative algorithms need to be executed in
each time slot, which limits their practical implementation for
real-time applications.

Machine learning techniques have recently attracted consid-
erable attention in the wireless communications community
[13]–[18], and have been applied to tackle the transmit power
control problems by alleviating the computational burden
of the optimization-based algorithms. In general, machine
learning based methods first train the neural networks for
decision making and then determine the transmit power by
feeding the required information as input to various modules
of the trained neural networks. The existing machine learning
based methods for transmit power control can be divided
into three categories, namely: supervised learning [19]–[22],
unsupervised learning [23]–[25], and reinforcement learning
(RL) [26], [27]. The supervised learning based methods treat
the transmit power control problem as a mapping function
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learning problem, aiming to minimize the error between the
desired output generated by the existing algorithms (e.g.,
WMMSE algorithm) and the output generated by the trained
neural networks. For example, the authors in [19] used a
convolutional neural network (CNN) to learn the mapping
function between the input CSI and the output transmit power.
The authors in [20] applied deep learning to determine the cor-
relation between the locations of the devices and the transmit
power. The authors in [21] employed a fully connected deep
neural network (DNN) to approximate the mapping function,
where a series of theoretical guarantees have been proven.

Although the computational complexity can be significantly
reduced, supervised learning based approaches typically re-
quire large training datasets generated by the specific system
model under consideration [21]. The generated training data
may not match the practical environment well, especially
when the channel conditions are time-variant. To circumvent
this issue, unsupervised learning based methods have recently
been proposed to solve the transmit power control problem.
Specifically, the authors in [23] proposed to solve the resource
allocation problem by training the parameters of DNN, while
taking into account the nonconvex constraints that can be
tackled by using the primal-dual method. For the resource
allocation problems with stochastic constraints, the authors
in [24] proposed a model-free primal-dual method to train
the DNN and optimize the primal and dual variables. The
authors in [25] applied the graph neural networks (GNNs)
to solve both the transmit power control and beamforming
vector optimization problems. By exploiting the universal
permutation equivariance property, the authors in [25] also
provided the interpretability and theoretical guarantee. Despite
the desired performance, unsupervised learning based methods
also rely on obtaining training data according to the specific
system model, which may be different from the practical
network environment. Moreover, unsupervised learning based
methods cannot track the changes of the time-varying wireless
environment.

Different from supervised and unsupervised learning, the
RL-based methods tackle sequential decision making problems
by learning a policy via interacting with the environment, with-
out the need of obtaining a large amount of training data a pri-
ori [16]. By generating the training data during the interaction
with the environment, the RL-based methods update the policy
based on the feedback from the environment, thereby avoiding
the performance loss due to the modeling error. By formulating
the transmit power control problem as a Markov decision
process (MDP), the RL-based methods enable each transmitter
to adjust its transmit power based on the reward fed back from
the environment. The authors in [26] proposed a multi-agent
Q-learning algorithm to optimize the transmit power, where
the reward function of each agent is designed to take into
account its interference towards the unintended receivers. The
authors in [27] further refined the required observations and
developed an actor-critic deep deterministic policy gradient
(DDPG) based algorithm for sum-rate maximization. However,
in the aforementioned works, each transmitter is required
to exchange the local CSI with its neighboring transmitters.
This inevitably leads to non-negligible signaling overhead and

further reduces the spectral efficiency. It is worth noting that
reducing the signaling overhead is an important issue that
needs to be addressed to achieve spectral-efficient and scalable
communications.

Value decomposition [28]–[32], as a popular technique
for multi-agent deep reinforcement learning (MADRL) [33]–
[35], allows each agent to choose an action based on its
local observation while achieving coordination with other
agents. In particular, the authors in [28] proposed the value
decomposition technique, where the joint state-action function
is decomposed into a linear combination of the local state-
action functions. The authors in [29] extended the linear
combination to a nonlinear monotonic function, and showed
that the maximization of each local state-action function leads
to the maximization of the joint state-action function, which
is also known as the individual global maximization (IGM)
principle [30]. The authors in [31] studied the nonlinear
dependence of the joint state-action function on the local
state-action functions, and proposed an approximation method
based on multi-head attention mechanism. Furthermore, the
authors in [32] investigated the impact of the joint action on
the local decision-making. The inherent coordination property
of the value decomposition technique can be exploited to
reduce the amount of CSI exchange between the neighboring
transmitters for transmit power control in multi-cell wireless
networks, which, however, has not been studied in the lit-
erature. Moreover, the value decomposition based methods
are typically designed for discrete action control. Hence, the
existing studies typically assumed that the transmit power can
only take discrete values to simplify the algorithm design.
However, the transmit power usually takes continuous values
in practice. Thus, the conventional value decomposition based
methods cannot be directly applied.

In this paper, we investigate the sum-rate maximization
problem in wireless networks with spatial frequency reuse,
where multiple transmitter-receiver pairs coexist in the same
frequency channel. We consider a practical yet challeng-
ing scenario, where each transmitter only has access to the
local CSI fed back from its intended receiver, i.e.,without
exchanging the local CSI with its neighboring transmitters.
By modeling each transmitter as an intelligent agent and
assuming the availability of local CSI at each transmitter, we
model the wireless network under consideration as a multi-
agent system (MAS) and formulate the transmit power control
problem as a decentralized partially observable MDP (DEC-
POMDP), for which the decision problem is known to be
challenging. To this end, we develop a DECentralized Multi-
Agent Power Control (DEC-MAPC) algorithm, which is based
on deep reinforcement learning (DRL), to adaptively control
the transmit power of each transmitter. The main contributions
of this paper are summarized as follows:
• We develop a distributed resource allocation framework

for sum-rate maximization in multi-cell wireless net-
works, where each transmitter independently determines
its transmit power based on its local CSI. The proposed
framework does not require CSI exchange between
neighboring transmitters. By exploiting the inherent co-
ordination property of the value decomposition tech-
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nique, the proposed framework can reduce the signaling
overhead, which in turn enhances the spectral efficiency
and algorithmic scalability.

• We propose a novel MADRL algorithm based on QMIX
to optimize transmit power for sum-rate maximization.
In particular, we adopt the actor-critic structure to enable
the continuous-valued power control and further employ
double critic networks to avoid the overestimation of the
local state-action values. As the joint state-action value
is highly dependent upon the outputs of the double critic
networks of all agents, we update the parameters of the
critic networks in an alternating manner.

• Extensive simulations show that, under various net-
work settings, the proposed DEC-MAPC algorithm
achieves competitive sum-rate performance with the
optimization-based algorithms (e.g., WMMSE [8], FP
[9]) with global CSI in multi-cell wireless networks.
Moreover, the proposed DEC-MAPC algorithm requires
a much lower computation time than the FP and
WMMSE algorithms.

The remainder of this paper is organized as follows. In
Section II, we describe the system model and formulate
the sum-rate maximization problem. We propose a scalable
DEC-MAPC algorithm to solve the sum-rate maximization
problem and present the reward function and the detailed
design of the network structure in Section III. In Section
IV, extensive simulation results are provided to demonstrate
the effectiveness, robustness, and scalability of the proposed
algorithm. Finally, Section V concludes this paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

Consider a wireless network consisting of N transmitter-
receiver pairs. We denote the set of transmitters as N =
{1, 2, . . . , N}. Each transmitter i ∈ N is paired with a
single receiver, which is denoted as r(i). All transmitters and
receivers are assumed to be equipped with a single antenna,
as in [26]. With universal frequency reuse, time is divided
into slots with constant duration. Such a network scenario
has been widely used to model wireless ad hoc networks
[4] and can also be adopted to model multi-cell wireless
networks [26], where each small-cell base station (BS) serves
a single user equipment (UE). Note that the transmit power
control algorithm proposed in this paper can be extended to
the scenario where each BS serves multiple UEs in a time
division multiple access manner, as demonstrated in Section
IV.

