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Abstract—In the paper, we study the robust beamforming
design in cloud radio access networks where remote radio heads
(RRHs) are connected to a cloud server that performs signal
processing and resource allocation in a centralized manner. Dif-
ferent from traditional approaches adopting a concave increasing
function to model the utility of a user, we model the utility
by a sigmoidal function of the signal-to-interference-plus-noise
ratio (SINR) to capture the diminishing utility returns for very
small and very large SINRs in real-time applications (e.g. video
streaming). Our objective is to maximize the aggregate utility of
the users while taking into account the imperfection of channel
state information (CSI), limited backhaul capacity, and minimum
quality of service requirements. Because of the sigmoidal utility
function and some of the constraints, the formulated problem
is non-convex. To efficiently solve the problem, we introduce a
maximum interference constraint, transform the CSI uncertainty
constraints into linear matrix inequalities, employ convex relax-
ation to handle the backhaul capacity constraints, and exploit
the sum-of-ratios form of the objective function. This leads to an
efficient resource allocation algorithm which outperforms several
baseline schemes and closely approaches a performance upper
bound for large CSI uncertainty or large number of RRHs.

Index Terms: C-RAN, beamforming design, imperfect CSI, sig-
moidal utility function, capacity-limited backhaul.

I. INTRODUCTION

Deploying base stations (BSs) densely is a viable approach
to meet the tremendous data traffic demands in the fifth gen-
eration (5G) wireless communication networks [2]. However,
this may also increase the capital and operational expenditure
of mobile network operators (MNOs) and the user equipments
(UEs) may suffer from severe multicell interference caused by
simultaneous transmissions in adjacent cells [3]. The recently
proposed cloud radio access network (C-RAN) architecture is
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considered to be a promising architecture to overcome these
problems in 5G wireless networks [4]. In C-RAN, the radio
signal transceiver module and the baseband signal processing
module of conventional BSs are detached. The baseband signal
processing module is located at a cloud server and is referred
to as baseband unit (BBU). The BS, which is only composed
of radio signal transceivers in C-RAN, is referred to as re-
mote radio head (RRH). Ideally, the backhaul communication
between the RRHs and the BBUs is implemented by optical
fibers. Multiple BBUs running on a cloud server can form
a computationally powerful BBU pool, where the baseband
signals are processed in a centralized manner. Thus, not only
the cost of deploying a new BS can be significantly reduced,
but also coordinated multipoint (CoMP) transmission can be
seamlessly applied to mitigate the interference caused by
nearby BSs.

Due to these advantages inherent to C-RAN, coordinated
beamforming design has been studied for C-RAN in the
literature [5]–[9] to improve system performance. The authors
in [5] formulated an optimization problem for the beamform-
ing design in CoMP networks with the objective of minimizing
the backhaul data traffic. Beamforming design for reducing the
energy consumption and increasing the energy efficiency of C-
RAN was studied in [6]–[8] for various network scenarios. The
work in [6] assumed imperfect channel state information (CSI)
for beamforming design for downlink data transmission. The
work in [7] investigated beamforming design for both uplink
and downlink for minimization of the energy consumption
in C-RAN. Maximizing the energy efficiency via cooperative
beamforming was proposed in [8]. The authors in [9] formu-
lated a multi-objective optimization problem to jointly reduce
the backhaul data traffic and the energy consumption of the
RRHs. However, it was assumed in [6]–[9] that an unlimited
amount of control signals, user CSI, and precoding data can
be exchanged over the backhaul.

In practice, the backhaul capacity is limited. Taking this
constraint into account for beamforming design is crucial in
C-RAN. In the literature, there are two strategies to limit
the amount of backhaul data traffic in C-RAN, namely, the
compression strategy and the data sharing strategy [10]. For
the compression strategy, the backhaul data traffic is reduced
by adopting source coding techniques. Specifically, the res-
olution of the compressed signals is adjusted according to
the backhaul capacity. The compression strategy has been
investigated for both uplink and downlink transmission in C-
RAN. In particular, the authors of [11] and [12] assumed that
the quantization noises at different RRHs are uncorrelated and



used independent compression for uplink data transmission.
By exploiting the correlation of the quantization noises at
different RRHs, distributed compression schemes have been
proposed for uplink data transmission in [13]–[18]. On the oth-
er hand, the authors of [19] studied downlink data transmission
employing independent compression. Independent compres-
sion for downlink data transmission with imperfect CSI was
studied in [20]. Furthermore, the authors of [21] investigated
distributed compression for downlink data transmission in C-
RAN. However, different mobile applications running on the
UEs may require different resolutions for the received signals,
which increases the complexity of the baseband signal pro-
cessing if the compression strategy is employed. For the data
sharing strategy, the amount of backhaul data traffic of an RRH
is determined by the data traffic of the UEs that are associated
with the RRH. The association problem between UEs and
RRHs can be solved either by a clustering approach [22]
or a user-centric approach [10]. The former approach allows
multiple RRHs to form a cluster for serving multiple UEs.
However, geographic boundaries exist between adjacent RRH
clusters. The UEs located at the boundaries of RRH clusters
may suffer from strong co-channel interference. The latter
approach, in contrast, dynamically selects suitable RRHs to
serve individual UE by exploiting the benefits of interference
management. In fact, the user-centric approach can effectively
reduce the co-channel interference by associating each UE to
multiple RRHs and employing an appropriate beamforming
design. Thus, different from [19]–[21], in this paper, we adopt
the data sharing strategy and use the user-centric approach for
the association of UEs and RRHs.

Mobile applications running on UEs require different
amounts of network resources to achieve the desired quality
of service (QoS). For example, the signal-to-interference-plus-
noise ratios (SINRs) needed for online video and audio stream-
ing applications to ensure smooth video and audio services are
different. With the C-RAN architecture, the MNO can allocate
the limited network resources efficiently via cooperative beam-
forming. Although many existing works [23], [24] target the
maximization of the system sum rate characterized by a sum
of concave increasing functions of the SINRs, sigmoidal func-
tions with the received SINR as the input parameter constitute
better models for the utility achieved by mobile users [25],
[26]. However, sigmoidal functions are non-convex and thus
determining the optimal beamforming vectors is a challenging
task. Furthermore, due to the channel noise, interference, and
time varying nature of wireless channels, only imperfect CSI
can be obtained and exploited for beamforming design in
practice. Note that the baseband signal processing in C-RAN
is performed by the BBU pool on a cloud server. Thus, the
CSI estimated by the RRHs needs to be first conveyed to the
cloud server via the capacity-limited backhaul links. Then,
the precoded signals are transmitted from the BBU pool to
the RRHs. The resulting round trip delay in the backhaul
and the associated signal processing delay further add to the
imperfection of the estimated CSI used for resource allocation.
If the actual link quality between the RRHs and a UE is worse
than the estimated value, then the UE may not be able to
decode the signal received from the RRHs. In this case, the

utility of the serving UE may be significantly reduced.

To address above issues, in this paper, we focus on the
utility based beamforming design in C-RAN where we take
into account both the imperfection of the CSI and the capacity-
limited backhaul. To the best of our knowledge, beamforming
design for aggregate utility maximization of mobile users in C-
RAN with imperfect CSI and capacity-limited backhaul links
has not yet been studied in the existing literature [5]–[10],
[18], [21], [22]. We first formulate the robust beamforming
design as an optimization problem. The problem is generally
intractable since it has a non-convex objective function, non-
convex combinatorial constraints due to the limited backhaul
capacity, and infinitely many constraints due to the channel
uncertainty. To strike a balance between system performance
and the computational complexity of solving the problem, we
focus on the design of a computationally efficient resource
allocation algorithm. In particular, we first introduce an addi-
tional robust maximum interference constraint for each mobile
user to simplify the considered problem. Subsequently, we
transform the infinitely many constraints in our problem to a
finite number of linear matrix inequality (LMI) constraints. We
then adopt the convex relaxation technique to handle the non-
convex combinatorial constraints, such that the transformed
problem can be solved in an iterative manner. In each iteration,
we introduce an inner loop that exploits the sum-of-ratios form
of the objective function to decompose the problem into two
subproblems and tackles them with semidefinite programming
(SDP) and the damped Newton’s method iteratively. Simula-
tion results show that the beamforming design obtained with
our proposed algorithm can increase the aggregate utility in
C-RAN compared with existing beamforming designs that
either maximize the weighted system sum rate (WSSR) or
the weighted sum of SINRs of the users.

The remainder of this paper is organized as follows. In
Section II, we introduce the system model and present the
problem formulation. In Section III, we transform our problem
and propose an iterative algorithm to obtain an efficient subop-
timal solution. Simulation results are provided in Section IV.
Conclusions are drawn in Section V.

Notations: In this paper, the following notations are adopted:
XT, XH, Tr(X), and Rank(X) represent the transpose, con-
jugate transpose, trace, and rank of matrix X, respectively;
C is the set of complex numbers, Cm×n represents the set
of m × n complex matrices, Hn denotes the set of n × n
Hermitian matrices; | · | is the absolute value. ∥ · ∥x is the
ℓx-norm. In particular, ∥·∥0 is the ℓ0-norm of a vector and
denotes the number of non-zero entries in the vector; E [·]
denotes statistical expectation, ℜ{x} denotes the real part of
complex number x; x ≽ 0 means that each element in vector
x is non-negative, X ≽ 0 (or X ≻ 0) means that matrix X
is positive semidefinite (or positive definite), x[m:n] returns a
vector containing the mth to the nth elements of vector x; In
is the n×n identity matrix, On is the n×n all-zero matrix, 0n

denotes the n× 1 all-zero vector; ⊗ stands for the Kronecker
product, and CN (0, σ2) is the zero-mean complex Gaussian
distribution with varianceσ2.
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Fig. 1. An example of a C-RAN, where four UEs are served by six RRHs
via cooperative beamforming. A BBU pool is hosted by a cloud server. The
RRHs communicate with the BBU pool on the cloud server over backhaul
links implemented by optical fibers having limited capacities denoted by
C1, C2, . . . , C6. The MNO can control the RRHs and allocate network
resources to UEs in a centralized manner.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We now present our system model and formulate the prob-
lem. We consider downlink data transmission in a C-RAN. An
example of the considered system is shown in Fig. 1.

