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Abstract—Wireless traffic prediction is indispensable for network planning and resource management. Due to different population
distributions and user behavior, there exist strong spatial-temporal variations in wireless traffic across different regions. Most of the
conventional traffic prediction approaches can only tackle a particular spatial-temporal pattern and cannot capture such variations in
wireless traffic. This motivates us to develop an adaptive approach which can tackle spatial-temporal variations and predict wireless
traffic in different regions. In this paper, we formulate an adaptive traffic prediction problem from a probabilistic inference perspective
and develop a variational spatial-temporal Bayesian meta-learning (VST-BML) algorithm. We model the traffic prediction in different
regions as different prediction tasks. The proposed VST-BML algorithm can learn the common spatial-temporal features shared by all
prediction tasks, and adaptively infer the task-specific parameters to tackle spatial-temporal variations. We evaluate the performance of
our proposed VST-BML algorithm using a real-world traffic dataset. Experimental results show that the proposed algorithm can quickly
adapt to different prediction tasks by using only a small number of data samples and provide accurate traffic prediction in different
regions. When compared with five baseline methods, the proposed algorithm can reduce the root-mean-square error (RMSE) and
mean absolute error (MAE) by 53.0% and 48.4%, respectively.

Index Terms—Adaptive traffic prediction, Bayesian meta-learning, deep neural networks, spatial-temporal variations.
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1 INTRODUCTION

1.1 Background

The increasing popularity of smartphones and Internet of
things (IoT) devices leads to an explosive growth of wire-
less data traffic. In order to allocate and utilize network
resources efficiently, wireless service providers require accu-
rate results on traffic prediction and forecasting [1]–[3]. By
predicting future traffic load, wireless service providers can
dynamically allocate network resources and improve the
spectral and energy efficiencies. Moreover, proactive mea-
sures can be taken to guarantee the diverse quality of service
(QoS) requirements of different use cases in the current fifth-
generation (5G) and future sixth-generation (6G) wireless
networks [4]. Therefore, traffic prediction is important for
network planning and optimization, and is becoming an
indispensable prerequisite to facilitate the fusion of artificial
intelligence (AI) and wireless networking [5]–[7].

Existing approaches for wireless traffic prediction aim
to predict the most likely sequences of traffic data in a
geographical region given some previous observations. In
general, a region is divided into multiple grid cells1, which
have the same size. The traffic prediction is performed on
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1. In wireless traffic prediction problems, a grid cell may cover
multiple cellular base station towers. The wireless traffic in a grid cell
is the aggregate traffic from all the cellular base station towers within
the cell.

a cell basis [8]–[10]. There exist temporal dependencies in
the wireless traffic which can be utilized for prediction.
Moreover, user mobility introduces spatial correlations into
traffic across neighboring grid cells, which also needs to
be taken into consideration when predicting the traffic.
Approaches to solving the traffic prediction problem can be
classified into two categories: traditional statistical methods
and deep learning based algorithms. The algorithms in
the first category (e.g., autoregressive integrated moving
average (ARIMA) [11]) are usually applied to simple wire-
less traffic conditions and small datasets. They lack the
capability to either tackle high-dimensional time series data
or capture the complex spatial-temporal features. On the
other hand, deep learning based algorithms have gained
increasing attention in recent years and have become state-
of-the-art approaches for traffic prediction. The procedures
for deep learning based traffic prediction are as follows [8]:
(i) Collect sufficient traffic data samples under a certain
sampling rate (e.g., every 10 minutes) from the grid cells
in a region; (ii) Apply deep learning tools to train a neural
network using the dataset obtained in step (i); (iii) Deploy
the trained neural network to predict future traffic in this
region. In order to obtain accurate predicted results, it is
essential for the trained neural network to capture the tem-
poral dependency in traffic data and the spatial correlation
among distributed grid cells.

Various deep neural networks have been developed for
spatial-temporal modeling and wireless traffic prediction.
Recurrent neural networks (RNNs) [12] and long short-
term memory (LSTM) networks [8], [13] are proposed for
extracting temporal features from time series traffic data.
Convolutional neural networks (CNNs) [8], [14], [15] are
typically used to capture the spatial dependency of wireless
traffic in a region. The convolutional LSTM (ConvLSTM)
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Fig. 1. Spatial-temporal patterns of wireless traffic in different regions.
(a) Spatial patterns of the traffic; (b) Temporal patterns of the traffic.

network is developed in [16] to analyze both the spatial and
temporal dependencies. Graph neural networks (GNNs)
can also be applied for traffic prediction. GNNs learn the
spatial-temporal dependencies of traffic data via feature
propagation and aggregation [17]–[22].

1.2 Motivation
Although the existing works on wireless traffic prediction
can capture the spatial-temporal dependencies and predict
wireless traffic in a particular region, the prediction strategy
learned by those algorithms may not be able to accurately
predict traffic in other regions which have different spatial-
temporal patterns. We note that understanding the wire-
less traffic across different regions is important for global
network infrastructure planning and deployment, as well
as cross-region resource management [3]–[5]. However, it
is challenging to predict traffic in different regions due to
spatial-temporal variations.

The spatial-temporal pattern can vary significantly in
different regions due to different population distributions
and user behavior. As an example, in Fig. 1, we use a real-
world traffic dataset provided by Telecom Italia [23] to show
the spatial-temporal variations across different regions. The
data is collected from the city of Milan in Italy. Fig. 1(a)
shows the heat map of the traffic volume in Milan. Each
pixel corresponds to a grid cell. The brightness of each
pixel represents the volume of the wireless traffic in the
corresponding grid cell. We select two regions (shown in
those two yellow boxes in Fig. 1(a)) to illustrate the spatial
variations. It can be observed that the traffic volume in
Region 1 (located in the central area) is much higher than
that in Region 2 (located in the northwestern area). The
traffic has different distributions and spatial patterns in
these two regions. The temporal patterns of the wireless
traffic are illustrated in Fig. 1(b). We show the traffic volume
over 100 hours (i.e., approximately four days) in two grid
cells which are selected from Regions 1 and 2, respectively.
It can be observed that although the traffic volume exhibits
periodicity in the temporal domain, the maximum and
minimum values of traffic volume of those two cells in
Regions 1 and 2 are different. The grid cell in Region 1 has
a higher traffic volume than that in Region 2. During peak
hours every day, the traffic curve of the grid cell in Region
1 exhibits more fluctuation than the one in Region 2. The
results in Fig. 1(b) indicate that there exist strong temporal
variations across different regions.

In order to accurately predict future wireless traffic in
different regions that have diverse spatial-temporal pat-

terns, sufficient data samples are required for the training of
models, with each model targeting a region with a specific
spatial-temporal pattern. However, data collection can be
time-consuming and training multiple models requires sig-
nificant computational resources. Moreover, the distribution
of traffic data is unbalanced due to different population
distributions and densities. Wireless traffic in urban re-
gions (e.g., downtown) has a large amount of data samples
available for training. On the other hand, in rural regions,
only limited data samples can be collected and the amount
of data samples may not be sufficient for training. This
motivates us to develop an adaptive prediction algorithm,
which can tackle spatial-temporal variations and adapt to
traffic prediction in different regions using only a small
number of data samples.

1.3 Contributions

In this paper, we study the adaptive traffic prediction prob-
lem and propose a variational spatial-temporal Bayesian
meta-learning (VST-BML) algorithm. We model the traffic
prediction in different regions as different prediction tasks.
The proposed VST-BML algorithm learns a set of globally
shared parameters, which can extract the common spatial-
temporal features shared by all tasks and adaptively deter-
mine the task-specific parameters to tackle spatial-temporal
variations. The main contributions of this paper are summa-
rized as follows:

• We formulate the adaptive traffic prediction problem
from a probabilistic inference perspective based on the
latent variable model. We derive the objective func-
tion for the optimization of the global parameters by
using the evidence lower bound (ELBO). The task-
specific parameters are modeled as latent variables
conditioned on the global parameters, such that given
the optimized global parameters, the task-specific pa-
rameters can be adaptively determined.

• We propose a VST-BML algorithm, which learns the
global parameters and determines the task-specific pa-
rameters through a variational spatial-temporal (VST)
network. The VST network consists of an extractor, an
amortization network, and a generator. The extractor
can capture the shared spatial-temporal features. We
propose a dual-attention mechanism to be deployed
in the extractor, which enables the network to focus on
the most important spatial-temporal features shared by
all tasks. The amortization network determines the dis-
tribution over task-specific parameters. The generator
predicts the traffic given the commonly shared spatial-
temporal features and the task-specific parameters.

