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Abstract—Non-orthogonal multiple access (NOMA) has been
considered as a promising technology for future wireless com-
munications. In most of the existing NOMA schemes, the ideal
information rate based on Shannon capacity is used as the
performance metric, assuming perfect successive interference
cancellation (SIC) and Gaussian transmit signals without con-
sidering practical modulations. The implicit assumptions and
the resulting schemes may lead to suboptimal performance in
practical NOMA systems. In this paper, we consider multi-
user multi-channel NOMA systems using practical quadrature
amplitude modulation (QAM) with imperfect SIC. We aim to
maximize a more practical performance metric, namely the
effective throughput, which takes into account the data rate and
error performance. To achieve this goal, we derive both the exact
and approximate expressions of the effective throughput. We also
formulate a joint resource optimization problem of the power
allocation, channel assignment, and modulation selection to
maximize the effective throughput. We develop an efficient power
allocation solution by proposing a closed-form power allocation
within channels and a waterfilling-form power budget allocation
among channels. We also develop efficient channel assignment
and modulation selection methods with the aid of matching
theory and machine learning, respectively. Consequently, we pro-
vide an efficient joint resource allocation algorithm via iterative
optimization to maximize the effective throughput. Numerical
results are presented to verify the superiority of the proposed
NOMA scheme over orthogonal multiple access (OMA) and other
NOMA schemes.

Index Terms—Channel assignment, effective throughput, im-
perfect successive interference cancellation (SIC), quadrature
amplitude modulation (QAM), non-orthogonal multiple access
(NOMA), power allocation.

I. INTRODUCTION

Non-orthogonal multiple access (NOMA) has been consid-
ered as a promising technology to support massive connectiv-
ity due to its non-orthogonal characteristics [1]–[4]. Compared
with the conventional orthogonal multiple access (OMA),
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NOMA can provide higher spectrum efficiency, better user
fairness, and lower signalling cost [5]–[7]. In a power-domain
NOMA system1, the NOMA scheme is performed within each
orthogonal channel by employing superposition coding at the
transmitter and successive interference cancellation (SIC) at
the receiver, so that users’ signals can be multiplexed in the
power domain. Hence, the resource allocation scheme, includ-
ing power allocation and channel assignment, is a critical issue
to fulfill the benefits of NOMA.

Many different approaches have been proposed to optimize
the power allocation and channel assignment of NOMA sys-
tems [8]–[16]. The authors in [8] develop power allocation
schemes under various performance criteria and a channel as-
signment algorithm based on the deferred acceptance method.
Branch and bound approach is employed in [9] to jointly allo-
cate resources for minimizing the transmit power subject to the
data rate and outage probability constraints. In [10], the power
weights and channel assignment are obtained through dynamic
programming. In [11], energy-efficient resource allocation
algorithms are developed by transforming and approximating
the formulated problems into convex subproblems. A deep
reinforcement learning framework is proposed in [12] for
channel assignment to maximize the sum rate or minimal
rate. In [13], the power allocation is pre-defined to follow
the inverse proportional fairness criterion, while the channel
assignment problem is formulated as a cooperative multi-agent
game and is solved using deep deterministic policy gradient
method. The power allocation of multiple-input multiple-
output (MIMO)-NOMA is addressed through a communica-
tion deep neural network in [14] to maximize the sum rate
and energy efficiency. An energy and delay cost minimization
problem of Internet-of-things (IoT) systems is formulated in
[15], where the subcarrier allocation and task scheduling are
solved based on matching theory and reinforcement learning.
In [16], the authors optimize the altitudes of unmanned aerial
vehicles (UAVs) and improve the channel access to maximize
the sum rate via constrained deep reinforcement learning.

Most of the existing works of NOMA, e.g., [8]–[17], aim at
maximizing, e.g., the ideal sum rate, weighted sum rate, max-
min fairness, or energy efficiency, based on Shannon capacity,
which implicitly considered Gaussian transmit signals and
perfect SIC without error propagation. However, in practical
systems, signals are generally constrained to discrete modula-
tion constellations and error propagation generally exists since

1According to the multiplexing method, NOMA can be divided into power-
domain NOMA and code-domain NOMA. In this paper, we focus on the
former one. Hereafter, NOMA is used to refer to power-domain NOMA.
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Figure 1: System model of a downlink NOMA system.

the interference cannot always be perfectly removed [2]. Some
works have considered imperfect SIC for NOMA [18]–[24].
However, in those works, the residual interference caused by
imperfect SIC is modeled as a continuously-valued Gaussian
signal, which is an approximation without considering practi-
cal modulation schemes.

In this work, we consider, from a general point of view,
multi-user multi-channel NOMA systems using the quadrature
amplitude modulation (QAM) [25] with imperfect SIC. In
the literature, only a few related works [26], [27] considered
practical modulations along with imperfect SIC. Specifically,
the work [27] focused on a two-user NOMA system and
attempted to achieve the minimum error probability of the
two users. In this paper, we consider a more general NOMA
framework where multiple channels are available to multiple
users who may adopt different QAM schemes and transmit
using different power levels. More importantly, we introduce
a more practical performance metric, namely the effective
throughput, to the NOMA system design, which accounts for
the correctly transmitted bit rate and thus takes into account
both the data rate and error performance.

The aim of this work is to maximize the effective throughput
of a multi-user multi-channel NOMA system while taking
into account practical QAMs and imperfect SIC. There are
several challenges to achieve this goal. First, the expression
of the effective throughput, as the objective function, has
to be derived, which is, however, quite complicated, due to
the consideration of QAMs and imperfect SIC. Second, the
effective throughput maximization problem turns out to be a
joint resource optimization problem of the power allocation,
channel assignment and modulation selection, which belongs
to the class of mixed integer programs (MIPs). Third, the
nonlinear and complex nature of the effective throughput
expression makes each part, i.e., power allocation, channel
assignment, or modulation selection, a difficult job. In the rest
of this paper, we address these issues and develop efficient
methods to maximize the effective throughput of the practical
NOMA system. The main contributions of this paper are
summarized as follows.

• We consider the effective throughput maximization of the
multi-user multi-channel NOMA system considering both
the data rate and error performance along with imperfect
SIC and practical QAM schemes, which is formulated
as a joint power allocation, channel assignment, and
modulation selection problem.

• We derive the exact expression of the effective throughput

as a function of the transmit power, channel gain, and
modulation scheme, and also provide a simpler lower
bound of it for facilitating the system design.

• We decompose the power allocation problem into two
subproblems. We obtain an analytical power allocation
solution by providing a closed-form power allocation
within channels and a waterfilling-form power budget al-
location among channels. The proposed power allocation
schemes can avoid allocating all power to the strongest
user and thus can improve user fairness.

• We transform the channel assignment into a two-sided
matching problem with peer effects and develop efficient
channel assignment algorithms based on swap matching
policies.

• We transform the modulation selection into a classifica-
tion problem and propose a deep neural network (DNN)-
based modulation selection method.

• A joint resource allocation algorithm is proposed via
iteratively optimizing power allocation, channel assign-
ment, and modulation selection for solving the effective
throughput maximization problem.

• Representative numerical results are provided, showing
that the proposed NOMA scheme outperforms the ex-
isting OMA and other NOMA schemes in terms of the
effective throughput.

The rest of this paper is organized as follows. The system
model is introduced in Section II. In Section III, we derive
the expression of the effective throughput and address the
power allocation subproblem. In Section IV, we investigate
the channel assignment and modulation selection subproblems.
Numerical results are presented in Section V. Conclusions are
drawn in Section VI.

II. SYSTEM MODEL

A. Signal Model

In this paper, we consider a downlink NOMA system,
where a single-antenna base station (BS) serves N single-
antenna users2 through K wireless channels, which can be
frequency bands, time slots or spreading codes. We denote
the nth user by Un (n = 1, ..., N ) and the kth channel by Ck
(k = 1, ...,K). As depicted in Fig. 1, the users are divided
into K groups with each group assigned with a channel.
Signals transmitted on different channels are assumed to have
no interference with each other, while signals on the same
channel are multiplexed in the power domain. We assume that
the BS has full knowledge of the channel state information
(CSI).