A. System Model

Let M = {1, . . . ,M} denote the set of RRHs in the C-
RAN. Each RRH is equipped with N ≥ 1 antennas. We
assume that each mobile user has one UE. Therefore, in the
sequel, we use the terms “mobile user” and “UE” interchange-
ably. Let K= {1, . . . ,K} denote the set of UEs. We assume
that each UE in set K is equipped with a single antenna to
limit the receiver complexity.. As beamforming and CoMP
are employed, a UE can be associated with multiple RRHs
simultaneously. The precoded signal transmitted from RRH
m∈M to UE k∈K is given by wm,ksk, where wm,k ∈ CN×1

is the beamforming vector for UE k employed by RRH m and
sk ∈ C denotes the data symbol for UE k. Without loss of
generality, we assume that E

[
|sk|2

]
= 1, ∀ k ∈ K. We note

that when wm,k ̸= 0N , UE k is associated with RRH m.
Otherwise, wm,k = 0N holds. Therefore, the signal received
at UE k ∈ K can be written as∑

m∈M
hH
m,kwm,ksk︸ ︷︷ ︸

desired signal

+
∑

u∈K\{k}

∑
m∈M

hH
m,kwm,usu︸ ︷︷ ︸

interfering signals

+nk,

(1)

where hm,k∈CN×1 denotes the instantaneous channel vector
from RRH m to UE k and nk∼CN (0, σ2

k) denotes the noise
at UE k with power σ2

k. The received SINR at UE k is given
by

γk =

∣∣∣∑m∈M hH
m,kwm,k

∣∣∣2∑
u∈K\{k}

∣∣∣∑m∈M hH
m,kwm,u

∣∣∣2 + σ2
k

. (2)

Due to the non-negligible round-trip delay in the backhaul
and the imperfection of CSI estimation, the actual CSI, hm,k,
from RRH m ∈ M to UE k ∈ K in (1) may deviate
from the estimated CSI used by the BBU pool for resource
allocation. Similar to [27], [28], we adopt a deterministic

model to capture the CSI uncertainty. Let ĥm,k ∈ CN×1

denote the estimated CSI from RRH m to UE k that is
used for the beamforming design at the cloud server. For
notational simplicity, we introduce hk ,

[
hH
1,k . . .h

H
M,k

]H
and ĥk ,

[
ĥH
1,k . . . ĥ

H
M,k

]H. In the following, we assume
hk ̸= 0MN and ĥk ̸= 0MN , ∀ k ∈ K. According to the
deterministic model in [27], [28], we can capture the CSI
uncertainty as follows:

hk = ĥk +∆hk, ∀ k ∈ K, (3)

Ωk ,
{
∆hk : ∆hH

k∆hk ≤ ε2k
}
, ∀ k ∈ K, (4)

where ∆hk ∈ CMN×1 denotes the CSI uncertainty of the
channel from the RRHs in set M to UE k. Constant εk
is the radius of the uncertainty region Ωk, which depends
on the degree of imperfection of the channel estimation, the
coherence time of the wireless channels from the RRHs to user
k, and the round-trip delay of the backhaul from the BBU pool
to the RRHs.

We assume that each UE executes a single mobile applica-
tion1. In general, for mobile users running real-time applica-
tions, the utility increases with the received SINR. However,
when the SINR achieved by a user is either very small or very
large, the marginal utility benefits for increasing SINR may be
negligible. For example, when the SINR achieved by a user
using an online video application is lower than a threshold
value such that the video cannot be smoothly played for the
user even with the lowest possible quality, the utility of the
user will not be notably increased until the SINR achieved
by the user is greater than that threshold value. On the other
hand, when the SINR achieved by the user is high enough
such that the video can be smoothly played with the highest
possible quality, allocating additional network resources to this
user cannot further increase his utility. In some cases, users
may always achieve higher utility when their received SINRs
are increased, such as when downloading a file or buffering
a video. Nevertheless, even in these cases, the improvement
in data rate will be limited as the received data rate is a
logarithmic function of the SINR [29]. Besides, as buffering
a video for a period of time can avoid video freezing and
interruptions, the shorter the amount of time that a user has
to wait for buffering before the video can be played smoothly,
the higher the utility that the user may obtain. However, when
the SINR is sufficiently large such that the downloading data
rate is high enough, the amount of time required for buffering
becomes negligible. Hence, even in this case, the room for
further improving the user’s utility by further reducing the
time of buffering is limited. Therefore, based on the above
analysis, the utility of a user may saturate or have little room
for improvement at high SINR. Thus, it is of fundamental
importance to incorporate the sigmoidal behaviour of the
users’ utility into the resource allocation algorithm design [25],

1The case that a UE is running multiple mobile applications can be modeled
by defining multiple virtual UEs at the same location where each of them runs
a single application. We note that this approach may not be efficient when
the compression strategy is used to overcome the capacity-limited backhaul,
as, in this case, the correlation of the channels of the virtual devices should
be exploited to improve performance [21].



[26]. In this paper, we adopt the weighted sigmoidal function
to model the utility of UE k ∈ K experiencing SINR γk as
follows2:

gk(γk) =
ηk

1 + exp
(
− ak(γk − bk)

) , (5)

where constant parameters ak, bk > 0 depend on the applica-
tion running on UE k, and constant parameter ηk > 0 is the
weight factor of UE k. Parameter ak controls the steepness of
gk(γk). The larger ak is, the faster gk(γk) increases with γk.
It is reasonable to assume that the utility of UE k approaches
0 if γk → 0. Thus, we need gk(0) ≈ 0, which holds if the
product akbk is sufficiently large. We assume that parameters
ak, bk, and ηk are known once the considered application is
launched on UE k.

B. Problem Formulation

We aim to maximize the aggregate utility of the mobile
users in set K. However, in the considered system, the actual
CSI is not perfectly known when the precoded signals are
transmitted from the RRHs to the UEs. Thus, the actual SINR
of each UE is not known at the transmitters. Furthermore, the
transmit signals are precoded by the BBU pool and transmitted
to the RRHs via the capacity-limited backhaul. Therefore, each
RRH in set M may only be used to serve a subset of UEs
in set K due to the limited backhaul capacity. Moreover, the
beamforming design has to guarantee that the precoded signals
transmitted to the RRHs can be successfully forwarded from
the RRHs to the UEs over the wireless channel. Otherwise, if
the serving UEs cannot decode the received signals, the utility
of the mobile users will be reduced. We thus formulate the
following optimization problem for the beamforming design:

maximize
w,φ

∑
k∈K

gk(φk) (6a)

subject to φk ≤ min
∆hk∈Ωk

γk, ∀ k ∈ K, (6b)∑
k∈K

∥∥∥wm,k∥2
∥∥
0
B log2(1 + φk) ≤ Cm,

∀m ∈ M, (6c)∑
k∈K

∥wm,k∥22 ≤ pm, ∀m ∈ M, (6d)

Γreq,k ≤ min
∆hk∈Ωk

γk, ∀ k ∈ K, (6e)

where vectors w ,
[
wH

1,1 . . .w
H
M,1 . . .w

H
1,K . . .wH

M,K

]H
and

φ , (φ1, . . . , φK) are the optimization variables. The aux-
iliary optimization variable φk in constraint (6b) serves as
an SINR lower bound for UE k ∈ K given the channel
uncertainty. The auxiliary optimization variable φk is then
used to evaluate sigmoidal function gk(φk) in the objective
function for UE k. In constraint (6c), B denotes the bandwidth
of the wireless channel. Moreover, we have

∥∥∥wm,k∥2
∥∥
0
=0

if and only if wm,k = 0N , ∀m ∈M, k ∈ K. Thus, the left-
hand side (LHS) of constraint (6c) is the aggregate data rate

2We note that the resource allocation algorithm developed in this paper for
the utility function given in (5) is also applicable for other sigmoidal utility
functions such as gk(γk) =

ηk
2

(
ak(γk−bk)√

1+(ak(γk−bk))
2
+1

)
, cf. Section III-C.

of the UEs associated with RRH m. Hence, constraint (6c)
accounts for the limited backhaul capacity, where constant
Cm denotes the backhaul capacity of RRH m. Constraint (6d)
restricts the total power used by RRH m for beamforming not
to exceed the maximum transmit power pm. Constant Γreq,k
in (6e) is the minimum required SINR for UE k. Constraint
(6e) is introduced to ensure that the minimum signal strength
required for signal detection is achieved or/and the QoS of
basic wireless communication services is sufficiently high.

Problem (6) is difficult to solve due to the following reasons:
objective function (6a) is in a non-convex sum-of-ratios form;
constraints (6b) and (6e) involve infinitely many inequality
constraints due to the continuity of the CSI uncertainty region
Ωk, ∀ k∈K; and constraint (6c) is a combinatorial constraint.
In general, there is no systematic and efficient approach to
solve this kind of non-convex optimization problem. Besides,
finding the globally optimal solution for problem (6) via a
brute-force approach entails a prohibitively high computation-
al complexity. Therefore, solving problem (6) directly is a
challenging task. Hence, we propose an iterative algorithm to
obtain an efficient suboptimal solution in the following section.

III. PROBLEM TRANSFORMATION AND SUBOPTIMAL
SOLUTION

In this section, we will transform problem (6) into a
tractable problem. For notational simplicity, we first introduce
wk ,

[
wH

1,k . . .w
H
M,k

]H to represent the beamforming vector
from all RRHs in set M to UE k ∈ K. The beamforming
vector of RRH m ∈ M for UE k can be expressed as
wm,k = Bmwk, where Bm is a constant matrix defined
as Bm ,

(
0T
m−1, 1,0

T
M−m

)
⊗ IN . Problem (6) can be

equivalently rewritten as follows:

maximize
w,φ

∑
k∈K

gk(φk) (7a)

subject to φk ≤ min
∆hk∈Ωk

Tr
(
hkh

H
kwkw

H
k

)∑
u∈K\{k} Tr

(
hkhH

kwuwH
u

)
+ σ2

k

,

∀ k ∈ K, (7b)∑
k∈K

∥∥Tr (BH
mBmwkw

H
k

) ∥∥
0
B log2(1+φk) ≤ Cm,

∀m ∈ M, (7c)∑
k∈K

Tr
(
BH

mBmwkw
H
k

)
≤ pm, ∀m ∈ M, (7d)

Γreq,k ≤ min
∆hk∈Ωk

Tr
(
hkh

H
kwkw

H
k

)∑
u∈K\{k}Tr

(
hkhH

kwuwH
u

)
+σ2

k

,

∀ k ∈ K. (7e)

In the following, we transform problem (7) into a tractable
form.

A. Interference Decoupling and Constraints Transformation

To handle the non-convexity of constraint (7b), inspired
by [30], we introduce the following robust maximum inter-
ference constraint for each UE in set K:

max
∆hk∈Ωk

∑
u∈K\{k}

Tr
(
hkh

H
kwuw

H
u

)
≤ I, ∀ k ∈ K, (8)



where I is a predefined upper bound on the interference expe-
rienced by each mobile user despite the channel uncertainty.
That is, I is not an optimization variable. Introducing the
additional constraint in (8) has three benefits. First, the C-
RAN can control the amount of interference experienced by
UEs. Second, the interference is decoupled from the objective
function. A suitable value of I can be obtained by offline
simulations, cf. Section IV. Third, by replacing the power of
the interference signals in the SINRs by their upper bound I ,
we can obtain a lower bound on the aggregate utility of all
UEs. Assuming a suitable value for I , we solve the following
problem to obtain a suboptimal solution for problem (7):

maximize
w,φ

∑
k∈K

gk(φk) (9a)

subject to φk ≤ min
∆hk∈Ωk

Tr
(
hkh

H
kwkw

H
k

)
I + σ2

k

, ∀ k ∈ K, (9b)

Γreq,k ≤ min
∆hk∈Ωk

Tr
(
hkh

H
kwkw

H
k

)
I + σ2

k

, ∀ k ∈ K, (9c)

I≥ max
∆hk∈Ωk

∑
u∈K\{k}

Tr
(
hkh

H
kwuw

H
u

)
, ∀ k ∈ K, (9d)

constraints (7c) and (7d).