• We adopt the Bayesian meta-learning (BML) algorithm
for the training of the VST network. The proposed VST
network is trained based on a distribution of prediction
tasks. After training, the VST network can adapt to new
prediction tasks which have different spatial-temporal
patterns. The use of BML enables the proposed VST
network to quickly adapt to different prediction tasks
using only a few data samples.

• We evaluate the performance of the proposed VST-
BML algorithm based on a real-world wireless traf-
fic dataset and compare it with five baseline meth-



ods. They include ARIMA [11], ConvLSTM net-
work [16], multi-view spatial-temporal graph network
(MVSTGN) [18], spatial-temporal cross-domain net-
work (STCNet) [9], and spatial-temporal transformer
(ST-Tran) [10]. When compared with the baseline meth-
ods, experimental results show that the proposed VST-
BML algorithm can reduce the root-mean-square error
(RMSE) and mean absolute error (MAE) by 53.0% and
48.4%, respectively.

• For further evaluation of the proposed VST-BML
algorithm, we compare the predicted results with
the ground truth in different regions which have
diverse spatial-temporal patterns in wireless traffic.
It is shown that our proposed algorithm can accu-
rately predict wireless traffic under different spatial-
temporal patterns by using only five data samples.
This demonstrates the fast adaptation capability of our
proposed algorithm. We also evaluate the effect of the
dual-attention mechanism on the prediction accuracy
through a set of ablation experiments. Results demon-
strate the capability of the dual-attention mechanism
on spatial-temporal feature extraction.

The rest of this paper is organized as follows. In Section
2, we summarize the related work. Section 3 provides a pre-
liminary analysis on spatial-temporal variations in wireless
traffic across different regions. Section 4 describes the prob-
lem formation for adaptive traffic prediction and presents
the proposed VST-BML algorithm. Section 5 illustrates the
experimental results for performance evaluation. Finally,
conclusions are drawn in Section 6.

2 RELATED WORK

We now summarize some of the recent works on deep
learning based wireless traffic prediction algorithms. In [13]
and [24], LSTM networks are used to capture the tem-
poral dependency of time series data and predict future
traffic load. In [8], an autoencoder is developed for spatial
feature extraction and an LSTM network is used to learn
the temporal dependency. In [16], a ConvLSTM network
is proposed, which replaces the matrix multiplication with
convolutional operations in an LSTM cell to extract the
spatial and temporal features. In [15], a spatial-temporal
network is proposed for traffic prediction. It includes a
ConvLSTM and three-dimensional convolutional (Conv3D)
layers to capture the spatial-temporal dependencies. In [25],
an attention-embedded CNN is developed to learn the local
short-term and long-term spatial-temporal dependencies for
traffic prediction. In [17], a GNN-based predictive algorithm
is proposed which models the spatial-temporal correlations
of wireless traffic using a graph representation. In [18],
an MVSTGN algorithm is developed which embeds the
attention modules into a GNN to capture the global and
local spatial-temporal features. In [19], a graph attention
spatial-temporal network is proposed. It learns the spatial
and temporal features of wireless traffic through a spatial
relation graph and an attention-based RNN structure, re-
spectively. In [9], STCNet is proposed which uses cross-
domain knowledge (e.g., the information from point of
interest distribution) to improve the prediction accuracy. ST-
Tran is developed in [10]. It has two transformer blocks

for spatial and temporal feature extraction. In [26] and
[27], side information (e.g., weather conditions) is used to
enhance traffic prediction performance. In [20]–[22], user
mobility patterns are adopted to facilitate traffic prediction
in wireless networks. Traffic prediction based on distributed
training architecture is investigated in [28], where a hierar-
chical aggregation structure is introduced for local training
and central aggregation.

The aforementioned works study spatial-temporal de-
pendencies for traffic prediction in a particular region. Those
works do not consider the spatial-temporal variations and
the trained models cannot be generalized to different re-
gions. Although multiple models can be trained with each
model targeting a region with a specific spatial-temporal
pattern, data collection can be consuming and network
training is resource-demanding. To address the above is-
sues, in this paper, we propose a VST-BML algorithm, which
can quickly adapt to traffic prediction in different regions
using a small number of data samples.

3 PRELIMINARY ANALYSIS ON SPATIAL-
TEMPORAL VARIATIONS IN WIRELESS TRAFFIC

In Section 1, we briefly explain the spatial-temporal varia-
tions in wireless traffic and show the spatial-temporal pat-
terns in different regions. To gain more insights into spatial-
temporal variations, in this section, we first provide a more
detailed investigation of the spatial-temporal dependencies
in wireless traffic and show how this dependency can vary
across different regions. The following data analysis of wire-
less traffic is based on a real-world dataset [23] provided by
Telecom Italia. The traffic data was collected from Nov. 1,
2013 to Jan. 1, 2014 in Milan, Italy, with a sampling rate of
10 minutes. The area of Milan city is divided into 100× 100
grid cells, with each grid cell covering an area of 235× 235
m2. A region is defined as an area which contains a group
of grid cells. The dataset includes the call detail records
(CDRs) in Milan. We use the traffic volume of voice call
to analyze the spatial-temporal variations across different
regions. Similar to the work in [9], we aggregate the traffic
data into hourly scale. A timestamp is used to indicate
the time when wireless traffic was collected. The interval
between two consecutive timestamps is one hour.

Each region has M × N grid cells. Let R denote the set
of regions. Consider region i ∈ R, the wireless traffic across
the M×N grid cells at the t-th timestamp can be represented
as a matrix Di,t ∈ RM×N :

Di,t =


d
(1,1)
i,t d

(1,2)
i,t · · · d(1,N)

i,t
...

...
...

d
(M,1)
i,t d

(M,2)
i,t · · · d(M,N)

i,t

 , (1)

where d
(m,n)
i,t denotes the traffic volume in grid cell (m,n)

of region i at the t-th timestamp. Let vector d
(m,n)
i =

(d
(m,n)
i,1 , . . . , d

(m,n)
i,T ) denote a sequence of traffic data with

T timestamps. We use a three-dimensional (3D) tensor
Di = [Di,1, . . . ,Di,T ] ∈ RT×M×N to represent the T -
timestamp traffic volume across M ×N cells in region i.

The wireless traffic in each region has a specific spatial-
temporal dependency. In particular, there exists temporal
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Fig. 2. Temporal autocorrelations of wireless traffic in two grid cells
selected from different regions in Milan. Region 1 is in the central area.
Region 2 is in the northwestern area.

autocorrelation in the traffic sequence d
(m,n)
i for each grid

cell (m,n) in region i. Due to user mobility, there also ex-
ists spatial correlation among neighboring grid cells. More-
over, the temporal autocorrelation and spatial correlation
may vary significantly in different regions, which indi-
cates strong spatial-temporal variations. In the following
subsections, we consider two different regions in the city
of Milan, i.e., Region 1 in the central area and Region 2
in the northwestern area, to illustrate the spatial-temporal
variations.

3.1 Analysis on Temporal Variations

The sample autocorrelation function [29], as a function of
time lag l, is widely used for the evaluation of temporal
dependency. The autocorrelation function for a T -sequence
of traffic data d

(m,n)
i in grid cell (m,n) of region i is given

by:

γ
(m,n)
i (l) =

∑T−l
t=1 (d

(m,n)
i,t − d̄

(m,n)
i )(d

(m,n)
i,t+l − d̄

(m,n)
i )∑T

t=1(d
(m,n)
i,t − d̄

(m,n)
i )2

,

0 ≤ l < T, (2)

where d̄(m,n)
i =

∑T
t=1 d

(m,n)
i,t

T represents the mean value of the
traffic in grid cell (m,n) of region i.

In Fig. 2, we show the temporal autocorrelations of
wireless traffic in two grid cells selected from Regions 1 and
2. From Fig. 2, we can observe that the wireless traffic is
temporally autocorrelated in both cells. However, the traffic
in the cell from Region 1 has a similar autocorrelation with
the traffic in the next 24, 48, and 72 hours. That is, when
the time lag l is equal to 24, 48, and 72, the autocorrelation
values are all between 0.15 and 0.17. On the other hand,
the traffic in the cell from Region 2 has a much higher
autocorrelation when the time lag l is equal to 24 hours
(the autocorrelation is equal to 0.52). This indicates that
the wireless traffic in these two cells has different temporal
dependencies. The reasons for the temporal variations can
be due to heterogeneous user behavior, which influences the
trend of wireless traffic in the temporal domain.

