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Abstract—Mobile devices in close proximity can be connected in a device-to-device (D2D) manner to transfer digital objects (e.g.,
videos) to each other. By using D2D data offloading, mobile users can reduce the cost for data service from wireless cellular networks.
However, due to users’ mobility, the opportunity for a user to obtain his interested objects via D2D communication is transient. In this
paper, we first propose an expected available duration (EAD) metric to evaluate the opportunity that an object can be downloaded by a
user via D2D data offloading. The EAD metric takes into account the pairwise connectivity of users, social influence between users,
diffusion of digital objects, and the time that users would like to wait for D2D data offloading. We then propose a distributed algorithm
for a mobile device to determine the EAD of each object. Given a set of available objects in the neighborhood, a mobile device will first
download the object that has the smallest EAD. We validate our model via trace-driven simulations. Results show that our proposed
algorithm can effectively find the object that should be first downloaded. Comparing with existing schemes, our work can help users
download more data via D2D data offloading.

Index Terms—Device-to-device (D2D) communications, data offloading, expected available duration (EAD), interest estimation, social
influence.
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1 INTRODUCTION

MOBILE devices such as smartphones and tablets are
increasingly common. They enable mobile users to

download digital objects (e.g., videos, photos) shared by
their friends in online social networks (OSNs) (e.g., Face-
book, Twitter). Both the number of mobile devices and the
average bulk of data that users consume are increasing
rapidly. By 2020, the average mobile data traffic consumed
by a smartphone and a tablet will be 4.4 and 7.1 GB per
month, respectively [1].

To relieve the burden of wireless cellular networks, mo-
bile data traffic can be delivered through other means to the
users (e.g., WiFi, device-to-device (D2D) communications).
This is known as mobile data offloading. Several works
have identified the benefits of WiFi data offloading [2]–[5].
The work in [2] showed that deferring the uploading tasks
until WiFi access points are available can save the energy
of smartphones. Lee et al. in [3] conducted experiments for
WiFi data offloading. By jointly considering the power con-
sumption and link capacity of wireless network interfaces,
Ding et al. in [4] studied the criterion of downloading data
from WiFi as well as the WiFi access point selection problem.
With a budget of energy consumption and monetary cost,
the download duration is minimized in [5] by allocating the
data traffic demand to wireless cellular and WiFi networks.

However, mobile data traffic cannot always be offloaded
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to WiFi networks since the number of open-accessible WiFi
access points is limited [4]. To fully exploit the benefits of
data offloading, mobile data traffic can also be delivered
via D2D networks. Specifically, mobile devices in close
proximity can be connected via WiFi Direct [6] or Bluetooth
in a D2D manner to disseminate digital objects between
users. This is referred to as D2D data offloading. Mobile
users (e.g., classmates, colleagues) may be interested in the
same digital objects [7]. For example, classmates who are
friends in OSNs may be interested in the same set of photos
or videos shared by their mutual friends. Han et al. in [8]
proposed a scheme to epidemically disseminate the same
digital objects to mobile users by properly choosing the
initial bearers of digital objects. Wang et al. in [9] referred to
the initial bearers as seeds and considered the connectivity
between mobile users in the seeds selection problem. Lin
et al. in [10] proposed a forwarding strategy by considering
different interest between users. The connectivity between
mobile users is an important issue in D2D data offloading.
The pairwise contact and intercontact durations, also known
as the pairwise contact and intercontact time, are commonly
used to model the connectivity between mobile users [11]–
[14]. The former is the connected duration between a given
pair of mobile users. The latter is the duration between
two successive connection periods between users of a given
pair. The distributions of pairwise contact and intercontact
durations may be different for different user pairs. The
aggregate distributions of contact and intercontact durations
are defined as the distributions of pairwise contact and
intercontact durations, respectively, when all user pairs in
the network are taken into account [11], [12]. It has been
shown in [11] and [12] that the aggregate complementary
cumulative distribution function (CCDF) of intercontact du-
rations decays with power law in a long time range. The
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Fig. 1. An example of D2D data offloading.

work in [13] further showed that the aggregate CCDF of
the intercontact durations features the dichotomy with a
characteristic time. In particular, the aggregate CCDF first
decays with power law before the characteristic time. It
then decays exponentially after the characteristic time. Co-
nan et al. in [15] showed that it is possible that the aggregate
CCDF of intercontact durations decays by the power law
while the intercontact duration of each individual user pair
follows the exponential distribution. Furthermore, Cai et al.
in [16] showed that when mobile users move in a finite area
and pause with finite time, the intercontact duration of a
given pair of users decays at least exponentially fast. Gao
et al. in [17] further conducted the chi-square test [18] for the
hypothesis that the intercontact duration of each individual
user pair is exponentially distributed. They showed with
several empirical data sets that over 85% of mobile user
pairs in the data sets passed the test.

D2D data offloading can be enabled by running an
application or background services on a mobile device. The
following steps are required to perform D2D data offload-
ing: 1) discovering mobile devices in the neighborhood,
2) determining whether the digital objects that the user is
waiting to download are available in the neighborhood, and
3) choosing an available object to download and perform
the D2D data transfer. These steps are necessary for D2D
data offloading because: (a) D2D connections between mo-
bile devices are stochastic, (b) a digital object may not be
available on neighbors (c) a mobile device needs to choose
an available digital object to send a data request and then
receive the data from the neighbor.

Within the aforementioned steps to perform D2D data
offloading, discovering the neighboring mobile devices can
be accomplished by sending and receiving periodic hello
messages [19]. The availability of digital objects on neigh-
boring mobile devices can be determined by exchanging the
uniform resource locators (URLs). However, when multiple
digital objects are available on the neighbors of a mobile
user, the user needs to decide which object should first be
downloaded from his neighbors so that more mobile data
traffic can be offloaded with D2D communications. This
is because the time preferred by the user to wait for the

opportunities of downloading an object from his neighbors
is limited. When the waiting time exceeds the maximum
waiting time (MWT) preferred by the user, the remaining
data of the object, which has not been obtained via D2D data
offloading, will be downloaded from the wireless cellular
network [20]. Thus, choosing an appropriate object from
the available objects on neighbors to first download is an
important issue. Consider an example in Fig. 1. There are
three mobile users u1, u2, and u3. At time t1, user u1 wants
to download digital objects o1 and o2 from its neighbors
in order to reduce the cost of wireless cellular data service.
User u2, who has object o2, is in the neighborhood of user
u1 from time t1 to t2. User u3, who has object o1, is a
neighbor of user u1 from time t1 to t4. Since the MWTs
for objects o1 and o2 preferred by user u1 end at time
t3 and t4, respectively, the durations available for user u1

to download objects o1 and o2 from neighboring devices
within his preferred MWTs are t3−t1 and t2−t1, respectively.
We assume that user u1 can finish downloading object o1
from user u3 in the duration either from t1 to t2 or from t2
to t3. In this case, user u1 should download object o2 from
user u2 between time t1 and t2, as he can also download
object o1 from user u3 between time t2 and t3 and obtain
both objects o1 and o2 by D2D data offloading. Otherwise,
if user u1 downloads object o1 from user u3 between time t1
and t2, user u1 has to download object o2 from the cellular
network after time t4.

However, the D2D topology of mobile users and their
interest are not known a priori. Thus, selecting one of the
available objects to perform D2D data transfer is a difficult
problem. The rarest first strategy [21], which is initially pro-
posed for peer-to-peer (P2P) applications in the Internet to
distribute files, may help mobile devices to make decisions.
In the rarest first strategy, a computer first sends queries to
determine the portion of a file that has been downloaded
by the least number of computers in the Internet. That com-
puter then downloads this portion of the file first. However,
a mobile device using D2D data offloading cannot directly
apply the existing rarest first strategy by first downloading
the object that has been obtained by the least number of
mobile devices. This is due to the following reasons. With-
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out the network backbone, it is not efficient for a mobile
device to transmit queries and replies via multiple hops in
wireless domain. Even if the number of devices that have
downloaded each object is known, the rarest first strategy
may not work well for D2D data offloading because the
mobile device can only download data from its neighbors
which are changing over time. Indeed, the idea of the rarest
first strategy can be extended to D2D data offloading in
wireless domain. We let a mobile user first download the
object (from his neighbors) which has the shortest available
duration for the user to download before the end of the
MWT preferred by the user for it. For user u1 in the example
in Fig. 1, the available durations of objects o1 and o2 in the
neighborhood of u1 within the preferred MWTs are t3−t and
t2−t, ∀ t∈ [t1, t2], respectively. Since t2−t<t3−t, ∀ t∈ [t1, t2],
user u1 should download object o2 from user u2 during time
t1 to t2.

However, evaluating the accurate available duration that
a user can obtain an object from his neighbors within his
preferred MWT is challenging in practice. First, the D2D
connections between mobile devices are stochastic. Second,
users usually have different interest on digital objects, which
are not revealed until they aim to obtain the data of these
objects from their neighbors or the cellular network. More-
over, information that a user is interested in an object is only
known by his neighbors after they exchange the URLs of
their interested objects. Furthermore, mobile users may be
interested in an object at different time when it is diffused
in the OSN and various MWTs may be preferred by these
users for D2D data offloading.

In this paper, we propose the expected available duration
(EAD) metric to evaluate the opportunity that an object can
be obtained by a user via D2D data offloading. Specifically,
for each digital object that a user is interested in and waiting
to download from his neighbors, the EAD is defined as the
expected length of time (evaluated by the user) that the
object is available in the user’s neighborhood before the end
of his preferred MWT for the object. Our EAD metric takes
into account the stochastic D2D connections between users,
social influence to the users, and the diffusion process of
digital objects in OSNs. We propose a distributed algorithm
for a user to determine the EAD for each object that the
user is interested in. When multiple objects are available in
the neighborhood, the user will first download the object
that has the smallest EAD. We assume that mobile devices
have enough energy to participate in D2D data offloading.
This assumption has also been made in [22]–[24]. Our major
contributions are summarized as follows:

• We use a continuous-time Markov chain (CTMC) [25]
to model the pairwise connectivity between each
pair of mobile users. We show that by using CTMC
model, we can obtain comparable results as using the
power law to model the pairwise connectivity when
fitting the aggregate CCDF curves of contact and
intercontact durations given by the empirical data.

• We propose an interest estimation model, which
takes social influence and Bayesian inference into
account to estimate whether the digital object that a
user is interested in also attracts the interest of other
users.

• By considering the digital object diffusion and the
stochastic connectivity between each user pair, we
determine the availability that an object can be
downloaded by a user from other users at a future
time. We then propose an EAD metric for a user to
evaluate the opportunity that he can download the
object by D2D data offloading. We also propose to
estimate the value of EAD in order to reduce the
computational complexity.