We denote the channel gain between transmitter i and
receiver r(j) in time slot t by gi,j(t) = φi,j |hi,j(t)|2, where
φi,j ∈ R+ denotes the large-scale path loss attenuation and
hi,j(t) ∈ C denotes the small-scale block fading. Specifically,
the large-scale fading is modeled as φi,j = d−αi,j , where di,j
denotes the distance between transmitter i and receiver r(j),
and α denotes the path loss exponent [36]. For stationary trans-
mitters and receivers, the large-scale fading remains invariant
over many time slots, while the small-scale fading remains
invariant within one time slot but varies across different time

slots. Following the Jakes’ fading model1 [37], hi,j(t) varies
according to the first-order complex Gauss-Markov process as
follows:

hi,j(t) = ρhi,j(t− 1) +
√

1− ρ2ωi,j(t), (1)

where ρ ∈ [−1, 1] denotes the correlation coefficient in
two consecutive time slots, and ωi,j(t), ∀ i, j ∈ N , follows
an independent and identically distributed (i.i.d.) circularly
symmetric complex Gaussian distribution with unit variance
[36]. We set ρ = J0(2πfdT ), where J0(·) denotes the zeroth-
order Bessel function of the first kind, as in [26], T denotes
the duration of one time slot, and fd denotes the maximum
Doppler frequency. Note that the correlation coefficient ρ
varies as the value of the maximum Doppler frequency fd
changes. The Jakes’ fading model can characterize the time-
correlation of the channel coefficients in two consecutive time
slots, where the correlation coefficient further captures the
impact of the time slot duration and the Doppler frequency.
It has been demonstrated in [38] that the Jakes’ fading model
is an appropriate choice for modeling mobile fading channels
with isotropic scattering.

For the synchronized concurrent transmissions over the
same frequency channel, the signal received at receiver r(i)
in time slot t can be expressed as

yi(t) =
√
pi(t)φi,ihi,i(t)xi(t)

+
∑

j∈N\{i}

√
pj(t)φj,ihj,i(t)xj(t) + zi(t), ∀ i ∈ N ,

(2)

where xi(t) denotes the signal intended for receiver r(i) from
transmitter i in time slot t, pi(t) denotes the transmit power
of transmitter i in time slot t, and zi(t) ∼ CN (0, σ2) denotes
the additive white Gaussian noise at receiver r(i) in time slot
t.

From (2), the signal-to-interference-plus-noise ratio (SINR)
at receiver r(i) in time slot t can be expressed as

SINRi(t) =
pi(t)gi,i(t)∑

j∈N\{i} pj(t)gj,i(t) + σ2
, ∀ i ∈ N . (3)

The achievable data rate between transmitter i and receiver
r(i) is given by

Ci(t) = B log2(1 + SINRi(t)), ∀ i ∈ N , (4)

where B denotes the channel bandwidth. As a result, the sum-
rate of all transmitter-receiver pairs in time slot t is given by

Γ(t) =

N∑
i=1

Ci(t). (5)

1The developed resource allocation framework can be directly applied when
other channel models are considered, since only local observations of the
channel conditions are required for transmit power control. The correlation
coefficient in two consecutive time slots may affect the estimation accuracy of
the expected potential future reward which in turn determines the achievable
sum-rate. This issue will be discussed in the next subsection.
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B. Problem Formulation

Due to the co-channel interference, the achievable data
rate of each transmitter-receiver pair is determined by the
channel quality of the desired link, the channel qualities of all
interfering links, and also the transmit power of all interfer-
ing transmitters. Hence, each transmitter should appropriately
control its transmit power to balance the tradeoff between its
achievable data rate and its generated co-channel interference
towards the unintended receivers, which is a challenging task,
especially when only the local CSI is available. Our goal is to
design an efficient and scalable transmit power control policy
that maximizes the sum-rate of all transmitter-receiver pairs.
With the above system model in place, the transmit power
control problem for sum-rate maximization in time slot t is
formulated as

maximize
{pi(t)}

N∑
i=1

Ci(t)

subject to 0 ≤ pi(t) ≤ Pmax, ∀ i ∈ N ,
(6)

where Pmax denotes the maximum transmit power of each
transmitter. Although problem (6) has been studied extensively
in the literature, the existing optimization-based power control
algorithms generally suffer from the following limitations.
First, due to the randomness of the small-scale fading, problem
(6) has to be solved as a new problem at the beginning of
each time slot. As a result, these optimization-based algorithms
are computationally demanding and may not be suitable for
practical implementation. Second, with the existing popular
power control algorithms (e.g., FP and WMMSE algorithms),
it is crucial for the centralized controller to have access to the
instantaneous global CSI2, which corresponds to the channel
coefficients of all desired links (i.e., gi,i(t)) and the interfer-
ing links (i.e., gj,i(t)), ∀ i, j ∈ N . However, obtaining the
instantaneous global CSI incurs significant signaling overhead
across the network and may not be scalable, especially when
the number of transmitter-receiver pairs (i.e., N ) is large. Even
with the instantaneous global CSI, both WMMSE and FP
algorithms can only achieve suboptimal performance.

To circumvent the aforementioned challenges of the
optimization-based algorithms (e.g., FP and WMMSE algo-
rithms), we resort to developing a DRL-based algorithm that
is capable of achieving low-complexity computation and relies
only on the local CSI, while achieving global collaboration
among the transmitters. In addition, to reduce the commu-
nication overhead, we do not require the local CSI to be
exchanged between the neighboring transmitters. Specifically,
in this paper, we assume that transmitter i only has access to
the following local CSI at the beginning of time slot t:

2In this paper, we focus on developing a transmit power control algorithm
to enhance the sum-rate with a small amount of CSI that can be obtained
locally, rather than considering imperfect CSI. For channel estimation, each
transmitter sends a pilot sequence to its intended receiver at the beginning of
each time slot, where the pilot sequences are mutually orthogonal. By utilizing
the existing channel estimation methods [39], each receiver can first estimate
the channel quality of the intended link and then estimate the interference
power after canceling the pilot signal transmitted by the intended transmitter
from the received superimposed pilot signal. Subsequently, each receiver i
feeds back the estimated instantaneous channel gain gi,i(t) and instantaneous
interference-plus-noise power Iobi (t) to the corresponding transmitter.

• gi,i(t): instantaneous channel gain between transmitter i
and receiver r(i) in time slot t;
• Iobi (t) =

∑
j∈N\{i} pj(t − 1)gj,i(t) + σ2: instantaneous

interference-plus-noise power observed at receiver r(i) before
the transmitters updating their transmit power in time slot t. At
the beginning of time slot t, the transmit power, i.e., pj(t), j ∈
N , is yet-to-be-determined and hence cannot be applied to
determine the local CSI. As a result, we follow [26] and define
Iobi (t) in terms of the updated channel gain in time slot t (e.g.,
gj,i(t)) and the transmit power in time slot (t−1) (e.g., pj(t−
1)), which is able to keep track of the wireless environment
due to the channel correlation in consecutive time slots.