Constraints (9b), (9c), and (9d) involve infinitely many
inequality constraints. We handle constraints (9b), (9c), and
(9d) by transforming them into LMI constraints by exploiting
the following lemma:

Lemma 1 (S-procedure [31, pp. 655]): Let A1,A2 ∈ HMN ,
d1,d2 ∈ CMN×1, and y1, y2 ∈ R. Consider the following two
functions of vector x ∈ CMN×1:

f1(x) = xHA1x+ 2ℜ{dH
1x}+ y1, (10a)

f2(x) = xHA2x+ 2ℜ{dH
2x}+ y2. (10b)

The implication f1(x) ≤ 0 ⇒ f2(x) ≤ 0 holds if and only if
there exists a θ ≥ 0 such that

θ

[
A1 d1

dH
1 y1

]
−
[
A2 d2

dH
2 y2

]
≽ 0, (11)

provided that there exists a point x̃ that satisfies f1(x̃) < 0.
We first apply Lemma 1 to constraint (9b). We obtain the

following implication:

∆hH
k IMN∆hk + 2ℜ

{
0H
MN∆hk

}
− ε2k ≤ 0

⇒−∆hH
k

(
wkw

H
k

)
∆hk − 2ℜ

{(
wkw

H
k ĥk

)
H∆hk

}
− ĥH

k

(
wkw

H
k

)
ĥk + φk

(
I + σ2

k

)
≤0,

(12)

if and only if there exists a ϑk ≥ 0 such that the following
LMI holds:[

ϑkIMN 0MN

0H
MN −φk

(
I + σ2

k

)
− ϑkε

2
k

]
︸ ︷︷ ︸

Sk,1(φk,ϑk)

+QH
kwkw

H
kQk ≽ 0, (13)

where Qk =
[
IMN ĥk

]
, ∀ k ∈ K. This is because we have

0MN ∈ Ωk such that f1(0MN ) = −ε2k < 0, ∀ k ∈ K. Similar-

ly, for constraint (9c), we have the following implication

∆hH
k IMN∆hk + 2ℜ

{
0H
MN∆hk

}
− ε2k ≤ 0

⇒−∆hH
k

(
wkw

H
k

)
∆hk − 2ℜ

{(
wkw

H
k ĥk

)
H∆hk

}
− ĥH

k

(
wkw

H
k

)
ĥk + Γk

(
I + σ2

k

)
≤0,

(14)

if and only if there exists a ϱk ≥ 0 such that the following
LMI holds:[

ϱkIMN 0MN

0H
MN −Γreq,k

(
I + σ2

k

)
− ϱkε

2
k

]
︸ ︷︷ ︸

Sk,2(ϱk)

+QH
kwkw

H
kQk ≽ 0,

∀ k ∈ K. (15)

Finally, applying Lemma 1 to constraint (9d) yields:

∆hH
k IMN∆hk + 2ℜ

{
0H
MN∆hk

}
− ε2k ≤ 0

⇒∆hH
k

(∑
u∈K\{k}wuw

H
u

)
∆hk

+ 2ℜ
{((∑

u∈K\{k}wuw
H
u

)
ĥk

)
H∆hk

}
+ ĥH

k

(∑
u∈K\{k}wuw

H
u

)
ĥk−I≤0,

(16)

if and only if there exists a ξk ≥ 0 such that the following
LMI holds:[

ξkIMN 0MN

0H
MN I − ξkε

2
k

]
︸ ︷︷ ︸

Sk,3(ξk)

−QH
k

(∑
u∈K\{k}wuw

H
u

)
Qk ≽ 0,

∀ k ∈ K. (17)

Thus, problem (9) can be equivalently rewritten as follows:

maximize
w,φ,ϑ,ϱ, ξ

∑
k∈K

gk(φk) (18a)

subject to Sk,1(φk, ϑk)+QH
kwkw

H
kQk ≽ 0, ∀ k ∈ K, (18b)

Sk,2(ϱk)+QH
kwkw

H
kQk ≽ 0, ∀ k ∈ K, (18c)

Sk,3(ξk)−QH
k

(∑
u∈K\{k}wuw

H
u

)
Qk ≽ 0,

∀ k ∈ K, (18d)
ϑk ≥ 0, ϱk ≥ 0, ξk ≥ 0, ∀ k ∈ K, (18e)
constraints (7c) and (7d),

where functions Sk,1(φk, ϑk), Sk,2(ϱk), and Sk,3(ξk) are
defined in (13), (15), and (17), respectively; ϑ ≽ 0, ϱ ≽ 0,
and ξ ≽ 0 are auxiliary optimization variable vectors whose
elements ϑk, ϱk, and ξk, ∀ k ∈ K, are introduced in (13), (15),
and (17), respectively.

B. Convex Relaxation for Backhaul Constraint
Next, we handle the combinatorial constraint (7c) by ap-

plying the convex relaxation technique. We note that this
technique has also been used in [10] for the design of a com-
putationally efficient resource allocation. We first approximate
the LHS of (7c) as follows:∑

k∈K

∥∥Tr(BH
mBmwkw

H
k

) ∥∥
0
B log2(1+φk)

≈
∑
k∈K

∥qm,kTr
(
BH

mBmwkw
H
k

) ∥∥
1
Rk (19a)

=
∑
k∈K

qm,kRkTr
(
BH

mBmwkw
H
k

)
, ∀m ∈ M, (19b)



where qm,k ≥ 0 is a weight factor, which corresponds
to the transmission power from RRH m to user k,
and Rk = B log2(1 + φk) denotes the downlink data
rate of user k, ∀m ∈ M, k ∈ K. In (19a), the ℓ0-
norm is approximated by its convex hull given by
the ℓ1-norm. This approximation is commonly used in
compressed sensing to handle problems with ℓ0-norm [5],
[32], [33]. In particular, for Tr

(
BH

mBmwkw
H
k

)
̸= 0

and qm,k =
(
Tr(BH

mBmwkw
H
k )
)−1

, we have∥∥qm,kTr
(
BH

mBmwkw
H
k

) ∥∥
1

=
∥∥Tr(BH

mBmwkw
H
k

) ∥∥
0

=
1. For Tr

(
BH

mBmwkw
H
k

)
= 0, we have∥∥qm,kTr

(
BH

mBmwkw
H
k

) ∥∥
1

=
∥∥Tr(BH

mBmwkw
H
k

) ∥∥
0

=
0, ∀ qm,k ∈ [0,∞). Thus, by letting qm,k =(
Tr(BH

mBmwkw
H
k ) + τ

)−1
with a small regulation

factor τ > 0, we have
∥∥qm,kTr

(
BH

mBmwkw
H
k

) ∥∥
1

≈
∥∥Tr(BH

mBmwkw
H
k

) ∥∥
0
. A suboptimal solution of

problem (18) can thus be obtained by solving a
transformed problem in an iterative manner. Specifically, let
w

(i)
k ,

[
w

(i)H
1,k . . .w

(i)H
M,k

]H
and φ

(i)
k denote the beamforming

vector and the guaranteed SINR of UE k ∈ K in the
solution of the transformed problem in the ith iteration
(i = 0, 1, 2, . . .), respectively. The transformed problem in the
(i+ 1)th iteration is given as follows:

P(i+1) : maximize
w,φ,ϑ,ϱ, ξ

∑
k∈K

gk(φk) (20a)

subject to
∑
k∈K

q
(i)
m,kR

(i)
k Tr

(
BH

mBmwkw
H
k

)
≤ Cm,

∀m ∈ M, (20b)
constraints (7d), (18b) – (18e),

where q
(i)
m,k,

(
Tr(BH

mBmw
(i)
k w

(i)H
k )+τ

)−1
, ∀m∈M, k∈K,

and R
(i)
k ,B log2

(
1+φ

(i)
k

)
, ∀ k ∈K. Hence, q(i)m,k and R

(i)
k

are constants in problem P(i+1). We note that we omit the
superscript (i+1) for the other constants and the optimization
variables in problem P(i+1) for notational simplicity.

The rationale behind handling constraint (7c) by solv-
ing problem P(i+1) is as follows. Without loss of gen-
erality, we consider problem P(i+1) after solving prob-
lem P(i) and obtaining the intermediate solution Ξ(i) ,(
w(i),φ(i),ϑ(i),ϱ(i), ξ(i)

)
for problem P(i). We have

Tr
(
BH

mBmw
(i)
k w

(i)H
k

)
= ∥w(i)

m,k∥22, ∀m ∈ M, k ∈ K, so
the value of q(i)m,k is inversely proportional to the transmission
power from RRH m to UE k. Since w

(i)
m,k is obtained by

solving problem P(i), if the transmission power from RRH m
to UE k is smaller than the transmission power from RRH m

to UE u ∈ K\{k}, i.e., ∥w(i)
m,k∥22 < ∥w(i)

m,u∥22, ∀u ∈ K\{k},
this indicates that the channel quality from RRH m to UE
k is worse than the channel quality from RRH m to the
other UEs; so that the aggregate utility would decrease if
a higher transmission power was assigned to RRH m for
serving UE k. In other words, if the quality of the channel
from RRH m to UE k is poor compared with the quality
of the channels from RRH m to the other UEs, letting RRH
m serve UE k with a high transmission power will increase
the interference to other UEs and the resulting total loss of

the aggregate utility at other UEs will outweigh the utility
increment at UE k. Meanwhile, the smaller the value of
∥w(i)

m,k∥22 obtained by solving problem P(i) is, the larger the
value of weight factor q

(i)
m,k that is used in problem P(i+1).

Therefore, solving problem P(i+1) will force ∥w(i+1)
m,k ∥22 to

decrease further in the intermediate solution Ξ(i+1). As the
iterations continue, a subset of UEs with relatively poor
channel conditions compared to other UEs from a given RRH
will be eliminated from being served by this RRH. Second,
we note that the term R

(i)
k in the first constraint of problem

P(i+1) is the downlink data rate obtained by UE k ∈ K after
problem P(i) is solved. Moreover, if UE k is not served by
RRH m ∈ M, we have Tr

(
BH

mBmwkw
H
k

)
= 0. Thereby, only

the downlink data rate of the UEs that are served by RRH m
is taken into account for the backhaul capacity constraint at
RRH m. The proposed iterative procedure generates sparsity
in the beamforming vectors and guarantees that the obtained
solution after iteratively solving problem P(i+1) fulfills non-
convex combinatorial constraint (7c). It is worth noting that
q
(0)
m,k, ∀m ∈ M, k ∈ K, and R

(0)
k , ∀ k ∈ K, are required

for problem P(1) in the first iteration. In Section IV, we will
present a method to determine an initial vector w(0), so as to
obtain suitable values for q(0)m,k and R

(0)
k .