• We validate our model by extensive trace-driven
simulations. To the best of our knowledge, this paper
is the first to propose a metric to evaluate the oppor-
tunity of D2D data offloading. Comparing with the
existing scheduling schemes in the literature, using
our proposed metric to schedule D2D data offloading
can help mobile users download more data from
neighbors.

The rest of this paper is as follows. In Section 2, we
present our D2D data offloading model and an algorithm
to obtain the parameters required to determine the EAD. In
Section 3, we propose an algorithm to select the digital ob-
ject that should first be downloaded from the neighborhood.
Simulation results are presented in Section 4. Conclusion
and future work are given in Section 5. The key notations
and variables used in this paper are listed in Table 1.

2 D2D DATA OFFLOADING MODEL

In this section, we first introduce the pairwise connectivity
model and the interest estimation model. Then, for each
mobile user, we determine the pairwise data offloading
availability of each object that the user is interested in. The
EAD of each object for a user is obtained based on the MWT
and the pairwise data offloading availability of the object.

2.1 Pairwise Connectivity Model
The pairwise connectivity model is used to model the s-
tochastic D2D connection between a pair of mobile devices.
Let U = {1, . . . , U} denote the set of mobile users in the
OSN. When two users are in close proximity, their mobile
devices will be connected via Bluetooth or WiFi Direct in a
D2D manner. We use the terms mobile users and mobile de-
vices interchangeably. As mentioned earlier in Section 1, the
pairwise contact and intercontact durations are commonly
used to model the connectivity between mobile users. The
aggregate CCDF of pairwise intercontact durations of all
user pairs decays with power law [11], [12]. Meanwhile,
it has been shown that the aggregate CCDF of intercon-
tact durations may have the power law decay when the
pairwise intercontact duration of each individual user pair
follows the exponential distribution [15]. Furthermore, by
conducting the chi-square test [18] with empirical data sets,
the work in [17] showed that most of the mobile user pairs
in these data sets satisfy the hypothesis that the intercontact
duration of each individual user pair is exponentially dis-
tributed. Thus, in our work, we assume that the pairwise
intercontact duration is exponentially distributed for each
pair of mobile users. This assumption has also been made
in several related works [17], [22], [24], and [26]. On the
other hand, to obtain a tractable model, we assume that the
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TABLE 1
List of key notations and variables used in this paper.

User set maintained by user i for other users whoAt
i,k (orBt

i,k) are (or are not) interested in object k at time t
Sum of the pairwise contact (or intercontact)

at,ci,j (or at,di,j ) durations between users i and j at time t
Binary random variable indicating if users i and j

Ct
i,j are connected (Ct

i,j =1) or not (Ct
i,j =0) at time t

Connectivity profile of user i at time t, which is
cti defined as cti,(Ct

i,1, . . . , C
t
i,i−1, C

t
i,i+1, . . . , C

t
i,U )

Binary random variable indicating if user i is
Ii,k interested in object k (Ii,k = 1) or not (Ii,k = 0)

Set of URLs that have been sent from user i toKt
i,j user j at time t

lk URL of object k
Number of times that users i and j have been

nt,c
i,j (or nt,d

i,j ) connected (or disconnected) by time t
Set of digital objects represented by index valuesO {1, . . . , O}
Set of digital objects that user i is interested inOt

i at time t

Oi Set of digital objects defined as Oi, limt→∞ Ot
i

Estimate of user i at time t for the interest of
pti,j,k user j in object k without Bayesian inference

Estimate of user i at time t for the interest of
qti,j,k user j in object k with Bayesian inference

Set of digital objects that user i aims to downloadQt
i via D2D data offloading at time t

User i has been informed that user j is interested
Rt

i,j,k in object k at time t (Rt
i,j,k=1) or not (Rt

i,j,k=0)
Interest record maintained by user i for object k at

rt
i,k time t, defined as rt

i,k,
(
Rt

i,1,k, . . . , R
t
i,U,k

)
ts Time when time slot s begins
U Set of users represented by index values {1, . . . , U}
Vi,k(t) EAD evaluated by user i for object k at time t
Wi,k(t) Approximated EAD of user i for object k at time t
xk Time when object k is initially posted in OSN

Realization of random variable Yi,k that denotes
yi,k the time when user i is interested in object k

Binary random variable indicating if user i can
Zt
i,j,k(t

′) download object k∈Qt
i from user j at time t′>t

Pairwise data offloading availability, which is
zti,j,k(t

′) defined as P(Zt
i,j,k(t

′)=1 | rt
i,k, τ

t
i,j , C

t
i,j)

MWT preferred by user i to download object k via
δi,k D2D data offloading

Estimate of Jaccard coefficient θi,j ∈ [0, 1] between
θ̃i,j users i and j

Exponential distribution parameter of the pairwise
λi,j (or µi,j ) intercontact (or contact) duration between users i

and j

λ̃i,j (or µ̃i,j ) Maximum likelihood estimation of λi,j (or µi,j )
Ratio between the time that object k is in the

ρi,k neighborhood of user i and the duration from
current time to time yi,k+δi,k
Time of the most recent connection between users

τ ti,j i and j by time t
Percentage of an object that has to be obtained

ξ before it can be shared with other users
Percentage of object k that has been downloaded

ξti,k by user i at time t

pairwise contact duration between a user pair follows an
exponential distribution as well. This assumption has also
been used in related works [27] and [28]. We will discuss
in Section 2.3.1 that the insights of our work are also useful
when other pairwise connectivity models are adopted.

To model the pairwise connectivity, let binary random
variable Ct

i,j = 1 (or Ct
i,j = 0) denote the event that users

i, j ∈ U are connected (or disconnected) at time t ≥ 0.
In addition, let λi,j (or µi,j) denote the parameter of the

exponential distribution for the pairwise intercontact (or
contact) duration between users i and j. Then, the connec-
tivity between users i and j follows a CTMC model [25,
pp. 358]. Given the connection state Ct

i,j between users i and
j at current time t, the probability that they are connected at
future time t′ ≥ t is given by

P
(
Ct′

i,j=1 |Ct
i,j

)
=


λi,j−λi,je

−(λi,j+µi,j)(t
′−t)

λi,j+µi,j
, if Ct

i,j=0,

λi,j+µi,je
−(λi,j+µi,j)(t

′−t)

λi,j+µi,j
, if Ct

i,j=1.
(1)

Parameters λi,j and µi,j in (1) can be obtained by maximum
likelihood estimation (MLE). A mobile device can obtain
the connection states with nearby devices by receiving the
acknowledgements after sending hello messages periodical-
ly. Without loss of generality, we assume that users i and
j have been connected nt,c

i,j times and disconnected nt,d
i,j

times by time t. Let at,ci,j (or at,di,j ) denote the sum of the
pairwise contact (or intercontact) durations at time t. The
parameters λi,j and µi,j estimated by MLE are given by
λ̃i,j = nt,d

i,j /a
t,d
i,j and µ̃i,j = nt,c

i,j/a
t,c
i,j . When the connection

state between users i and j has changed many times in
a sufficiently long time, the values of λ̃i,j and µ̃i,j will
converge to λi,j and µi,j , respectively. Given the current
connection state between users i and j at time t, user i can
determine the probability that it is connected with user j at
time t′ ≥ t by substituting λ̃i,j and µ̃i,j for λi,j and µi,j in
(1), respectively. By comparing the aggregate CCDFs of the
contact and intercontact durations obtained by simulations
with the aggregate CCDFs given by the empirical results, we
will show in Section 4.2.1 that the CTMC model achieves the
comparable accuracy as the power law model in predicting
the pairwise connectivity.

2.2 Distributed Interest Estimation Model
Mobile users will only download their interested digital
objects. Thus, when a user evaluates the D2D data of-
floading opportunity for an object, the interest of other
users should be taken into account. Predicting user’s in-
terest has been studied and used for personalized news
recommendations [29], [30]. However, the existing interest
estimation models designed for recommendation systems
are not suitable for D2D data offloading due to the limited
computation capability of mobile devices and the addition-
al communication resource consumptions in the wireless
cellular network. Thus, a lightweight interest estimation
model that enables mobile users to estimate the interest of
others in a distributed manner is required. We propose a
distributed interest estimation model to let a user estimate
the interest of other users in each object that he is interested
in and waiting to download from neighbors. Notice that
other interest estimation models may also be used in our
work to predict the interest of mobile users. In this case,
however, the insights of using EAD metric to evaluate D2D
data offloading opportunity and using it to prioritize D2D
data offloading tasks are still useful.

Our distributed interest estimation model contains two
aspects. The first one is based on social influence [31], [32].
A user is more likely to be interested in a digital object if his
friends are interested in it. This is because a user may talk
about his interested digital objects or share them in OSNs.
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Meanwhile, the effect of the social influence to a mobile
user from his friends may be different. The second aspect
is based on Bayesian inference. Given the event that a user
is not interested in an object which has been diffused on the
OSN for a long time, the user may not be interested in the
object in the future. Thus, our interest estimation model is a
dynamic model over time. We make the following assump-
tions for our interest estimation model. First, we assume that
friends of a user can influence the user independently. This
assumption implies that a user is interested in an object as
long as he is influenced by one of his friends. Second, we
assume that the effect of social influence between a pair
of users is determined by the similarity of their interest.
These two assumptions have also been adopted in related
works [33] and [34]. Various measures for the similarity of
interest can be found in [35]. In this paper, we adopt the
Jaccard coefficient, which has been used in [29], [35], [36]. The
similarity of interest is related with both social influence
and Bayesian inference aspects in our interest estimation
model. Thus, we first introduce the Jaccard coefficient. We
then present our interest estimation model. We also propose
a distributed algorithm for mobile devices to determine the
parameters required in our model.

2.2.1 Similarity of Interest
We use O = {1, . . . , O} to denote the set of digital objects.
Let random variable Yi,k denote the time when user i ∈ U
reveals his interest in object k ∈ O and aims to download
it via D2D data offloading. Note that the realization yi,k of
Yi,k is not known a priori. Let Ot

i = {k | yi,k ≤ t} denote
the set of digital objects that user i is interested in at time
t (i.e., set of objects that user i has completely downloaded
or is waiting to download from his neighbors at time t).
For users i, j ∈ U , let θi,j denote the similarity of their
interest. We first define Oi, limt→∞ Ot

i . Then, according to
the definition of Jaccard coefficient in [37, pp. 61], we have
θi,j =

|Oi∩Oj |
|Oi∪Oj | . Although it is clear that θi,j = 1 if i = j,

the value of θi,j cannot be accurately determined if i ̸= j.
The works in [38] and [39] have shown that the interest of
users are reflected by their activities in the past. Since the
server of OSN maintains the browsing history of the digital
objects that a user has requested in the past [40], the server
can estimate the similarity of interest between users i and j.
We denote θ̃i,j as the estimate of the Jaccard coefficient θi,j .
Thus, θ̃i,j can be calculated by the server of OSN based on
the browsing history of users i and j. Let Θ̃∈RU×U denote
the matrix with θ̃i,j as the element (i, j). Users in set U can
thus obtain matrix Θ̃ from the server of OSN.