At the BS, after superposition coding, the transmit signal
on channel Ck can be written as

xk =

N∑
n=1

dk,n
√
pk,nsn, (1)

2According to [28], by carefully designing the precoding and detection
matrices, the inter-cluster interference of MIMO-NOMA can be canceled
completely. The MIMO-NOMA system can be reduced into several single-
input single-output (SISO) NOMA systems. Thus, in this paper, we focus on
the single-antenna NOMA systems.
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where sn ∈ C is the intended signal of user Un, dk,n is a
binary variable and represents whether channel Ck is assigned
to user Un, i.e.,

dk,n =

{
0, Ck is not assigned to Un

1, Ck is assigned to Un.
(2)

Moreover, pk,n ≥ 0 is the power allocated to user
Un on channel Ck, subject to the total power constraint∑K
k=1

∑N
n=1 dk,npk,n ≤ P , where P is the total power

budget. At the receiver, if assigned with channel Ck, user Un
receives the signal

yk,n = gk,nxk + zn, (3)

where gk,n ∈ C is the channel coefficient of channel Ck
between the BS and user Un, which includes both large-scale
path loss and small-scale fading, and zn ∈ C is the additive
white Gaussian noise (AWGN) of user Un, with zero mean
and variance σ2

n. To facilitate further analysis, we define the
normalized channel gain as hk,n , |gk,n|2/σ2

n > 0.
SIC is employed at the receiver to decode the intended

signal sn from yk,n. For those users which are assigned with
the same channel, each user decodes and removes the signals
of the other users with higher power successively, and then
decodes its own signal, while treating the signals of those users
with lower power as interference. Considering the complexity
of SIC, the decoding delay, and the co-channel interferences
are proportional to the number of users on each channel [8],
[11], [20], [29], we limit the number of users within each
channel to be at most two. The total number of users N is
less than or equal to 2K. Specifically, we assume that each
user occupies one channel. The situation where each user
can occupy more than one channel can be extended from
our system model by treating the user assigned with multiple
channels as multiple virtual users assigned with single channel.

B. Effective Throughput

To evaluate the NOMA system performance, most of the
previous works adopt metrics based on the ideal information
rate, assuming perfect SIC without considering the error
performance [8]–[17]. Although some works take into account
imperfect SIC, they do not consider the fact that the transmit
signals in practice are generally constrained to discrete modu-
lation constellations [18]–[24]. Thus, the resulting schemes of
the models in [8]–[24] may be different when the algorithms
are deployed in practical systems.

To tackle this issue, in this paper, we use the effective
throughput as the performance metric, considering both the
error performance and the data rate along with imperfect SIC
and practical modulation schemes. Suppose the bandwidth
occupied by each channel is equal to B. Consider that user
Un assigned with channel Ck employs M2

n-QAM. According
to [30], the symbol rate of user Un is also equal to B.
Thus, the effective symbol rate (which measures the correctly
transmitted symbol rate [23], [31], [32]) of user Un can be
expressed as B(1− εk,n), where εk,n is the symbol error rate

(SER) of user Un on channel Ck. On this basis, we define the
effective throughput of user Un on channel Ck as

Jk,n , B(1− εk,n) log2M2
n, (4)

to measure the correctly transmitted bit rate.
Note that it is reasonable to use the SER, and not the bit

error rate (BER), in determining the effective throughput. If
the BER is used in (4), the effective throughput of M2

n-QAM
has the range B

2 log2M
2
n ≤ Jk,n < B log2M

2
n. Then, the

maximum effective throughput of M2
n-QAM, i.e., B log2M

2
n,

is equal to the minimum effective throughput of M4
n-QAM,

i.e., B
2 log2M

4
n = B log2M

2
n. Under this assumption, the

scheduler will select the highest modulation order to maximize
the effective throughput no matter how poor the real error
performance is.

C. Problem Formulation

From (4), the effective throughput is a function of the
bandwidth, the modulation scheme, and the SER, which
further depends on the channel quality and transmit power.
Thus, the effective throughput maximization problem can be
formulated as a joint power allocation, channel assignment,
and modulation selection problem:

P1 : maximize
{pk,n, dk,n,Mn}

J ,
K∑
k=1

N∑
n=1

dk,nJk,n (5a)

subject to dk,n ∈ {0, 1}, k = 1, ...,K, n = 1, ..., N
(5b)

K∑
k=1

dk,n = 1, n = 1, ..., N (5c)

N∑
n=1

dk,n ≤ 2, k = 1, ...,K (5d)

K∑
k=1

N∑
n=1

dk,npk,n ≤ P (5e)

pk,n ≥ 0, k = 1, ...,K, n = 1, ..., N
(5f)

Mn ∈M, n = 1, ..., N, (5g)

where J is the effective system throughput. Constraints (5c)
and (5d) indicate that each user occupies one channel and
each channel can be assigned to at most two users. We refer
to the channels assigned to only one user as the single-user
channels, the channels assigned to two users as the two-
user channels, and the channels not being assigned to any
users as the idle channels. Constraint (5e) is the total power
constraint. M represents the set of all possible modulation
orders. In this paper, we consider four practical modulation
schemes: 4-QAM, 16-QAM, 64-QAM, and 256-QAM. Thus,
M = {2, 4, 8, 16}. Problem P1 is solved for each symbol to
obtain the optimal performance. For slow-fading channels, the
resource allocation can be updated in a longer time scale in
order to reduce the complexity.

Problem P1 is an MIP, which is NP-hard [33], [34]. To
find the globally optimal solution, one has to employ the
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φk,I =
1

Mk,IMk,II

Mk,I∑
m=1

Mk,II∑
j=1

Mk,II∑
l=1

[
f(m, 1)Q

(√
3hk,Ipk,I
M2
k,I − 1

+ 2(j − l)
√

3hk,Ipk,II
M2
k,II − 1

)

+f(m,Mk,I)Q

(√
3hk,Ipk,I
M2
k,I − 1

− 2(j − l)
√

3hk,Ipk,II
M2
k,II − 1

)]

×

[
1− f(l, 1)Q

(
(2m−Mk,I − 1)

√
3hk,Ipk,I
M2
k,I − 1

+ (2j + 1− 2l)

√
3hk,Ipk,II
M2
k,II − 1

)

−f(l,Mk,II)Q

(
(Mk,I + 1− 2m)

√
3hk,Ipk,I
M2
k,I − 1

+ (2l − 2j + 1)

√
3hk,Ipk,II
M2
k,II − 1

)]
. (7)

exhaustive search that has a high computational complexity.
In practice, an efficient way to solve an MIP is to tackle the
continuous variables and the discrete variables alternatively
and iteratively. In our case, problem P1 can be decomposed
into two subproblems: a) optimizing power allocation for fixed
channel assignment and modulation schemes; b) optimizing
channel assignment and modulation schemes for fixed power
allocation. The joint solution can be obtained by iteratively
solving them. However, neither of these two subproblems
is easy, due to the nonlinear and complicated relation of
the effective throughput with the power allocation, channel
assignment, and modulation schemes.

III. EFFECTIVE THROUGHPUT AND POWER ALLOCATION

In this section, we first derive the exact expression of the
effective throughput. Then, a low-complexity power allocation
algorithm is proposed by adopting proper approximation of the
effective throughput and exploring the hidden convexity of the
resulting power allocation problem.