3.2 Analysis on Spatial Variations

We use the Pearson correlation coefficient [30] to model the
spatial correlation between two neighboring grid cells in a
region. A higher Pearson correlation indicates a stronger
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Milan. Region 1 is in the central area. Region 2 is in the northwestern
area.

spatial dependency. The Pearson correlation coefficient for
two grid cells (m,n) and (m′, n′) in region i is defined as

ρi =
cov(d

(m,n)
i ,d

(m′,n′)
i )

σ
d

(m,n)
i

σ
d

(m′,n′)
i

, (3)

where cov(·) represents the covariance operation, and σ
is the standard deviation. To investigate the variation in
spatial correlations, we select two different regions from
the dataset. Fig. 3 shows the heat map of the Pearson
correlations across the cell groups from Regions 1 and 2,
which correspond to the upper and lower triangular parts,
respectively. Both cell groups have the same size of coverage
area, i.e., 705× 705 m2. The cells in each region are indexed
from 1 to 9 for simplicity. Both cells follow the same index
order. For example, cells 1 and 2 in Region 1 are adjacent
to each other, so are cells 1 and 2 in Region 2. From Fig. 3,
we can observe the spatial correlations across the group of
grid cells within each region. Although the cell groups in
both regions have the same spatial relationships, the spatial
correlations across grid cells in Region 2 are higher than
those in Region 1. In particular, the Pearson correlation
coefficients in Region 2 are all above 0.8. Grid cells 8 and
9 are highly correlated with grid cells 3 − 5 (the Pearson
correlation coefficient is 1.0). On the other hand, in Region
1, the spatial correlations between grid cells 8, 9 and 3 − 5
are much lower. Grid cells 5 and 8 in Region 1 have the
lowest Pearson correlation coefficient, which is 0.39.

In summary, results from Figs. 2 and 3 show that wire-
less traffic is highly spatial-temporal dependent and has a
specific spatial-temporal pattern in a region. However, the
dependency can vary significantly across different regions,
which makes accurate traffic prediction in different regions a
challenging problem. In the next section, we develop a VST-
BML algorithm to tackle the spatial-temporal variations and
solve the adaptive traffic prediction problem.

4 PROPOSED VST-BML ALGORITHM FOR ADAP-
TIVE TRAFFIC PREDICTION

In this section, we propose a VST-BML algorithm to ad-
dress the spatial-temporal variations in different regions.
We first introduce the adaptive traffic prediction model
and formulate the problem from a probabilistic inference
perspective. We then present the VST-BML algorithm which
can adaptively predict wireless traffic in different regions.



4.1 Adaptive Traffic Prediction Model

The goal of traffic prediction in a particular region is to
predict the traffic volume of the next Q timestamps using
the previous P traffic observations. This can be achieved
by using deep learning techniques, which train a neural
network and obtain the network parameters using sufficient
pairs of P -timestamp observations (i.e., network input) and
Q-timestamp ground truth (i.e., label) in a region. The
trained network takes new traffic observations as input and
returns the corresponding predictions (for the same region)
as output. However, such networks may not be able to
provide accurate predictions in other regions due to spatial-
temporal variations. When considering traffic prediction in
different regions, we aim to develop an adaptive traffic
prediction network. Given the traffic observations from
any region i ∈ R, the adaptive network can provide the
corresponding traffic prediction results in region i.

4.1.1 Prediction Task, Support Set, and Query Set

We model traffic prediction in different regions with diverse
spatial-temporal patterns as different prediction tasks. We
use τi ∼ γ(T ) to denote a prediction task in region i, where
γ(T ) represents the distribution of prediction tasks. Let
Di denote the dataset for task τi, which contains multiple
input-label pairs, i.e., P -timestamp observations (input) and
Q-timestamp ground truth (label) in region i. The dataset Di

is further partitioned into a support set Ds
i and a query set

Dq
i , where Ds

i∪D
q
i = Di and Ds

i∩D
q
i = ∅. Given an arbitrary

timestamp t, we use tensor X
(t)
i = {Xi,t−P+1, . . . ,Xi,t} ∈

RP×M×N to denote the P -timestamp observations and
tensor Y

(t)
i = {Yi,t+1, . . . ,Yi,t+Q} ∈ RQ×M×N as

the Q-timestamp ground truth in support set Ds
i , where

{Xi,p}tp=t−P+1 and {Yi,q}t+Q
q=t+1 have a similar form as

in (1). Similarly, tensors X̃
(t)
i = {X̃i,t−P+1, . . . , X̃i,t} ∈

RP×M×N and Ỹ
(t)
i = {Ỹi,t+1, . . . , Ỹi,t+Q} ∈ RQ×M×N

denote the observations and ground truth in query set Dq
i ,

respectively. We consider the support set Ds
i contains Ns

pairs of {X(ts)
i }Ns

s=1 and {Y(ts)
i }Ns

s=1, which correspond to
the observations and ground truth of wireless traffic at
timestamp ts, for s = 1, . . . , Ns. The query set Dq

i con-
tains Nq pairs of data samples {X̃(tq)

i , Ỹ
(tq)
i }Nq

q=1, which are
the observations and ground truth of traffic at timestamp
tq (different from those timestamps in support set), for
q = 1, . . . , Nq.

We aim to develop an adaptive network parameterized
by a set of global parameters θ, such that given the data
samples in support set Ds

i , the network parameterized by θ
can adaptively determine a set of task-specific parameters
ϕi which are used for traffic prediction on the disjoint query
set Dq

i for task τi. Note that only a small number of data
samples are available in the support set [31]. This is due
to the fact that in real-world wireless systems, there may
be limited traffic data available in some particular regions.
Moreover, collecting a large amount of data samples along
with data processing and computation is time-consuming
and may lower the efficiency of network adaptations to
different prediction tasks. In order to effectively utilize
the limited data samples in support set Ds

i and achieve
fast adaptation to prediction task τi, in the following, we

formulate the adaptive traffic prediction problem from a
probabilistic inference perspective by using the latent vari-
able model.

4.1.2 Preliminaries of Latent Variable Model

In this subsection, we present the preliminaries of the latent
variable model. Let x denote the observed wireless traffic
data. We are interested in obtaining the distribution p(x)
of the observed data. By using the latent variable model,
the observed data x is determined by a latent distribution
p(z), where z represents the latent variables. The data x is
generated by a conditional distribution p(x | z). The goal
in the latent variable model is to determine the posterior
distribution of latent variables z, i.e., p(z | x), given the
observed data x, which can be expressed as:

p(z | x) = p(x, z)∫
p(x, z)dz

. (4)

However, the posterior distribution is difficult to calculate
as the integral in the denominator is high dimensional. A
general solution is to approximate the posterior distribution
by another distribution qξ(z) characterized by parameters
ξ [32]. The closeness of these two distributions is measured
by the evidence lower bound (ELBO). Maximizing the ELBO
ensures qξ(z) to approach the posterior distribution p(z | x).
The ELBO L(ξ) is defined as [32]:

L(ξ) = Ez∼qξ(z)[log p(x | z)]−DKL(qξ(z) || p(z)), (5)

where DKL corresponds to the Kullback-Leibler (KL) diver-
gence between distributions qξ(·) and p(·). Minimizing the
KL divergence encourages the distributions qξ(·) and p(·) to
be similar.

4.1.3 Problem Formulation for Adaptive Traffic Prediction

Based on the latent variable model described above, we now
present the problem formulation and derive the objective
function for adaptive traffic prediction. Recall that the goal
is to learn a set of global parameters θ of the adaptive
network. The adaptive network can determine the task-
specific parameters ϕi for traffic prediction on the query set
Dq

i of task τi. We model the task-specific parameters ϕi as
latent variables and model the query set Dq

i as the observed
data. For each task τi ∼ γ(T ), the posterior distribution
p(ϕi | Dq

i ) is approximated by another distribution qξi(ϕi)
characterized by the parameters ξi. The ELBO for task τi can
be expressed as follows:

L(ξi) = Eϕi∼qξi (ϕi)[log p(D
q
i | ϕi)]

−DKL(qξi(ϕi) || p(ϕi)), τi ∼ γ(T ). (6)

When taking the global parameters θ into consideration,
the generation of the task-specific parameters ϕi and the
prediction on the query set Dq

i are conditioned on θ. There-
fore, the latent distribution of ϕi is determined by p(ϕi | θ).
The posterior distribution over ϕi is approximated by the
function qξi(ϕi | θ) for task τi ∼ γ(T ). The conditional
distribution of the observed data (i.e., query dataset Dq

i )
is given by p(Dq

i | ϕi, θ). Note that the query set Dq
i is

constructed by Nq input-label pairs, i.e., {X̃(tq)
i , Ỹ

(tq)
i }Nq

q=1.