C. Non-convex Objective Function Transformation

We note that the values of q(i)m,k and R
(i)
k in (20b) are known

and fixed in problem P(i+1). Thus, the constraints in problem
P(i+1) are either convex or LMI constraints. However, problem
P(i+1) is still difficult to solve because of the non-convexity
of its objective function. We now transform problem P(i+1)

to an equivalent problem based on the following theorem:
Theorem 1: If Ξ(i+1) is the optimal solution to P(i+1),

there exist two vectors β(i+1) =
(
β
(i+1)
1 , . . . , β

(i+1)
K

)
and

ν(i+1) =
(
ν
(i+1)
1 , . . . , ν

(i+1)
K

)
such that Ξ(i+1) is also an

optimal solution of problem (21) which is given as follows:

maximize
w,φ,ϑ,ϱ, ξ

∑
k∈K

ν
(i+1)
k

(
ηk−β(i+1)

k

(
1+exp

(
−ak(φk−bk)

)))
subject to constraints (7d), (18b) – (18e), and (20b).

(21)

Meanwhile, vector φ(i+1) in solution Ξ(i+1) satisfies the
following system of equations:

β
(i+1)
k

(
1 + exp

(
− ak(φ

(i+1)
k − bk)

))
− ηk = 0, ∀ k ∈ K,

(22a)

ν
(i+1)
k

(
1 + exp

(
− ak(φ

(i+1)
k − bk)

))
− 1 = 0, ∀ k ∈ K.

(22b)

Proof: Please refer to Appendix A for a proof of Theorem 1.
Remark 1: Theorem 1 can be extended to other objective

functions in sum-of-ratios form. As long as each ratio has a
concave numerator and a convex denominator, we can obtain
a similar proof as in Appendix A and arrive at conclusions
similar to those in Theorem 1. For example, gk(γk) =
ηk

2

(
ak(γk−bk)√

1+(ak(γk−bk))
2
+1

)
can also be used to define the utility

of UE k ∈ K with received SINR γk. Moreover, for this



new utility function, our proposed problem transformation still
applies and leads to a similar algorithm as the one presented
in Section III-E.

Vectors β(i+1) and ν(i+1) used in Theorem 1 to solve
problem P(i+1) are not known a priori. However, these
two vectors can be determined in an iterative manner. Since
problem P(i+1) is solved in the (i+1)th iteration of a loop, we
refer to this existing loop as the “outer” loop and to the new
loop used to determine vectors β(i+1) and ν(i+1) for problem
P(i+1) as the “inner” loop. For notational simplicity, we refer
to the jth (j = 1, 2, . . .) iteration of the inner loop in the
(i+1)th iteration of the outer loop as iteration (i+1, j) or the
(i+1, j)th iteration.

In iteration (i+1, j), two subproblems need to be solved.
Specifically, before the appropriate vectors β(i+1) and ν(i+1)

are found, we denote vectors β(i+1,j) and ν(i+1,j) as the
intermediate values of β(i+1) and ν(i+1) in iteration (i+1, j),
respectively. Then, we refer to the problem obtained after sub-
stituting vectors β(i+1,j) and ν(i+1,j) for β(i+1) and ν(i+1) in
problem (21) as the primary subproblem in iteration (i+1, j).
Let Ξ(i+1,j) ,

(
w(i+1,j),φ(i+1,j),ϑ(i+1,j),ϱ(i+1,j), ξ(i+1,j)

)
denote the solution of the primary subproblem. To facilitate
the presentation, we first define the following 2K functions
of β(i+1,j) and ν(i+1,j) with vector φ(i+1,j) given in solution
Ξ(i+1,j):

χ
(i+1,j)
k

(
β
(i+1,j)
k

)
(23a)

,β
(i+1,j)
k

(
1 + exp

(
− ak(φ

(i+1,j)
k − bk)

))
− ηk, ∀ k ∈ K,

χ
(i+1,j)
K+k

(
ν
(i+1,j)
k

)
(23b)

, ν
(i+1,j)
k

(
1 + exp

(
− ak(φ

(i+1,j)
k − bk)

))
− 1, ∀ k ∈ K.

We then define a 2K × 1 vector χ(i+1,j)
(
β(i+1,j),ν(i+1,j)

)
,(

χ
(i+1,j)
1 (β

(i+1,j)
1 ), . . . , χ

(i+1,j)
K (β

(i+1,j)
K ), χ

(i+1,j)
K+1 (ν

(i+1,j)
1 ),

. . . , χ
(i+1,j)
2K (ν

(i+1,j)
K )

)
. Now, we can use the damped

Newton’s method to update the parameter vectors β(i+1,j) and
ν(i+1,j) to reduce the ℓ2-norm of χ(i+1,j)

(
β(i+1,j),ν(i+1,j)

)
.

This is referred to as the secondary subproblem in iteration
(i+1, j). Problem P(i+1) is solved when β(i+1,j), ν(i+1,j),
and φ(i+1,j) satisfy χ(i+1,j)

(
β(i+1,j),ν(i+1,j)

)
= 02K . It

should be noted that solving problem P(i+1) does not lead
to the solution of problem (18). We need to continue solve
problems P(i+2), P(i+3), · · · in the outer loop. The proposed
algorithm to tackle problem (18) is explained in detail in the
following subsections.

D. Subproblems for the Inner Iterations

Without loss of generality, we present and solve the primary
and secondary subproblems in the (i+ 1, j)th iteration.

1) Primary Subproblem: For given parameter vectors
β(i+1,j) and ν(i+1,j) in the (i+1, j)th iteration, the primary
subproblem is given as follows:

maximize
w,φ,ϑ,ϱ, ξ

∑
k∈K

ν
(i+1,j)
k

(
ηk−β

(i+1,j)
k

(
1+exp

(
−ak(φk−bk)

)))
(24)

subject to constraints (7d), (18b) – (18e), and (20b).

We transform problem (24) into an equivalent rank-
constrained SDP problem. We define Hermitian matrix Wk,
wkw

H
k , ∀ k ∈ K, so problem (24) is equivalent to the follow-

ing problem:

maximize
WK,φ,ϑ,ϱ, ξ

∑
k∈K

ν
(i+1,j)
k

(
ηk−β

(i+1,j)
k

(
1+exp

(
−ak(φk−bk)

)))
(25a)

subject to
∑
k∈K

Tr(BH
mBmWk) ≤ pm, ∀m ∈ M, (25b)

Sk,1(φk, ϑk)+QH
kWkQk ≽ 0, ∀ k ∈ K, (25c)

Sk,2(ϱk) +QH
kWkQk ≽ 0, ∀ k ∈ K, (25d)

Sk,3(ξk)−QH
k

(∑
u∈K\{k}Wu

)
Qk≽0, ∀ k ∈ K,

(25e)∑
k∈K

q
(i)
m,kR

(i)
k Tr

(
BH

mBmWk

)
≤ Cm, ∀m ∈ M,

(25f)
Wk ≽ 0, ∀ k ∈ K, (25g)
ϑk ≥ 0, ϱk ≥ 0, ξk ≥ 0, ∀ k ∈ K, (25h)
Rank(Wk) = 1, ∀ k ∈ K, (25i)

where optimization variable WK is defined as WK ,{
Wk |Wk ∈ HMN , k∈K

}
. Problem (25) is still non-convex

due to constraint (25i). To arrive at a tractable problem, we
relax problem (25) by removing constraint (25i) and obtain
the following problem in SDP form:

maximize
WK,φ,ϑ,ϱ, ξ

∑
k∈K

ν
(i+1,j)
k

(
ηk−β

(i+1,j)
k

(
1+exp

(
−ak(φk−bk)

)))
(26)

subject to constraints (25b) – (25h).

Problem (26) can be efficiently solved by convex programming
solvers (e.g., CVX [34]) to obtain a numerical solution. In
Fig. 2, we briefly summarize the transformation and relaxation
steps that we have used from problem (6) to problem (26). In
Fig. 2, a bidirectional arrow represents a transformation into
an equivalent problem. A unidirectional arrow represents a
transformation involving approximations.

Remark 2: The proposed problem transformations can also
be applied if the objective function of problem (6) is replaced
by a mixture of sigmoidal and concave functions. With such
an objective function, we can, for example, jointly maximize
the users’ utility and the received data rate. Specifically, for
each concave function added in the objective function of
problem (6), e.g. f(φk) = B log2 (1+φk), we can introduce
an auxiliary optimization variable xk to substitute for f(φk)
in the objective function and include a constraint f(φk)≥xk

in the problem. Then, using the same steps as shown in Fig. 2,
we can obtain an SDP problem similar to problem (26).

We denote the solution of problem (26) as(
W

(i+1,j)
K , φ(i+1,j), ϑ(i+1,j), ϱ(i+1,j), ξ(i+1,j)

)
. If the

Hermitian matrices in set W(i+1,j)
K are all rank-one matrices,

then problems (25) and (26) have the same optimal solution
and the same objective values. Otherwise, the optimal
objective value of problem (26) is an upper bound for the
objective value of problem (25), since problem (26) has a
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Fig. 2. The transformation and relaxation steps taken from problem (6) to problem (26).

larger feasible set. We now reveal the tightness of the SDP
relaxation adopted in problem (26) in the following theorem:

Theorem 2: Assuming problem (26) is feasible, an optimal
solution

(
W

(i+1,j)

K ,φ(i+1,j),ϑ
(i+1,j)

, ϱ(i+1,j), ξ
(i+1,j))

for problem (26), where W
(i+1,j)

K =
{
W

(i+1,j)

k |
W

(i+1,j)

k ∈ HMN , k ∈ K
}

, can always be constructed

such that Rank
(
W

(i+1,j)

k

)
= 1, ∀ k ∈ K.

Proof: Please refer to Appendix B for a proof of Theorem 2.
That is, after solving problem (26), if the solution

to problem (26) does not satisfy the rank-one constrain-
t (25i), as outlined in the proof of Theorem 2, we
can solve the SDP problem given in (32) in Appendix
B to obtain the optimal beamforming matrices W

(i+1,j)

K
for problem (25) that satisfy the rank-one constraint3.
Eventually, the solution to problem (24) is given by
Ξ(i+1,j) =

(
w(i+1,j), φ(i+1,j), ϑ

(i+1,j)
, ϱ(i+1,j), ξ

(i+1,j))
where w

(i+1,j)
[(k−1)MN+1 : kMN ] is the principal eigenvector of ma-

trix W
(i+1,j)

k ∈ W
(i+1,j)

K , ∀ k ∈ K.
2) Secondary Subproblem: We now update parameter

vectors β(i+1,j) and ν(i+1,j) by using vector φ(i+1,j)

given by solution Ξ(i+1,j). The updated parameter vec-
tors, denoted by β(i+1,j+1) and ν(i+1,j+1), will be used
in the (i + 1, j + 1)th iteration. Recall the definition
of vector χ(i+1,j)

(
β(i+1,j),ν(i+1,j)

)
. By Theorem 1, if

χ(i+1,j)
(
β(i+1,j),ν(i+1,j)

)
= 02K , then β(i+1,j) and ν(i+1,j)

are the appropriate parameter vectors β(i+1) and ν(i+1)

employed in Theorem 1, respectively. Otherwise, i.e., if
χ(i+1,j)

(
β(i+1,j),ν(i+1,j)

)
̸= 02K , we update β(i+1,j) and

ν(i+1,j) by the damped Newton’s method to determine a new
pair of parameter vectors for the (i+1, j+1)th iteration. Specif-
ically, let χ′(β(i+1,j),ν(i+1,j)

)
denote the Jacobian matrix of

χ(i+1,j)
(
β(i+1,j),ν(i+1,j)

)
. We first introduce the following

2K×1 vector:

ω(i+1,j) (27)

,−
(
χ′(β(i+1,j),ν(i+1,j))

)−1
χ(i+1,j)

(
β(i+1,j),ν(i+1,j)

)
.