2.2.2 Distributed Interest Estimation — The Social Influ-
ence Aspect
Let binary random variable Ii,k denote whether user i ∈
U is interested in object k ∈ O (Ii,k = 1) or not (Ii,k =
0). According to the definition of Oi, we have Ii,k = 1 if
yi,k < ∞. Otherwise, we have Ii,k = 0 for yi,k = ∞. Let
lk represent the URL of object k ∈ O. We denote τ ti,j as
the time when users i and j are connected most recently
before time t (i.e., τ ti,j ≤ t). Therefore, the set of URLs of the
digital objects that user i is interested in before time τ ti,j is
Kt

i,j , {lk | yi,k ≤ τ ti,j}. In our model, user j (user i) needs

to obtain set Kt
i,j (set Kt

j,i , {lk | yj,k ≤ τ ti,j}) when users i
and j are connected. However, the communication overhead
caused by exchanging sets Kt

j,i and Kt
i,j between users i

and j may increase fast. In Section 2.4, we will propose a
lightweight algorithm to update sets Kt

j,i and Kt
i,j in an

incremental manner to reduce the communication overhead.
The independent cascade model in [33] considers that

people influence each other independently with different
effects. This model has been widely adopted in the study
of social networks [41], [42]. The effect of social influence
between a pair of users can be evaluated by the similarity of
their interest [34]. Let Qt

i denote the set of objects that user
i ∈ U is waiting to download from his neighbors at time t.
For each object k∈Qt

i, user i categorizes other users into the
following sets:

At
i,k =

{
j | j ∈ U\ {i} , lk ∈ Kt

j,i

}
, (2a)

Bt
i,k =

{
j | j ∈ U\ {i} , lk ̸∈ Kt

j,i

}
. (2b)

Specifically, set At
i,k (set Bt

i,k) maintained by user i at time
t contains the users who are (are not) interested in object
k before the most recent contact with user i. We denote
random variable Rt

i,j,k to present whether user i is informed
that user j is interested in object k at time t. Thus, Rt

i,j,k=1
if j ∈ At

i,k. Otherwise, Rt
i,j,k = 0. We refer to vector

rti,k , (Rt
i,1,k, . . . , R

t
i,U,k) with element Rt

i,i,k = 1 as the
interest record of object k on user i at time t. Let pti,j,k∈ [0, 1]
denote the estimate of user i at time t for the interest of
user j in object k. Specifically, the interest estimate pti,j,k is
the conditional probability of Ij,k = 1, given the interest
record rti,k. That is, pti,j,k , P(Ij,k =1 | rti,k). Thus, we have
pti,j,k = 1,∀ j ∈ At

i,k. Considering the social influence, we
have the following lemma for user j∈Bt

i,k:

Lemma 1: In the considered independent cascade model,
the interest estimate pti,j,k obtained by user i at time t for
user j∈Bt

i,k with digital object k is

pti,j,k = 1−
∏

u∈At
i,k∪{i}

(1− θ̃u,j), (3)

where θ̃u,j is the element (u, j) in matrix Θ̃.

Proof: Please refer to Appendix A.

For user i who would like to download object k from
his neighbors, user i estimates the interest of other users by
using the independent cascade model with the set of users
who have revealed their interest in object k to him (i.e., users
in set At

i,k ∪ {i}). This is commonly used in related works
to model social influence [32], [41], [43]. Note that mobile
users can estimate the interest of other users according to
their own interest records. This enables each mobile user to
perform interest estimation in a distributed manner. Thus,
the values of pti,j,k and pti′,j,k determined by users i, i′ ∈ U
may be different for rti,k ̸=rti′,k.

2.2.3 Distributed Interest Estimation — The Bayesian Infer-
ence Aspect
As mentioned earlier, the first aspect in our interest estima-
tion model considers the social influence. We now introduce
the second aspect which considers Bayesian inference. The
basic idea is that if a user is not interested in an object which
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qti,j,k=pti,j,k, if τ ti,j≤xk,

qti,j,k<
(1− f(τ ti,j−xk))(1−

∏
u∈At

i,k∪{i}(1−θ̃u,j))

(1−f(τ ti,j−xk))(1−
∏

u∈At
i,k∪{i}(1−θ̃u,j))+2

∏
u∈At

i,k∪{i}(1−θ̃u,j)
, if τ ti,j>xk.

(4a)

(4b)

has been diffused among users or over OSNs for a long
time, then probably the user is not interested in the object.
Information diffusion models have been studied in [44]
and [45]. It has been shown that the time when a user shares
his interested information to the OSN follows log-normal
distribution ln N (µ=3.91, σ2 =6.86) after the information
is initially posted [44]. Moreover, a user may not share an
online video to the OSN until he has watched a part of the
video that has been buffered. We thus consider that a mobile
user shares his interested object when he has obtained ξ
(0%<ξ≤100%) or a higher percentage of the object, where
ξ is a given constant. We use xk to denote the time when
object k is initially posted to the OSN. In our work, xk is
referred to as the diffusion start time of object k. It can be
known by the users who are interested in object k, since xk

is recorded by servers of the OSN and can be conveyed to
the users along with the URL of object k. Let qti,j,k ∈ [0, 1]
denote the estimate of user i at time t for the interest of
user j in object k when both social influence and Bayesian
inference are considered. Specifically, qti,j,k is defined as the
conditional probability of Ij,k =1, given the interest record
rti,k and time τ ti,j , i.e., qti,j,k , P(Ij,k =1 | rti,k, τ ti,j). We thus
have qti,j,k = 1, ∀ j ∈ At

i,k. For user j ∈ Bt
i,k, we have the

following theorem:
Theorem 1: According to the independent cascade model

and information diffusion model, the estimate qti,j,k ob-
tained by user i at time t for the interest of user j ∈Bt

i,k in
object k satisfies the equality in (4a) or the inequality in (4b)
where f(φ) = erf( lnφ−3.91√

13.72
) and erf(·) is the error function.

Proof: Please refer to Appendix B.
We discuss the insight of Theorem 1 as follows. For user

i ∈ U and digital object k ∈ Qt
i at time t, we consider a

user j ∈ U\{i} who is not interested in object k at time
t. Thus, URL lk /∈ Kt

j,i. User i categorizes user j in set
Bt
i,k. If the most recent connection between users i and j

is before the diffusion start time of object k, (i.e., τ ti,j ≤ xk),
then only social influence is considered (i.e., pti,j,k = qti,j,k).
If object k has been diffused for a long time but user j
is still not interested in object k when users i and j are
connected at time τ ti,j (i.e., φ = τ ti,j − xk is large), we have
limφ→∞ f(φ) = 1. Hence, for an object k which has been
diffused for a sufficient length of time and user j is not
interested in it, the estimate obtained by user i that user j is
interested in k approaches 0. To obtain a tractable qti,j,k, we
use the right-hand-side of (4b) to approximate qti,j,k when
τ ti,j > xk. We will show in Section 4.2.2 that the interest
estimates given in (4) obtains a much smaller estimation
error compared with the interest estimates given in (3).

2.3 Pairwise Data Offloading Availability and the EAD
Metric
2.3.1 Pairwise Data Offloading Availability
To define the pairwise data offloading availability, let ran-
dom variable Zt

i,j,k(t
′) = 1 (or Zt

i,j,k(t
′) = 0) denote the

event that object k ∈ Qt
i can (or cannot) be downloaded by

user i from user j at time t′ ≥ t. Without loss of generality,
we also consider that user j can transmit data of object
k to other users if ξ or a higher percentage of object k
has been obtained by user j. Besides, two users who have
partially downloaded the same object are assumed to have
non-overlapped portions to transfer to each other. Although
this assumption can be relaxed by applying network coding
technique on D2D data offloading [46], it is beyond the
scope of this paper. The pairwise data offloading availability
for user i to download object k from user j at time t′ ≥ t
is defined as zti,j,k(t

′) , P(Zt
i,j,k(t

′) = 1 | rti,k, τ ti,j , Ct
i,j). We

assume that the stochastic D2D connections between mobile
users are independent from both the interest of users and the
diffusion of digital objects. We have the following theorem:

Theorem 2: For user i, given the interest record rti,k, the
time τ ti,j when users i and j contacted most recently, and
connection state Ct

i,j between users i and j at time t, the
pairwise data offloading availability for user i to download
object k from user j at time t′ ≥ t is

zti,j,k(t
′)=


1+f(t′−xk)

2 P(Ct′

i,j=1 |Ct
i,j), if j∈At

i,k,
qti,j,k(1+f(t′−xk))

2 P(Ct′

i,j=1 |Ct
i,j), if j∈Bt

i,k,
(5)

where P(Ct′

i,j = 1 |Ct
i,j) is given by (1).

Proof: Please refer to Appendix C.
When user i is connected with others, he can keep a

record of the neighboring users who have already down-
loaded ξ or a higher percentage of object k. When user i
notices that user j has downloaded ξ or a higher percentage
of object k, the pairwise data offloading availability for
user i to download data from user j at time t′ becomes
zti,j,k(t

′) = P(Ct′

i,j=1 |Ct
i,j) by following similar steps in the

proof of Theorem 2. Note that At
i,k in (5) is the set of users

who have informed user i that they are interested in object k
at time t. Therefore, the set of users who have downloaded
ξ or a higher percentage of object k is a subset of At

i,k. The
case of zti,j,k(t

′) = P(Ct′

i,j = 1 |Ct
i,j) is thus a special case

of j ∈ At
i,k in (5), where the accuracy of the pairwise D2D

data offloading availability can be improved. It can be seen
from (5) that other pairwise connectivity models may also be
used in our work. Specifically, given the current connection
state between users i and j at time t (i.e., Ct

i,j), as long as
a pairwise connectivity model returns the probability that
users i and j are connected at future time t′ ≥ t, it can be
directly used in our work.

2.3.2 EAD Metric
Users who are interested in the same digital object may
have different MWT, i.e., the time that they prefer to wait
to download the object via D2D data offloading before
downloading it from the wireless cellular network. Let δi,k
denote the MWT of user i ∈ U for object k ∈ Oi. When user
i reveals his interest in object k at time yi,k, the MWT δi,k
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is also given by the user. After trying to download object
k via D2D data offloading from time yi,k to yi,k + δi,k, the
remaining part of object k, which has not yet been obtained
by user i from neighboring devices, will be downloaded by
user i from wireless cellular network.