We assume that the local CSI (i.e., gi,i(t) and Iobi (t)) can
be accurately estimated by the receiver (i.e., r(i)) and then
correctly fed back to the corresponding transmitter via a delay-
free control channel. This assumption is reasonable in practice
as the local CSI required by each transmitter only involves two
real numbers, e.g., gi,i(t) and Iobi (t). It is worth noting that
the amount of the local CSI required in this paper is much
smaller than that required in other studies (e.g., [26], [27]),
which not only require the instantaneous channel condition of
each interfering link in the neighborhood but also require CSI
exchange between the neighboring transmitters in each time
slot.

In this paper, we aim to develop a scalable and decentral-
ized transmit power control algorithm to maximize the sum-
rate of all transmitter-receiver pairs, where each transmitter
independently adjusts its transmit power based on its local
CSI and without the need of exchanging its local CSI with
the neighboring transmitters. To achieve this objective, we
formulate the transmit power control problem as a DEC-
POMDP in the following subsection.

C. Multi-Agent System Design

By considering each transmitter as an intelligent agent,
the considered wireless network with multiple transmitter-
receiver pairs can be modeled as a MAS. Moreover, since each
transmitter only has access to its local CSI, only partial state
observation is available at each agent to make an independent
decision. Furthermore, the local observation and the transmit
power chosen at each transmitter in the current time slot affect
the local observation in the next time slot. With all these
features, the considered MAS for transmit power control can
be modeled as a DEC-POMDP [40]. Such a DEC-POMDP can
typically be represented by a tuple G = 〈S,A,P,R,N ,O, γ〉,
where S denotes the state space, A denotes the joint action
space, P denotes the state transition probability matrix, R
denotes the reward function, N denotes the set of agents, O
denotes the joint observation space, and γ ∈ [0, 1] denotes the
discount factor. In particular, we define the joint action space
as A =

∏N
i=1Ai, where Ai denotes the action space of agent i

and
∏

denotes the Cartesian product. Similarly, we define the
joint observation space as O =

∏N
i=1Oi, where Oi denotes

the observation space of agent i.
Under the considered network setting, we use transmitter

i ∈ N and agent i ∈ N interchangeably in the rest of the
paper. As each agent needs to determine its transmit power
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to balance the tradeoff between its data rate and its generated
co-channel interference towards the unintended receivers, the
information that is capable of reflecting the current radio
environment is indispensable for decision making. As each
agent needs to determine its transmit power to balance the
tradeoff between its data rate and its generated co-channel
interference towards the unintended receivers, the information
that is capable of reflecting the current radio environment is
indispensable for decision making. Only obtaining the channel
gain and the phase of the desired link may not be sufficient for
each transmitter to determine its optimal transmit power. As
only local CSI (i.e., gi,i(t) and Iobi (t)) is available, the local
state at agent i in time slot t is defined as

si(t) =
(
gi,i(t), I

ob
i (t), pi(t− 1)

)
, (7)

where gi,i(t) provides the channel quality information of the
direct link and Iobi (t) estimates the potential interference level
at receiver r(i). In addition, as the channel states between
two consecutive time slots are correlated, the transmit power
pi(t − 1) in the previous time slot can provide certain in-
formation on the current channel conditions in the saturated
traffic scenario under consideration [26]3. Note that agent i
can obtain its current local state si(t) in time slot t based on
its local observation oi(t) ∈ Oi (e.g., received pilot signals).
With the local state defined in (7) available at each agent, we
define the global state of the MAS as

s(t) =
(
s1(t), s2(t), . . . , sN (t)

)
. (8)

With the local state si(t), agent i chooses an action, denoted
by ai(t) ∈ Ai, based on its current policy πi(ai(t) | si(t)) ∈
[0, 1], which represents the probability of taking action ai(t)
under state si(t). We define the action of each agent as the
transmit power, i.e., ai(t) = pi(t), which takes arbitrary values
between 0 and Pmax, and the action space of agent i can be
expressed as

Ai =
{
pi(t) | 0 ≤ pi(t) ≤ Pmax, pi(t) ∈ <

}
. (9)

Note that the action spaces of all agents are the same, i.e.,
Ai = Aj ,∀ i 6= j, i, j ∈ N .

After the agents select their actions concurrently, the envi-
ronment responds with a reward according to the reward func-
tion R(s(t),a(t)), where a(t) = (a1(t), a2(t), . . . , aN (t)) ∈
A denotes the joint action formed by the actions taken by
all the agents. Additionally, we define the reward as the sum-
rate of all transmitter-receiver pairs, i.e., Γ(t), which is the
global reward contributed by all agents and reflects the level of
cooperation among the agents. Note that Γ(t) can be obtained
after receiving the value of the transmission rate of each link,
i.e., Ci(t), which can be calculated according to (3) by each
receiver and then fed back to the corresponding transmitter.
At the end of time slot t, the environment transits to a new
state (e.g., s(t+1)) according to the state transition probability

3Compared to [26], [27], the amount of CSI required by our proposed
algorithm is much smaller. Specifically, the defined states of each agent in [26]
and [27] include 57 and 19 parameters to be obtained from the neighboring
transmitters. In contrast, each agent in our proposed algorithm only needs to
obtain 3 parameters.

matrix P : S×S×A → [0, 1]. The state transition probability
P(s(t+ 1) | s(t), a(t)) denotes the probability that given the
current joint state s(t) and joint action a(t), the agent moves
from state s(t) to state s(t + 1) in the next time slot, where
P(·) denotes the probability of event (·). Under the considered
system, the randomness of the next state is due to the channel
variation with the given current state s(t) and joint action
a(t). Thus, the state transition probability matrix P reflects
the dynamics of the wireless environment.

With the specifically designed state, action, and reward in
place, the objective is to learn a set of policies for the agents to
maximize the long-term cumulative sum-rate subject to each
transmitter’s power constraint. The formulated problem can be
expressed as follows

maximize
a(t)

E{πi}Ni=1

 ∞∑
j=0

γjΓ(t+ j) | s(t),a(t)

 ,
subject to ai(t) ∈ Ai, ∀ i ∈ N ,

(10)

where γ ∈ [0, 1] is the discount factor for the future reward.
In particular, a larger value of γ implies a higher expectation
of the potential future reward. When γ = 0, problem (10) de-
generates to problem (6) with power allocation. To maximize
the long-term cumulative reward in problem (10), agent i ∈ N
interacts with the environment and aims to find its policy πi
that determines its transmit power.

It is worth emphasizing that we adopt a global reward for the
formulated MAS rather than designing an individual reward
for each agent due to the following reasons. First, the reward
of each agent in the MAS is affected by the transmit power
and states of other agents. It is generally difficult to accurately
evaluate the impact of the action of each agent on the overall
network performance. Second, considering the global reward
enables us to design an effective mechanism that encourages
collaboration among the agents.

III. PROPOSED DEC-MAPC ALGORITHM

In this section, we propose a DEC-MAPC algorithm for
sum-rate maximization in wireless networks with multiple
transmitter-receiver pairs. We first introduce the value decom-
position technique for the transmit power control problem
under consideration and then present the network structure of
the proposed algorithm.

A. Value Decomposition Technique

We denote the objective function of problem (10) as the
joint state-action value function QG(s(t),a(t)), given by

QG(s(t),a(t)) = E{πi}Ni=1

 ∞∑
j=0

γjΓ(t+ j) | s(t),a(t)

 .
(11)

In order to estimate QG(s(t),a(t)), it is necessary for the
transmitters to know the joint state s(t) and joint action a(t).
However, with only local CSI available in the considered
system, each transmitter cannot directly obtain the states
and actions of other transmitters to estimate the joint state-
action value. To address this issue, we propose to use the
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value decomposition technique to factorize the joint state-
action value into multiple local state-action values, thereby
facilitating the design of the DEC-MAPC algorithm.