We aim to predict the ground truth Ỹ
(tq)
i given the ob-

servations X̃
(tq)
i as input. Under this setting, the condi-

tional distribution of the observed data can be rewritten as
p(Ỹ

(tq)
i | X̃

(tq)
i , ϕi, θ). Then, the ELBO for task τi can be

rewritten as

L(θ, ξi) = Eϕi∼qξi (ϕi | θ)[log p(Ỹ
(tq)
i | X̃(tq)

i , ϕi, θ)]

−DKL(qξi(ϕi | θ) || p(ϕi | θ)), τi ∼ γ(T ). (7)

As can be observed in (7), the generation of task-specific
parameters ϕi is dependent on a set of parameters ξi. The
computational complexity grows linearly with the number
of tasks. To reduce the complexity, we use the information
provided by the support set Ds

i to facilitate the generation
of task-specific parameters ϕi. Instead of using ξi to ap-
proximate the posterior distribution over the task-specific
parameters qξi(ϕi | θ) for each task τi ∼ γ(T ), we apply
another function qλ parameterized by λ to map ϕi from the
support set Ds

i . We approximate the posterior distribution
using qλ(ϕi | Ds

i, θ), such that the computational cost of this
approximation process can be amortized across tasks. Based
on this operation, the ELBO for task τi can be expressed as
follows:

L(θ, λ) = Eϕi∼qλ(ϕi | Ds
i,θ)

[log p(Ỹ
(tq)
i | X̃(tq)

i , ϕi, θ)]

−DKL(qλ(ϕi | Ds
i, θ) || p(ϕi | θ)), τi ∼ γ(T ). (8)

In (8), p(Ỹ(tq)
i | X̃(tq)

i , ϕi, θ) is the conditional distribution
over Ỹ(tq)

i , given the input data samples X̃(tq)
i , task-specific

parameters ϕi, and the global parameters θ. qλ(ϕi | Ds
i, θ)

produces the variational distribution of the task-specific
parameters ϕi, given the support set Ds

i and global pa-
rameters θ. Using the information provided by the global
parameters θ, the prior over the task-specific parameters
p(ϕi | θ) learns the mean and standard deviation of ϕi for
any task τi ∼ γ(T ). Note that equation (8) includes an
expectation with respect to ϕi that is sampled from qλ(·).
The derivative of Eϕi∼qλ(·) is difficult to calculate since the
process of sampling from a distribution is not differentiable
and cannot be backpropagated. This issue can be addressed
through reparameterization [33], which represents function
qλ(·) in a differentiable form as:

qλ(·) = µqλ(·) + σqλ(·)ϵ. (9)

In (9), the output of qλ(·) is reparameterized by the mean
µqλ(·) and standard deviation σqλ(·). Random variable ϵ
denotes the Gaussian distributed noise with zero mean and
unit variance. By using reparameterization, equation (8) can
be rewritten as:

L̃(θ, λ) =
1

K

K∑
k=1

log p
(
Ỹ

(tq)
i | X̃(tq)

i , µqλ(Ds
i, θ) + σqλ(Ds

i, θ)ϵ
(k), θ

)
−DKL(qλ(ϕi | Ds

i, θ) || p(ϕi | θ)), τi ∼ γ(T ), (10)

where K is the number of Monte Carlo samples. The first
term on the right-hand side in (10) measures the accuracy
of the prediction results compared with the ground truth
Ỹ

(tq)
i . The second term serves as a KL regularization, which

ensures the approximation of the posterior distribution to
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Fig. 4. The proposed VST network. The inputs in support set
{X(ts)

i }Ns
s=1 and query set {X̃(tq)

i }Nq

q=1 are first processed by the ex-
tractor to generate the feature maps. Then, data samples in support set
{fθext (X

(ts)
i ),Y

(ts)
i }Ns

s=1 are used to determine the distribution of task-
specific parameters ϕi through the amortization network. After that, the
sampled task-specific parameters ϕi and the features provided by the
extractor fθext (X̃

(tq)
i ) are sent to the generator. The predicted results

Ŷ
(tq)
i are determined by the generator based on the task-specific

parameters and the extracted features.

be close to the true distribution. In this work, we aim to
maximize ELBO in (10) across all prediction tasks:

maximize
θ,λ

Eτi∼γ(T )[L̃(θ, λ)]. (11)

In summary, given the optimized θ and λ as well as the
support set Ds

i of task τi, the distribution of task-specific
parameters ϕi can be determined. Then, the underlying
distribution of the spatial-temporal pattern can be inferred
from a small number of data samples in the support set
without encountering the issue of overfitting. In the next
subsection, we solve problem (11) by using a VST network.
We train the developed VST network by using the BML
algorithm to obtain the parameters θ and λ.

4.2 Variational Spatial-Temporal Network
We now present the proposed VST network, where θ and λ
are the learnable parameters of the VST network. The pro-
posed VST network extracts the common spatial-temporal
dependencies shared by all tasks and adaptively infers the
task-specific parameters ϕi. The structure of the proposed
VST network is shown in Fig. 4. The proposed VST network
includes three modules: an extractor which is parameterized
by θext, an amortization network which is parameterized by
λ, and a generator which is parameterized by θgen. We define
θ = {θext, θgen} as the global parameters, which capture the
shared spatial-temporal features of all tasks. The amortiza-
tion network determines the task-specific parameters. In the
following, we will explain these three modules in detail.

4.2.1 Extractor
The extractor is common to all prediction tasks. It is devel-
oped to pre-process the input from both the support and



query sets to extract the spatial-temporal features shared by
all tasks. In order to accurately predict the wireless traffic, it
is important for the extractor to capture both the local short-
term and long-term spatial-temporal features. The Conv3D
network can extract dependencies of the traffic data in the
spatial and temporal domains by using a 3D kernel. In the
extractor, we apply the Conv3D operation to extract the local
short-term spatial-temporal dependencies. We consider the
kernel sizes of the Conv3D as κext

3D,1, κext
3D,2, and κext

3D,3. The
number of channels is denoted as Hext

3D . Moreover, let θC3D
denote the learnable parameters in the Conv3D operation.
We use the rectified linear unit (ReLU) as the activation
function.

For the shared long-term spatial-temporal dependen-
cies, we propose a dual-attention embedded ConvLSTM
(DAConvLSTM) network. The DAConvLSTM network pre-
serves the capabilities of the ConvLSTM network to learn
long-term spatial-temporal dependencies through the LSTM
cells and convolutional operations. Moreover, the DACon-
vLSTM network can extract the most important spatial-
temporal features in the long term by using the dual-
attention mechanism. In the following, the conventional
ConvLSTM network is presented. Then, we introduce the
proposed dual-attention mechanism. Given a P -timestamp
input X(t)

i = {Xi,t−P+1, . . . ,Xi,t} in the support set of task
τi, the ConvLSTM operation on each element Xi,p, where
p = t− P + 1, . . . , t, can be expressed as

ii,p = σ(Wxi ∗Xi,p +Whi ∗Hi,p−1 +Wci ⊙Ci,p−1 + bi),

fi,p = σ(Wxf ∗Xi,p +Whf ∗Hi,p−1 +Wcf ⊙Ci,p−1 + bf),

Ci,p = fi,p ⊙Ci,p−1

+ ii,p ⊙ tanh(Wxc ∗Xi,p +Whc ∗Hi,p−1 + bc),

oi,p = σ(Wxo ∗Xi,p +Who ∗Hi,p−1 +Wco ⊙Ci,p + bo),

Hi,p = oi,p ⊙ tanh(Ci,p),

where ∗ and ⊙ denote the two-dimensional convolution
(Conv2D) operator and Hadamard product, respectively.
The kernel sizes of the Conv2D module are denoted as κext

2D,1

and κext
2D,2. We use Hext

2D to denote the number of channels
of the Conv2D module. σ(·) is the sigmoid function. ii,p,
fi,p, Ci,p, oi,p, and Hi,p denote the input gate, forget gate,
cell state, output gate, and hidden state, respectively. Note
that the gates and states are all 3D tensors. Wxi, Whi, Wci,
and bi are the weights and bias for the input gate, which
need to be learned through network training. Similarly, Wxf,
Whf, Wcf, and bf are the weights and bias associated with
the forget gate. Wxc, Whc, and bc are the weights and bias
related to the cell state. Wxo, Who, Wco, and bo are the
weights and bias for the output gate. Note that the weights
and biases are shared across all tasks. In addition, tanh(·) is
the hyperbolic tangent function. The input-to-state, cell-to-
state, and cell-to-cell transitions are element-wise controlled
by each gate ii,p, fi,p, and oi,p. This facilitates the model to
keep the historical information and learn to forget unimpor-
tant information in the spatial-temporal domain. To further
improve the capability of the network to capture the most
important long-term spatial and temporal trends shared by
all tasks, we propose to embed two attention mechanisms
in the ConvLSTM network.