Now, we first define zti,k(t
′),1−

∏
j∈U\{i}

(
1−zti,j,k(t

′)
)
,

which is referred to as the neighborhood data availability
of object k for user i at time t′ ≥ t. Note that zti,k(t

′) ∈
[0, 1]. The value of zti,k(t

′) is the probability that user i can
download object k from at least one neighbor at time t′. We
then define the EAD of object k for user i at time t as follows:

Vi,k (t) ,
∫ yi,k+δi,k

t
zti,k(τ) dτ. (6)

In the next subsection, we propose a lightweight URL
exchanging algorithm to facilitate each user obtaining the
set of URLs for the objects that are of interest to other users.
Thus, user i can determine the value of Vi,k (t) for object k
at time t in a distributed manner.

2.4 URL Exchanging Algorithm

In Algorithm 1, we present a lightweight algorithm that let
mobile user i ∈ U obtain the set of URLs Kt

j,i from user j ∈
U\{i}. For each instance of time t, those objects that user i is
interested in and aims to download by D2D data offloading
are included in set Ot

i (Lines 4–5). If user i is connected with
user j for the first time (Line 7), set Lt

i,j , which contains the
URLs of the objects that user i is interested in, is sent to user
j (Line 8). Similarly, user j sends set Lt

j,i to user i. This set
contains the URLs of the objects that user j is interested in.
After receiving Lt

j,i (Line 9), user i updates Kt
j,i to Lt

j,i and
the time of the most recent contact with user j is updated
to time t (Line 10). If user i is connected with user j again
at time t (Line 11), the set of URLs of the objects that user i
is interested in since his last contact with user j is assigned
to Lt

i,j and sent to user j (Line 12). Similarly, set Lt
j,i is sent

by user j and received by user i (Line 13). Set Kt
j,i and the

value of τ ti,j are then updated by user i (Line 14).
Consider users 1 and 2 in Fig. 2 as an example. At time

t1, user 1 is not interested in any object and user 2 has
already obtained objects 1 and 2. That is, we have y2,1 < t1,
y2,2 < t1, Ot1

1 = ∅, and Ot1
2 = {1, 2}. We assume that users

1 and 2 are not neighbors at time t1. We thus have τ t11,2 = 0

and Kt1
1,2 = Kt1

2,1 = ∅. At time t2, user 2 is interested in
object 3 (i.e., y2,3 = t2), thus Ot2

2 = {1, 2, 3}. Similarly,
when user 1 is interested in objects 1 and 2 at time t3 (i.e.,
y1,1 = y1,2 = t3), we have Ot3

1 = {1, 2}. Users 1 and 2 are
connected at time t4. Since τ t41,2 = 0, user 1 sends the set of
URLs Lt4

1,2 = {l1, l2} to user 2 due to Ot4
1 = {1, 2}. Since

Ot4
2 = {1, 2, 3}, the set of URLs sent from user 2 to user 1 is

Lt4
2,1 = {l1, l2, l3}. When Lt4

2,1 is received by user 1, Kt4
2,1 on

user 1 is updated to {l1, l2, l3}. Then, τ t41,2 is updated to time
t4. Meanwhile, user 2 also receives Lt4

1,2 = {l1, l2} from user
1, so he updates Kt4

1,2 = {l1, l2} and τ t41,2 = t4 by conducting
similar procedures as user 1. Users 1 and 2 are disconnected
at time t6. After a period of time, user 1 is interested in
object 3 at time t11 (i.e., y1,3 = t11). Thus, Ot11

i = {1, 2, 3}.
When users 1 and 2 are connected again at time t12, since
τ t121,2 = t4 ̸= 0, user 1 incrementally sends set Lt12

1,2 = {l3} to

Algorithm 1: The algorithm that user i ∈ U uses to
obtain Kt

j,i from user j ∈ U\{i}.

1 Initialize t := 0, τ t
i,j := 0, Ot

i := ∅, and Kt
j,i := ∅.

2 Start to increase t according to system clock.
3 Loop
4 for k ∈ {κ | yi,κ = t} do
5 Include object k into set Ot

i .

6 if user j becomes a new neighbor of user i at time t
then

7 if τ t
i,j = 0 then

8 Send set Lt
i,j := {lk | k ∈ Ot

i} to user j.
9 Receive set Lt

j,i from user j.
10 Kt

j,i := Lt
j , τ t

i,j := t.
11 else
12 Send set Lt

i,j := {lk | τ t
i,j < yi,k ≤ t, k ∈ Ot

i} to
user j.

13 Receive set Lt
j,i from user j.

14 Kt
j,i := Kt

j,i ∪ Lt
j,i, τ t

i,j := t.

user 2. Since user 2 is not interested in any object from time
t4 to t12, so Lt12

2,1 = ∅ is sent from user 2 to user 1. Therefore,
we have Kt12

2,1 = {l1, l2, l3}. Similarly, user 2 updates Kt12
1,2 by

{l1, l2} ∪ Lt12
1,2 = {l1, l2, l3}. Then, users 1 and 2 update the

value of τ t121,2 to time t12.

3 SELECTING A DIGITAL OBJECT TO FIRST
DOWNLOAD IN A NEIGHBORHOOD

User i ∈ U may be interested in multiple digital objects.
Even if multiple digital objects in set Qt

i are available in the
neighborhood of user i at time t, user i can obtain the data
for only one of them at any instance of time. In practice,
we consider a time-slotted system where the time slots are
denoted by index values s = 1, 2, · · · . In each time slot,
user i selects a digital object available in his neighborhood
to download. Let ts denote the beginning of time slot s.
We assume that user i reveals his interest in an object
at the beginning of time slots. We also assume that the
D2D connections change at the beginning of time slots. We
propose that user i in time slot s first downloads the data
of object k ∈ Qts

i which has the smallest EAD (i.e., smallest
value of Vi,k(ts) determined by substituting ts for t in (6)).
We denote ξtsi,k (0% ≤ ξtsi,k ≤ 100%) as the percentage of
object k ∈ O that has been obtained by user i ∈ U at the
beginning of time slot s. Hence, user i selects an object to
download in time slot s by solving the following problem:

argmin
k∈Qts

i

Vi,k (ts)

subject to
{
j |Cts

i,j = 1, ξtsj,k ≥ ξ
}
̸= ∅,

(7)

where the constraint ensures that the object that user i
chooses to download in time slot s must be downloaded by
at least one neighbor who has received at least ξ percentage
of the object. In particular, user i can obtain the value of ξtsj,k
from neighboring user j by considering that users i and j
have to be connected in time slot s (i.e., Cts

i,j =1) in order to
perform D2D data transfer. For a mobile user, his D2D link
capacity to neighbors may be different and changing over



IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. PP, NO. 99, MONTH 2016

mobile user mobile device

1t 2t 4t 5t 6t 11t 12t

interested 

connected disconnected connected

1

13t

is not  

in any
object

obtained
has

objects
1 and 2

2

1

2

interested
is

3
in object

1
2

2

3t

1

interested
is

1 and 2
in objects

1

interested
is

3
in object

1

2

time

Fig. 2. An example for Algorithms 1 and 2.

time. Taking the variation of D2D link capacity into account
to select an object to download is an extension of the current
model, which requires a stochastic optimization framework
and is beyond the scope of this paper.

The objective function of problem (7), which is given
by (6), is not in closed-form. Since user i needs to solve
problem (7) for each time slot, the computational complexity
is high. To reduce the computational complexity, user i can
approximate the value of Vi,k(ts) for time slot s > 1 by
using Vi,k(tŝ) that has been determined in an earlier time
slot ŝ < s for object k ∈ Qtŝ

i ∩Qts
i . We first define cti ,

(Ct
i,1, . . . , C

t
i,i−1, C

t
i,i+1, . . . , C

t
i,U ). Vector cti is referred to as

connectivity profile of user i at time t. We consider the case
that connectivity profile of user i remains unchanged in time
slots ŝ, ŝ+1, . . . , s. We have rtsi,k = · · ·= r

tŝ+1

i,k = rtŝi,k as long
as ctsi = · · ·= c

tŝ+1

i = ctŝi due to Kts
j,i = · · ·=Ktŝ+1

j,i =Ktŝ
j,i for

each user j ∈ U\{i}. Thus, we have Ats
i,k= · · ·=Atŝ+1

i,k =Atŝ
i,k

and Bts
i,k = · · · = Btŝ+1

i,k = Btŝ
i,k for each object k ∈ Qtŝ

i ∩Qts
i

according to (2). Now, we determine ztsi,j,k(τ) for time slot
s and ztŝi,j,k(τ) for time slot ŝ at τ ∈ (ts, yi,k + δi,k) by first
substituting τ for t′ in (5) and then substituting ts and tŝ
for t in the obtained result, respectively. We find that the
difference between ztsi,j,k(τ) and ztŝi,j,k(τ) is caused by the
difference between P(Cτ

i,j = 1 |Cts
i,j) and P(Cτ

i,j = 1 |Ctŝ
i,j)

for both cases of j in (5) due to qtsi,j,k= · · ·=q
tŝ+1

i,j,k =qtŝi,j,k.
Let αi,j,k(τ, tŝ) denote the first order partial deriva-

tive of ztŝi,j,k(τ) at τ ∈ (ts, yi,k + δi,k) with respect to
(w.r.t.) tŝ for j ∈ Atŝ

i,k. That is, we consider the case
ztŝi,j,k(τ) =

1+f(τ−xk)
2 P(Cτ

i,j = 1 |Ctŝ
i,j) in (5). By considering

(1), αi,j,k(τ, tŝ) is given by

αi,j,k (τ, tŝ)

=
∂ ztŝi,j,k(τ)

∂ tŝ

=

{
−1+f(τ−xk)

2 λi,je
−(λi,j+µi,j)(τ−tŝ), if Ctŝ

i,j=0,
1+f(τ−xk)

2 µi,je
−(λi,j+µi,j)(τ−tŝ), if Ctŝ

i,j=1.

(8)

The first order partial derivative of ztŝi,j,k(τ) at τ ∈ (ts, yi,k+

δi,k) w.r.t. tŝ for j ∈ Btŝ
i,k is denoted and given by

βi,j,k (τ, tŝ) = qtŝi,j,kαi,j,k (τ, tŝ). By considering the Taylor

series, we have ztsi,j,k(τ) =
∑∞

m=0

∂m z
tŝ
i,j,k(τ)

∂ (tŝ)m
(ts−tŝ)

m

m! . Thus,

we have

ztsi,j,k(τ)−ztŝi,j,k(τ)

= (ts − tŝ) (9)

×
{
αi,j,k(τ, tŝ)+

∑∞
m=1

∂m αi,j,k(τ,tŝ)
∂ (tŝ)m

(ts−tŝ)
m

(m+1)! , if j∈Atŝ
i,k,

βi,j,k(τ, tŝ)+
∑∞

m=1
∂m βi,j,k(τ,tŝ)

∂ (tŝ)m
(ts−tŝ)

m

(m+1)! , if j∈Btŝ
i,k.