The first half and the second half of vector ω(i+1,j) (i.e.,
ω

(i+1,j)
[1:K] and ω

(i+1,j)
[K+1:2K]) are the directions for updating pa-

rameter vectors β(i+1,j) and ν(i+1,j), respectively. We then

3Since we have shown in Theorem 2 that a set of optimal matrices
W

(i+1,j)
K with Rank

(
W

(i+1,j)
k

)
= 1, ∀ k ∈ K, always exists, we can find

these matrices also by a low-rank matrix completion based on Riemannian
optimization [35]. To do so, for UE k ∈ K, we first need to determine
the appropriate subset of indices, Φk , from the complete set of indices
{1, . . . ,MN}2. We then need to tackle the low-rank matrix completion
problem to determine W

(i+1,j)
k , where W

(i+1,j)
k (r, c) = W

(i+1,j)
k (r, c)

if (r, c) ∈ Φk , and W
(i+1,j)
k (r, c) = 0, otherwise. Here, X(r, c) denotes

element (r, c) in matrix X.

determine a proper updating step size ζ(i+1,j) which is the
largest value of tℓ that satisfies the following inequality:∥∥χ(i+1,j)

(
β(i+1,j)+tℓω

(i+1,j)
[1:K] ,ν(i+1,j)+tℓω

(i+1,j)
[K+1:2K]

)∥∥
2

≤
(
1−ϵtℓ

)∥∥χ(i+1,j)
(
β(i+1,j),ν(i+1,j)

)∥∥
2
, (28)

where t, ϵ ∈ (0, 1) are predefined parameters, ℓ ∈ {1,2, . . .}.
We update the parameter vectors as follows:

β(i+1,j+1) = β(i+1,j) + ζ(i+1,j)ω
(i+1,j)
[1 :K] , (29a)

ν(i+1,j+1) = ν(i+1,j) + ζ(i+1,j)ω
(i+1,j)
[K+1 : 2K]. (29b)

The steps in (27)–(29) are repeated after problem (24) has been
solved in the (i+1, j+1)th iteration by substituting β(i+1,j+1)

and ν(i+1,j+1) for β(i+1,j) and ν(i+1,j), respectively, and so
forth. It has been shown that the damped Newton’s method
converges and vectors β(i+1), ν(i+1), and φ(i+1) that satisfy
the system of equations in (22) are obtained, cf. [36].

E. Outer Iterations and the Overall Algorithm

1) The Outer Iteration: In the outer iteration, we aim to
create solution sparsity for wk in problem (7). Based on the
analysis that we provided after formulating problem P(i+1)

in Section III-B, we solve problem (7) in an iterative manner.
Specifically, by iteratively solving the subproblems introduced
in Sections III-D1 and III-D2, we obtain the solution Ξ(i+1)

for problem P(i+1) in the (i+1)th outer iteration. We note that
w

(i+1)
k = w

(i+1)
[(k−1)MN+1 : kMN ] is the principal eigenvector of

the optimal beamforming matrix W
(i+1,j)

k ∈W
(i+1,j)

K , ∀ k ∈
K. We then continue to solve problems P(i+2),P(i+3), · · · and
obtain solutions Ξ(i+2),Ξ(i+3), · · · , respectively. The outer
iteration stops when either the solutions converge or the
maximum number of iterations has been reached. We define
∆w(i+1) ,w(i+1)−w(i) and ∆φ(i+1) , φ(i+1)−φ(i). The
outer iteration stops if

∥∥[∆w(i+1)H ∆φ(i+1)H
]H∥∥

2
≤ ϵ′,

where ϵ′>0 is a predefined small constant.
2) The Overall Algorithm: The proposed algorithm to solve

problem (7) is Algorithm 1. We denote the maximum number
of inner and outer iterations as Lmax and lmax, respectively.
Let ϵ′′ ≪ 1 denote the maximum tolerance for satisfying the
system of equations in Theorem 1. The values of Lmax, lmax,
ϵ, ϵ′, ϵ′′, t, and τ as well as the maximum interference I ,
vectors w(0), φ(0), ∆w(0), ∆φ(0), and the iteration index i
are initialized in Step 1. In each iteration of the outer loop, we
determine q

(i)
m,k, ∀m ∈ M, k ∈ K and R

(i)
k , ∀ k ∈ K (Steps 3,

4). We then initialize ν
(i+1,1)
k and β

(i+1,1)
k (Step 5). We solve

problem P(i+1) in an iterative manner in the inner iteration. In
the (i+1, j)th iteration, we solve the relaxed SDP problem in
(26) with parameter vectors β(i+1,j) and ν(i+1,j) and obtain
solution Ξ(i+1,j) (Step 7). Thus, vector φ(i+1,j) in Ξ(i+1,j) is



Algorithm 1: Algorithm to solve problem (7).

1 Initialize Lmax, lmax, ϵ, ϵ′, ϵ′′, t, τ , I , w(0), φ(0), ∆w(0),
∆φ(0), i := 0.
//Outer Iteration

2 while (i < lmax) and
∥∥[∆w(i)H ∆φ(i)H

]H∥∥
2
> ϵ′ do

3 Set
q
(i)
m,k :=

(
Tr(BH

mBmw
(i)
k w

(i)H
k )+τ

)−1
, ∀m ∈ M, k ∈ K.

4 Set R(i)
k := B log2

(
1 + φ

(i)
k

)
, ∀ k ∈ K.

5 Set j := 1, ν(i+1,j)
k := 1

1+exp
(
−ak(φ

(i)
k

−bk)
) ,

β
(i+1,j)
k := ηkν

(i+1,j)
k , ∀ k ∈ K.

//Inner Iteration
6 while (j < Lmax) do
7 Solve problem (26) with parameter vectors β(i+1,j)

and ν(i+1,j) by SDP to obtain solution Ξ(i+1,j).
8 Determine vector χ(i+1,j)

(
β(i+1,j),ν(i+1,j)

)
according to (23).

9 if
∥∥χ(i+1)

(
β(i+1,j),ν(i+1,j)

)∥∥
2
≤ ϵ′′ then

10 break
11 else
12 Set β(i+1,j+1) := β(i+1,j)+ζ(i+1,j)ω

(i+1,j)

[1:K] ,
ν(i+1,j+1) := ν(i+1,j)+ζ(i+1,j)ω

(i+1,j)

[K+1:2K].
13 Set j := j + 1.

14 Set β(i+1) := β(i+1,j), ν(i+1) := ν(i+1,j),
φ(i+1) := φ(i+1,j).

15 Solve problem (32) for solution(
W

(i+1)
K ,φ(i+1),ϑ

(i+1)
,ϱ(i+1), ξ

(i+1))
with

Rank(W
(i+1)
k )=1,∀ k∈K.

16 Find the optimal solution Ξ(i+1) for problem P(i+1),
where w

(i+1)

[(k−1)MN+1 : kMN ] is given by the principal

eigenvector of matrix W
(i+1)
k ∈W

(i+1)
K , ∀ k ∈ K.

17 Set ∆w(i+1) := w(i+1)−w(i), ∆φ(i+1) := φ(i+1)−φ(i),
i := i+1.

18 Set w⋆
k := w

(i)

[(k−1)MN+1 : kMN ], ∀ k ∈ K,
w⋆

m,k := (w⋆
k)[(m−1)N+1 :mN ], ∀m ∈ M, k ∈ K.

19 Employ beamforming vector w⋆
m,k for RRH m to serve UE k,

∀m ∈ M, k ∈ K.

found. We then determine vector χ(i+1,j)
(
β(i+1,j),ν(i+1,j)

)
(Step 8). If the ℓ2-norm of vector χ(i+1,j)

(
β(i+1,j),ν(i+1,j)

)
is smaller than threshold ϵ′′ (Step 9), the appropriate pa-
rameter vectors β(i+1) and ν(i+1) employed in Theorem 1
have been found. We thus break the inner loop (Step 10).
Otherwise, we update β(i+1,j) and ν(i+1,j) to obtain pa-
rameter vectors β(i+1,j+1) and ν(i+1,j+1) for the next in-
ner iteration (Step 12). When the inner loop stops, we set
β(i+1,j), ν(i+1,j), and φ(i+1,j) to β(i+1), ν(i+1), and φ(i+1),
respectively (Step 14). We then construct the optimal solu-
tion

(
W

(i+1,j)

K ,φ(i+1,j),ϑ
(i+1,j)

,ϱ(i+1,j), ξ
(i+1,j))

that satis-
fies the rank-one constraint (Step 15) and obtain optimal solu-
tion Ξ(i+1) for problem P(i+1), where w

(i+1)
[(k−1)MN+1 : kMN ] is

the principal eigenvector of matrix W
(i+1,j)

k ∈W
(i+1,j)

K , ∀ k∈
K (Step 16). At the end of each iteration of the outer loop, we
update vectors ∆w(i+1), ∆φ(i+1), and i (Step 17). The outer
loop stops when either i= lmax or

∥∥[∆w(i)H ∆φ(i)H
]H∥∥

2
≤

ϵ′. When the outer loop stops, we have beamforming vector
w(i) outside the outer loop. We recover beamforming vector

TABLE I
SIMULATION PARAMETERS

Square wireless service area 25×104 m2

Reference distance 15m
User and RRH distribution Uniformly distributed in a square area
Path loss exponent 3.8
Fading distribution Rayleigh fading
Bandwidth B 20MHz
Number of antennas per RRH N 2
Lmax and lmax in Algorithm 1 30 and 30
ϵ, ϵ′, ϵ′′, τ , and t in Algorithm 1 0.1, 0.01, 0.01, 1×10−5, and 0.97
ηk, ∀ k ∈ K Uniformly distributed in [1, 10]
pm, ∀m ∈ M 400 mW

w⋆
m,k and employ it for RRH m∈M to serve UE k∈K (Steps

18, 19). We note that the output of Algorithm 1 may depend
on the initial vector w(0). In the next section, we will show the
performance of Algorithm 1 by using the initial vector w(0)

that maximizes the WSSR.
For the complexity of Algorithm 1, we find that solving the

SDP problem in Step 7 in the inner loop is the computationally
most intensive task. The SDP problem with optimization vari-
ables Wk∈HMN , k∈K can be solved with the interior-point
method with a computational complexity of O

(
M6N6

)
[37].

Thus, the complexity of each iteration of the outer loop is
O
(
(Lmax+1)M6N6

)
. Therefore, the overall complexity of

Algorithm 1 is O
(
(Lmaxlmax+ lmax)M

6N6
)
. We note that

the (i+1)th/jth iteration of the outer/inner loop of Algorithm
1 takes the output of the previous iteration as the input. Thus,
parallelization of Algorithm 1 does not seem possible.