A. Effective Throughput

In order to derive the expression of the effective throughput
Jk,n, we need to determine εk,n of user Un on channel Ck.
According to [35], an M2

n-QAM can be decoupled into two
Mn-pulse amplitude modulations (PAMs). When the signal-to-
noise ratios (SNRs) and the bit mapping schemes of M2

n-QAM
and Mn-PAM are identical, the SER of the M2

n-QAM can be
expressed as

εk,n = 1− (1− φk,n)2 = 2φk,n − φ2k,n, (6)

where φk,n is the SER of Mn-PAM. Next, we determine the
SER φk,n and the effective throughput Jk,n of the two-user
channels and the single-user channels, respectively.
1) Effective Throughput of the Two-User Channels

Suppose that channel Ck is a two-user channel, and then,
the SER depends on the SIC decoding order. We denote the
two users on channel Ck as users Uk,I and Uk,II, where user
Uk,I has a better channel condition than user Uk,II, i.e., the
channel gains satisfy hk,I ≥ hk,II. Assume that Uk,i (i = I, II)
employs M2

k,i-QAM and is allocated with the power pk,i ≥ 0.
User Uk,I decodes its signal directly, treating the signal of user
Uk,II as interference. User Uk,II first decodes and cancels the
signal of user Uk,I, and then decodes the signal of itself.

According to [27], the SER of the strong channel user, i.e.,
Uk,I, when adopting Mk,I-PAM, is given in (7) at the top of
this page, where Q(x) = 1√

2π

∫ +∞
x

exp(− t
2

2 )dt and f(·, ·) is
defined as

f(x, y) ,

{
0, x = y

1, x 6= y.
(8)

The SER of the weak channel user, i.e., user Uk,II, when
adopting Mk,II-PAM, is

φk,II =
2Mk,II − 2

Mk,IMk,II

×
Mk,I∑
m=1

Q

(
(Mk,I + 1− 2m)

√
3hk,IIpk,I
M2
k,I − 1

+

√
3hk,IIpk,II
M2
k,II − 1

)
.

(9)

With the expressions of φk,I and φk,II, we can obtain the
effective throughput Jk,I and Jk,II via (4) and (6), as shown
in the following result.

Proposition 1. The effective throughput of user Uk,i (i = I, II)
on the two-user channel is

Jk,i = B (1− φk,i)2 log2M2
k,i, (10)

where φk,I and φk,II are given in (7) and (9), respectively.

2) Effective Throughput of the Single-User Channels
Suppose that channel Ck is a single-user channel. We denote

the user assigned to channel Ck as Uk,0. According to [30],
the SER of user Uk,0, when adopting Mk,0-PAM, is

φk,0 =
2(Mk,0 − 1)

Mk,0
Q

(√
3hk,0pk,0
M2
k,0 − 1

)
, (11)

where hk,0 and pk,0 are the channel gain and the power of user
Uk,0, respectively. Thus, the effective throughput Jk,0, when
user Uk,0 adopts M2

k,0-QAM, can be obtained via (4) and (6),
as shown in the following result.

Proposition 2. The effective throughput of user Uk,0 on the
single-user channel is

Jk,0 = B (1− φk,0)2 log2M2
k,0, (12)

where φk,0 is given in (11).
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Jk ≥ JL
k = 2B log2Mk,I + 2B log2Mk,II −

8B(Mk,I − 1) log2Mk,I

Mk,I
Q

(√
3hk,Ipk,I
M2
k,I − 1

)

−
(
8B(Mk,II − 1) log2Mk,II

Mk,II
+

12B(Mk,I − 1)(Mk,II − 1) log2Mk,I

Mk,I

)
×Q

(
(1−Mk,I)

√
3hk,IIpk,I
M2
k,I − 1

+

√
3hk,II(qk − pk,I)

M2
k,II − 1

)
. (19)

According to Propositions 1 and 2, the effective throughput
is a function of the bandwidth, the channel quality, the modula-
tion scheme, and the transmit power. Compared with the ideal
information rate, the effective throughput considers imperfect
SIC and practical modulations, and thus, is more practical.
Furthermore, in (10) and (12), the terms (1− φk,i)2 and
(1− φk,0)2 reflect the error performance, whereas the terms
B log2M

2
k,i and B log2M

2
k,0 reflect the bit rate. Consequently,

the effective throughput takes into account both the reliability
and transmission rate of the NOMA system.

B. Power Allocation Subproblems

Suppose that the channel assignment and modulation
schemes are fixed. For convenience, we denote the index sets
of the single-user channels and the two-user channels by K†
and K‡, respectively. Then, the power allocation optimization
subproblem can be formulated as

P2 : maximize
{pk,0, pk,I, pk,II≥0}

J =
∑
k∈K†

Jk,0 +
∑
k∈K‡

(Jk,I + Jk,II)

(13a)

subject to
∑
k∈K†

pk,0 +
∑
k∈K‡

(pk,I + pk,II) ≤ P.

(13b)

Note that problem P2 is a nonconvex optimization problem.
Next, we address the nonconvexity of problem P2 through
decomposition and approximation.

Specifically, we define the effective throughput of channel
Ck as

Jk ,

{
Jk,0, k ∈ K†

Jk,I + Jk,II, k ∈ K‡,
(14)

and introduce the power budget of channel Ck as

qk ,

{
pk,0, k ∈ K†

pk,I + pk,II, k ∈ K‡,
(15)

which satisfies qk ≥ 0 and
∑K
k=1 qk ≤ P . Consequently,

problem P2 can be equivalently decomposed into a power
budget allocation subproblem among channels:

P3 : maximize
{qk≥0}

J =

K∑
k=1

Jk (16a)

subject to

K∑
k=1

qk ≤ P, (16b)

and a series of power allocation subproblems within the two-
user channels:

P4,k (k ∈ K‡) : maximize
{pk,I, pk,II≥0}

Jk = Jk,I + Jk,II (17a)

subject to pk,I + pk,II = qk. (17b)

In the following subsection, we provide a closed-form solution
to problem P4,k, and show that problem P3 can be transformed
into a convex problem and be solved analytically.

C. Power Allocation within Channels

Substituting pk,II by qk − pk,I, problem P4,k can be equiv-
alently reformulated as

P5,k (k ∈ K‡) : maximize
{pk,I∈[0,qk]}

Jk = Jk,I + Jk,II. (18)

From Proposition 1, one can find that the expressions of Jk,I
and Jk,II are nonlinear. The exhaustive search3 is required to
find the optimal solution to P5,k. Next, we derive the lower
bound of Jk as the approximation and obtain the near-optimal
solution via maximizing the lower bound of Jk.

Proposition 3. The effective throughput Jk is lower bounded
by (19) at the top of this page.

Proof. The proof is provided in Appendix A.

In Proposition 3, the lower bound of Jk is given in a simpler
expression compared with the exact expression of Jk. In the
following result, we take the lower bound as an approximation
of Jk and obtain a closed-form power allocation scheme via
maximizing the lower bound.

Theorem 1. For a sufficiently large power budget qk, the
power allocation within the two-user channels that maximizes
the lower bound of Jk is given by

p?k,I =
(M2

k,I − 1)qk

(Mk,I − 1 + tk)2(M2
k,II − 1) +M2

k,I − 1
, (20)

p?k,II = qk − p?k,I, (21)

where tk ,
√
hk,I/hk,II ≥ 1 is defined as the channel gain

ratio of channel Ck.

Proof. The proof is provided in Appendix B.

In Theorem 1, we provide a closed-form power allocation
scheme within the two-user channels, which can be determined

3By discretizing the power into different levels, the optimal power allocation
can be found via an exhaustive search.



6

by the modulation orders and the channel gain ratio. One
can observe that more power should be allocated to a user
when its modulation order increases or when its channel gain
decreases. Numerical results demonstrate that the proposed
power allocation scheme can well approximate the optimal
one obtained via an exhaustive search.