We find that the connection profile of user i remains un-
changed for only short time intervals (i.e., ts − tŝ is small).
Moreover, as we will show in Section 4.2.1, the values of
λi,j and µi,j in (8) have the order of magnitude of 10−4 and
10−3, respectively. Thus,

∑∞
m=1

∂m αi,j,k(τ,tŝ)
∂ (tŝ)m

(ts−tŝ)
m

(m+1)! and∑∞
m=1

∂m βi,j,k(τ,tŝ)
∂ (tŝ)m

(ts−tŝ)
m

(m+1)! in (9) are much smaller than
αi,j,k (τ, tŝ) and βi,j,k (τ, tŝ), respectively. Therefore, we ap-
proximate the difference between ztsi,j,k(τ) and ztŝi,j,k(τ) by

ztsi,j,k(τ)−ztŝi,j,k(τ)≈(ts − tŝ)×
{
αi,j,k (τ, tŝ) , if j ∈ Atŝ

i,k,

βi,j,k (τ, tŝ) , if j ∈ Btŝ
i,k.

(10)

That is, we have ztsi,j,k(τ)−ztŝi,j,k(τ) ≪ 1. This means if ctsi =

· · ·= c
tŝ+1

i = ctŝi , the value of the integrand in (6) for object
k ∈ Qtŝ

i ∩Qts
i changes slightly from tŝ to ts. Note that the

above analysis also applies when we substitute s̃ ∈ {ŝ+
1, ŝ+2, . . . , s− 1} for ŝ. Without loss of generality, when
Vi,k (tŝ) is evaluated in time slot ŝ by substituting tŝ for t
in (6), we define ρi,k , Vi,k (tŝ) /(yi,k + δi,k − tŝ) for object
k ∈ Qtŝ

i . Note that we have 0 < ρi,k < 1. The value of ρi,k
represents the ratio between the time that object k is in the
neighborhood of user i and the duration from current time
to time yi,k+δi,k. We then approximate the value of Vi,k (ts)
in time slot s > ŝ by (yi,k + δi,k − ts)ρi,k for object k ∈
Qts

i ∩Qtŝ
i if ctsi = · · ·=c

tŝ+1

i =ctŝi . We define

Wi,k (ts) ,{
(yi,k+δi,k−ts)ρi,k, if k∈Qts

i ∩Qtŝ
i , ctsi = · · ·=c

tŝ+1

i =ctŝi ,
Vi,k(ts) , otherwise.

(11)
Now, user i solves the following problem in time slot s
instead:

argmin
k∈Qts

i

Wi,k (ts)

subject to
{
j |Cts

i,j = 1, ξtsj,k ≥ ξ
}
̸= ∅.

(12)

For user i in time slot s, the objective function of problem
(7) is a special case of the objective function of problem
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Algorithm 2: D2D data offloading algorithm on mobile
device i.
1 Initialize t, s :=0, Qts

i :=∅, ŝ :=0, Qtŝ
i :=∅, and ctŝi :=0.

2 Start to increase t according to system clock.
3 Loop for each time slot

4 s := s+ 1, Qts
i := Qts−1

i .
5 for j ∈ U\{i} do
6 if user i detects user j in the neighborhood then
7 Cts

i,j := 1.
8 Obtain Kts

j,i and τ ts
i,j from Algorithm 1 at time

t = ts.
9 else

10 Cts
i,j := 0.

11 for k ∈ {κ | yi,κ = ts} do
12 Initialize δi,k by the MWT preferred by user i for

object k.
13 Qts

i := Qts
i ∪ {k}.

14 if ctsi ̸= c
tŝ
i then

15 for k ∈ Qts
i do

16 Determine Wi,k (ts) := Vi,k (ts) by
substituting ts for t in (6), ρi,k :=

Vi,k(ts)

yi,k+δi,k−ts
.

17 ŝ := s, ctŝi := ctsi , Qtŝ
i := Qts

i .
18 else
19 for k ∈ {κ | yi,κ = ts} do
20 Determine Wi,k (ts) := Vi,k (ts) by

substituting ts for t in (6), ρi,k :=
Vi,k(ts)

yi,k+δi,k−ts
.

21 for k ∈ Qtŝ
i do

22 Determine Wi,k (ts) := (yi,k + δi,k − ts) ρi,k.

23 Qtŝ
i := Qts

i .

24 Search k⋆ := argminkWi,k (ts) which can be
downloaded from the neighborhood.

25 Download object k⋆ via D2D data offloading in time
slot s.

26 if k⋆ is completely downloaded then
27 Qts

i := Qts
i \ {k⋆}.

28 for k ∈ {κ | ts ≤ yi,κ + δi,κ < ts+1} do
29 Qts

i := Qts
i \ {k} and download the remaining

data of object k from the wireless cellular
network.

(12) when either an object attracts the interest of user i or
the connectivity profile ctsi is changed in time slot s. When
multiple time slots are considered, solving problem (12)
is simpler because problem (7) requires user i to evaluate
(6) for each object k ∈ Qts

i in each time slot s. In fact,
the connectivity profile changes in a much larger scale
compared with a time slot. Thus, solving problem (12) has
less computational complexity than solving problem (7).
Our D2D data offloading algorithm for mobile device i is
given in Algorithm 2. For each time slot s, the digital objects
that the user is waiting to download via D2D data offloading
are those that have not been completely downloaded in
the previous time slot (Line 4). Mobile device i updates
the connectivity profile by determining the connection state
with each user j ∈ U\{i} (Lines 6–9). Then, the objects that
attract the interest of user i in time slot s are initialized
and included in set Qts

i (Lines 11–13). If the connectivity
profile of user i changes (Line 14), the value ρi,k is cal-
culated after evaluating Vi,k(ts) and assigning Vi,k(ts) to

Wi,k(ts) for each object in set Qts
i (Lines 15–16). After that,

the time slot in which the connectivity profile is changed
and the new connectivity profile are saved in ŝ and ctŝi ,
respectively. In addition, the set of objects whose EADs
have been calculated by user i is saved in Qtŝ

i (Line 17).
On the other hand, if the connectivity profile of user i does
not change (Line 18), Wi,k (ts) is determined by calculating
Vi,k(ts) only for the objects that attract the interest of user i
in time slot s (Lines 19–20) and approximated for the objects
in set Qtŝ

i by (yi,k + δi,k − ts) ρi,k (Lines 21–22). The set
Qtŝ

i is then updated by set Qts
i (Line 23). Mobile device

i selects an available object k⋆ with the smallest value of
Wi,k (ts) in the neighborhood to download in the current
time slot s (Lines 24–25). The object k⋆ is removed from
set Qts

i if it has been completely downloaded (Lines 26–
27). Mobile device i also removes each object which has not
been completely downloaded within its MWT from set Qts

i .
It then downloads the remaining data of these objects from
the cellular network (Lines 28–29).

Let us consider user 1 in Fig. 2 as an example. Since
user 1 has no neighbor and is not interested in any object in
time slot 1, we have Qt1

1 = ∅, ŝ = 0, and ct01 = 0. User 1
updates s = 2 and Qt2

1 = ∅ in time slot 2. Then, user 1 sets
Ct2

1,2 = 0 as he has no neighbor in time slot 2. That is, he has
ct21 = 0. User 1 is not interested in any object in time slot
2 (i.e., {κ | y1,κ = t2} = ∅). Meanwhile, as ct21 = ct01 , user 1
sets Qt0

1 = ∅ and no other operation is required. At time slot
3, user 1 is interested in objects 1 and 2 (i.e., y1,1=y1,2= t3)
and initializes δ1,1 and δ1,2 by his preferred MWTs. He then
includes both objects in set Qt3

1 . We assume δ1,1 = t6− t3
and δ1,2 = t11− t3. Since ct31 = ct01 and y1,2 = y1,3 = t3,
both W1,1(t3) and W1,2(t3) are determined by evaluating
V1,1(t3) and V1,2(t3), respectively. Then, ρ1,1 and ρ1,2 are
calculated. At time slot 4, user 1 has Qt4

1 = {1, 2}. Then,
Ct4

1,2 = 1 is detected (i.e., ct4i = 1). User 1 thus obtains Kt4
2,1

and τ t41,2 by using Algorithm 1. Since ct4i ̸= ct0i , W1,1(t4) and
W1,2(t4) are calculated by evaluating V1,1(t4) and V1,2(t4),
respectively, and ρ1,1 and ρ1,2 are updated. User 1 then
updates ŝ = 4, ct41 = 1, and Qt4

1 = {1, 2}. We assume
W1,1(t4) < W1,2(t4), so user 1 downloads object 1 from
user 2 in time slot 4. We also assume that object 2 is not
completely downloaded. We thus have Qt5

i = {1, 2} at
the beginning of time slot 5. Due to Ct5

1,2 = 1, we have
ct5i = ct4i . The values of W t5

1,1 and W t5
1,2 are approximat-

ed by (t6 − t5)ρ1,1 and (t11 − t5)ρ1,2, respectively. Given
W t5

1,1 < W t5
1,2, user 1 continues to download object 1 from

user 2 in time slot 5. Now, we consider that object 1 is
completely downloaded at the end of time slot 5. Set Qt5

1

is then updated to {1, 2} \ {1} = {2}. Hence, user 1 has
Qt6

1 = {2} in time slot 6. As Ct6
1,2 = 0 is detected, we have

ct61 ̸=ct41 . The value of W1,2(t6) is determined by evaluating
V1,2(t6) and ρ1,2 is updated. User 1 updates ŝ= 6, ct61 = 0,
and Qt6

1 = {2}. User 1 downloads object 2 from the cellular
network at the end of time slot 11 since its MWT for object
2 is reached. He then updates Qt11

1 =∅.

4 TRACE-DRIVEN SIMULATION RESULTS

We use the real-world traces in Cambridge/Haggle
dataset [47] to reproduce the topology of D2D connections
between mobile devices. We first introduce the dataset and
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Fig. 3. The values of λ̃i,j and µ̃i,j are obtained by MLE based on connectivity traces in [47]. The value of λ̃i,j is almost with the order of magnitude
of 10−4 and the value of µ̃i,j is mainly with the order of magnitude of 10−3.

the scheme used to create data flows. We then present trace-
driven simulation results to validate our system model. The
performance of Algorithm 2 is also presented by running
trace-driven simulations and comparing with the existing
schemes in the literature.