IV. PERFORMANCE EVALUATION

A. Simulation Parameters and Initial Beamforming Vectors

We assume that several RRHs and a number of mobile
users are located in a square wireless service area. Unless
otherwise stated, the simulation parameters shown in Table I
are adopted. In particular, we assume that each mobile user
experiences the same noise power given by σ2

k = −174 dBm+
10 log10 (20MHz) = −101 dBm = σ2, ∀ k ∈ K. To deter-
mine parameters ak and bk, we assume that the value of the
SINR at which a mobile user achieves 1

1+exp(−5) × 100%=

99.33% of its maximum achievable utility (i.e., ηk) is uniform-
ly distributed in [10, 100] (i.e., [10 dB, 20 dB]). In other words,
we assume that the mobile users use different applications and
the SINRs required by these applications to achieve 99.33%
of their maximum achievable utility is uniformly distributed
in [10, 100]. This assumption is based on the fact that the
quality of wireless services for playing online videos and video
streaming is considered to be excellent in the Long Term
Evolution (LTE) network if the received SINR is greater than
or equal to 20 dB, which is expected to be the case when a user
is close to the base station [38]. In this case, typical online
videos can be played smoothly and users using video stream-
ing applications can achieve their maximum possible utility.
On the other hand, the quality of wireless service is regarded
as good if the received SINR is greater than 12 dB but less
than 20 dB [38]. Within this range, web pages can be smoothly
downloaded by UEs, so users using web browsing applications
can achieve their maximum possible utility. Since different
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Fig. 3. Aggregate utility for different system parameters versus the normal-
ized maximum interference constraint I/σ2.

applications (e.g. video streaming, web browsing) are used by
mobile users, it is reasonable to assume that [10 dB, 20 dB] is
the range of the SINR at which a given user achieves 99.33%
of his maximum possible utility. We thus set ak via a random
variable that follows an inverse uniform distribution on [0.1, 1]
and set bk = 5

ak
, ∀ k ∈ K. Besides, vector φ(0) as well as

vector w(0) that comprises K initial beamforming vectors (i.e.,
w

(0)
k , ∀ k ∈K) are determined as follows. We first solve the

optimization problem after replacing the objective function
in problem (25) by

∑
k∈K ηkB log2 (1 + φk) and retaining

constraints (25b) – (25e), (25g), and (25h). That is, we first
determine the optimal beamforming matrices that maximize
the WSSR without considering the backhaul capacity and the
rank-one constraint. We denote the corresponding solution as(
W

(0)
K , φ(0), ϑ(0), ϱ(0), ξ(0)

)
. Thus, the initial vector φ(0) is

determined. We then apply the approach used in Theorem 2
to determine another set of rank-one matrices, denoted by
W

(0)

K =
{
W

(0)

k , k ∈ K
}

, which achieves the same WSSR.
The beamforming vector w

(0)
k is initialized by the principal

eigenvector of beamforming matrix W
(0)

k , ∀ k∈K. By doing
so, we not only can check the feasibility of our original
problem for the given (Γreq,1, . . . ,Γreq,K) and (p1, . . . , pM ),
but can also obtain the appropriate q

(0)
m,k, ∀m∈M, k∈K, and

R
(0)
k , ∀ k∈K, required in the first iteration of the outer loop

of our proposed Algorithm 1. To simulate the imperfectness
of the CSI estimation, we introduce the normalized maximum
channel estimation error ε2k , ε2k/∥ĥk∥22,∀ k ∈ K. The CSI
uncertainty region of user k is Ωk = {∆hk : ∆hH

k∆hk ≤
ε2k∥ĥk∥22}. Our results are obtained by averaging the perfor-
mance of multiple path loss and small scale fading realizations.

B. Simulation Results

In Fig. 3, we show the impact of the maximum interference
constraint, I , in (8) on the aggregate utility. We conduct-
ed simulations for network scenarios with different system
parameters, such as different numbers of users, backhaul
capacities, minimum SINRs required by mobile users, and
normalized maximum channel estimation errors. For each
network scenario, we plotted the aggregate utility versus the
maximum interference constraint given in multiples of noise
power σ2. That is, I was changed by tuning the ratio I/σ2.
We find that the aggregate utility first increases and then

slightly decreases as I/σ2 increases. Thus, a suitable I can be
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Fig. 4. Convergence of Algorithm 1 for different values of M and K.
Cm=150Mbps,Γreq,k=3dB, ε2k=0.05, ∀m∈M, k∈K.

obtained by running offline simulations. Even though setting
I too high (i.e., I ≥ 34σ2) or too low (i.e., I ≤ 16σ2) may
degrade the aggregate utility, the aggregate utility is not very
sensitive to the choice of I/σ2 in the considered interval. We
use I = 25σ2 for the following simulations.

In Fig. 4, we illustrate the convergence of the proposed
algorithm for different numbers of RRHs (i.e., M ) and users
(i.e., K). We set Cm = 150Mbps, ∀m ∈ M, and Γreq,k =
3dB and ε2k = 0.05, ∀ k ∈ K. The maximum iterations Lmax
and lmax for the inner and outer loops in Algorithm 1 are set to
40, respectively. The aggregate utility obtained by Algorithm 1
after each iteration i of the outer loop is shown in Fig. 4. We
observe that depending on the system parameters the aggregate
utility has converged to the maximum value after about 20 to
33 iterations. In particular, the larger the numbers of RRHs
and users in the network, the larger the number of iterations
are required for convergence.

In Fig. 5, we present the performance of the proposed
resource allocation algorithm as a function of the number of
users in the network for six RRHs. For comparison, we also
solve problem (6) without backhaul constraint (6c). The result-
ing problem has a larger feasible set compared to problem (6).
The corresponding optimal value constitutes an “upper bound”
for the proposed suboptimal solution of problem (6). We also
evaluate the aggregate utility of three baseline schemes. In
baseline schemes I and II, we maximize the WSSR and the
weighed sum of SINRs by solving problem (6) for objective
functions

∑
k∈K ηk log2(1+γk) and

∑
k∈K ηkγk, respectively.

Both problems can be solved with similar approaches as
that developed in this paper. We then use the beamforming
vectors obtained for the two baseline schemes to determine
the corresponding aggregate utility for the sigmoidal utility
function. In baseline scheme III, we adopt the compression
strategy proposed in [21] to solve the WSSR maximization
problem with backhaul constraints, where similar to [21], the
CSI imperfection is handled by the S-procedure [31]. We then
employ the users’ received SINRs to determine their aggregate
utility. From Fig. 5, it can be observed that the aggregate utility
increases with the number of users. When the number of users
is increased from 4 to 6, the aggregate utility of Algorithm 1
increases almost linearly. The reason for this behaviour is that
if only few users are in the system, the degrees of freedom in
the network are sufficient and all users can be properly served.
However, when the number of users gets large, the co-channel
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Fig. 5. Aggregate utility versus the number of users. M = 6, Cm =
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Fig. 6. Aggregate utility versus the number of RRHs. K = 7, ε2k =
0.05,Γreq,k = 3 dB, ∀ k∈K, Cm = 150Mbps, ∀m∈M.

interference as well as the limited backhaul capacity hinder
the RRHs in steering the information beams accurately. Thus,
the aggregate utility grows sublinearly. The performance gap
between Algorithm 1 and the upper bound increases with the
number of users, since the upper bound neglects the limited
capacity of the backhaul links. Compared with the baseline
schemes, we observe that Algorithm 1 achieves larger gains
in the aggregate utility as the number of users grows. This
is because the baseline schemes may cause mismatches in
resource allocation due to the nonlinear relationship between
the WSSR and the considered aggregate utility given by the
weighted sum of sigmoidal functions. In particular, for the
baseline schemes, an exceedingly large amount of system
resources are allocated to a small set of users causing satu-
ration in the sigmoidal functions, which limits the achievable
aggregate utility. Moreover, a comparison of baseline schemes
I and II shows that maximizing the WSSR results in a higher
aggregate utility than maximizing the weighted sum of SINRs
since the concavity of the logarithmic utility function in WSSR
maximization alleviates the resource allocation mismatch to a
certain extent. We also observe that for large numbers of users,
the data sharing strategy in baseline scheme II outperforms the
compression strategy in baseline scheme III. This is because
when there are more users are in the C-RAN, a coarser
compression is needed introducing more quantization noise
to accommodate all users with the capacity-limited backhaul.
The received SINRs of the users in baseline scheme III are
thus limited by the quantization noise.

In Fig. 6, we show the aggregate utility as a function of
the numbers of RRHs for 7 mobile users. We find that the

aggregate utility increases with the number of RRHs for both
the proposed algorithm and the baseline schemes. Although
the upper bound also increases with the number of RRHs, the
gap between the upper bound and Algorithm 1 shrinks as the
number of RRHs increases. This is because the number of
backhaul links increases with the number of RRHs and the C-
RAN can support higher data rates for the mobile users. Thus,
the negative impact of the limited capacity of each backhaul
link on the aggregate utility is alleviated when the number of
RRHs is large. Furthermore, for M=4, the difference between
the aggregate utility achieved by Algorithm 1 and the baseline
schemes is relatively small. This is because when M = 4,
the data traffic in the network is limited by the capacity-
limited backhaul in all cases. This is especially true for
baseline scheme III, as its performance is limited by the large
quantization noise introduced by the compression strategy to
accommodate all users in the network. Besides, the limited
number of antennas also restricts the available degrees of
freedom for accurately steering the information beams towards
the mobile users while satisfying their SINR requirements.
However, as the number of RRHs increases, the gap between
Algorithm 1 and the baseline schemes widens. This is because
Algorithm 1 can make better use of the additional antennas and
backhaul links than the baseline schemes. The performance of
baseline scheme III improves fast as the number of RRHs
increases. This is due to the increased degrees of freedom.
Specifically, the quantization noises introduced at different
RRHs for a UE are different. An RRH which has a good
CSI estimate for a UE, introduces little quantization noise
and employs high transmission power for the UE to increase
its SINR. On the other hand, an RRH which is not in a
good position to serve the UE, introduces large quantization
noise for the UE to satisfy the capacity-limited backhaul
constraint and decreases its transmission power for the UE.
Thus, baseline scheme III achieves good performance as the
number of RRHs increases.

In Fig. 7, we investigate the impact of CSI uncertainty on
the aggregate utility. We not only compare Algorithm 1 with
the baseline schemes, but also with a non-robust beamforming
design for aggregate sigmoidal utility maximization. Specifi-
cally, the non-robust beamforming design treats the estimated
CSI as perfect information for resource allocation. Then, we
optimize w and φ for the maximization problem in (6). In
other words, robustness against CSI errors is not provided
by this scheme. If the resulting resource allocation does not
satisfy the constraints for user k in (6) due to the channel
estimation errors, the system is in outage and the utility of
user k is set to zero for that channel realization to account for
the penalty of violating the constraints. We observe that the
aggregate utility severely decreases when the normalized max-
imum channel estimation error increases. This is because when
the channel estimation error increases, it is more difficult for
the RRHs to accurately steer the information beams towards
the desired users. Besides, the RRHs become less capable of
mitigating the multiuser interference. We further observe from
Fig. 7 that compared to the baseline scheme, our proposed
resource allocation algorithm can significantly increase the
aggregate utility in C-RAN. Moreover, the proposed scheme
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Fig. 8. Aggregate utility versus the backhaul capacity of RRHs in C-RAN.
M = 6, K=10, Γreq,k=3 dB, ε2k=0.05, ∀ k∈K.

achieves a significantly higher aggregate utility compared
to the non-robust beamforming design, especially for large
maximum channel estimation errors. In fact, the non-robust
resource allocation scheme assumes that the available CSI
is perfect and causes saturation in the utility function of
some users and under-utilization of other users. Besides, the
upper bound on the aggregate utility decreases dramatically
when the channel uncertainty increases. Although Algorithm
1 performs better than the baseline schemes, the achieved
gain in terms of the aggregate utility decreases as the channel
uncertainty increases. This is because the aggregate utilities
shown in Fig. 7 are determined based on the SINR lower
bounds taking into account the channel uncertainty. When the
normalized CSI uncertainty increases, the achievable aggregate
utility and also the possible aggregate utility gain obtained by
Algorithm 1 are reduced. For baseline scheme III using the
compression strategy, the aggregate utility severely decreases
as the maximum channel estimation error increases. This is
because the robust beamforming design has to accommodate
the worst case after the quantization noise is transmitted over
uncertain wireless channels. The lower bound of the user
received SINR in the compression strategy is thus significantly
reduced for the compression strategy.