D. Power Budget Allocation among Channels

With the closed-form power allocation scheme within chan-
nels, the power budget allocation problem among channels,
i.e., problem P3, can be simplified into

P6 : maximize
{qk≥0}

J̃ ,
K∑
k=1

J̃k (22a)

subject to

K∑
k=1

qk ≤ P, (22b)

where, for the two-user channels (k ∈ K‡), J̃k ,
JL
k |pk,I=p?k,I,pk,II=p?k,II

is the lower bound of the effective
throughput Jk. According to (19) and (20), we have

J̃k =2B log2Mk,I + 2B log2Mk,II

−Q

(√
3hk,Iqk

(Mk,I − 1 + tk)2(M2
k,II − 1) +M2

k,I − 1

)

×
(
4B(Mk,I − 1)(3Mk,II − 1) log2Mk,I

Mk,I

+
8B(Mk,II − 1) log2Mk,II

Mk,II

)
, k ∈ K‡. (23)

For the single-user channels (k ∈ K†), the effective through-
put Jk,0 can be obtained via (12), which, however, is still
complicated. According to [30], Jk,0 has the lower bound

Jk,0 = B (1− φk,0)2 log2M2
k,0 ≥ B (1− 2φk,0) log2M

2
k,0,
(24)

which is a tight approximation for a sufficiently large power
budget. Thus, we use the lower bound of Jk,0 to approximate
J̃k as

J̃k ,B (1− 2φk,0) log2M
2
k,0

=2B log2Mk,0 −
8B(Mk,0 − 1) log2Mk,0

Mk,0

×Q

(√
3hk,0pk,0
M2
k,0 − 1

)
, k ∈ K†. (25)

Combining (23) and (25), J̃k can be given by

J̃k =


2B log2Mk,0 − αkQ(

√
βkqk), k ∈ K†

2B log2Mk,I + 2B log2Mk,II

−αkQ(
√
βkqk), k ∈ K‡,

(26)

-1 0 1 2 3 4 5 6

x

-4

-3

-2

-1

0

1

2

W
(x

)

W
0
(x)

W (x)

Figure 2: The Lambert W function.

where

αk ,


8B(Mk,0−1) log2Mk,0

Mk,0
, k ∈ K†

4B(Mk,I−1)(3Mk,II−1) log2Mk,I

Mk,I

+
8B(Mk,II−1) log2Mk,II

Mk,II
, k ∈ K‡,

(27)

βk ,


3hk,0

M2
k,0−1

, k ∈ K†
3hk,I

(Mk,I−1+tk)2(M2
k,II−1)+M

2
k,I−1

, k ∈ K‡.
(28)

To solve problem P6, we first provide the following useful
results.

Lemma 1. J̃k is monotonically increasing with respect to qk
for k = 1, ...,K.

Lemma 2. J̃k is a concave function of qk for k = 1, ...,K.

Proof. The proofs of Lemmas 1 and 2 are provided in Ap-
pendix C.

Lemma 1 complies with the intuition that the larger the
power budget is, the higher the effective throughput will be.
Lemma 2 indicates that problem P6 is a convex optimization
problem, whose solution can be found efficiently via standard
convex optimization tools, e.g., CVX. Nevertheless, we are
able to provide an analytical solution to problem P6. For this
purpose, the following definition is introduced.

Definition 1. The Lambert W function [36], denoted by W (·),
is a function satisfying

W (x) exp (W (x)) = x. (29)

As shown in Fig. 2, W (x) has two possible values when
x ∈ [−1/e, 0). The function is divided into two branches,
taking the point (−1/e,−1) as the cut-off point. The branch
satisfying W (x) ≤ −1 is denoted by W−1(x). The branch
satisfying W (x) ≥ −1 is denoted by W0(x), which is called
the principal branch. Note that W0(x) is a monotonically
increasing function when x ≥ −1/e.
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Theorem 2. The optimal solution to problem P6 is given by

q?k =
W0

(
α2

kβ
2
k

8πλ

)
βk

, (30)

where λ is chosen such that
∑K
k=1 q

?
k = P and W0(·) is the

principal branch of Lambert W function.

Proof. The proof of Theorem 2 is provided in Appendix D.

Theorem 2 provides an analytical power budget allocation
scheme among channels in waterfilling form. From (30), q?k is
monotonically decreasing with respect to λ. Thus, the value of
λ can be efficiently found via a one-dimensional search. In the
following corollary, we provide the upper and lower bounds
of λ to accelerate the search.

Corollary 1. λ is upper bounded by

λ ≤ λU = max
k=1,...,K

{
α2
kβk

8πP/K
exp (−βkP/K)

}
, (31)

and lower bounded by

λ ≥ λL = max
k=1,...,K

{
α2
kβk
8πP

exp (−βkP )
}
. (32)

Proof. The proof is provided in Appendix E.

In Theorems 1 and 2, we provide the analytical power al-
location expressions within and among channels, respectively,
which are both determined by the modulation orders and the
channel gains. The former one is given in closed form and
the latter one is given in a waterfilling fashion. By combining
Theorems 1 and 2, an efficient power allocation scheme can
be analytically obtained, which, though including some proper
approximation, is able to achieve near optimal performance.
The proposed power allocation scheme given in waterfilling
form can be efficiently obtained via a one-dimensional search.
Its computational complexity linearly increases with respect to
the number of channels, i.e., O(K) [37].

E. User Fairness of the Power Allocation

In most of the NOMA works based on the ideal information
rate, e.g., [8]–[17], the system tends to allocate more power to
the stronger channel user. If the fairness constraints (e.g., the
minimum data rate constraint or the power order constraint)
are not considered, all power will be allocated to the strongest
user in an unfair manner [17]. This is a critical drawback of
using the ideal information rate in NOMA designs. The reason
is that the ideal information rate does not consider the error
performance and assumes infinite block length. Meanwhile,
SIC is assumed to be perfect, which may also contribute to
allocating more power to the stronger channel user.

In this paper, we introduce the effective throughput as the
performance metric by considering both the error performance
and the data rate along with imperfect SIC and practical
modulation schemes, and thus, can overcome the drawback
of the ideal information rate and facilitate user fairness. In
the following results, we analyze user fairness of the power

allocation within channels and the power budget allocation
among channels, respectively.

Proposition 4. In the power allocation scheme proposed in
Theorem 1, p?k,I is monotonically decreasing and p?k,II is
monotonically increasing with respect to the channel gain ratio
tk.

Proof. The monotonicity can be obtained via taking the
derivative of p?k,I and p?k,II with respect to tk.

Proposition 5. When the channel gain of the user (or user
pair) on channel Ck is very strong, i.e., hk,0 →∞ (or hk,I →
∞), the proposed power budget allocation scheme in Theorem
2 satisfies q?k → 0.

Proof. The proof is provided in Appendix F.

Propositions 4 and 5 imply that, the proposed power allo-
cation schemes tend to allocate smaller fraction of total power
to the strong user (or user pair) even without the fairness
constraints. This is different from the works based on the
ideal information rate [8]–[17]. The proposed power allocation
schemes can avoid allocating all power to the strongest user
(or user pair) and thus can improve user fairness.

IV. CHANNEL ASSIGNMENT AND MODULATION
SELECTION

Now, we consider the channel assignment and modulation
selection for effective throughput maximization with given
power allocation. In this case, problem P1 reduces to

P7 : maximize
{dk,n,Mn}

J =

K∑
k=1

N∑
n=1

dk,nJk,n (33a)

subject to constraints (5b)− (5d), (5g). (33b)

It is a combinatorial problem whose optimal solution has to
be found via exhaustive search. When the number of users
increases, the complexity of exhaustive search soars. In this
section, we develop efficient discrete optimization methods
based on matching theory and machine learning to determine
the channel assignment and modulation selection.

A. Channel Assignment

We find that the channel assignment problem in NOMA can
be regarded as a bipartite many-to-one matching game with
peer effects [38]. The channels and the users can be regarded
as two distinct sets of players. The users have peer effects due
to the co-channel interference caused by superposition coding.
Thus, it can be addressed by the swap matching method [34],
[39], [40], which provides an efficient and low-complexity
solution to the combinatorial problem. To describe the channel
assignment scheme, we define a K × N matching matrix D
with the binary elements dk,n to match the K channels Ck
(k = 1, ...,K) to the N users Un (n = 1, ..., N ), satisfying
the constraints (33b).