4.1 Dataset in Traces and Data Flow Creation Scheme
We use three real-world traces “Intel” (Trace 1), “Cam-
bridge” (Trace 2), and “Infocom” (Trace 3) in Cam-
bridge/Haggle dataset in [47] for our simulations. Traces
1–3 are recorded by 8, 12, and 41 mobile iMotes using
Bluetooth with 30m radio range, respectively. Although
these iMotes are not smartphones or tablets, the connection
states recorded in these traces can be used to reproduce
the dynamic topology of mobile users. The interval of each
iMote sending a beacon (i.e., hello message) is 120± 12 sec.

The connectivity between mobile users is assumed to
be symmetric in our work. However, the connect and
disconnect events in traces were recorded by each iMote
individually. Thus, we consider that a pair of iMotes were
connected (or disconnected) as long as one of them detected
a connect (or disconnect) event. In the real-world traces, an
iMote has recorded a connect event with a zero contact du-
ration when it was connected with another iMote for a short
period of time such that the iMote failed to receive two or
more consecutive beacons. Thus, for a record with the zero
contact duration, we assume the actual contact duration is
uniformly distributed on [0 sec, 120 sec]. We concatenate the
contact and intercontact durations recorded by each pair of
iMotes in a chronological order to reproduce the connect
and disconnect events for both of them. We then run trace-
driven simulations with the D2D topologies reproduced by
all iMotes pairs in each trace. Since all traces are recorded
indoors, our simulation results are for indoor environments
only. However, our proposed algorithm can also be used by
outdoor users. The radio range of mobile iMotes is 30m. In
our trace-drive simulations, the length of each time slot is
1 sec. Moreover, ξ is set to 2% in the simulations.

The data flows are created by the following scheme. We
have a set of digital objects O. In our simulations, each user
i ∈ U randomly chooses 50 objects from set O as his inter-
ested objects, i.e., |Oi| = 50. For each object k ∈

∪
i∈U Oi,

the value of xk (sec) is uniformly distributed on [0, 3600].
That is, the diffusion start time xk of object k is randomly
selected within the first 1 hr (i.e., 3600 sec) in a simulation
run. We first set yi,k = xk for a random user i in set
{u | k ∈Ou}. Then, the time when user j ∈{u | k ∈Ou}\{i}
reveals his interest in object k (i.e., yj,k) is set to xk plus
a random number generated by log-normal distribution
ln N (µ=3.91, σ2=6.86) [44], unless otherwise stated.

4.2 System Model Validation
4.2.1 Validation for the Pairwise Connectivity Model
Let U1, U2, and U3 denote the sets of users in Traces 1–3,
respectively. We have |U1| = 8, |U2| = 12, and |U3| = 41.
For each record in Traces 1–3 with the zero contact du-
ration, its actual contact duration is randomly selected
from [0 sec, 120 sec]. The values of λ̃i,j and µ̃i,j estimated
for each pair of users i, j ∈ U by MLE are presented
in Fig. 3. We find that the value of λ̃i,j is almost with
the order of magnitude of 10−4 and the value of µ̃i,j is
mainly with the order of magnitude of 10−3. We further
predict the D2D connectivity for each pair of mobile users
with both power law and CTMC models. Specifically, we
simulate the pairwise connectivity with CTMC model by
using parameters λ̃i,j and µ̃i,j for each pair of users i
and j in a trace. For the power law model, we consider
that both pairwise contact and intercontact durations for
a given user pair follow the power law distributions and
estimate the parameters for both distributions, respectively.
We then simulate the pairwise connectivity of each pair of
users by the obtained power law distributions. We gather
the simulation results of all user pairs in each trace for
both connectivity models. We compare the aggregate CCDFs
of contact and intercontact durations given by simulations
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Fig. 4. The aggregate CCDFs of the intercontact durations of all user pairs when power law and CTMC models are used to predict the connectivity
between each user pair.
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Fig. 5. The aggregate CCDFs of the contact durations of all user pairs when power law and CTMC models are used to predict the connectivity
between each user pair.

with the corresponding CCDFs given by empirical results
in real-world traces, respectively. The comparison is shown
in Figs. 4 and 5 for the aggregate CCDFs of intercontact
and contact durations. From the aggregate CCDFs in Fig. 4,
we find that the power law model can better predict the
pairwise intercontact duration than the CTMC model for
the connectivity between users in Trace 1. However, the
CTMC model achieves similar performance as the power
law model to predict the pairwise intercontact duration for
users in Traces 2 and 3. On the other hand, it is observed
from Fig. 5 that the CTMC and power law models can also
obtain the similar performance in predicting the pairwise
contact durations in all traces.

To better show the accuracy of the CTMC and power
law models in predicting the pairwise contact and inter-
contact durations, we conduct the Kolmogorov-Smirnov
test to show the maximum gap from the aggregate CCDFs
of contact and intercontact durations given by simulation
results to the corresponding aggregate CCDFs given by
empirical data sets, respectively. The results of Kolmogorov-
Smirnov test are given in Fig. 6. We observe that the power
law model is more accurate than the CTMC model to predict
the pairwise intercontact time in Traces 1 and 3. However,
the adopted CTMC model obtains a better prediction for
both pairwise contact and intercontact durations in Trace
2. Meanwhile, the CTMC model also achieves a better
performance to predict the pairwise contact time in Trace 1.
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Fig. 6. Kolmogorov-Smirnov test results obtained by comparing aggre-
gate CCDFs of contact and intercontact durations given by simulations
with power law and CTMC models with aggregate CCDFs given by
empirical results.

4.2.2 Effect of Bayesian Inference

We now present the benefit of using Bayesian inference in
interest estimation. Specifically, we take the estimate pti,j,k
made by user i at time t for the interest of user j in
object k as the baseline case. Note that pti,j,k defined in
Section 2.2.2 considers only the social influence aspect. We
compare the estimate pti,j,k with the estimate qti,j,k defined
in Section 2.2.3 by noting that qti,j,k takes Bayesian inference
into account to estimate the interest of user j in object k.
For our simulations, we apply the scheme introduced in
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Section 4.1 to create the data flows with |O| = 400 digital
objects. We let all users reveal their interest within the first
1 hr (i.e., yi,k ≤ 3600 sec, ∀ i ∈ U , k ∈ Oi). We compare the
aforementioned two estimates in terms of the estimation error
per object by running trace-driven simulations in Traces 1–
3. Let Ebse(t) denote the estimation error per object of the
baseline case at t>3600 sec, which is defined as follows

Ebse (t) ,
∑

i∈U
∑

k∈Oi

∑
j∈U\{i}

∣∣pti,j,k − Ij,k
∣∣

(|U| − 1)
∑

i∈U |Oi|
, (13)

where Ij,k = 1 if user j is interested in object k according
to the data flows created in simulations, and is equal to zero
otherwise. The estimation error per object of our proposed
model at time t > 3600 sec is denoted by EBay(t), which
is determined by replacing pti,j,k in (13) by qti,j,k. In Fig. 7,
we compare Ebse (t) and EBay (t) at various sample time t.
We find that EBay (t) is smaller than Ebse (t) at all sample
time t in each trace-driven simulation, which means that the
accuracy of the interest estimation model can be improved
by Bayesian inference. Besides, it is observed from Fig. 7 that
using only social influence model to estimate the interest
of users may not always provide a better result at a longer
simulation time t (e.g., Ebse(t) of Trace 3 in Fig. 7). This is be-
cause a social influence model cannot be perfect. Specifically,
the information exchanged between users during contacts
can let them be certain of the interest of each other on the
objects that they are waiting to download via D2D data
offloading. However, this may also introduce the interest
estimation error, since users may overestimate the interest of
other users for the popular objects. With the same reason, we
have also observed in Fig. 7 that even though the estimation
error per object may decrease when the simulation evolves
over time, it does not decrease significantly (e.g., Ebse(t) of
Traces 1 and 2 in Fig. 7). On the other hand, the estimation
error per object with Bayesian inference can be significantly
reduced when the simulation evolves over time (i.e., EBay(t)
of Traces 1–3 in Fig. 7). We would like to show that the
proposed interest estimation model with Bayesian inference
still works when the digital objects are diffused with a dif-
ferent pattern from the model that is used for the proposed
interest estimation. To this end, we create data flows with
another information diffusion model given by a log-normal
distribution ln N (µ = 5.547, σ2 = 4.519) [45]. From Fig. 8,
we observe that similar simulation results as shown in Fig. 7
can be obtained. Thus, the Bayesian inference can increase
the accuracy of interest estimation when digital objects have
different log-normal diffusion patterns.

4.2.3 Validation of Interest Estimation

We now show that a larger value of qti,j,k obtained by user
i at time t can better convince him that user j is interested
in object k. For such a purpose, we introduce the hit ratio for
our interest estimation model. Let g(t, h) denote the hit ratio
at time t with probability threshold h, where 0 ≤ h ≤ 1. We
define

g (t, h) ,
∑

i∈U
∑

j∈U\{i}

∣∣∣{k | k ∈ Ot
i , q

t
i,j,k ≥ h

}
∩ Oj

∣∣∣∑
i∈U

∑
j∈U\{i}

∣∣∣{k | k ∈ Ot
i , q

t
i,j,k ≥ h

}∣∣∣ .

(14)
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Fig. 7. The estimation error per object obtained by applying Bayesian
inference in interest estimation with the information diffusion model
ln N (µ = 3.91, σ2 = 6.86) [44].
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Fig. 8. The estimation error per object obtained by applying Bayesian
inference in interest estimation with the information diffusion model
ln N (µ = 5.547, σ2 = 4.519) in [45].

Specifically,
∣∣{k | k ∈ Ot

i , q
t
i,j,k ≥ h}

∣∣ in the denominator of
(14) is the number of objects that (a) user i is interested in at
time t and (b) user j is also interested in with probability h
or higher. Each element of the summation in the nominator
of (14) is the cardinality of a subset of the aforementioned
objects that user j is indeed interested in. We create data
flows with |O| = 200 to run simulations for each trace
introduced above. At time t = 8×3600 sec (i.e., 8 hr) in each
simulation run, we evaluate (14) for h=0, 0.02, 0.04, . . . , 1.
The denominator in (14) may decrease to 0 as h increases.
When this happens, we stop increasing h and plot the
results that have been obtained in Fig. 9. The positive
relation between h and q (t, h) means that a larger value
of qti,j,k can increase the confidence of user i that user j
is interested in object k. This shows the correctness of our
interest estimation model.