In Fig. 8, we show the aggregate utility as a function of
the backhaul capacity. The performance upper bound is thus
shown as a horizontal line. We observe that the aggregate
utility increases with the backhaul capacity of the RRHs. This
is because a higher backhaul capacity can support higher data
rates and the SINR received by each user also increases due to
the beamforming enabled by Algorithm 1. In other words, as

the backhaul capacity increases, the spatial degrees of freedom
offered by multiple RRHs can be more efficiently utilized
to increase the aggregate utility of the C-RAN. Compared
with the baseline schemes, Algorithm 1 can significantly
improve the aggregate utility. This is because of the resource
allocation mismatch due to the nonlinear relationship between
the WSSR/weighted sum of SINRs and the aggregate utility.
Moreover, the aggregate utility of baseline scheme III, where
the compression strategy is adopted, improves significantly
when the backhaul capacity increases. This is because when
the backhaul capacity is increased, less compression is needed
and thus less quantization noise is introduced.

V. CONCLUSIONS

In this paper, we studied utility-based cooperative beam-
forming design in C-RAN. We used a weighted sum of sig-
moidal functions to model the aggregate utility and formulated
the beamforming design as a non-convex optimization problem
for the maximization of the aggregate utility. Our problem
formulation took into account both the imperfect CSI and
the capacity-limited backhaul. Due to the complexity of the
problem, we introduced maximum interference constraints to
simplify the optimization problem. Subsequently, an efficient
iterative algorithm was proposed to obtain a good subop-
timal solution. In each iteration, we tackled a non-convex
optimization problem with infinitely many constraints. By
exploiting the sum-of-ratios form of the objective function,
we transformed the non-convex optimization problem into
an equivalent rank-constrained SDP problem which could be
solved optimally. Simulation results unveiled that the aggre-
gate utility can be significantly improved by our proposed
resource allocation algorithm compared to baseline schemes
where either the WSSR or the weighted sum of SINRs is
maximized. Furthermore, for large CSI uncertainty and a
large number RRHs compared to the number of users, the
proposed suboptimal resource allocation algorithm approached
the performance upper bound determined in the backhaul
capacity unconstrained case.

APPENDIX A: PROOF OF THEOREM 1

We present a constructive proof. We first introduce the
following optimization problem:

maximize
β,w,φ,ϑ,ϱ, ξ

∑
k∈K

βk (30a)

subject to ηk ≥ βk

(
1 + exp (−akφk + akbk)

)
, ∀ k ∈ K,

(30b)
constraints (7d), (18b) – (18e), and (20b),

where β , (β1, . . . , βK), βk is the auxiliary optimization
variable for the utility of user k ∈ K, and constraint (30b)
is obtained from the definition of gk(φk), ∀ k ∈ K. Problem
(30) is equivalent to problem P(i+1) in the sense that if
Ξ(i+1) is the solution of problem P(i+1), the solution of
problem (30) is

(
β(i+1),Ξ(i+1)

)
, where β

(i+1)
k = gk(φ

(i+1)
k ).

The Lagrangian of problem (30) is L(i+1)
theo1

(
β, Ξ, ν, Ψ

)
,∑

k∈K βk +
∑

i∈K νi
(
ηk − βk

(
1 + exp (−akφk + akbk)

))
+



Θ, where ν , (ν1, . . . , νK) (ν ≽ 0) comprises the
Lagrangian multipliers for constraint (30b), Ξ collects all
optimization variables of problem (30) except vector β, Ψ
contains the Lagrangian multipliers of all constraints in (30)
except constraint (30b), and Θ denotes the sum of all terms
which are not related to vectors β and ν. Given solution(
β(i+1),Ξ(i+1)

)
of problem (30), the following Karush-Kuhn-

Tucker (KKT) conditions are obtained for ν(i+1) and β(i+1):

ηk − β
(i+1)
k

(
1 + exp (−akφ

(i+1)
k + akbk)

)
= 0, ∀ k ∈ K,

(31a)

1− ν
(i+1)
k

(
1 + exp (−akφ

(i+1)
k + akbk)

)
= 0, ∀ k ∈ K,

(31b)

where ν
(i+1)
k ,

(
ν
(i+1)
k , . . . , ν

(i+1)
k

)
is obtained

from the solution of the dual problem of (30).
On the other hand, given β(i+1) and ν(i+1), the
Lagrangian of problem (21) is L̂(i+1)

theo1

(
Ξ̂, Ψ̂

)
,∑

i∈K ν
(i+1)
i

(
ηk − β

(i+1)
k

(
1 + exp (−akφk + akbk)

))
+ Θ̂,

where Ξ̂ collects the optimization variables in (21), Ψ̂ contains
the Lagrangian multipliers for the constraints in (21), and Θ̂
denotes the sum of all terms related to Ξ̂ and Ψ̂. It is easy to
see that Ξ̂=Ξ, Ψ̂=Ψ, and Θ̂=Θ. Thus, the KKT conditions
for Ξ(i+1) and Ψ(i+1) for the solutions of the primary and
dual problems of problem (30), respectively, are exactly the
KKT conditions for problem (21). Since

(
β(i+1),Ξ(i+1)

)
is

the solution to problem (30) which is a convex optimization
problem for given β(i+1) and ν(i+1), the KKT conditions
of problem (21) are sufficient for the optimality of Ξ̂(i+1)

in problem (21). Thus, if Ξ(i+1) is the solution to P(i+1),
there exist two vectors β(i+1) =

(
β
(i+1)
1 , . . . , β

(i+1)
K

)
and

ν(i+1) =
(
ν
(i+1)
1 , . . . , ν

(i+1)
K

)
such that Ξ(i+1) is also an

optimal solution of problem (21). Moreover, vector φ(i+1)

in Ξ(i+1) satisfies the system of equations given in (31),
which is the same as the system of equations in (22). This
completes the proof. �

APPENDIX B: PROOF OF THEOREM 2

For the proof, we follow a similar approach as [39].
If the optimal solution

(
W

(i+1,j)
K ,φ(i+1,j), ϑ(i+1,j),ϱ(i+1,j),

ξ(i+1,j)
)

of problem (26) is obtained and Rank
(
W

(i+1,j)
k

)
>

1, ∃ k ∈ K, we can construct another optimal solution that
comprises rank-one matrices as follows. For a given φ(i+1,j)

obtained from the solution of problem (26), we solve the
following problem:

minimize
WK,ϑ,ϱ, ξ

∑
k∈K Tr

(
Wk

)
(32a)

subject to Sk,1(φ
(i+1,j)
k , ϑk) +QH

kWkQk ≽ 0, ∀ k ∈ K,
(32b)

constraints (25b), (25d) – (25h).

Problem (32) is in SDP form. Let(
W

(i+1,j)

K ,ϑ
(i+1,j)

,ϱ(i+1,j), ξ
(i+1,j))

, where W
(i+1,j)

K ,{
W

(i+1,j)

k | k ∈ K
}

, denote the optimal solution of

problem (32). It is easy to show that
(
W

(i+1,j)

K ,φ(i+1,j),

ϑ
(i+1,j)

,ϱ(i+1,j), ξ
(i+1,j))

satisfies the constraints in problem
(26) and yields the same objective value as solution(
W

(i+1,j)
K ,φ(i+1,j), ϑ(i+1,j),ϱ(i+1,j), ξ(i+1,j)

)
for problem

(26). We now show Rank
(
W

(i+1,j)

k

)
= 1, ∀ k ∈ K. To this

end, the Lagrangian of problem (32) is given as follows:

L(i+1,j)
theo2

(
WK, ϑ, ϱ, ξ, Λ

)
=

∑
k∈K

Tr
(
Wk

(
IMN+

∑
m∈M

(λm,1+R
(i)
k λm,2q

(i)
m,k)B

H
mBm

−Qk(Lk,1+Lk,2)Q
H
k+

∑
u∈K\{k}

QuLu,3Q
H
u−Vk

))
−
∑
k∈K

Tr
(
Sk,1(φ

(i+1,j)
k , ϑk)Lk,1

)
−
∑
k∈K

Tr
(
Sk,2(ϱk)Lk,2

)
−
∑
k∈K

Tr
(
Sk,3(ξk)Lk,3

)
−

∑
m∈M

(
λm,1pm + λm,2Cm

)
−

∑
k∈K

ρk,1ϑk

−
∑
k∈K

ρk,2ϱk −
∑
k∈K

ρk,3ξk, (33)

where Λ ,
(
λ1,λ2,ρ1,ρ2,ρ3,LK,1,LK,2,LK,3,VK

)
contains the dual variables. Specifically, λn ,(
λ1,n, . . . , λM,n

)
≽ 0, ∀n ∈ {1, 2}, are the vectors of the

dual variables for constraints (25b) and (25f) in problem (32),
respectively; ρn ,

(
ρ1,n, . . . , ρK,n

)
≽ 0, ∀n ∈ {1, 2, 3}, are

the vectors of the dual variables for the constraints in (25h)
in problem (32); LK,n,

{
Lk,n |Lk,n ∈ HMN , k∈K

}
, ∀n ∈

{1, 2, 3}, with Lk,n ≽ 0,∀ k ∈ K, n ∈ {1, 2, 3}, are the sets of
dual variable matrices for constraints (32b), (25d), and (25e) in
problem (32), respectively; VK ,

{
Vk |Vk ∈ HMN , k ∈K

}
with Vk ≽ 0, ∀ k ∈ K, is the set of dual variable matrices
for constraint (25g) in problem (32). The dual problem of
problem (32) is given as follows:

minimize
Λ

sup
WK,ϑ,ϱ, ξ

L(i+1,j)
theo2

(
WK, ϑ, ϱ, ξ,Λ). (34)

We focus on the following KKT conditions that are relevant
for our proof:

∇Wk
L(i+1,j)
theo2

(
WK, ϑ, ϱ, ξ, Λ)

∣∣∣
Υ

(i+1,j)
,Λ(i+1,j)

= OMN ,

∀ k ∈ K, (35a)