For a matching matrix D, a swap operation is to choose
two users on different channels, e.g., user Un on channel Ck
and user Un′ on channel Ck′ (where k 6= k′ and n 6= n′),
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and to exchange the channels of the two users. We denote the
original user-channel assignment pair by (Un, Ck), (Un′ , Ck′).
Then, the new pair after swap is (Un′ , Ck), (Un, Ck′). The new
matching matrix is denoted by Dnew.
1) Channel Assignment Based on the Swap-Blocking Policy

Assumed that all users are selfish and aim to maximize their
own effective throughput [34], [39], [40]. A swap operation
will not be executed unless all the users on channels Ck and
Ck′ approve. We give the definition of swap-blocking (SB)
pair to decide whether a swap operation should be executed
and develop a channel assignment algorithm based on the SB
policy.

Definition 2. A pair (Un, Ck), (Un′ , Ck′) is defined as a swap-
blocking pair if and only if

(a) ∀ ζ ∈ U , J(ζ)(Dnew) ≥ J(ζ)(D),
(b) ∃ ζ ∈ U , J(ζ)(Dnew) > J(ζ)(D),

where U represents the set of all the users on channels
Ck and Ck′ . J(ζ)(D) and J(ζ)(D

new) represent the effective
throughput of user ζ under the matching scheme D and Dnew,
respectively.

In the above definition, condition (a) implies that the
performance of all the users should not be sacrificed after
the swap operation and condition (b) implies that at least
the performance of one user should be improved. The swap
operation is executed if and only if the pair forms an SB pair,
called the SB policy. Then, the channel assignment can be
optimized through searching for SB pairs and executing the
swap operation until no SB pair exists.
2) Channel Assignment Based on the Centralized Swap-
Blocking Policy

In the channel assignment algorithm based on the SB
policy, the swap operation is executed only when the effective
throughput of all the users does not decrease. This means the
SB policy may miss some swap operations which increase the
effective system throughput by degrading the performance of
some specific users. To overcome this limitation, we define the
centralized swap-blocking (CSB) pair and propose a channel
assignment algorithm based on the CSB policy.

Definition 3. A pair (Un, Ck), (Un′ , Ck′) is defined as a
centralized swap-blocking pair if and only if J(Dnew) >
J(D), where J(D) and J(Dnew) represent the effective
system throughput under the matching scheme D and Dnew,
respectively.

Then, in the channel assignment algorithm based on the
CSB policy, we execute the swap operation if and only if the
pair forms a CSB pair, and the effective system throughput
is increased. The details of the channel assignment algorithm
based on the SB or CSB policy are shown in Algorithm 1.
In the following results, we prove that the proposed CSB
policy outperforms the SB policy for the channel assignment
in NOMA.

Lemma 3. If a pair forms an SB pair, then it must form a
CSB pair.

Proof. If a pair (Un, Ck), (Un′ , Ck′) forms an SB pair, ac-
cording to Definition 2, conditions (a) and (b) are satisfied.

Algorithm 1 Channel assignment algorithm based on the SB
or CSB policy

1) Initialization:
Generate a channel assignment matrix D randomly.

2) Repeat
3) Choose a pair (Un, Ck), (Un′ , Ck′) from D arbitrarily;
4) If the pair (Un, Ck), (Un′ , Ck′) satisfies condition I∗:
5) Execute the swap operation, update D;
6) End if
7) Until condition II∗ is satisfied.
8) Return the matrix D.

∗For the SB policy, condition I is that the pair (Un, Ck), (Un′ , Ck′)
forms an SB pair and condition II is that no SB pair exists. For the
CSB policy, condition I is that the pair (Un, Ck), (Un′ , Ck′) forms
a CSB pair and condition II is that no CSB pair exists.

Then, we have

J(Dnew)− J(D) =
∑
ζ∈U

J(ζ)(D
new)−

∑
ζ∈U

J(ζ)(D) > 0,

(34)
and this pair forms a CSB pair. Conversely, if a pair
(Un, Ck), (Un′ , Ck′) forms a CSB pair, this pair is not neces-
sarily an SB pair. For example, if J(Un)(D

new)−J(Un)(D) =
10 and J(ζ)(Dnew)− J(ζ)(D) = −1, for ζ ∈ U and ζ 6= Un,
then this pair is a CSB pair, but not an SB pair.

Theorem 3. The effective system throughput achieved by the
CSB-based channel assignment algorithm is always no less
than that achieved by the SB-based algorithm.

Proof. For an arbitrary pair, it has three possible situations:
(a) it forms an SB pair, and then, according to Lemma 3, it
must form a CSB pair; (b) it forms a CSB pair but is not an
SB pair; (c) it neither forms an SB pair nor forms a CSB pair.
For situation (a) or (c), the SB and CSB policies choose the
same action, i.e., execute the swap operation for (a) and reject
the swap operation for (c). For situation (b), the CSB policy
executes the swap operation and J increases, but the SB policy
rejects the swap operation and J remains unchanged. During
the search process, the CSB policy will never perform worse
than the SB policy, and once a pair is in situation (b), the CSB
policy outperforms the SB policy. Theorem 3 is proven.

According to Lemma 3 and Theorem 3, for an arbitrary
matching matrix D, the number of CSB pairs is generally
more than that of SB pairs. The CSB policy outperforms the
SB policy in terms of the effective system throughput at the
cost of more iterations. Next, we analyze the convergence of
Algorithm 1. Note that J increases each time an SB or CSB
pair is being swapped. Meanwhile, J is upper bounded by a
finite value. Furthermore, the number of potential SB or CSB
pairs is finite since the number of users is limited. Therefore,
Algorithm 1 converges and terminates after a finite number of
swap operations.

The complexity of Algorithm 1 can be determined as
follows. We denote the number of iterations by Niter. During
each iteration, at most N(N − 1) times of swap operations
are required to check the termination condition, where N
is the number of users. Therefore, the computational com-
plexity of Algorithm 1 is O(N2Niter). For comparison, if
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Jk|pk,I=p?k,I,pk,II=p?k,II

=2B log2Mk,I (1− φk,I)2 + 2B log2Mk,II (1− φk,II)2

=2B log2Mk,I

1− 1

Mk,IMk,II

Mk,I∑
m=1

Mk,II∑
j=1

Mk,II∑
l=1

[
1− f(l, 1)Q

(
(2m− 2 + tk + (2j − 2l)(Mk,I − 1 + tk))

√
βkqk

)

− f(l,Mk,II)Q
(
(2Mk,I − 2m+ tk + (2l − 2j)(Mk,I − 1 + tk))

√
βkqk

)]

×

[
f(m, 1)Q

(
(1 + 2(j − l)(Mk,I − 1 + tk))

√
βkqk

)
+ f(m,Mk,I)Q

(
(1− 2(j − l)(Mk,I − 1 + tk))

√
βkqk

)]}2

+ 2B log2Mk,II

[
1− 2Mk,II − 2

Mk,IMk,II

Mk,I∑
m=1

Q

(
2Mk,I − 2m+ tk

tk

√
βkqk

)]2
. (38)

adopting exhaustive search, all possible channel assignment
combinations has be calculated. The computational complexity
becomes O (K!/(K −N)!) for N ≤ K and O

(
N !/2N−K

)
for N > K due to

O
[(

N
2

)(
N − 2

2

)
...

(
2K −N + 2

2

)
(

2K −N
1

)(
2K −N − 1

1

)
...

(
2
1

)(
1
1

)]
=O

(
N !/2N−K

)
, (35)

where
(
j
i

)
= j!/[(j− i)!i!]. The computational complexity

of exhaustive search becomes prohibitive for a large N .

B. Modulation Selection

In Subsection IV-A, we have proposed low-complexity
channel assignment algorithms based on swap matching. Note
that each time a swap operation is executed, the modulation
schemes should be reoptimized according to the updated
channel qualities. In this subsection, we consider an adaptive
modulation method based on the SNR thresholds for single-
channel users and propose a DNN-based modulation selection
scheme for the two-user channels.
1) Modulation Selection for the Single-user Channels

If channel Ck is a single-user channel, i.e., k ∈ K†, then
the modulation selection problem can be formulated as

P8,k (k ∈ K†) : maximize
Mk,0

Jk (36a)

subject to Mk,0 ∈M, (36b)

where Mk,0 is the modulation order of user Uk,0 on channel
Ck and Jk = Jk,0 is the effective throughput of user Uk,0
as given in (12). According to (12), Jk,0 is a function of
Mk,0 and hk,0pk,0, where hk,0pk,0 is the SNR of user Uk,0.
We consider an adaptive modulation method for conventional
OMA systems [41]–[43]. First, we plot the effective through-
put curves of different modulation schemes versus the SNR
as shown in Fig. 3. From Fig. 3, the SNR thresholds can be
obtained as 35, 45, and 52.5 dBm, and a modulation selection
table can be obtained as shown in Table I. Thus, to maximize
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Figure 3: Effective throughput of the single-user channels
versus the SNR.