4.3 Performance of Proposed Algorithm
We now present the performance of Algorithm 2. We use
400 digital objects in our trace-driven simulations (i.e.,
|O| = 400). We first show that using our EAD metric with
the proposed model can help a user choose the object that
has the shortest available duration for D2D data offloading.
Specifically, when both of the data flow (given by our data
flow creation scheme in Section 4.1) and the D2D topologies
(given by trace files) are known a priori, the available du-
ration that a mobile user can download an object from his
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Fig. 9. Hit ratio g (t, h) at t = 8×3600 sec (i.e., 8 hr) vs. the threshold val-
ue h. The positive relation between g(t, h) and h shows the correctness
of our interest estimation model.

neighborhood within the preferred MWT can be accurately
determined. In this ideal case with the priori knowledge, we
can find the object that the user should download from
his neighborhood in each time slot. The ideal case is not
applicable in practice. However, it can be taken as the
benchmark to show the accuracy of Algorithm 2 in choosing
object k⋆ (Line 23). We compare our work with two existing
scheduling policies, namely, the earliest deadline first (EDF)
policy and the shortest remaining processing time first (SRPTF)
policy. The EDF policy has been used to improve the quality
of service in wired networks [48]. The SRPTF policy has
been adopted for server-side task scheduling in peer-to-
peer systems [49]. We compare our work with EDF and
SRPTF policies because both of them are also used for task
scheduling in D2D data offloading [50]. To simulate the EDF
policy, in each time slot of our simulation run, we let each
mobile user download the object (from his neighbors) that
has the shortest remaining time before the end of its MWT
preferred by the user. To simulate the SRPTF policy, we refer
to the study in [51] and consider that the D2D communica-
tion data rate at time ts is uniformly distributed between
[1Mbps, 4Mbps]. Let γts

i,j denote the D2D communication
data rate between users i, j ∈ U at time ts. For simplicity,
we assume that γts

i,j remains unchanged during time slot s.
In particular, we have γts

i,j > 0 if users i and j are neighbors
(i.e., Cts

i,j = 1). Otherwise, we have γts
i,j = 0. Let F ts

i,k denote
the residual file size of object k that has not been completely
downloaded by user i at time ts. We run simulations for
SRPTF policy by letting user i first download object k from
neighbor j, where the tuple (j, k) is given by the solution of
the following problem:

argmin
(j,k)∈ (U\{i})×Qts

i

F ts
i,k

γts
i,j

, subject to Cts
i,j = 1, ξtsj,k ≥ ξ,

(15)
where the objective function is based on the definition of
SRPTF, and the constraints restrict that only the neighbors
who have already downloaded ξ or a higher percentage of
object k can transmit data to user i.

We refer to the object selection made by a user to down-
load in a time slot as an offloading decision. For user i in time
slot s, let dideali,s , dproi,s , dedfi,s , and dsrptfi,s denote the offloading
decisions made in the ideal case, in Algorithm 2, with the

EDF policy, and with the SRPTF policy, respectively. User
i may not always find an interested object available on his
neighbors. We set dideali,s =dproi,s =dedfi,s =dsrptfi,s =0 if no object
can be transferred from neighbors to user i in time slot s.
After running a simulation with T = 80000 time slots, we
evaluate the offloading decision accuracy (ODA) for user i ∈ U
in our proposed Algorithm 2, which is defined as

ηpro(i) ,
∑T

s=1 1{dideal
i,s }\{0}(d

pro
i,s )∑T

s=1 1O(dideali,s )
, (16)

where 1Ω(ω) is the indicator function which returns the val-
ue 1Ω(ω) = 1 if ω ∈ Ω, and 1Ω(ω) = 0 otherwise. We denote
ηedf(i) and ηsrptf(i) as the ODA when user i downloads the
interested object by using the EDF and SRPTF policies, re-
spectively. Specifically, ηedf(i) and ηsrptf(i) are determined
by replacing dproi,s in (16) by dedfi,s and dsrptfi,s , respectively. The
values of ODA at user i (i.e., ηpro(i), ηedf(i), and ηsrptf(i))
are the proportions that the objects selected by user i in
each time slot are the same objects selected by the ideal case
in corresponding time slots. In this set of simulations, the
MWT for each object is set to be uniformly distributed on
[1 hr, 7 hr]. The values of ηpro(i), ηedf(i), and ηsrptf(i) for
each user i in each real-world trace are given in Fig. 10.
In this figure, we have sorted the users in ascending order
according to their ODA when the SRPTF policy is used (i.e.,
ηsrptf(i), ∀ i ∈ U ). Results in Fig. 10 show that the ODA
of each user obtained by Algorithm 2 is almost between
0.7 and 0.9. However, the ODA of each user by using EDF
and SRPTF is almost lower than 0.6. Thus, using the EAD
metric can effectively determine the object that should be
first downloaded from neighbors.

We now show that users can download more data from
their neighbors by using Algorithm 2 compared with down-
loading an available object by the EDF or SRPTF policy. We
consider that the size of each digital object is 100 MB. Since
we have |Oi| = 50, ∀ i ∈ U , the average mobile data traffic
demand on each user is 100MB× 50=5GB. Note that γts

i,j

has been introduced above for the SRPTF policy to denote
the D2D communication data rate between users i and j.
Moreover, γts

i,j has been assumed to remain unchanged in
time slot s. To compare our proposed algorithm with the
SRPTF and EDF policies in a fair manner, when we run
simulations for the proposed algorithm and the EDF policy,
the D2D communication data rate between users i and j in
time slot s is also set to γts

i,j . We vary the average MWT
for digital objects from 0.5 hr to 3.5 hr with a step size
of 0.5 hr in simulations. To do so, the MWT preferred by
each user for each object that the user is interested in is
uniformly distributed on [0 hr, T hr], where T = 1, . . . , 7
for different simulation trials. We obtain the performance
for four kinds of offloading decisions introduced above.
Specifically, we refer to the ideal case as Case 1, where the
offloading decision dideali,s is used by user i ∈ U in time
slot s. Cases 2–4 refer to the situations that the offloading
decisions dproi,s , dedfi,s , and dsrptfi,s are made by user i in time slot
s, respectively. We evaluate the average size of data that can
be downloaded from neighbors for these cases. For Cases 2–
4, we denote R2,1, R3,1, and R4,1 as the relative performances,
which are defined as the ratios between the average data
traffic offloaded in Cases 2–4 and the average data traffic
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Fig. 10. Comparing Algorithm 2 with the EDF and SRPTF policies in terms of ODA.

offloaded in Case 1, respectively. We observe from Fig. 11
that 36.0% – 73.8% of the 5GB data can be downloaded
from neighbors when the users prefer to wait for 4 hr on
average for their interested objects in D2D data offloading.
Fig. 11 also shows that the increment of the offloaded
data traffic gradually decreases when the average MWT
increases. This indicates that the size of data downloaded by
a user from his neighbors cannot increase linearly with the
average MWT for digital objects, as some of his interested
objects may no longer be of interest to others. From the
bar charts in Fig. 11, we find that Case 2 can achieve a
performance close to Case 1 and download more data from
neighbors compared with Cases 3 and 4. This is because first
downloading the object that has the smallest EAD can better
utilize the transient D2D data offloading opportunity which
may not occur again. First downloading the object with the
EDF policy (i.e., Case 3) also achieves a higher performance
than that with the SRPTF policy (i.e., Case 4). With our
simulation settings, up to 13.5% – 17.7% more data can be
downloaded by the proposed algorithm (i.e., Case 2) when
compared with Case 4. Meanwhile, 7.9% – 10.4% more data
can be downloaded when we compare Case 2 with Case
3. It is worth mentioning that our proposed algorithm as
well as the EDF and SRPTF polices all benefit from the
assumption that users who have partially downloaded the
same object have non-overlapped portions to transfer to
each other. However, the SRPTF policy can benefit the most
from the above assumption. To explain this, let us consider
object k ∈ O which has almost been downloaded by user
i ∈ U (i.e., only a few packets are missing). Since the
residual file size of object k on user i is small, object k
has a short remaining processing time on user i. That is,
using SRPTF policy may prioritize the D2D data offloading
for the object which has the smallest residual file size (i.e.,
the least missing packets). However, it has been shown
in [52] that a user who has received more packets for an
object has smaller probability to find the missing packets
of that object on his neighbors. Since we have assumed

that the users who have partially downloaded the same
object always have non-overlapped portions to transfer to
each other, the SRPTF policy which chooses an object that
has the smallest probability for a user to obtain missing
packets in the neighborhood will benefit the most from the
aforementioned assumption.

We study the performance of Algorithm 2 where the
size of each object varies from 30MB to 300MB and the
MWT of each object is uniformly distributed on [0 hr, 5 hr].
The simulation results are presented in Fig. 12. We find that
the size of data downloaded via D2D data offloading first
increases linearly when the size of each objects increases
from 30MB to 120MB. Then, the increment decreases when
the size of each object keeps increasing. The amount of data
traffic obtained by D2D data offloading eventually starts
to saturate when the size of each object reaches 300MB.
From the bar charts in Fig. 12, we find that Algorithm
2 in Case 2 obtains almost the same performance as the
ideal Case 1 when the size of each object is either smaller
than 90MB or greater than 270MB. Moreover, we find
that the relative performance of Algorithm 2 comparing
with EDF and SRPTF (i.e., Cases 3 and 4, respectively)
increases first and then decreases. In particular, when the
size of each object is small, an object can be completely
downloaded once it appears in the neighborhood. In this
case, offloading decisions slightly affect the amount of data
traffic obtained by D2D data offloading. When the size of
each object increases, the proposed offloading algorithm
also achieves a better relative performance. The relative
performance compared with the baseline policies starts to
decrease if the size of each object keeps increasing. This is
because large-size objects can provide users the persistent
D2D data offloading opportunities before they have been
completely downloaded. We observe from Fig. 12 that using
Algorithm 2 can help users download up to 15.5% – 23.2%
more data from neighbors than using the SRPTF policy.
Using Algorithm 2 can also help users offload up to 9.73% –
13.3% more data from the cellular network than using the
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Fig. 11. Mobile data traffic offloaded per user and relative performance vs. the average MWT (size of each object is 100 MB).
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Fig. 12. Mobile data traffic offloaded per user and relative performance vs. the size of each object (average MWT is 2.5 hr).

EDF policy.

5 CONCLUSION

In this paper, we have proposed the EAD metric to eval-
uate the D2D data offloading opportunity. The EAD metric
takes into account the pairwise connectivity between mobile
devices, the social influence between users, diffusion of
digital objects, and the MWT preferred by users for their
interested objects. We have extended the idea of the rarest
first strategy to wireless domain for D2D data offloading by
letting a mobile device first download an available object
with the smallest EAD. An efficient D2D data offloading
algorithm was also proposed, which can be applied by
mobile devices in a distributed manner. The correctness of
the pairwise connectivity model and the interest estimation
model were validated by trace-driven simulations. Simula-
tion results showed that our D2D data offloading algorithm
can effectively find the object that should be downloaded
from the neighboring devices in each time slot. Comparing
with downloading an available object with the EDF and
SRPTF policies, trace-driven simulation results showed that
more data can be downloaded via D2D data offloading by
our work. For mobile users having similar activity (e.g.,
colleagues working together or classmates taking the same
course), the pairwise connectivity may be known in ad-
vance. Thus, the value of EAD can be determined more ac-
curately. Moreover, D2D communication data rate may vary
with the number of nearby users due to limited resources in
wireless channels. For future work, we will consider users’
activity and D2D communication link quality to further
improve the performance of D2D data offloading.