Spatial attention (S-ATT) mechanism: We propose to
embed an S-ATT mechanism in the ConvLSTM network to
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Fig. 5. The structure of an ACLSTM cell.

capture the important spatial correlation. We develop an
attention embedded ConvLSTM (ACLSTM) cell by recon-
structing the input and output gates of ConvLSTM with the
S-ATT mechanism [25]. In particular, by using the S-ATT
mechanism, the input gate is reconstructed as follows:

Zi,p = Wi ∗ tanh(Wxi ∗Xi,p +Whi ∗Hi,p−1 (12)
+ Wci ⊙Ci,p−1 + bi),

Ajk
i,p(h) =

exp(Zjk
i,p(h))

max
ĵ,k̂

exp(Zĵk̂
i,p(h))

, (13)

ii,p = {Ajk
i,p(h) | h = 1, . . . , H, (14)
j = 1, . . . ,M, k = 1, . . . , N},

where Wi is a Conv2D kernel with size κext
ATT,1 and κext

ATT,2.
The number of channels is equal to Hext

ATT. The term
maxĵ,k̂ exp(Z

ĵk̂
i,p(h)) corresponds to the maximum element

chosen within channel h of Zi,p, for h = 1, . . . , Hext
ATT. The

division by the maximum value ensures that the attention
scores are distributed in the range between zero and one.
The output gate of the ConvLSTM cell can be reconstructed
in a similar manner as the input gate shown in (12)−(14).
By embedding the S-ATT mechanism into the ConvLSTM
network, the ACLSTM cell can focus on the most important
long-term spatial features shared by all tasks. The structure
of an ACLSTM cell is shown in Fig. 5.

Temporal attention (T-ATT) mechanism: Given an in-
put sequence X

(t)
i = {Xi,t−P+1, . . . ,Xi,t} with length P ,

the final hidden state of an ACLSTM cell Hi,p contains
information for the entire input sequence. However, using
a single variable Hi,p to represent the information extracted
from the sequence {Xi,t−P+1, . . . ,Xi,t} may lead to in-
formation loss. To tackle this issue, we propose a T-ATT
mechanism, which determines the weights for hidden states
{Hi,t−P+1, . . . ,Hi,t}, such that the hidden states with more
information in the temporal domain have larger weights
in the output state. In particular, we reshape the hidden
states Hi,p into a vector hi,p, for p = t − P + 1, . . . , t. We
concatenate the final state vector hi,t with hi,p, and form
the vector h̄i,t,p = [hT

i,t h
T
i,p]

T, for p = t − P + 1, . . . , t. By
using the T-ATT mechanism, the attention weights ai,t,p can
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be determined by the following softmax operation:

ai,t,p =
exp

{
vT tanh

(
Wah̄i,t,p

)}∑t
k=t−P+1 exp

{
vT tanh

(
Wah̄i,t,k

)} ,
p = t− P + 1, . . . , t,

(15)

where Wa and v are the parameters of the T-ATT mecha-
nism which are shared by all the prediction tasks. Then, the
output of the T-ATT mechanism is given by the weighted
hidden state vector h̃i,t:

h̃i,t =
t∑

p=t−P+1

ai,t,phi,p. (16)

The weighted hidden state vector h̃i,t is transformed back
to a matrix, denoted as H̃i,t. By embedding the S-ATT
and T-ATT mechanisms into the ConvLSTM network, we
construct the DAConvLSTM network. The structure of
the DAConvLSTM network is shown in Fig. 6. We use
θDACL = {Wi,Wo,Wxk,Whk,Wck,bk,Wa,v} to denote
the learnable parameters in the DAConvLSTM network,
where k ∈ {i, f, c, o} represents the gate or cell state in the
ConvLSTM network.

To leverage the capability of both Conv3D and DACon-
vLSTM networks to learn spatial-temporal dependencies,
we fuse the output of the two networks and obtain an
ensembling result. Through fusion operation, the extractor
can exploit the advantages of both Conv3D (to capture local
spatial-temporal fluctuations) and DAConvLSTM (to extract
long-term trends). This leads to an improved prediction
performance compared with employing only one of the
two models. The network parameters of the extractor are
given by θext = {θC3D, θDACM} and the extractor network
is denoted as fθext(·). The overall structure of the proposed
extractor is shown in the top-left part of Fig. 4.

4.2.2 Amortization Network
To tackle the spatial-temporal variations, we develop an
amortization network parameterized by λ to approximate
the posterior distribution of the task-specific parameters.
The structure of the amortization network is shown in the
lower part of Fig. 4. The amortization network determines
the mean and standard deviation of ϕi given the support set
Ds

i and the common knowledge provided by the extractor.
The amortization network has three phases. In the first

phase, the labels from the support set {Y(ts)
i }Ns

s=1 are sent
to a Conv2D network for pre-processing. The kernel sizes of
the Conv2D network are κamo

1 and κamo
2 , and the number of

channels is denoted as Hamo
2D . In the second phase, the output

from the Conv2D network and the features provided by the
extractor fθext(X

(ts)
i ) are fused together. The results after

fusion are denoted as {G(1)
i , . . . ,G

(Ns)
i }. Then, the results

{G(1)
i , . . . ,G

(Ns)
i } are averaged and converted to a vector ḡi

of dimension Dg. In the third phase, the averaged results ḡi

are sent to fully connected layers to determine the mean and
standard deviation of the distribution over the task-specific
parameters. The mean and standard deviation are denoted
as µqλ

(
fθext(X

(ts)
i ),Y

(ts)
i

)
and σqλ

(
fθext(X

(ts)
i ),Y

(ts)
i

)
, re-

spectively. Given the mean and standard deviation of
task τi, we can sample the task-specific parameters ϕi =

µqλ

(
fθext(X

(ts)
i ),Y

(ts)
i

)
+σqλ

(
fθext(X

(ts)
i ),Y

(ts)
i

)
ϵ for task

τi ∼ γ(T ). The dimension of the sampled task-specific
parameters is denoted by Dϕ.

4.2.3 Generator
The generator is used to produce the predicted results to
approach the ground truth {Ỹ(tq)

i }Nq

tq=1 in the query set
for task τi. Two pieces of information need to be sent to
the generator. They are the input from the query set and
the task-specific parameters. Each input in the query set,
which corresponds to X̃

(tq)
i , is successively processed by the

extractor and the Conv2D module. Let κgen
1 and κ

gen
2 denote

the kernel sizes, and H
gen
2D denote the number of channels

of the Conv2D module. The output of the Conv2D module
is then fused with the sampled task-specific parameters ϕi.
The result after fusion is converted to a vector, which is
denoted as ri with dimension Dr. Then, ri is fed into two
fully connected layers successively. The output of the fully
connected layers is reshaped to a 3D tensor with dimension
Q×M×N , which corresponds to the predicted traffic values
of the next Q timestamps for task τi. We denote θgen as the
parameters of the generator. The final predicted results are
expressed as Ŷ

(tq)
i = fθgen(X̃

(tq)
i , ϕi), where fθgen represents

the generator.

4.3 BML-based Training and Testing
We apply the BML algorithm for the training and testing
of the VST network, such that the VST network can obtain
the common knowledge shared by different prediction tasks
and quickly adapt to different prediction tasks using the
data samples in the support set. The BML-based training
procedure is shown in Algorithm 1. For each training it-
eration, we sample a batch of tasks. For each batch of
tasks, we partition the dataset into the support and query
sets accordingly (Line 5) and determine the task-specific
parameters based on the support set (Line 6). Given the
task-specific parameters and the query set, we compute the
ELBO in (10) (Line 7). Then, the parameters θ and λ are
updated using the Adam optimizer [34] (Line 9).

In the testing stage, as shown in Algorithm 2, we sample
a new task τj ∼ γ(T ) for testing and partition the dataset
into the support and query sets (Line 2). The trained VST
network generates the task-specific parameters ϕj based on
the data samples in the support set Ds

j (Line 4). Then, given



Algorithm 1 BML-based Training Procedure
1: Input: Distribution of tasks γ(T ), initialize θ and λ,

learning rate γ of Adam optimizer [34], total number
of iterations Nmax. Niter := 0.