Table I: The adaptive modulation selection of the single-user
channels based on the SNR thresholds.

SNR range (dBm) Modulation scheme

SNR ≤ 35 4-QAM
35 < SNR ≤ 45 16-QAM
45 < SNR ≤ 52.5 64-QAM

SNR > 52.5 256-QAM

the effective throughput in problem P8,k, we can choose the
optimal modulation scheme according to the SNR by referring
to Table I.
2) Modulation Selection for the Two-User Channels

If channel Ck is a two-user channel, i.e., k ∈ K‡, then the
modulation selection problem can be formulated as

P9,k (k ∈ K‡) : maximize
{Mk,I,Mk,II}

Jk (37a)

subject to Mk,I,Mk,II ∈M, (37b)

where Jk is the effective throughput of channel Ck and Mk,i

(i = I, II) is the modulation order of user Uk,i on channel
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< M
(i)
k,I ,M

(i)
k,II >= argmax

<Mk,I,Mk,II>∈M2

Jk|pk,I=p?k,I,pk,II=p?k,II,hk,I=h
(i)
k,I,tk=t

(i)
k ,qk=q

(i)
k

. (40)

……

…

hidden layers

……

input 

layer
output 

layer

…

Nnode × 1 16 × 13 × 1

Nlayer

hk,I

tk

qk

Mk,I

Mk,II

Nnode × 1

Figure 4: Architecture of a DNN-based modulation selection scheme.

Ck. Substituting pk,I and pk,II by (20) and (21), the effective
throughput Jk|pk,I=p?k,I,pk,II=p?k,II

is given in (38) at the top of
the last page, where βk is defined in (28).

Different from the single-user channels, the modulation
schemes of the two users on the same channel are coupled
and should be jointly designed. Most of the existing works
on NOMA employ adaptive modulation methods based on the
single user’s SNR thresholds [44]–[46], which are suboptimal
for the two-user channels (as shown in Section V). To obtain
the optimal modulation scheme which maximizes Jk in (38),
one has to exhaustively search all the feasible modulation
combinations, i.e.,

< Mk,I,Mk,II > ∈M2

= {< 2, 2 >,< 2, 4 >,< 2, 8 >,< 2, 16 >,

< 4, 2 >,< 4, 4 >,< 4, 8 >,< 4, 16 >,

< 8, 2 >,< 8, 4 >,< 8, 8 >,< 8, 16 >,

< 16, 2 >,< 16, 4 >,< 16, 8 >,< 16, 16 >} . (39)

Although the range of search contains only 16 can-
didates, each round of search requires approximately∑
<Mk,I,Mk,II>∈M2 Mk,I + 4Mk,IM

2
k,II ≈ 4 × 104 times of

Q(·) function calculation including integral operation, which
still leads to a considerable complexity.

Note that the modulation selection problem can be regarded
as a classification problem, mapping the channel quality and
the allocated power into the modulation scheme. Inspired by
the idea that DNN is a useful tool which can learn from
complex data structures and derive highly nonlinear decision
boundaries for solving classification problems [47], [48], we
next propose a low-complexity modulation selection scheme
via a DNN-based classifier. According to (38), we extract hk,I,
tk, and qk as the features and take a 16-dimensional one-hot
vector as the label to indicate which modulation combination
in (39) is selected. The overview of the fully-connected DNN
architecture is shown in Fig. 4, consisting of an input layer
with 3 neurons, Nlayer hidden layers with Nnode nodes, and
an output layer with 16 neurons.

Algorithm 2 Joint power allocation, channel assignment and
modulation selection algorithm

1) Initialization:
a) Initiate the power allocation;
b) Set precision δ and the parameter Nconverge.

2) Repeat
3) Obtain the channel assignment according to Al-

gorithm 1, and select the modulation scheme through
DNN;

4) Update the power allocation according to (20), (21)
and (30);

5) Until the change of the effective throughput is less than
δ for consecutive Nconverge iterations.

6) Return the optimal power allocation, channel assign-
ment, and modulation scheme, and the corresponding
effective throughput.

The parameters of the neural network, i.e., the weights and
biases, are trained in a supervised manner based on backpropa-
gation and the stochastic gradient descent method. The training
dataset is generated by exhaustively searching the optimal
modulation schemes that maximize Jk|pk,I=p?k,I,pk,II=p?k,II

in
(38). For example, assume that the ith training example has
the input h(i)k,I, t

(i)
k , and q(i)k . Then, the output of the ith training

example is obtained from (40) at the top of this page.
For the DNN-based modulation selection scheme, the

dataset generation and the DNN training process can be
completed offline. The computational complexity during real-
time scheduling mainly depends on the size of the network.
Calculating the output of the DNN requires N2

node(Nlayer −
1) + 19Nnode times of multiplication and addition, and
NnodeNlayer + 16 times of activation operation. Thus, the
complexity is O(N2

nodeNlayer).

C. Joint Resource Allocation Algorithm

In Section III, we proposed the power allocation scheme
for fixed channel assignment and modulation schemes. In Sub-
sections IV-A and IV-B, we developed the channel assignment
algorithm and the modulation selection scheme for fixed power
allocation. Naturally, a joint resource allocation scheme, as
the solution to the original problem P1, can be achieved by
iteratively optimizing power allocation, channel assignment,
and modulation selection.

Specifically, we first initialize the power allocation, e.g.,
equally allocate power to each channel. Then, the channel
assignment, modulation schemes, and power allocation are
iteratively optimized according to Algorithm 1, the DNN
scheme, and Theorems 1 and 2, respectively, until conver-
gence. The details are described in Algorithm 2.

The computational complexity depends on the three parts,
which areO(K) for power allocation,O(N2Niter) for channel
assignment, and O(N2

nodeNlayer) for modulation selection,
respectively. Note that during each iteration of Algorithm 2,
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Figure 5: Comparison of the proposed and optimal power
allocation schemes within channels.

Table II: Simulation setting of the DNN-based modulation
selection scheme.

Parameter Value

Number of epochs 100
Batch size 1000

Training set size 8× 105

Validation set size 105

Testing set size 105

both the power allocation and the channel assignment are exe-
cuted once. The modulation selection module is invoked each
time a swap operation is executed in the channel assignment
algorithm. Thus, the computational complexity of Algorithm
2 is O

(
Nouter(K +N2NiterN

2
nodeNlayer)

)
, where Nouter is

the number of outer iterations.
Algorithm 2 converges quickly after a few iterations with a

relatively low computational complexity and it achieves almost
the same effective throughput as exhaustive search, which is
demonstrated by numerical results. Therefore, Algorithm 2 can
efficiently address the effective throughput maximization of
NOMA.

V. NUMERICAL RESULTS

In this section, numerical results are presented to evaluate
the aforementioned algorithms along with some insightful
discussions. We employ the channel model with the fading
coefficient being a zero-mean unit-variance complex Gaussian
variable and the path loss being −(128.1 + 37.6 log10 τn) dB
[49], where τn is the distance between the BS and user Un in
kilometers. The noise power spectral density is assumed to be
−174 dBm/Hz for all users.

A. Power Allocation and Modulation Selection

In Fig. 5, we compare the proposed power allocation scheme
in Theorem 1 with the optimal one obtained via exhaustive
search by illustrating p?k,I/p

?
k,II versus the power budget qk.

The distances between the BS and the users are 0.2 km

Table III: Validation accuracy of the DNN-based modulation
selection scheme.