We adopt a multi-layer perceptron (MLP) neural network
to approximate the policy that determines the transmit power
of each agent. Note that the original QMIX algorithm can
only deal with the actions that take discrete values. To achieve
the continuous-valued transmit power control, we modify the
original value-based learning method in QMIX by introducing
an actor-critic structure. In particular, the actor network deter-
mines the transmit power pi(t) based on the current state si(t),
while the critic network generates the local state-action value
Q̃i(si(t), ai(t)) based on the chosen action and the current
state. To establish the relationship between the local state-
action value estimated by the MLP of each agent and the
joint state-action value, we use a mapping function f(·) in
the value decomposition networks (VDNs) architecture [28]–
[30] as follows

QG(s(t),a(t))

= f(Q̃1(s1(t), a1(t)), . . . , Q̃N (sN (t), aN (t))).
(12)

The local state-action value of agent i can be interpreted
as the contribution of agent i to the joint state-action value.
Therefore, with the optimal policy set {π∗i }Ni=1 of problem
(10), the joint state-action value QG(s(t),a(t)) is a mono-
tonically increasing function of each local state-action value
(e.g., Q̃i(si(t), ai(t))). Otherwise, if there exists an agent that
makes a negative contribution to the joint state-action value,
i.e., ∂QG(s(t),a(t))

∂Q̃i(si(t),ai(t))
< 0, then its transmit power can be set to

be zero to further improve the joint state-action value. Hence,
we have

∂QG(s(t),a(t))

∂Q̃i(si(t), ai(t))
≥ 0, (13)

which is also consistent with the principle in QMIX [29].
Hence, the mapping function f(·) should satisfy the condition
given in (13), and is a monotonically increasing function
with respect to Q̃i(si(t), ai(t)),∀ i. With the aforementioned
discussion, we have the following lemma.

Lemma 1. With the optimal joint action, denoted as a∗(t),
under the joint state s(t) for problem (10), we have

QG(s(t),a∗(t)) = QG(s(t), arg max
a1(t)∈ A1

Q̃1(s1(t), a1(t)),

. . . , arg max
aN (t)∈ AN

Q̃N (sN (t), aN (t))).

(14)

Proof. As a∗(t) is the optimal joint action under the joint state
s(t), we have

QG(s(t),a∗(t)) ≥ QG(s(t),a(t)), ∀ a(t) ∈ A. (15)

Since ∂QG(s(t),a(t))

∂Q̃i(si(t),ai(t))
≥ 0, ∀a(t) =

(a1(t), . . . , ai(t), . . . , aN (t)) ∈ A, we have

QG(s(t),a(t)) = f(Q̃1(s1(t), a1(t)), . . . , Q̃N (sN (t), aN (t)))

≤ f(Q̃1(s1(t), a1(t)), . . . , Q̃i(si(t), a
∗
i (t)),

. . . , Q̃N (sN (t), aN (t)))

= QG(s(t), a1(t), . . . , ai−1(t), a∗i (t), ai+1(t),

. . . , aN (t)),
(16)

where a∗i (t) = arg max
ai(t)∈ Ai

Q̃i(si(t), ai(t)). Similarly, we have

QG
(
s(t), a1(t), . . . , ai(t), . . . , aN (t)

)
≤ QG

(
s(t), arg max

a1(t)∈ A1

Q̃1(s1(t), a1(t)), . . . ,

arg max
ai(t)∈ Ai

Q̃i(si(t), ai(t)), . . . , arg max
aN (t)∈AN

Q̃N (sN (t), aN (t))
)
.

(17)

As a result, we obtain (14).

Note that Lemma 1 is also known as the IGM principle
[30]. The maximal joint state-action value can be achieved by
maximizing each local state-action value. In other words, the
sum-rate of the considered system can be maximized if each
transmitter individually adjusts its transmit power to maximize
the local state-action value Q̃i(si(t), ai(t)). As the objective of
the actor network is to maximize the local state-action value,
agent i ∈ N only need to determine its action based on its
actor network

a∗i (t) = arg max
ai(t)∈ Ai

Q̃i(si(t), ai(t)) = µi(si(t)), (18)

where µi(·) denotes the actor function of agent i, and then
the joint state-action value can be maximized. Note that
the selection of local action does not require the states and
actions of other agents. Such a design enables each agent
to make its own decision based on the local observation
and meanwhile encourages all the agents to collaborate in a
distributed manner.

B. Network Structure

In this subsection, we present the details of the proposed
DEC-MAPC framework consisting of one centralized server
and N distributed agents, working in a centralized training
and decentralized execution (CTDE) manner. In particular,
the centralized training is performed at the centralized server,
which consists of four major components (i.e., one memory
buffer, N decision networks, one hypernetwork, and one
mixing network) and is responsible for training the parameters
of the decision networks. There is a one-to-one mapping
between the decision networks at the centralized server and
the local decision networks at the agents. On the other
hand, the decentralized execution is performed at the local
transmitters/agents. Each transmitter/agent downloads the up-
to-date parameters (i.e., weights and biases of the neural
network) of the corresponding decision network trained at the
centralized server to set up the local decision network, which is
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Fig. 1. The processing flow of the proposed DEC-MAPC framework that consists of a centralized server and N distributed agents. The centralized server
consists of one memory buffer to accommodate the data uploaded from each agent, N decision networks, one hypernetwork, and one mixing network, while
each agent downloads the up-to-date parameters from the corresponding decision network to update its local MLP for local decision making. The centralized
training and distributed execution can be asynchronous, where the local data of each agent are not required to be uploaded to the centralized server in each
time slot.

implemented via the MLP and determines the action based on
its local state. It is worth noting that the proposed DEC-MAPC
algorithm is an off-policy algorithm and does not require
frequent exchanges of data (e.g., the network parameters, the
local states, the chosen actions, and the local transmission
rate) between the centralized server and the distributed agents.
We discuss the network structures for centralized training and
distributed execution in detail as follows.

1) Centralized Training: The memory buffer collects data
(i.e., the local states {si(t)}, the local actions {pi(t)}, and the
transmission rate {Ci(t)}) uploaded by the agents. By exploit-
ing the sample experiences in the memory buffer, N indepen-
dent decision networks generate 2N local state-action values,
while the hypernetwork generates the dynamic weight for each
agent. For notational ease, we abbreviate Q̃i(si(t), ai(t)) and
QG(s(t),a(t)) as Q̃i and QG, respectively, in the rest of
the paper. By mixing the outputs of the decision networks
and the hypernetwork, the mixing network approximates the
mapping function f and generates the joint state-action value
function QG. The process flow of the proposed DEC-MAPC
framework is illustrated in Fig. 1. The major components of
the centralized server are discussed as follows.
• Decision Network: The centralized server consists of
N decision networks, each of which is constructed by
using the actor-critic structure. As the original QMIX
algorithm is highly dependent upon the accurate esti-
mation of the local state-action value and the actor-
critic structure may overestimate the local state-action
values, we adopt the double critic networks to avoid

the overestimation. Consequently, each decision network
consists of one actor network and two critic networks, all
of which are composed of three fully-connected linear
layers and two activation layers, where the rectified
linear unit (ReLU) is adopted as the activation function
between the layers. Besides, a tanh function is adopted
after the output layer of the actor network to bound the
output. The critic networks output the local state-action
values based on the current state and the chosen action,
where the action is determined by the actor network
that takes the state as the input. The chosen action, i.e.,
the transmit power, is normalized to take values within
[−1, 1], which can be scaled to the actual transmit power
level by using an affine transformation. Moreover, to
guarantee the exploration during the training stage, we
add a Gaussian noise with zero mean and variance ε1(t)
on the normalized transmit power. The value of ε1(t) is
initialized with a relatively large value and is reduced
over time until it reaches the minimum value which is
predetermined for exploration.