APPENDIX A
SKETCH OF PROOF OF LEMMA 1
We have pti,j,k = P(Ij,k = 1 | rti,k) by definition. We now
evaluate the conditional probability P(Ij,k = 1 | rti,k) ob-
tained by user i at time t. Given the interest record rti,k =
(Rt

i,1,k, . . . , R
t
i,U,k) for object k ∈ Qt

i on user i∈U , user i is
certain of a set of users that may influence user j ∈ Bt

i,k to
be interested in object k. This set is {u |Rt

i,u,k=1}, which is
equivalent to At

i,k∪{i}. With our adopted social influence
model for the distributed interest estimation, given the inter-
est record rti,k on user i at time t, the conditional probability
determined by user i that user j is not influenced by any
user in set At

i,k∪{i} is
∏

u∈At
i,k∪{i}(1− θ̃u,j). Thus, we have

P
(
Ij,k=1 | rti,k

)
=1−

∏
u∈At

i,k∪{i}(1−θ̃u,j).

APPENDIX B
PROOF OF THEOREM 1
Since we have qti,j,k = P(Ij,k = 1 | rti,k, τ

t,c
i,j ), we need to

evaluate the conditional probability P(Ij,k = 1 | rti,k, τ
t,c
i,j )

obtained by user i at time t when rti,k and τ t,ci,j are given. We
take both the social influence and Bayesian inference into
account to calculate the conditional probability. Note that
xk is the diffusion start time of object k. We first consider
the case when τ t,ci,j ≤ xk, which means that user i has not
yet connected with user j after object k starts to be diffused
among users. Therefore, we cannot use Bayesian inference
in this case and only the social influence model is applicable.
Thus, for τ t,ci,j ≤ xk, we have

P
(
Ij,k = 1 | rti,k, τ

t,c
i,j

)
= P

(
Ij,k = 1 | rti,k

)
= pti,j,k. (17)
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We now consider the case when τ t,ci,j > xk. For user j ∈ Bt
i,k,

we denote rti,−j,k to represent the vector after removing the
component Rt

i,j,k = 0 from the interest record rti,k. We have

P
(
Ij,k = 1 | rti,k, τ

t,c
i,j

)
= P

(
Ij,k = 1 |Rt

i,j,k = 0, rti,−j,k, τ
t,c
i,j

)
(a)
= P

(
Ij,k = 1 |Yj,k > τ t,ci,j , r

t
i,−j,k, τ

t,c
i,j

)
=

P
(
Ij,k = 1, Yj,k > τ t,ci,j | rti,−j,k, τ

t,c
i,j

)
P
(
Yj,k > τ t,ci,j | rti,−j,k, τ

t,c
i,j

)
(b)
=

P
(
Yj,k > τ t,ci,j , Ij,k = 1 | rti,−j,k, τ

t,c
i,j

)∑1
m=0 P

(
Yj,k > τ t,ci,j , Ij,k = m | rti,−j,k, τ

t,c
i,j

)
=

P
(
Yj,k>τ

t,c
i,j | Ij,k=1,rti,−j,k,τ

t,c
i,j

)
P
(
Ij,k=1 | rti,−j,k,τ

t,c
i,j

)
1∑

m=0

P
(
Yj,k>τ

t,c
i,j |Ij,k=m,rti,−j,k,τ

t,c
i,j

)
P
(
Ij,k=m|rti,−j,k,τ

t,c
i,j

) .
(18)

Equality (a) follows because Rt
i,j,k = 0 implies that user j is

not interested in object k before his most recent connection
with user i (i.e., Yj,k > τ t,ci,j ). Equality (b) is obtained by
using the law of total probability. It has been shown that
the time when a user shares his interested information with
his friends in the OSN follows the log-normal distribution
ln N (µ = 3.91, σ2 = 6.86) after the information is initially
posted [44]. Let random variable Si,k > 0 denote the
duration from Yi,k to the time when user i downloads ξ
percentage of object k. Recall that constant parameter ξ is
the percentage of an object that a user has to obtain before
sharing the object with others. Thus, given Ij,k=1, the time
when user j shares object k ∈ Oj (i.e., Yj,k+Sj,k cf. Section II-
B3) is independent from both rti,−j,k and τ t,ci,j , and follows
the above log-normal distribution after diffusion start time
xk. The cumulative distribution function of Yj,k+Sj,k at time
t′ is

P
(
Yj,k+Sj,k≤ t′ | Ij,k=1, rti,−j,k, τ

t,c
i,j

)
=P

(
Yj,k+Sj,k≤ t′ | Ij,k=1

)
=

1+f(t′−xk)

2
,

(19)

where f (φ) = erf( lnφ−3.91√
13.72

) is obtained by applying the
above log-normal distribution and erf(·) is the error func-
tion. The probability P(Yj,k > τ t,ci,j | Ij,k = 1, rti,−j,k, τ

t,c
i,j ) in

(18) satisfies

P
(
Yj,k>τ t,ci,j | Ij,k = 1, rti,−j,k, τ

t,c
i,j

)
=1− P

(
Yj,k ≤ τ t,ci,j | Ij,k=1, rti,−j,k, τ

t,c
i,j

)
(c)
< 1− P

(
Yj,k+Sj,k≤τ t,ci,j | Ij,k=1, rti,−j,k, τ

t,c
i,j

)
(d)
=

1− f(τ t,ci,j − xk)

2
. (20)

Inequality (c) is due to Sj,k > 0. Equality (d) is obtained by
substituting τ t,ci,j for t′ in (19).

We now consider the conditional probability P
(
Ij,k =

1 | rti,−j,k, τ
t,c
i,j

)
in (18). In the considered social influence

model, a user is interested in an object if he is influenced
by one of the users who is interested in the object. Thus,
random variable Ij,k is independent from τ t,ci,j . Moreover,
given vector rti,−j,k, user i is aware of the set of users that

may influence user j on his interest in object k, which is
{u |Rt

i,u,k = 1} = At
i,k ∪ {i}. Noting that Rt

i,j,k = 0, we
thus have

P
(
Ij,k=1 | rti,−j,k, τ

t,c
i,j

)
=P

(
Ij,k=1 | rti,−j,k

)
=P

(
Ij,k =1| rti,k

)
(e)
=1−

∏
u∈At

i,k∪{i}(1− θ̃u,j). (21)

Equality (e) holds by the proof of Lemma 1 given in
Appendix A. Furthermore, we have P(Yj,k > τ t,ci,j | Ij,k =

0, rti,−j,k, τ
t,c
i,j ) = 1 because yj,k = ∞ when Ij,k = 0.

By substituting (20) and (21) into (18) and considering
P
(
Ij,k = 0 | rti,−j,k, τ

t,c
i,j

)
= 1− P

(
Ij,k = 1 | rti,−j,k, τ

t,c
i,j

)
=∏

u∈At
i,k∪{i}(1−θ̃u,j), we have

P
(
Ij,k = 1 | rti,k, τ

t,c
i,j

)
<

(
1− f(τ t,ci,j − xk)

)(
1−

∏
u∈At

i,k∪{i}(1− θ̃u,j)
)

(
1− f(τ t,ci,j − xk)

)(
1−

∏
u∈At

i,k∪{i}

(1− θ̃u,j)
)
+ 2

∏
u∈At

i,k∪{i}

(1− θ̃u,j)
,

(22)

which completes the proof.

APPENDIX C
PROOF OF THEOREM 2
We have zti,j,k(t

′) = P(Zt
i,j,k(t

′) = 1 | rti,k, τ
t,c
i,j , C

t
i,j) by

definition. Thus, we evaluate the conditional probability
P(Zt

i,j,k(t
′)=1 | rti,k, τ

t,c
i,j , C

t
i,j) determined by user i at time

t′ ≥ t when rti,k, τ t,ci,j , and Ct
i,j are given. Specifically, we

have Zt
i,j,k(t

′) = 1 if users i and j are connected at time
t′ (i.e., Ct′

i,j = 1) and user j has obtained ξ or a higher
percentage of object k at time t′ (i.e., Yj,k+Sj,k < t′). We
have assumed that the stochastic D2D connections between
mobile users are independent from both the interest of users
and the diffusion of digital objects. Thus, we have

P
(
Zt
i,j,k(t

′) =1 | rti,k, τ
t,c
i,j , C

t
i,j

)
= P

(
Yj,k+Sj,k<t′, Ct′

i,j=1 | rti,k, τ
t,c
i,j , C

t
i,j

)
= P

(
Yj,k+Sj,k<t′ | rti,k, τ

t,c
i,j

)
P
(
Ct′

i,j=1 |Ct
i,j

)
. (23)

Moreover, we have

P
(
Yj,k + Sj,k < t′ | rti,k, τ

t,c
i,j

)
(a)
=

1∑
m=0

P
(
Yj,k + Sj,k < t′, Ij,k = m | rti,k, τ

t,c
i,j

)
(b)
= P

(
Yj,k + Sj,k < t′, Ij,k = 1 | rti,k, τ

t,c
i,j

)
= P

(
Yj,k+Sj,k<t′|Ij,k=1, rti,k,τ

t,c
i,j

)
P
(
Ij,k=1|rti,k,τ

t,c
i,j

)
(c)
=

(
1 + f(t′ − xk)

)
P
(
Ij,k = 1 | rti,k, τ

t,c
i,j

)
2

. (24)

Equality (a) follows the law of total probability. Equality (b)
is due to P(Yj,k+Sj,k<t′, Ij,k=0 | rti,k, τ

t,c
i,j )=0 as yj,k=∞

for Ij,k=0. Equality (c) holds due to (19).
For probability P

(
Ij,k = 1 | rti,k, τ

t,c
i,j

)
in (24), we have

P
(
Ij,k = 1 | rti,k, τ

t,c
i,j

)
= 1 given Rt

i,j,k = 1 in vector rti,k
(i.e., j∈At

i,k). This is because j∈At
i,k means that user j has
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informed user i that he is interested in object k. On the other
hand, we have P

(
Ij,k = 1 | rti,k, τ

t,c
i,j

)
= qti,j,k by definition

given Rt
i,j,k=0 (i.e., j∈Bt

i,k). This completes the proof.
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