Nlayer Nnode Validation accuracy

1 5 0.9116
1 10 0.9785
1 20 0.9868
2 5 0.9783
2 10 0.9871
2 20 0.9941
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Figure 6: Convergence of the proposed DNN model.

for Uk,I and 0.3 km for Uk,II. Three modulation modes are
considered: 1) both Uk,I and Uk,II employ 4-QAM; 2) Uk,I
employs 16-QAM and Uk,II employs 4-QAM; 3) Uk,I employs
4-QAM and Uk,II employs 16-QAM. The results show that the
proposed scheme well approximates the optimal one even if
the power budget is not large.

Next, the performance of the DNN-based modulation selec-
tion scheme is evaluated. We preprocess the inputs hk,I, tk,
and qk by log10(·) and normalize them in the range [0, 1]
before feeding them into the neural network such that the
differences between the samples can be captured accurately.
The activation functions for the hidden layers and the output
layer are rectified linear unit (ReLU) and softmax, respectively,
so that the output values are scaled to the range [0, 1]. The
learning rate is initially set as 0.01 and multiplied by a
discount factor 0.98 in each epoch. Other detailed parameters
are presented in Table II.

In Fig. 6, we illustrate the loss values versus training epochs
to show the convergence of the DNN training when adopting
different numbers of hidden layers Nlayer and neurons Nnode.
Results in Table III show that the DNN models with different
network sizes achieve an accuracy over 0.9 and have a lower
complexity than the exhaustive search, which is approximately
4 × 104 times of Q(·) function calculation according to the
analysis in Subsection IV-B. To achieve a good accuracy with a
relatively low complexity, we choose Nlayer = 2 and Nnode =
10 for the following joint algorithm simulations.
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Figure 7: Comparison of the effective throughput versus the
total power budget. We set K = 3 and N = 5.

B. Joint Resource Allocation Algorithm

In this subsection, we evaluate the performance of the
proposed joint resource allocation algorithm of NOMA, i.e.,
Algorithm 2. The total bandwidth is set as K MHz. N users
are located uniformly in a cell with the radius of 1 km and the
BS is located in the center. Two users within a channel perform
the NOMA scheme, while the users on different channels
are assumed to be interference-free. The following effective
throughput is obtained by averaging 100 randomly-generated
channel profiles.

For convenience, the proposed maximum effective through-
put NOMA schemes based on the CSB policy and the SB pol-
icy are denoted by NOMA-MET-CSB and NOMA-MET-SB,
respectively. For comparison, six benchmarks are considered
as follows:
1) NOMA-ES: the exhaustive search scheme of NOMA.
2) NOMA-AM: the modulation orders of all the users, in-
cluding the users on the two-user channels, are determined
separately via the adaptive modulation selection method in
Table I.
3) NOMA-MSET: the maximum short-packet effective
throughput NOMA scheme [23].
4) NOMA-UP: the NOMA scheme based on the user pairing
method where a near user and a far user are selected to share
a channel [50].
5) NOMA-MSR: the maximum sum rate NOMA scheme
where the residual interference caused by imperfect SIC is
modeled as a continuously-valued Gaussian signal [18].
6) OMA: the conventional OMA scheme where K MHz
bandwidth is orthogonally allocated to N users without su-
perposition [51].

In Fig. 7, we compare the effective throughput obtained
via different algorithms versus the total power budget with
3 channels and 5 users. One can find that the proposed
NOMA-MET-CSB and NOMA-MET-SB schemes outperform
the NOMA-AM, NOMA-MSET, NOMA-UP, NOMA-MSR,
and OMA schemes, achieving almost the same performance
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Figure 8: Comparison of the effective throughput obtained via
different algorithms versus the number of users. We set K =
15 and P = 40 dBm.
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Figure 9: CDF of the number of swap operations in Algorithm
1.

as NOMA-ES. The NOMA-MSR scheme obtains a relatively
lower effective throughput than other NOMA schemes when
the total power budget is small.

Furthermore, Fig. 7 shows that as the total power budget
increases, the effective throughput has an increasing trend
due to lower error probabilities and higher modulation orders.
Eventually, it reaches an upper bound. The upper bound of the
effective throughput corresponds to the situation where all the
users are error-free and the highest 256-QAM modulation is
employed, which for NOMA is

∑N
n=1 log2 256 = 8N = 40

Mbps and for OMA is K
N

∑N
n=1 log2 256 = 8K = 24 Mbps,

as shown in Fig. 7.
Fig. 8 illustrates the effective throughput versus the number

of users when the number of channels K is equal to 15 and
the total power budget is 40 dBm [52]. One can observe that
the effective throughput of both NOMA and OMA schemes
increases monotonically with respect to the number of users.
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φk,I <
2(Mk,I − 1)

Mk,I
Q

(√
3hk,Ipk,I
M2
k,I − 1

)
+

3(Mk,I − 1)(Mk,II − 1)

Mk,I
Q

(
(1−Mk,I)

√
3hk,IIpk,I
M2
k,I − 1

+

√
3hk,II(qk − pk,I)

M2
k,II − 1

)
. (42)

φk,II <
2(Mk,II − 1)

Mk,II
Q

(
(1−Mk,I)

√
3hk,IIpk,I
M2
k,I − 1

+

√
3hk,II(qk − pk,I)

M2
k,II − 1

)
. (43)
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Figure 10: CDF of the number of iterations in Algorithm 2.

When the number of users is equal to the number of channels,
i.e., N = K = 15, the NOMA system degrades to an OMA
system and NOMA-MET-CSB achieves similar performance
to the NOMA-AM, NOMA-MSET, NOMA-MSR, and OMA
schemes. As N increases, the superiority of the NOMA-
MET-CSB and NOMA-MET-SB schemes over OMA increases
due to its overloading. The superiority of the NOMA-MET-
CSB and NOMA-MET-SB schemes over the NOMA-AM,
NOMA-MSET, and NOMA-MSR schemes increases due to
its near-optimal power allocation scheme and DNN-based
modulation selection scheme. Furthermore, NOMA-MET-CSB
always outperforms NOMA-MET-SB and NOMA-UP, which
shows the effectiveness of the channel assignment algorithm
based on the CSB policy.

The cumulative distribution functions (CDFs) of the num-
ber of swap operations in Algorithm 1 and the number of
iterations in Algorithm 2 are illustrated in Figs. 9 and 10,
respectively. From Fig. 9, we can observe that the channel
assignment algorithm based on the CSB policy requires more
swap operations than that based on the SB policy. Furthermore,
as the numbers of channels and users increase, more swap
operations and iterations are required to achieve convergence.
Nevertheless, even in a system with 15 channels and 30 users,
the proposed NOMA algorithm converges quickly within 100
swap operations and 10 iterations, while the exhaustive NOMA
algorithm has to search 30!/215 ≈ 8×1027 channel assignment
combinations, leading to a prohibitive complexity.

VI. CONCLUSION

In this paper, we investigated the effective throughput
maximization of downlink multi-user multi-channel NOMA
systems, considering both the error performance and the data
rate along with imperfect SIC and practical QAMs. The exact
and approximate expressions of the effective throughput were
derived as functions of the transmit power, channel gain, and
modulation order. We formulated a joint power allocation,
channel assignment, and modulation selection problem to
maximize the effective throughput. To address this problem,
we developed an analytical power allocation scheme, including
the closed-form power allocation within channels and the
waterfilling-form power budget allocation among channels,
and proposed efficient channel assignment and modulation
selection methods based on matching theory and machine
learning, respectively. Consequently, a joint resource allocation
algorithm was proposed to maximize the effective throughput.
We conducted comprehensive simulations to evaluate the per-
formance of the proposed NOMA scheme, which is shown to
outperform the existing OMA and other NOMA schemes.

APPENDIX A
PROOF OF PROPOSITION 3

Due to φk,I, φk,II, εk,I, εk,II ∈ [0, 1], we have εk,I ≤ 2φk,I
and εk,II ≤ 2φk,II according to (6). Thus, Jk is lower bounded
by

Jk ≥ 2B(1− 2φk,I) log2Mk,I + 2B(1− 2φk,II) log2Mk,II.
(41)

According to [27], the upper bounds of φk,I and φk,II are given
by (42) and (43) shown at the top of this page, respectively.
Substituting (42) and (43) into (41), Proposition 3 can be
obtained.