2: while Niter < Nmax do
3: Sample a batch of tasks from γ(T ).
4: for each sampled task τi ∼ γ(T ) do
5: Partition the dataset into the support set Ds

i and
query set Dq

i .
6: Sample the task-specific parameters for task

τi. That is, ϕi = µqλ

(
fθext(X

(ts)
i ),Y

(ts)
i

)
+

σqλ

(
fθext(X

(ts)
i ),Y

(ts)
i

)
ϵ.

7: Compute the ELBO in (10).
8: end for
9: Solve problem (11) and update {θ, λ} based on Adam

optimizer.
10: Niter := Niter + 1.
11: end while
12: Output: Trained global parameters θ and the amortiza-

tion network parameters λ.

Algorithm 2 BML-based Testing Procedure
1: Input: New traffic prediction task τj sampled from

γ(T ), the trained θ and λ.
2: Partition the dataset into the support set Ds

j and query
set Dq

j .

3: for each X̃
(tq)
j in query set Dq

j do
4: Sample the task-specific parameters for task

τj . That is, ϕj = µqλ

(
fθext(X

(ts)
j ),Y

(ts)
j

)
+

σqλ

(
fθext(X

(ts)
j ),Y

(ts)
j

)
ϵ.

5: Obtain Ŷ
(tq)
j = fθgen(X̃

(tq)
j , ϕj).

6: end for
7: Output: Predicted results Ŷ(tq)

j .

the input X̃(tq)
j in the query set and task-specific parameters

ϕj , the generator determines the predicted traffic Ŷ
(tq)
j

in the query set for task ϕj (Line 5). By using the BML
algorithm, the trained VST network can quickly adapt to
the testing task by using the data samples in the support
set.

4.4 Computational Complexity Analysis
In this subsection, we provide a computational complexity
analysis of the proposed VST-BML algorithm. For the BML-
based training procedure, the computational complexity
includes the computation required in the extractor, amor-
tization network, and generator. The extractor contains
DAConvLSTM and Conv3D networks. The computational
complexity of the DAConvLSTM network is given by

ODAConvLSTM = O
(
P
(
Hext

2DMNκext
2D,1κ

ext
2D,2 +

MN(Hext
2Dκext

2D,1κ
ext
2D,2 +Hext

ATTκ
ext
ATT,1κ

ext
ATT,2)

))
. (17)

The computational complexity of the Conv3D network is

OConv3D = O
(
Hext

3DMNPκext
3D,1κ

ext
3D,2κ

ext
3D,3

)
. (18)

The computational complexity of the extractor can be ex-
pressed as

Oext = ODAConvLSTM +OConv3D. (19)

For the amortization network, the computational complex-
ity of the Conv2D and fully connected networks are given
by O(Hamo

2D MNκamo
1 κamo

2 ) and O(DgDϕ), respectively. The
computational complexity of the amortization network is

Oamo = O
(
Hamo

2D MNκamo
1 κamo

2 +DgDϕ

)
. (20)

Finally, the computational complexity of the generator is
given by

Ogen =
(
H

gen
2DMNκ

gen
1 κ

gen
2 +DrQMN

)
. (21)

During network training, the data samples from the support
set are processed by the extractor and amortization network.
The data samples from the query set are processed by the ex-
tractor and generator. The overall computational complexity
of BML-based training is given by

Otrain

=
(
NmaxNB

(
Ns (Oext +Oamo) +Nq

(
Oext +Ogen

)))
, (22)

where Nmax is the total number of iterations during training
and NB is the number of sampled tasks in each batch.

For online testing, given a new task, the computational
complexity for adaptive traffic prediction is

Otest =
(
Ns (Oext +Oamo) +Nq

(
Oext +Ogen

))
. (23)

We can observe that the proposed VST-BML algorithm has
a linear complexity with the sizes of a region, i.e., M and N .
The number of data samples in the support and query sets,
i.e., Ns and Nq, also affects the computational complexity, In
the next section, we provide a runtime evaluation for both
training and testing procedures.

5 PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
VST-BML algorithm on a real-world wireless traffic dataset
[23], which is provided by Telecom Italia. Similar to some
recent works (e.g., [9], [10], [18]), we show the prediction
performance on the CDRs provided by this dataset, i.e.,
voice call, short message service (SMS), and Internet in
the city of Milan in Italy. We use two metrics to evaluate
the prediction performance. The first metric is the RMSE,
which measures the difference between the predicted results
and ground truth. The second metric is the MAE, which
measures the average of the absolute difference between the
predicted results and ground truth. We compare the RMSE
and MAE of the proposed VST-BML algorithm with five
baseline methods. We then present the runtime of offline
training and online testing for different methods. After
that, comparisons between the predicted results and ground
truth in different regions are provided to further demon-
strate the prediction performance of the proposed VST-BML
algorithm. We also conduct ablation experiments to evaluate
the effect of the dual-attention mechanism in the extractor.
Finally, we evaluate the effect of the number of data samples
in the support and query sets on the prediction accuracy.
In the following, we first introduce the considered baseline
methods and experimental settings. Then, the experimental
results are presented.



TABLE 1
Prediction performance comparisons among different methods in terms of RMSE and MAE.

Methods
Voice call SMS Internet

RMSE MAE RMSE MAE RMSE MAE

ARIMA [11] 17.5877 15.8873 26.2275 22.5377 130.9993 113.4887

ConvLSTM [16] 12.5828 9.3775 18.8622 11.3792 92.7453 59.8861

MVSTGN [18] 13.3364 8.2637 14.9361 9.3586 91.1871 50.6461

STCNet [9] 9.8973 7.2803 16.0960 10.2739 89.5647 58.2248

ST-Tran [10] 7.3830 4.1749 13.8399 9.6982 88.2059 57.6397

VST-BML 3.2544 2.1535 8.5369 6.8602 56.1430 39.7242

Improvement 53.0% ↑ 48.4% ↑ 38.3% ↑ 26.7% ↑ 36.3% ↑ 21.6% ↑

5.1 Baseline Methods and Experimental Settings
We compare the performance of our proposed VST-BML
algorithm with that of the following baseline methods.

• ARIMA [11]: ARIMA is a statistical analysis model that
learns the temporal dependency from the time series
data and predicts wireless traffic. It has limited capabil-
ity in capturing complex spatial-temporal dependency
of the traffic data in a region.
• ConvLSTM [16]: ConvLSTM applies convolutional
operations in both the input-to-state and state-to-state
transitions in traditional LSTM. ConvLSTM network
can extract both spatial and temporal dependencies.
• MVSTGN [18]: MVSTGN uses a GNN for wireless
traffic prediction. The attention modules are embed-
ded in the GNN to extract the global spatial-temporal
correlation. Densely connected convolutional layers are
employed to extract the local spatial-temporal depen-
dencies of the nodes.
• STCNet [9]: STCNet captures spatial-temporal depen-
dencies using the ConvLSTM network. After feature
extraction, STCNet predicts wireless traffic based on
CNNs.
• ST-Tran [10]: ST-Tran includes a spatial and temporal
transformer block which can learn the spatial-temporal
features. The learned features are fused together to
make the final prediction.

We consider the traffic prediction on an hourly basis,
where the collected raw traffic data is grouped into hourly
scale, i.e., the duration between two consecutive timestamps
is set to one hour. After aggregation, there are 1,488 hours in
total. We consider the size of a region to be M×N = 10×10.
In each prediction task, we choose P = 5 and Q = 1. That is,
we aim to predict the wireless traffic of the next timestamp
based on the previous five observations. We consider the
number of data samples in the support set and query set
to be Ns = 5 and Nq = 1, respectively. The proposed
VST-BML algorithm can quickly adapt to traffic prediction
on the query set by using only five data samples in the
support set. Without loss of generality, we generate a task set
which contains 5,000 prediction tasks (i.e., traffic prediction
in randomly selected 5,000 regions) in total. 80% of the tasks
are used for training, and the remaining 20% of the tasks are
used for testing. The learning rate of the Adam optimizer
[34] is set to 10−5. Note that all the methods are trained
using the same data samples and evaluated using the same
testing dataset. BML-based training and testing methods are

used in our proposed VST-BML algorithm. For the other
five baseline methods, the training dataset is constructed by
aggregating the data samples in the support and query sets
of all training tasks. During training, the traffic volume is
normalized to be between zero and one by using max-min
normalization. After traffic prediction in the testing stage,
the predicted results are rescaled back to their nominal
values.

5.2 Experimental Results

We evaluate the prediction performance of the proposed
VST-BML algorithm on the testing tasks. In the testing tasks,
we perform wireless traffic prediction in new regions, which
are different from the regions in the training tasks.