• Mixing Network: The mixing network is designed to
obtain a desired combination of local state-action values
{Q̃min

i }Ni=1, where Q̃min
i = min{Q̃1

i , Q̃
2
i } denotes the

minimum of the local state-action values generated by
double critic networks of agent i. To incorporate the
nonlinear relationship between QG and {Q̃min

i }Ni=1, we
adopt a neural network to approximate the mapping
function. Specifically, for simplicity, we consider the
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following mapping function

f(Q̃min
π ) = ψ(Q̃min

π W1 + b1)w2 + b2, (19)

where Q̃min
π = (Q̃min

1 , Q̃min
2 , . . . , Q̃min

N ) denotes the
input vector of the mixing network and ψ(·) denotes
the nonlinear activation function. Note that (19) is a
typical functional representation of a two-layer fully
connected neural network. The weights {W1,w2} and
biases {b1, b2} in (19) are the inputs of the mixing
network and they are generated by the hypernetwork.
By further taking {Q̃min

i }Ni=1 as the input, the mixing
network generates QG as the output. As the nonlinear
activation function has the potential to build a robust
neural network, we use the following nonlinear function
to handle the inputs

Qmin
temp = ELU(Q̃min

π W1 + b1), (20)

where the exponential linear unit (ELU) function is
defined as ELU(·) = max(0, x)+min(0, β(ex−1)), and
the value of coefficient β is set to 1 in our work. ELU is
adopted in this paper due to the following two reasons.
First, compared with the sigmoid function, ELU can be
applied to better address the vanishing gradient problem
during the back-propagation. Second, in the calculation
of Qtot, Q̃min

π W1 +b1 can be negative. Compared with
ReLU that maps the negative values to zero, ELU can
be applied to preserve more gradient information during
training, which helps the convergence of the developed
neural network. As a result, the output of the mixing
network can be expressed as

QG = Qmin
tempw2 + b2. (21)

Note that the main operation of the mixing network
is the matrix multiplication, as shown in Fig. 2. Ad-
ditionally, since the inputs of the mixing network are
{Q̃min

i }Ni=1, the proposed DEC-MAPC framework can
be extended to incorporate more agents by linearly
increasing the dimension of the mixing network.

• Hypernetwork: Due to the time-varying nature of chan-
nel conditions, the contribution of each link to the
overall network performance varies across different time
slots. This variation can be reflected in the mapping

function in terms of the weights and biases. We develop
a neural network to dynamically generate the weights
and biases according to the global state with respect
to various channel conditions. The neural network is
composed of two weight generators and two bias gener-
ators. Specifically, each weight generator is a two-layer
fully connected neural network with a ReLU activation
layer between two linear layers. According to (13), we
restrict the weights to be non-negative to reduce the
search time for the optimal weight, which can be realized
by applying an absolute value function | · | after the
output layer to ensure the non-negativity of the output
weights, as illustrated in Fig. 2. Each bias generator is
also a neural network with the same structure as the
weight generator except for the absolute value function.
It is worth noting that although the input dimensions
of the two weight generators are the same, the output
dimensions are different since W1 is an N × L matrix
and w2 is an L×1 vector, where L is a hyperparameter
that determines the size of Qmin

temp. Similarly, for the bias
generators, b1 is an 1× L vector, while b2 is a scalar.

We sample a mini-batch of data from the memory buffer
for training. Similar to the update of deep deterministic policy
gradient (DDPG) [41], we adopt the target-estimator structure,
where the parameters of the estimator network and the target
network are denoted by θest and θtar, respectively. Specifically,
both θest and θtar include the parameters of the decision
networks and hypernetwork. The mixing network does not
provide any parameters since it is designed to combine the
dynamic weights and the local state-action values. Besides,
we denote the parameters of two critic networks that belong
to the decision network of agent i in the estimator network by
ξ1,esti and ξ2,esti , respectively. Similarly, the parameters of the
actor network that belong to the decision network of agent i in
the estimator network are denoted by φesti , and the parameters
of the hypernetwork in the estimator network are denoted by
ζest.

We optimize the parameters of the critic networks and hy-
pernetwork based on the temporal difference and the Bellman
equation [42]. The corresponding loss is defined as follows

L(ζest, {ξj,esti }Ni=1)

=
1

K

K∑
k=1

(
yGk −QG(s,a | ζest, {ξj,esti | i ∈ N , j = 1, 2})

)2
,

(22a)

yGk = Γk + γQ̌G(s′, ā | ζtar, {ξj,esti | i ∈ N , j = 1, 2}),
(22b)

Q̌G(s′, ā; θtar) = f(Q̃min
1 (s′1, ā1), . . . , Q̃min

N (s′N , āN )),
(22c)

where K denotes the size of each mini-batch, and s′ and Γk
denote the next joint state and the sum-rate in the correspond-
ing experience, respectively. In particular, ā = {ā1, . . . , āN}
denotes the noisy actions generated by all actor networks in
the target network, where āi = µi(s

′
i | φtari ) + zi denotes
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the noisy action generated by the actor network of agent i in
the target network, φtari denotes the parameters of the actor
network that belong to the decision network of agent i in the
target network and zi denotes the Gaussian noise with zero
mean and variance ε2(t). Different from DDPG, the added
noise improves the exploration performance and avoids the
local optima in the estimator network. As QG(s,a; θest) in
(22a) is highly dependent upon the outputs of the double critic
networks of all agents, it is difficult to update {ξ1,esti }Ni=1

and {ξ2,esti }Ni=1 simultaneously. Hence, we alternately update
{ξ1,esti }Ni=1 and {ξ2,esti }Ni=1. In particular, at the m-th update,
the index set of the critic networks to be updated is defined
by

{i | Q̃1+(m mod 2)
i (si, ai) = Q̃min

i (si, ai)}, m = 1, 2, . . . ,

where mod is the modulo operation.
On the other hand, the parameters of actor networks are

optimized by applying the chain rule to the expected return
with respect to {φesti }Ni=1

∇φest
i
E

 ∞∑
j=0

γjΓ(t+ j) | s(t),a(t)


≈ E

[
∇φest

i
QG(s,a) | s = s(t),a = {µi(si(t) | φesti )}Ni=1

]
= E

[
∇aiQG(s,a)|s = s(t), ai(t) = µ(si(t))∇φest

i
µi(si(t))

]
.

(23)

As the critic networks may not be stable at the early stage of
training, the parameters of the actor networks are updated with
a fixed interval T , so that the actor networks are less likely
to converge to a local optimum. We update the parameters of
the target network via the following equation

θtar = (1− τ)θtar + τθest, (24)

where τ denotes the soft update parameter. In general, the
value of τ is small (e.g., 1× 10−3) to ensure that the update
of the target network is stable. We optimize the parameters of
the estimator network (i.e., θest) by stochastic gradient descent
methods.