APPENDIX B
PROOF OF THEOREM 1

The derivative of JL
k with respect to pk,I exists when qk 6=

0 and 0 < pk,I < qk. The derivative is given by (44) on
the next page. Setting ∂JL

k /∂pk,I in (44) to be equal to zero,
we obtain (45), where tk =

√
hk,I/hk,II is the channel gain

ratio of channel Ck. In (45), the term pk,I/qk is bounded by
0 < pk,I/qk < 1. We further define θk , pk,I/qk ∈ (0, 1),
and (45) can be rewritten as (46) on the next page. In (46),
the left-hand side and the ln(·) term on the right-hand side are
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JL
k |pk,I=qk = 2B log2Mk,I + 2B log2Mk,II −

8B(Mk,I − 1) log2Mk,I

Mk,I
Q
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3hk,Iqk
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Q
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4B(Mk,II − 1) log2Mk,II

Mk,II
+

6B(Mk,I − 1)(Mk,II − 1) log2Mk,I

Mk,I
. (51)

both finite. When qk is sufficiently large, the right-hand side
of (46) tends to zero. Thus, (46) can be approximated by(

(1−Mk,I)

√
3hk,IIθk
M2
k,I − 1

+

√
3hk,II(1− θk)
M2
k,II − 1

)2

− 3hk,Iθk
M2
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= 0. (47)

To determine the (negative or positive) sign of (1 −
Mk,I)

√
3hk,IIθk
M2

k,I−1
+

√
3hk,II(1−θk)
M2

k,II−1
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p̃k,I ,
(Mk,I + 1)qk

(Mk,I − 1)(M2
k,II − 1) +Mk,I + 1

∈ (0, qk). (48)

When pk,I ≤ p̃k,I, we have (1 − Mk,I)

√
3hk,IIθk
M2

k,I−1
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3hk,II(1−θk)
M2
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≥ 0 and equation (47) has a root

p
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k,I =

(M2
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(Mk,I − 1 + tk)2(M2
k,II − 1) +M2

k,I − 1
∈ (0, p̃k,I).

(49)

When pk,I > p̃k,I, we have (1 − Mk,I)

√
3hk,IIθk
M2

k,I−1
+√

3hk,II(1−θk)
M2

k,II−1
< 0 and the number of solutions to (47)

depends on the relationship between Mk,I − 1 and tk. If
Mk,I − 1 ≤ tk, then (47) has no root; otherwise, (47) has
a root

p
(2)
k,I =

(M2
k,I − 1)qk

(Mk,I − 1− tk)2(M2
k,II − 1) +M2

k,I − 1
∈ (p̃k,I, qk).

(50)
Therefore, if Mk,I − 1 ≤ tk, then JL

k is monotonically
increasing when 0 < pk,I ≤ p

(1)
k,I and is decreasing when

p
(1)
k,I < pk,I < qk, with the peak point p(1)k,I . If Mk,I − 1 > tk,

then JL
k is monotonically increasing with respect to pk,I when

0 < pk,I ≤ p
(1)
k,I , is decreasing when p

(1)
k,I < pk,I ≤ p

(2)
k,I , and

is increasing again when p(2)k,I < pk,I < qk.
To pinpoint the optimum point, we next compare

JL
k |pk,I=p

(1)
k,I

with JL
k |pk,I=qk . According to (19), we have

(51) at the top of this page. On the other hand, according
to (52) shown on the next page, JL

k |pk,I=p
(1)
k,I

approaches
2B log2Mk,I + 2B log2Mk,II as qk increases. Hence, for
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a sufficiently large power budget, we have JL
k |pk,I=p

(1)
k,I

>

JL
k |pk,I=qk , and thus, p(1)k,I is the maximum point of the lower

bound of Jk. Denoting p(1)k,I by p?k,I, Theorem 1 is proven.

APPENDIX C
PROOF OF LEMMAS 1 AND 2

When qk > 0, the partial derivative of J̃k with respect to
qk is

∂J̃k
∂qk

=
αk
√
βk

2
√
2πqk

exp

(
−βkqk

2

)
> 0, k = 1, ...,K, (53)

which shows that J̃k is monotonically increasing with respect
to qk and Lemma 1 is proven. When qk > 0, the second-order
partial derivative of J̃k is

∂2J̃k
∂q2k

= − αk
√
βk

4
√
2πqk

(
βk +

1

qk

)
exp

(
−βkqk

2

)
< 0, k = 1, ...,K, (54)

which shows that J̃k is a concave function of qk and Lemma
2 is proven.

APPENDIX D
PROOF OF THEOREM 2

The optimization problem P6 is equivalent to the following
problem:

P9 : minimize
{qk≥0}

K∑
k=1

αkQ
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βkqk

)
(55a)

subject to

K∑
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qk ≤ P. (55b)

The Lagrangian is given by

L(q1, ..., qK , µ) =
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)
+ µ

(
K∑
k=1

qk − P

)
,

(56)
where µ is the Lagrange multiplier. Since P9 is a convex
optimization problem, its optimal solution is characterized by
satisfying Karush-Kuhn-Tucker (KKT) conditions:

∂L
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)
= 0, (57)
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)
= 0, (58)

K∑
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qk − P ≤ 0, (59)

µ ≥ 0. (60)

From (57), it is obvious that µ 6= 0. Hence, due to (58) and
(60), µ > 0 and

∑K
k=1 qk − P = 0 hold. To obtain the root

of (57), we have
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2πqk

αk
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(61)

where condition 1 ⇐⇒ condition 2 means that conditions 1
and 2 are sufficient and necessary conditions for each other.
For convenience, define λ , µ2, and thus, Theorem 2 is
proven. λ is chosen such that

∑K
k=1 q

?
k = P , i.e.,

K∑
k=1

W0

(
α2

kβ
2
k

8πλ

)
βk

= P. (62)

The left-hand side is a monotonically decreasing function of λ
and has the range (0,+∞). Thus, equation (62) has a unique
solution.

APPENDIX E
PROOF OF COROLLARY 1

To prove the upper bound of λ, we first assume oppositely
that

λ > max
k=1,...,K

{
α2
kβk

8πP/K
exp (−βkP/K)

}
, (63)

and (63) leads to

λ =
α2
kβk

8πqk
exp (−βkqk)
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k=1,...,K

{
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kβk

8πP/K
exp (−βkP/K)

}
≥ α2

kβk
8πP/K

exp (−βkP/K) , k = 1, . . . ,K. (64)

It is clear that α2
kβk

8πqk
exp (−βkqk) is a monotonically de-

creasing function of qk, so it follows from (64) that qk <
P
K , k = 1, ...,K, and

∑K
k=1 qk < P , which is contradictory

to
∑K
k=1 qk = P . Therefore, the assumption (63) is overturned

and the upper bound in (31) is proven.
We next prove the lower bound of λ. Since

∑K
k=1 qk = P

and qk ≥ 0, we have qk ≤ P . In addition,

λ =
α2
kβk

8πqk
exp (−βkqk) ≥

α2
kβk
8πP

exp (−βkP ) , k = 1, . . . ,K,

(65)
and thus, the lower bound in (32) is obtained and Corollary 1
is proven.
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APPENDIX F
PROOF OF PROPOSITION 5

When the channel gain of the user (or user pair) on channel
Ck is extremely strong, i.e., hk,0 → ∞ (or hk,I → ∞), we
obtain βk →∞. We next prove limβk→∞ q?k → 0. According
to Theorem 2, we have

lim
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,

(66)
where the latter equation is due to L’Hôpital’s rule. According
to the definition of the function W0(·), we have
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By re-arranging the terms, we obtain
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(68)
and

0 ≤ lim
βk→∞
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)
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2
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= 0. (69)

Thus, limβk→∞ q?k → 0 is proved.
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