5.2.1 Performance Comparison
Table 1 summarizes the RMSE and MAE performance of
different methods. It can be observed from Table 1 that
the proposed VST-BML algorithm outperforms the other
five baseline methods for all types of wireless traffic. In
particular, the traditional statistical model ARIMA has the
highest RMSE and MAE. This is because ARIMA can only
capture simple temporal dependency of the time series data
and has limited capability in tackling high-dimensional and
complex spatial-temporal correlations. The deep learning
based methods, i.e., ConvLSTM, MVSTGN, STCNet, and ST-
Tran, have better performance than ARIMA since they can
extract the spatial-temporal features. Those deep learning
based methods can learn the spatial-temporal dependencies
in a particular region based on convolutional operations,
attention mechanism, LSTM cells, and graph representation.
However, they have limited capability to learn the spatial-
temporal variations across different regions. Even given the
information provided by the support set, those methods
are not able to accurately capture different spatial-temporal
patterns in different regions. This is due to the fact that
a larger number of data samples are required for those
algorithms to learn a particular spatial-temporal pattern,
while the support set contains only a limited number of
data samples. Under this condition, retraining of the net-
works using sufficient data samples is needed for those
algorithms to perform traffic prediction in a new region.
On the other hand, the proposed VST-BML algorithm can
tackle the spatial-temporal variations and provide accurate
predictions in different regions by using only Ns = 5 data



TABLE 2
Runtime for offline training and online testing

Methods Offline Training Online Testing

ARIMA 1.4084 (s) 0.0031 (s)

ConvLSTM 5.0812 (s/epoch) 0.1917 (s)

MVSTGN 15.4796 (s/epoch) 1.9231 (s)

STCNet 12.2590 (s/epoch) 1.3863 (s)

ST-Tran 14.3721 (s/epoch) 1.7868 (s)

VST-BML 32.3419 (s/epoch) 2.2758 (s)

samples from the support set without retraining the VST
network. This demonstrates the fast adaptation capability
of the proposed algorithm. For voice call traffic, compared
with the ST-Tran model which has the best performance
in all baselines, the proposed VST-BML algorithm can re-
duce the RMSE and MAE values by 53.0% and 48.4%,
respectively. For SMS and Internet traffic, the proposed
algorithm can provide 38.3% and 36.3% reduction in terms
of RMSE, and 29.2% and 31.0% reduction in terms of MAE,
respectively. Given the results in Table 1, we can summarize
the advantages of the proposed VST-BML algorithm over
the other five baseline methods as follows:

• The proposed VST network can well capture the com-
mon short-term and long-term spatial-temporal fea-
tures shared across different regions through the ex-
tractor. The use of the dual-attention mechanism in the
extractor enables the VST network to focus on the most
important spatial-temporal information. The generated
task-specific parameters by the amortization network
have the representative capability to capture the partic-
ular spatial-temporal pattern in the target region.
• The BML-based training algorithm enables the VST
network to effectively learn the underlying distribu-
tion of spatial-temporal patterns by using only a small
number of data samples in the support set without
encountering the issue of overfitting. Given a few data
samples (e.g., five samples) in the support set in a
region, the proposed VST-BML algorithm has the ca-
pability to quickly extract the complex spatial-temporal
pattern in that region.

5.2.2 Runtime Comparison

In this subsection, we compare the execution time of offline
training and online testing for different methods. We con-
duct the experiments using a computing server with an Intel
Core i7-10700 @ 3.80 GHz CPU and an NVIDIA GeForce
RTX 2070 GPU. The results are shown in Table 2. The
results show that the proposed VST-BML algorithm requires
a longer training time than the other baseline methods since
the proposed algorithm requires an additional iteration loop
for the computation of task-specific parameters for each
task during training. For online testing, we can observe
that the VST-BML algorithm has a comparable runtime as
the baseline methods. We note that although the proposed
algorithm has a longer offline training time, the trained VST
network has the adaptation capability for traffic prediction
in different regions and guarantees a high prediction ac-
curacy in terms of RMSE and MAE. The other baseline
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Fig. 7. Comparisons of predicted results and ground truth over a time
period of 16 days for voice call traffic. (a) and (b) show the comparison
results of two grid cells randomly selected in two different regions.
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Fig. 8. Comparisons of predicted results and ground truth in a region for
voice call traffic. (a) and (b) show the comparison results in two randomly
selected regions.

methods are not able to provide accurate predictions. For
the baseline methods, network retraining may be required
before performing traffic prediction in a different region,
which incurs additional computational overhead.

5.2.3 Prediction Performance of the VST-BML Algorithm
To further illustrate the spatial-temporal variations and
evaluate the adaptive prediction performance of the pro-
posed VST-BML algorithm, we show the predicted results
versus the ground truth. The prediction performance on
voice call, SMS, and Internet traffic are presented in the
following. For each type of traffic, we compare the predicted
results and ground truth from both the temporal and spatial
perspectives. The experiments are conducted in different re-
gions which are randomly selected in different geographical
locations in Milan.

In Fig. 7, we plot the predicted results by the VST-BML
algorithm and the ground truth over a randomly selected
16-day (384 hours) period for voice call traffic. Figs. 7(a) and
(b) show the results of two randomly selected grid cells from
two different regions in the southern and northern parts
of Milan, respectively. The results show that the wireless
traffic in both grid cells changes periodically, with peaks and
valleys appearing every 24 hours. However, the temporal
patterns in these two cells vary a lot. Specifically, in Fig. 7(a),
the daily peak values of wireless traffic are between 30 and
60. On the other hand, in Fig. 7(b), the daily peak values fall
within a larger range, i.e., between 25 and 125. While there
exist temporal variations, we can observe that the proposed
VST-BML algorithm can consistently provide accurate traffic
predictions for both grid cells over the selected 16 days.
The results in Fig. 7 demonstrate that the proposed VST-
BML algorithm has a strong adaptation capability to tackle
temporal variations across different regions.

To evaluate the adaptation capability of the proposed
algorithm on spatial variations, in Fig. 8, we show the
predicted results by the VST-BML algorithm and the ground
truth in different regions, where each region contains a
group of 10× 10 grid cells. The results are obtained from an
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Fig. 9. Comparisons of predicted results and ground truth over a time
period of 16 days for SMS traffic. (a) and (b) show the comparison results
of two grid cells randomly selected in two different regions.
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Fig. 10. Comparisons of predicted results and ground truth in a region
for SMS traffic. (a) and (b) show the comparison results in two randomly
selected regions.

arbitrary timestamp. Figs. 8(a) and (b) present the heat maps
of the predicted results and ground truth in two randomly
selected regions from the southwestern and western parts
of Milan, respectively. Each pixel represents a grid cell in
a region and the brightness of each pixel represents the
corresponding traffic volume of voice call. The results in
Fig. 8 show that the traffic in these two regions has different
spatial patterns, which are reflected by different traffic vol-
umes and distributions. While the spatial patterns are highly
diverse, the proposed VST-BML algorithm can provide ac-
curate prediction results that well match the spatial patterns
in the target regions. This indicates that the proposed VST-
BML algorithm has the fast adaptation capability to capture
spatial variations in different regions by using Ns = 5 data
samples.

In Figs. 9 and 10, we show the predicted results versus
the ground truth of SMS traffic. Fig. 9 shows the comparison
between the predicted results and ground truth over 16
days in two randomly selected grid cells from two different
regions in the eastern and southern parts, respectively. It can
be observed that the predicted results by the proposed VST-
BML algorithm match the ground truth for both regions. In
Fig. 9(a), we can observe a sharp increase in traffic volume
around timestamp 288, and the proposed VST-BML algo-
rithm can still provide accurate predicted result which ap-
proaches the ground truth. By comparing the results shown
in Figs. 9(a) and (b) which have diverse temporal patterns,
we can conclude that the proposed VST-BML algorithm can
quickly adapt to different traffic prediction tasks using five
data samples. Fig. 10 compares the predicted results by the
VST-BML algorithm for SMS traffic with the ground truth
from two regions in the northwestern and southwestern
parts, respectively. The results show that the predicted re-
sults are close to the ground truth in both regions, which
demonstrates the capability of the proposed algorithm to
tackle spatial variations across different regions.