2) Distributed Execution: Each agent updates the param-
eters of the local actor network by downloading the up-to-
date parameters of the corresponding actor network trained
from the centralized server periodically. The interval that
each agent updates its local MLP is denoted by ν. The
decentralized execution process is as follows. After agent i
obtains the local state si(t), it decides the transmit power
pi(t) according to the MLP at the beginning of time slot
t. At the end of time slot t, each agent obtains its local
transmission rate Ci(t) and the channel coefficient varies
according to (1). This observation-decision-transition process
repeats in each time slot. After collecting the information
including the local state si(t), the transmit power pi(t), and
the transmission rate Ci(t), each agent i uploads them to
the centralized server as the historical data. After receiving
the historical data from all agents, the centralized server
time-stamps the data and stores them as an experience in
the memory buffer B, the size of which is denoted as |B|.
Specifically, the stored data can be considered as a tuple

Algorithm 1: Proposed DEC-MAPC Algorithm
Input: Pmax, fd, γ, |B|, T , K, τ and ν

1 Initialize the channel environment randomly. Initialize
θtar and θest according to the uniform distribution.
Copy the parameters of the decision network from
the centralized server to the corresponding local
agent. Initialize the training counter with cout← 0

2 for t = 1, 2, . . . do
3 for Each agent in parallel do
4 Make a local observation and obtain state si(t)
5 Choose action ai(t) according to the actor

network
6 Upload the {si(t), ai(t), Ci(t)} to the remote

server
7 Calculate the sum-rate of all transmitter-receiver

pairs Γ(t) and store the experience into memory
buffer

8 if t ≥ |B| then
9 Uniformly sample K experiences from the

memory buffer and update the critic networks
and hypernetwork according to (22)

10 cout← cout + 1
11 if cout mod T = 0 then
12 Update the actor networks according to (23)
13 Update the target network according to

θtar ← (1− τ)θtar + τθest

14 if cout mod ν = 0 then
15 Each local agent downloads the up-to-date

parameters of actor network to update the
local actor networks.

consisting of 〈s1(t), . . . , sN (t), a1(t), . . . , aN (t),Γ(t), s1(t +
1), . . . , sN (t + 1)〉 and the memory buffer follows the first-
in-first-out (FIFO) policy. It is worth noting that the historical
data are not required to be uploaded to the centralized server
in a real-time manner, as the training and execution processes
can be asynchronous.

Based on the aforementioned discussions, we summarize
the proposed DEC-MAPC algorithm in Algorithm 1.

IV. PERFORMANCE EVALUATION

In this section, we present the simulation results to demon-
strate the effectiveness of the proposed DEC-MAPC algorithm
for wireless networks with spatial frequency reuse.

A. Simulation Setup

In the simulations, we consider a cellular network consisting
of 7 cells deployed in a hexagon shape, where each cell
is centered at one BS (i.e., transmitter). We consider both
single-link and multi-link scenarios, as shown in Figs. 3(a)
and (b), respectively. For the single-link scenario, one UE (i.e.,
receiver) is uniformly and randomly distributed in the coverage
area of its serving BS. For the multi-link scenario, four UE
(i.e., receiver) are uniformly and randomly distributed in the
coverage area of its serving BS, in each time slot, the BS
serves one UE and selects the UEs in a round-robin manner.
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(a) Single-link scenario: each cell consists of one UE.
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(b) Multi-link scenario: each cell consists of multiple UEs.

Fig. 3. Network topology of a wireless cellular network with 7 cells deployed
in a hexagon shape. All UEs are randomly and uniformly located in the
coverage area of its serving BS.

The distance between two neighboring BSs, denoted as D, is
set to be 800 meters. We set the maximum transmit power of
the BS Pmax to be 30 dBm and the noise power σ2 to be −114
dBm over a channel with 10 MHz bandwidth. The length of
one time slot is set to be 20 ms. Unless specified otherwise,
we set the path loss exponent and the Doppler frequency fd
to be 2.5 and 10 Hz, respectively. To investigate the impact of
UEs’ locations on the network performance, we define dmin

and dmax as the minimum and maximum distances between
the UEs and their serving BSs, respectively. In other words,
each UE is randomly located between dmin and dmax away
from its serving BS. Note that dmax equals to the half of the
distance between two neighboring BSs, i.e., dmax = D/2.

After setting the network parameters, we set the parameters
of the proposed neural networks as follows. We set the

memory buffer size |B| and the mini-batch size K to be 5000
and 32, respectively. In addition, we set soft update parameters
τ to be 1 × 10−4. The exploration parameter is initialized
as ε1(0) = 0.3 and is updated according to ε1(t + 1) =
ε2(t + 1) = max

{
εmin, (1 − λ)ε1(t)

}
, where λ = 5 × 10−4

and εmin = 5×10−2. To enable the decision networks to keep
track of the changes of the wireless environment, the transmit
power control policy is updated based on the newly collected
data and current learned policy periodically every a fixed time
interval ν, rather than being trained from scratch. The update
interval T of actor networks is set to be 50, and the interval
ν that each agent updates its local MLP is set to be 100. We
adopt the Adam optimizer [43] and set the learning rate to be
0.001.

Benchmark Algorithms: We compare the performance of
the proposed algorithm with that of seven benchmarks. The
first two benchmarks are FP [9] and WMMSE [8] algorithms,
both of which are centralized algorithms and require the
instantaneous global CSI. Specifically, we adopt Algorithm 1
in [21, pp. 3] and the closed-form expression in [9, pp. 7] for
transmit power control, respectively. For the WMMSE and FP
algorithms, we execute at most 50 iterations to determine the
transmit power in each time slot. In particular, the algorithm
is considered to converge if the mean square error of results in
two consecutive iterations is smaller than 1× 10−4, and then
the algorithm stops and outputs the optimized power. The third
benchmark is random power control, where each transmitter
randomly selects a transmit power level from the action
space. The fourth benchmark is the maximum power strategy,
where each transmitter always transmits to the corresponding
receiver with the maximum transmit power Pmax. The fifth and
sixth benchmarks are the independent DDPG [41] and multi-
agent deep deterministic policy gradient (MADDPG) [44]
algorithms. In particular, the state definitions of MADDPG
and DDPG are the same as our proposed algorithm, while the
reward design of both algorithms can only be set as the local
transmit rate. The final benchmark is the supervised learning
method [21] that learns the policy of the WMMSE approach.

B. Sum-Rate Maximization

In this subsection, we compare the sum-rate performance of
the proposed DEC-MAPC algorithm with the benchmarks in
both the single-link and multi-link scenarios. We set dmin =
100 meters and dmax = 400 meters. The total training epoch
is 5× 104 time slots. For the multi-link scenario, the number
of UEs is equal to 4 in each cell.

1) Single-Link Scenario: Fig. 4(a) shows the average sum-
rate performance of the proposed DEC-MAPC algorithm for
the single-link scenario during the training process. At the
early stage of the training process, the proposed algorithm only
achieves a similar performance as the random power control
scheme due to the lack of training data. As the memory buffer
collects more sample experiences, the average rate per link
of the proposed algorithm increases rapidly and exceeds the
performance of the maximum power strategy after 1000 time
slots. After training for about 7000 time slots, the proposed
algorithm achieves very close performance with the FP and
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Fig. 4. Training and testing. (a): the average rate performance comparison
in the single-link scenario. (b): the empirical cumulative distribution function
(CDF) of the average rate of each link in the single-link scenario. The moving
window size is 500 time slots.