V
(i+1,j)
k W

(i+1,j)

k = OMN , ∀ k ∈ K, (35b)(
Sk,1(φ

(i+1,j)
k , ϑ

(i+1,j)

k )+QH
kW

(i+1,j)

k Qk

)
L
(i+1,j)
k,1 =OMN ,

∀ k ∈ K, (35c)(
Sk,2(ϱ

(i+1,j)
k ) +QH

kW
(i+1,j)

k Qk

)
L
(i+1,j)
k,2 = OMN ,

∀ k ∈ K, (35d)

L
(i+1,j)
k,3 ≽ 0, ∀ k ∈ K, (35e)

W
(i+1,j)

k ≽ 0, ∀ k ∈ K, (35f)

ϑ
(i+1,j) ≽ 0, ϱ(i+1,j) ≽ 0, ξ

(i+1,j) ≽ 0, (35g)

λ
(i+1,j)
1 ≽ 0, λ

(i+1,j)
2 ≽ 0, (35h)

where Υ
(i+1,j) ,

(
W

(i+1,j)

K , ϑ
(i+1,j)

, ϱ(i+1,j), ξ
(i+1,j))

and Λ(i+1,j) ,
(
λ
(i+1,j)
1 ,λ

(i+1,j)
2 ,ρ

(i+1,j)
1 ,



ρ
(i+1,j)
2 ,ρ

(i+1,j)
3 ,L

(i+1,j)
K,1 ,L

(i+1,j)
K,2 ,L

(i+1,j)
K,3 ,V

(i+1,j)
K

)
represent the optimal solutions of the pri-
mal and dual problems in (34), respectively;
∇Wk

L(i+1,j)
theo2

(
WK, ϑ, ϱ, ξ, Λ

)∣∣
Υ

(i+1,j)
,Λ(i+1,j) denotes

the gradient of the Lagrangian function in (33) with respect
to Wk at Υ

(i+1,j)
and Λ(i+1,j). By jointly considering (35a)

and (35b), we have the following equality:

X
(i+1,j)
k W

(i+1,j)

k =Qk(L
(i+1,j)
k,1 + L

(i+1,j)
k,2 )QH

k W
(i+1,j)

k ,

∀ k ∈ K, (36)

where X
(i+1,j)
k , IMN +

∑
m∈M(λ

(i+1,j)
m,1 +

R
(i)
k λ

(i+1,j)
m,2 q

(i)
m,k)B

H
mBm +

∑
u∈K\{k}QuL

(i+1,j)
u,3 QH

u .

Moreover, we have q
(i)
m,k > 0 by definition and R

(i)
k > 0

due to the lower-bounded SINR Γreq,k, ∀ k ∈ K. Further
considering (35e) and (35h), we have X

(i+1,j)
k ≻ 0, i.e.,

Rank
(
X

(i+1,j)
k

)
=MN . Thus, we have

Rank
(
W

(i+1,j)

k

)
=Rank

(
X

(i+1,j)
k W

(i+1,j)

k

)
=Rank

(
Qk(L

(i+1,j)
k,1 + L

(i+1,j)
k,2 )QH

k W
(i+1,j)

k

)
≤ min

{
Rank

(
Qk(L

(i+1,j)
k,1 + L

(i+1,j)
k,2 )QH

k

)
,

Rank
(
W

(i+1,j)

k

)}
, ∀ k ∈ K.

(37)

To evaluate Rank
(
Qk(L

(i+1,j)
k,1 +L

(i+1,j)
k,2 )QH

k

)
, ∀ k ∈ K, we

post-multiply QH
k to (35c) ∀ k∈K, so

Sk,1(φ
(i+1,j)
k , ϑ

(i+1,j)

k )L
(i+1,j)
k,1 QH

k

+QH
kW

(i+1,j)

k QkL
(i+1,j)
k,1 QH

k =OMN , ∀ k ∈ K.
(38)

We then pre-multiply the LHS of (38) by
[
IMN 0MN

]
. By

noting that Qk =
[
IMN ĥk

]
, we have

[
IMN 0MN

]
Sk,1(φ

(i+1,j)
k , ϑ

(i+1,j)

k )L
(i+1,j)
k,1 QH

k

+
[
IMN 0MN

]
QH

kW
(i+1,j)

k QkL
(i+1,j)
k,1 QH

k =OMN

(a)⇐⇒ϑ
(i+1,j)

k

[
IMN 0MN

]
L
(i+1,j)
k,1 QH

k

+ IMNW
(i+1,j)

k QkL
(i+1,j)
k,1 QH

k =OMN

(b)⇐⇒ϑ
(i+1,j)

k QkL
(i+1,j)
k,1 QH

k +W
(i+1,j)

k QkL
(i+1,j)
k,1 QH

k

= ϑ
(i+1,j)

k

[
OMN ĥk

]
⇐⇒

(
ϑ
(i+1,j)

k IMN +W
(i+1,j)

k

)
QkL

(i+1,j)
k,1 QH

k

= ϑ
(i+1,j)

k

[
OMN ĥk

]
, ∀ k ∈ K.

(39)

In step (a), we substituted φ
(i+1,j)
k and ϑ

(i+1,j)

k for φk and
ϑk in Sk,1(φk, ϑk), respectively. Note that

[
IMN 0MN

]
QH

k =

IMN . Step (b) follows by adding ϑ
(i+1,j)

k

[
OMN ĥk

]
on both

sides of the equation. Following similar steps in (38) and (39),
we post-multiply and pre-multiply the LHS of (35d) by QH

k

and
[
IMN 0MN

]
, respectively, and obtain another equality:(

Sk,2(ϱ
(i+1,j)
k )+QH

kW
(i+1,j)

k Qk

)
L
(i+1,j)
k,2 =OMN

⇐⇒
(
ϱ
(i+1,j)
k IMN +W

(i+1,j)

k

)
QkL

(i+1,j)
k,2 QH

k

= ϱ
(i+1,j)
k

[
OMN ĥk

]
, ∀ k ∈ K.

(40)

Without loss of generality, for UE k, we can distinguish
three cases for ϑ

(i+1,j)

k and ϱ
(i+1,j)
k :

Case I: ϑ
(i+1,j)

k ̸= 0 and ϱ
(i+1,j)
k ̸= 0. According to (35f)

and (35g), the inverse of matrices ϑ
(i+1,j)

k IMN+W
(i+1,j)

k and
ϱ
(i+1,j)
k IMN+W

(i+1,j)

k exist. Further considering (39) and (40),
we have

Rank
(
Qk(L

(i+1,j)
k,1 + L

(i+1,j)
k,2 )QH

k

)
=Rank

(
QkL

(i+1,j)
k,1 QH

k +QkL
(i+1,j)
k,2 QH

k

)
=Rank

((
ϑ
(i+1,j)

k (ϑ
(i+1,j)

k IMN+W
(i+1,j)

k )−1

+ ϱ
(i+1,j)
k (ϱ

(i+1,j)
k IMN+W

(i+1,j)

k )−1
)[
OMN ĥk

])
≤Rank

([
OMN ĥk

])
= 1.

(41)

By substituting (41) into (37), we have Rank
(
W

(i+1,j)

k

)
≤1.

On the other hand, we have W
(i+1,j)

k ̸=OMN due to Γreq,k>0.
Thus, for Case I, we have Rank

(
W

(i+1,j)

k

)
= 1.

Case II: ϑ
(i+1,j)

k =0, ϱ
(i+1,j)
k ̸=0 or ϑ

(i+1,j)

k ̸=0, ϱ
(i+1,j)
k =0.

For ϑ
(i+1,j)

k ̸=0, ϱ
(i+1,j)
k =0, we have

W
(i+1,j)

k QkL
(i+1,j)
k,2 QH

k = OMN . (42)

Further, considering (35a) and (35b), we have

W
(i+1,j)

k

(
X

(i+1,j)
k −QkL

(i+1,j)
k,1 QH

k

)
= OMN . (43)

Since ϑ
(i+1,j)

k ̸=0,
(
ϑ
(i+1,j)

k IMN+W
(i+1,j)

k

)−1
exists due to

(35f) and (35g). From (39), we have

Rank
(
QkL

(i+1,j)
k,1 QH

k

)
=Rank

(
ϑ
(i+1,j)

k

(
ϑ
(i+1,j)

k IMN +W
(i+1,j)

k

)−1[
OMN ĥk

])
≤Rank

([
OMN ĥk

])
= 1. (44)

We now introduce the following lemma that facilitates our
proof:

Lemma A.1: For matrices C1 and C2 of the same size,
Rank

(
C1−C2

)
≥ Rank

(
C1

)
− Rank

(
C2

)
.

Proof: As Rank(C1) + Rank(C2) ≥ Rank(C1 + C2), it
follows that Rank(C1−C2) + Rank(C2) ≥ Rank(C1). Thus,
we have Rank(C1 − C2) ≥ Rank(C1) − Rank(C2), which
completes the proof. �

Applying Lemma A.1 to the second term of the LHS of
(43), we have

Rank
(
X

(i+1,j)
k −Qk(L

(i+1,j)
k,1 )QH

k

)
(45)

≥Rank
(
X

(i+1,j)
k

)
−Rank

(
Qk(L

(i+1,j)
k,1 )QH

k

)
≥MN−1.

Thus, W
(i+1,j)

k lies in the null space of matrix X
(i+1,j)
k −

QkL
(i+1,j)
k,1 QH

k which has at least rank MN − 1. Thus,

Rank
(
W

(i+1,j)

k

)
≤1 for UE k. We also have W

(i+1,j)

k ̸=OMN



for Γreq,k>0. Thus, Rank
(
W

(i+1,j)

k

)
=1 for case ϑ

(i+1,j)

k ̸=0

and ϱ
(i+1,j)
k = 0. A similar approach can be applied for

ϑ
(i+1,j)

k = 0 and ϱ
(i+1,j)
k ̸= 0 in Case II, and we conclude

that Rank
(
W

(i+1,j)

k

)
= 1 for Case II.

Case III: ϑ
(i+1,j)

k = 0 and ϱ
(i+1,j)
k = 0. We show by

contradiction that ϑ
(i+1,j)

k =0 and ϱ
(i+1,j)
k =0 cannot occur.

Assume UE k ∈ K such that ϑ
(i+1,j)

k =0 and ϱ
(i+1,j)
k =0. We

substitute ϑ
(i+1,j)

k =0 and ϱ
(i+1,j)
k =0 into (39) and (40) for

UE k, respectively. We have

W
(i+1,j)

k QkL
(i+1,j)
k,1 QH

k = OMN ,

W
(i+1,j)

k QkL
(i+1,j)
k,2 QH

k = OMN .
(46)

Thus, W
(i+1,j)

k X
(i+1,j)
k =OMN , cf. (36). Since X

(i+1,j)
k ≻0,

we have W
(i+1,j)

k =OMN . However, W
(i+1,j)

k =OMN cannot
be in the optimal solution of problem (32) due to the minimum
SINR requirement of UE k. This is a contradiction. Thus,
ϑ
(i+1,j)

k =0 and ϱ
(i+1,j)
k =0 cannot occur.

Thus, each UE k ∈ K belongs to either Case I or Case II.
For both cases, Rank

(
W

(i+1,j)

k

)
=1 has been proven, which

completes the proof. �
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