We then show the predicted results versus ground truth
for Internet traffic. We present the experimental results from
temporal and spatial perspectives in Figs. 11 and 12, re-
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Fig. 11. Comparisons of predicted results and ground truth over a time
period of 16 days for Internet traffic. (a) and (b) show the comparison
results of two grid cells randomly selected in two different regions.
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Fig. 12. Comparisons of predicted results and ground truth in a region for
Internet traffic. (a) and (b) show the comparison results in two randomly
selected regions.

spectively. Similar to the previous sets of experiments, these
results are from different regions which have diverse spatial-
temporal patterns. We can observe that Internet traffic
changes more dynamically when compared with voice call
or SMS traffic. In particular, the peak Internet traffic in each
day is much higher, and the ratio between peak traffic and
off-peak traffic is larger. For Internet traffic, experimental
results show that the proposed algorithm can still quickly
capture various spatial-temporal patterns in wireless traffic
by using five data samples in the support set from a region.
The reasons can be attributed to the strong capability of the
proposed algorithm in extracting shared common features
and adaptively capturing spatial-temporal patterns in the
target regions.

5.2.4 Ablation Study
In this subsection, we evaluate the effect of the dual-
attention mechanism in the extractor, which is used to
capture the most important long-term spatial-temporal fea-
tures. We conduct a set of ablation experiments on all three
types of wireless traffic in the dataset. We consider the
following cases: (a) without attention mechanism (denoted
by “w.o. ATT”), (b) with T-ATT mechanism only (denoted
by “with T-ATT”), (c) with S-ATT mechanism only (denoted
by “with S-ATT”), and (d) with dual-attention mechanism
(denoted by “with DA”), The RSME and MAE results of
the proposed VST-BML algorithm are shown in Table 3. The
results show that the prediction accuracy can considerably
be improved by using the dual-attention mechanism, which
can extract the most important long-term spatial-temporal
dependencies. In addition, it is shown that using the S-ATT
mechanism brings more performance gains than using the
T-ATT mechanism for all three types of traffic. Since the
traffic patterns have more significant variations in the spatial
domain across different regions, effectively capturing the
spatial correlations in a region is important.

5.2.5 Effect of the Number of Data Samples
Finally, we evaluate the effect of Ns and Nq, which are
the number of data samples in the support and query sets,



TABLE 3
The effect of the dual-attention module on the prediction performance.

Type Module RMSE MAE

Voice

call

traffic

w.o. ATT 5.9735 4.7470

with T-ATT 5.2958 4.1185

with S-ATT 4.1732 3.0039

with DA 3.2544 2.1535

SMS

traffic

w.o. ATT 11.2014 8.7244

with T-ATT 10.1654 7.2441

with S-ATT 9.6615 7.0478

with DA 8.5369 6.8602

Internet

traffic

w.o. ATT 67.2338 49.3350

with T-ATT 64.1340 44.1206

with S-ATT 60.2456 41.3326

with DA 56.1430 39.7242
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Fig. 13. Evaluation of the effect of Ns and Nq on prediction accuracy.
Figures (a)−(f) illustrate the RMSE and MAE performance for three
types of wireless traffic.

respectively. In Fig. 13, we show the RMSE and MAE per-
formance for all three types of wireless traffic with different
values of Ns and Nq. We consider Nq to be equal to 1,
2, and 5 and Ns varies from 2 to 10. It can be observed
from the figures that the proposed VST-BML algorithm
can provide more accurate predicted results with larger Ns
and Nq. Both RMSE and MAE decrease with an increasing
number of data samples in the support and query sets.
The reasons are as follows. When more data samples are
available in the support set (i.e., Ns increases), the proposed
algorithm can obtain more information and extract more
spatial-temporal features. In addition, we note that the goal

is to adaptively provide accurate predictions for the traffic
in the query set of each region. When Nq increases, more
data samples in the query set can be used for the calculation
of the objective function (10) in step 7 of Algorithm 1. This
leads to more accurate averaged objective values and better
prediction performance. The proposed algorithm can learn
a better strategy for adaptive traffic prediction and improve
prediction performance. Therefore, by using more data sam-
ples in the support and query sets, the proposed algorithm
can tackle spatial-temporal variations more effectively and
provide more accurate predicted results.

6 CONCLUSION

In this paper, we investigated the adaptive traffic prediction
problem in wireless networks, where there exist strong
spatial-temporal variations in wireless traffic across differ-
ent regions. We proposed a VST-BML algorithm to tackle
spatial-temporal variations and predict traffic in different
regions. We evaluated the performance of the proposed
VST-BML algorithm on a real-world dataset which contains
three types of traffic, i.e., voice call, SMS, and Internet. The
results showed that the proposed VST-BML algorithm can
provide more accurate predicted results when compared
with five baseline methods. We also compared the predicted
results with the ground truth in different regions. Results
showed that our proposed algorithm can consistently pro-
vide accurate predicted results and has a fast adaptation ca-
pability. Moreover, experimental results showed that when
increasing the number of data samples in the support and
query sets, the prediction accuracy can further be improved.

For future work, we are interested in developing a
more flexible framework for adaptive traffic prediction. We
will consider the size of each region being different and
design an algorithm that is applicable for traffic prediction
in regions with different sizes. Furthermore, in this work,
we predicted future traffic on a fixed time scale (i.e., on
an hourly basis). It would be beneficial to design a flexi-
ble scheme that enables the prediction of future traffic on
various time scales (e.g., on an hourly, daily, and weekly
basis), which can facilitate diverse resource management
requirements (e.g., dynamic resource allocation, network
infrastructure planning and deployment).
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[32] C. Zhang, J. Bütepage, H. Kjellström, and S. Mandt, “Advances
in variational inference,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 41, no. 8, pp. 2008–2026, Aug. 2019.

[33] D. P. Kingma and M. Welling, “Auto-encoding variational Bayes,”
in Proc. of Int. Conf. Learning Representations (ICLR), Banff, Canada,
Apr. 2014.

[34] D. P. Kingma and J. L. Ba, “Adam: A method for stochastic
optimization,” in Proc. of Int. Conf. Learning Representations (ICLR),
San Diego, CA, May 2015.

Zihuan Wang (Graduate Student Member,
IEEE) received the B.Sc. and M.A.Sc. degrees
from Dalian University of Technology, Dalian,
China, in 2017 and 2020, respectively. She is
currently a Ph.D. Candidate in the Department of
Electrical and Computer Engineering, The Uni-
versity of British Columbia (UBC), Vancouver,
Canada. Her research interests include machine
learning and artificial intelligence for wireless
networks. She is the Assistant to Editor-in-Chief
of IEEE Transactions on Wireless Communica-

tions. She received UBC’s Four Year Fellowship in 2020, the Li Tze
Fong Memorial Fellowship in 2023, and the Graduate Support Initiative
Award in 2021-2023. She received the Best Paper Award at the IEEE
ICC 2022.

Vincent W.S. Wong (S’94, M’00, SM’07, F’16)
received the B.Sc. degree from the University
of Manitoba, Canada, in 1994, the M.A.Sc. de-
gree from the University of Waterloo, Canada, in
1996, and the Ph.D. degree from the University
of British Columbia (UBC), Vancouver, Canada,
in 2000. From 2000 to 2001, he worked as a
systems engineer at PMC-Sierra Inc. (now Mi-
crochip Technology Inc.). He joined the Depart-
ment of Electrical and Computer Engineering
at UBC in 2002 and is currently a Professor.

His research areas include protocol design, optimization, and resource
management of communication networks, with applications to 5G/6G
wireless networks, Internet of things, mobile edge computing, smart
grid, and energy systems. Dr. Wong is the Editor-in-Chief of IEEE
Transactions on Wireless Communications. He has served as an Area
Editor of IEEE Transactions on Communications and IEEE Open Journal
of the Communications Society, an Associate Editor of IEEE Transactions
on Mobile Computing and IEEE Transactions on Vehicular Technology, and
a Guest Editor of IEEE Journal on Selected Areas in Communications, IEEE
Internet of Things Journal, and IEEE Wireless Communications. Dr. Wong
is the General Co-chair of IEEE INFOCOM 2024. He was a Tutorial Co-
Chair of IEEE GLOBECOM’18, a Technical Program Co-chair of IEEE
VTC2020-Fall and IEEE SmartGridComm’14, and a Symposium Co-chair
of IEEE ICC’18, IEEE SmartGridComm (’13, ’17) and IEEE GLOBE-
COM’13. He received the Best Paper Award at the IEEE ICC 2022 and
IEEE GLOBECOM 2020. He is the Chair of the IEEE Vancouver Joint
Communications Chapter and has served as the Chair of the IEEE Com-
munications Society Emerging Technical Sub-Committee on Smart Grid
Communications. Dr. Wong is an IEEE Vehicular Technology Society
Distinguished Lecturer (2023−2025) and was an IEEE Communications
Society Distinguished Lecturer (2019−2020).