WMMSE algorithms, and is capable of tracking the fluctuation
of the time-varying channel conditions. This is because, by
continuously interacting with the wireless environment, many
experiences can be accumulated in the memory buffer to
account for the dynamics of the channel conditions that deter-
mine the signal power and interference power. By randomly
sampling the stored experiences for the update of the deci-
sion networks, the randomness of channel conditions across
different time slots and spatial locations is incorporated in the
training of decision networks. It is worth emphasizing that
both the FP and WMMSE algorithms require instantaneous
global CSI, while the proposed DEC-MAPC algorithm only
requires each transmitter to have access to the local CSI, which
is not even required to be exchanged among the neighboring
transmitters. By exploiting the unique feature of the value
decomposition technique adopted in the proposed framework,
each agent only needs to choose an action that maximizes its
local state-action value (i.e., Q̃i(si(t), ai(t))) rather than the
local transmission rate (i.e., Ci(t)), which makes the proposed
algorithm converge quickly. Such a design principle can be
leveraged to develop distributed and scalable radio resource
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Fig. 5. Training. Rate performance comparison in the multi-link scenario.
The moving window size is 500 time slots.

management algorithms for dense wireless networks and to
mitigate the signaling overhead, which are critical issues of 5G
New Radio [45]. Additionally, the average rates of both DDPG
and MADDPG first increase rapidly and then converge to that
of the maximum power policy. In particular, as each agent i in
the DDPG algorithm aims to maximize its local transmission
rate Ci based on its local state (i.e., competing with other
agents), the DDPG algorithm in multi-cell wireless networks
under consideration becomes the maximum power policy. On
the other hand, for the MADDPG algorithm, although the critic
of each agent may be able to infer the policies of other agents
and estimate their states and actions [44], each agent i cannot
obtain the local transmission rates of other cells since there is
no information exchange between the neighboring transmitters
in the considered scenario. As a result, the objective of each
agent i in the MADDPG algorithm can only be designed
to maximize the local transmission rate Ci, thereby leading
the optimal policy of the agents in MADDPG to become the
maximum power policy. With the same amount of local CSI,
the proposed DEC-MAPC algorithm achieves a much larger
sum-rate than the DDPG and MADDPG algorithms.

Fig. 4(b) illustrates the empirical cumulative distribution
function (CDF) of the sum-rates achieved by the proposed
DEC-MAPC algorithm and the benchmarks in the testing stage
for 2000 time slots in the single-link scenario. As we can
see, the proposed algorithm achieves close performance with
the centralized FP and WMMSE algorithms in terms of the
achievable data rate. Specifically, the average transmission rate
per link of the proposed algorithm is 2.8151 bps/Hz, while that
of WMMSE is 2.8621 bps/Hz. Meanwhile, the proposed DEC-
MAPC algorithm significantly outperforms the random power
and maximum power strategies.

2) Multi-Link Scenario: Fig. 5 shows the average rate
performance of the proposed algorithm for the multi-link
scenario during the training process. As the training process
proceeds, similar trends can be observed in Figs. 4(a) and 5
for all the algorithms in terms of the average rate per link.
Compared to the single-link scenario, it takes more time slots
for the proposed DEC-MAPC algorithm to converge in the
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TABLE I
TESTING RESULTS FOR VARIOUS VALUES OF THE DOPPLER FREQUENCY

fd (Hz) ρ
Average Rate Per Link (bps/Hz)

DEC-MAPC FP WMMSE MADDPG DDPG Maximum Power Random Power
1 0.996 2.689 2.895 2.835 2.374 2.220 2.478 2.089
5 0.904 2.709 2.848 2.787 2.474 2.443 2.417 2.036
7 0.816 2.662 2.851 2.795 2.461 2.134 2.418 2.044

10 0.643 2.764 2.885 2.822 2.395 2.366 2.474 2.087
12 0.507 2.680 2.856 2.794 2.495 2.108 2.407 2.032
15 0.291 2.688 2.869 2.799 2.360 2.252 2.438 2.055
19 0.009 2.749 2.882 2.820 2.383 2.238 2.457 2.069

multi-link scenario, as more channel dynamics need to be
kept track of. The average rate of the proposed DEC-MAPC
algorithm also significantly outperforms the random power
control and the maximum power strategy, which do not require
CSI at the transmitter side. It is worth noting that the amount of
CSI required by the proposed DEC-MAPC algorithm is quite
small. In particular, each transmitter only requires the local
CSI fed back from its intended transmitter. It is worth noting
that the variation of the number of users in each cell does not
affect the training of the proposed DEC-MAPC framework,
as each base station, rather than each user, is modeled as
an agent. With the learned transmit power control policy,
each base station serves the users within its cell in a round
robin manner. Moreover, the proposed algorithm is capable of
adaptively adjusting the transmit power according to the time-
varying channel conditions. These observations demonstrate
the effectiveness and scalability of the proposed DEC-MAPC
algorithm.

C. Robustness

In this subsection, we investigate the robustness of the
proposed DEC-MAPC algorithm for different settings of the
Doppler frequency, the UEs’ location distribution, and the path
loss exponent in the multi-link scenario.

1) Doppler Frequency: We investigate the impact of the
Doppler frequency (i.e., fd) on the rate performance of the
proposed DEC-MAPC algorithm. As a critical parameter re-
lated to small-scale fading, the Doppler frequency is inversely
proportional to the channel coherence time. A larger value
of the Doppler frequency implies a faster change in terms
of the channel conditions. With the variation of the Doppler
frequency fd, we compare the average achievable data rate
per link of the proposed DEC-MAPC algorithm and the
benchmark algorithms, as shown in Table I. As the Doppler
frequency increases, the correlation coefficient ρ decreases,
and meanwhile the proposed DEC-MAPC algorithm always
achieves a close performance with respect to the WMMSE and
FP algorithms. The performance of the proposed framework
is stable for different values of the Doppler frequency. These
results demonstrate that the proposed DEC-MAPC algorithm
is robust with the variation of the Doppler frequency. Besides,
by enabling collaboration among the transmitters for power
control, the proposed algorithm significantly outperforms the
maximum and random strategies.

2) UEs’ Location Distribution: We investigate the impact
of the UEs’ location distribution on the rate per link for

the proposed DEC-MAPC algorithm. In particular, we take
into account both the minimum UE-BS distance dmin and the
maximum UE-BS distance dmax.

Fig. 6(a) shows the impact of the minimum UE-BS distance
dmin on the performance of the proposed DEC-MAPC algo-
rithm by setting dmax to be 400 meters. By increasing dmin,
the UEs are more likely to be located at the cell edge and
suffer from greater interference from the neighboring BSs.
As a result, when dmin is increased from 50 meters to 350
meters, there is a downward trend for all algorithms under
consideration in terms of the data rate. In particular, when
dmin = 50 meters, the UEs suffer from less interference
compared to the cell-edge UEs, and hence the proposed
algorithm achieves 97.60% performance of the WMMSE. On
the other hand, when dmin = 350 meters, the UEs of each cell
are located at the cell edge and suffer from strong interference,
which limits the achievable SINR and in turn, leads to data
rate degradation. In this regime, the maximum power strategy
only achieves 51.11% performance of the WMMSE due to
the severe co-channel interference. In contrast, benefiting from
the collaboration among the agents, the proposed DEC-MAPC
algorithm adaptively adjusts the transmit power and achieves
75.35% performance of the WMMSE algorithm in the harsh
environment. The supervised learning method proposed in [21]
achieves a similar performance with our proposed algorithm,
at the cost of requiring global CSI, which is difficult to be
obtained and incurs significant signaling overhead. In addition,
the supervised learning method cannot adapt to time-varying
channel conditions as the training datasets need to be generated
by specific system models beforehand.

Fig. 6(b) illustrates the impact of the maximum UE-BS
distance on the data rate of the proposed algorithm by setting
dmin to be 50 meters. With the increase of dmax, the distance
between the neighboring BSs becomes larger, which in turn
reduces the co-channel interference. On the other hand, as
dmax increases, the probability of the received signal strength
at the intended receiver being small increases. As the decrease
in the strength of the co-channel interference is faster than that
of the signal, the average rate performance of all algorithms
increases. With the degradation of the co-channel interference,
there is a slowdown in the growth of the average rate. As
can be observed, the random power strategy performs the
worst, while the maximum power strategy achieves the second-
worst performance, as both strategies enable no collaboration
among the transmitters. Both the FP and WMMSE algorithms
achieve high data rates by exploiting instantaneous global CSI.
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TABLE II
TESTING RESULTS FOR VARIOUS VALUES OF PATH LOSS EXPONENT

α
Average Rate Per Link (bps/Hz)

DEC-MAPC FP WMMSE MADDPG DDPG Maximum Power Random Power
2.5 2.764 2.885 2.822 2.388 2.366 2.474 2.087
2.8 2.962 3.139 3.096 2.877 2.261 2.750 2.318
3.2 3.310 3.579 3.579 3.330 2.495 3.313 2.790
3.5 3.924 4.110 4.220 3.763 2.956 4.011 3.382
3.8 4.421 4.393 4.524 4.276 3.257 4.379 3.712
4.2 4.969 4.811 4.790 4.872 3.457 4.856 4.143
4.5 5.489 5.123 5.071 5.240 4.122 5.273 4.364
4.8 5.753 5.322 5.398 5.926 4.044 5.579 4.138
5.5 4.808 4.855 4.583 4.582 1.784 4.910 2.239
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Fig. 6. The impact of UEs’ location distribution on the average rate
performance. (a): the average rate performance versus the minimum UE-BS
distance dmin. (b): the average rate performance versus the maximum UE-BS
distance dmax.

Meanwhile, the proposed DEC-MAPC algorithm with local
CSI achieves almost the same rate performance as the FP and
WMMSE algorithms for different values of dmax.

In particular, the proposed DEC-MAPC algorithm achieves
97.46% and 90.46% performance of the WMMSE when
dmax = 200 meters and dmax = 900 meters, respectively.
Additionally, by dynamically generating the weights according
to the current state, the proposed algorithm is capable of keep-

ing track of the performance of the centralized optimization
algorithms along with the variation of dmax. These results
demonstrate the robustness of the proposed algorithm under
different UEs’ location distributions.

3) Path Loss Exponent: Table II illustrates the performance
of all algorithms under consideration in terms of the average
data rate per link with different values of the path loss
exponent (i.e., α). In general, a larger value of the path loss
exponent leads to a faster attenuation rate of the strength of
the signal and the co-channel interference with respect to the
distance. When the path loss exponent increases from 2.5 to
4.8, we observe that the achievable data rate of the proposed
DEC-MAPC algorithm increases to a peak value, as the
attenuation of the interference power exceeds the attenuation
of the signal power in the interference-limited region. By
further increasing the path loss exponent to 5.5, the achievable
data rate of the proposed algorithm decreases, because the
attention of the signal power starts to exceed the attenuation of
the interference power. Such a trend can also be observed for
all the benchmark algorithms. Moreover, the proposed DEC-
MAPC algorithm achieves a comparable performance with the
WMMSE and FP algorithms for different values of the path
loss exponent.

Additionally, due to the ε-greedy strategy, the proposed
DEC-MAPC algorithm may achieve a better performance than
the WMMSE and FP algorithms, for example, when α = 4.2
and α = 4.5. As the path loss exponent has a significant
impact on the strength of signals and interference, these results
demonstrate the robustness of the proposed algorithm.

D. Scalability

In this subsection, we investigate the scalability of the
proposed algorithm by varying the number of cells in terms
of the achievable data rate and the computational complexity
in the multi-link scenario.

1) Achievable Data Rate: We study the impact of the
number of cells (i.e., N ) on the scalability of the proposed
DEC-MAPC algorithm by increasing the number of cells
from 7 to 14, as shown in Fig. 7. With the increase of N ,
the achievable data rates per link of all algorithms under
consideration decrease. This is because, a larger number of
cells leads to a higher level of co-channel interference across
the network. Meanwhile, the proposed DEC-MAPC algorithm
is always capable of achieving a comparable performance as
the WMMSE and FP algorithms. Although the MAS becomes
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for different algorithms.

more complex as N increases, the performance of each agent
under the proposed algorithm is stable by leveraging the
advantages of the value decomposition technique and mixing
mechanism. Moreover, the proposed algorithm can easily be
extended to incorporate more agents by linearly increasing the
dimension of the mixing network, which takes the global state
as the input.

2) Computational Complexity: We compare the running
time of the proposed DEC-MAPC algorithm with that of the
WMMSE and FP algorithms on an Intel(R) Xeon(R) CPU E5-
2690 v4 @ 2.6 GHz platform. The average computation time
of each execution is illustrated in Fig. 8. As can be observed,
the average computation times of the WMMSE and FP algo-
rithms are in the same order of magnitude, while the proposed
DEC-MAPC algorithm requires a much shorter computation
time. Specifically, when the number of cells is equal to 7,
the proposed DEC-MAPC algorithm is about 22× and 16×
times faster than the FP and WMMSE algorithms, respectively.
When the number of cells is equal to 14, the advantage of the
proposed DEC-MAPC over the FP and WMMSE algorithms in
terms of the computational complexity is more obvious, i.e.,
achieving 32× and 31× speedup, respectively. Additionally,
the computation time of the FP and WMMSE algorithms grow

rapidly with the increase of the number of cells, while the
growth of the proposed DEC-MAPC algorithm is very small.
The computational efficiency of the proposed DEC-MAPC
algorithm is achieved by exploiting the CTDE mode and the
computation-efficient neural networks. In particular, the pro-
posed DEC-MAPC algorithm adopts the CTDE mode, where
the action of each transmitter is locally decided. Moreover,
the proposed DEC-MAPC algorithm determines the transmit
power by feeding the local observation to various modules
of the trained neural networks rather than performing costly
iterative algorithms.

V. CONCLUSIONS

In this paper, we studied the transmit power control problem
in a wireless network with multiple transmitter-receiver pairs,
where the co-channel interference is the main performance-
limiting factor. By considering each transmitter as an intelli-
gent agent, we modeled the wireless network as a MAS and
formulated the power control problem as a DEC-POMDP. By
exploiting the value decomposition technique, we proposed a
DEC-MAPC algorithm, which only relies on the local CSI
fed back from the intended receiver and does not require the
exchange of local CSI among the transmitters. Simulations
demonstrated that the proposed DEC-MAPC algorithm with
local CSI achieves a competitive data rate with the centralized
WMMSE and FP algorithms with global CSI in both the
single-link and multi-link scenarios. Results also showed the
robustness of the proposed algorithm with respect to the
Doppler frequency, the UEs’ location distribution, and the path
loss exponent, while achieving good scalability performance
in terms of the data rate and the computational complexity.
For future work, an interesting research direction is to extend
the developed framework in this paper and investigate the
joint continuous-valued transmit power control and discrete-
valued subcarrier allocation, where additional discrete-valued
subcarrier allocation variables need to be considered in the
action space of each agent and the reward design.
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