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Abstract—In cross-silo federated learning (FL), organizations cooperatively train a global model with their local datasets. However,
some organizations may act as free riders such that they only contribute a small amount of resources but can obtain a high-accuracy
global model. Meanwhile, some organizations can be business competitors, and they do not trust each other or any third-party entity.
In this work, our goal is to design a framework that motivates efficient cooperation among organizations without the coordination of a
central entity. To this end, we propose a blockchain-empowered incentive mechanism framework for cross-silo FL. Under this incentive
mechanism framework, we develop a distributed algorithm that enables organizations to achieve social efficiency, individual rationality,
and budget balance without private information of the organizations. Our proposed algorithm has a proven convergence guarantee and
empirically achieves a higher convergence rate than a benchmark method. Moreover, we propose a transaction minimization algorithm
to reduce the number of transactions made among organizations in the blockchain. This algorithm is proven to achieve a performance
no worse than twice the minimum value. The experimental results in a testbed show that our proposed framework enables organizations
to achieve social efficiency within a relatively short iterative process.

Index Terms—Federated learning, blockchain, incentive mechanism, game theory, resource allocation.
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1 INTRODUCTION

1.1 Background and Motivation

Cross-silo federated learning (FL) [2] enables a set of orga-
nizations (e.g., network operators, institutions) to coopera-
tively train a global model using their local datasets. During
the training phase, each organization periodically down-
loads the global model from a certain entity (e.g., a central
server, a blockchain network [3]), updates its local model by
training the downloaded global model with its local dataset,
and uploads the model updates to the entity for global
model updating. Since each organization does not need to
share its local dataset with other entities, data privacy can
be preserved. Cross-silo FL can support the cooperation
among network operators for applications such as mobile
traffic prediction [4] and content popularity prediction [5].
Meanwhile, there have been various industrial applications,
such as Owkin [6] for medical data, MELLODDY [7] for
drug discovery, and Ichnite [8] for general dataset analysis.

• Ming Tang is with the Department of Computer Science and Engineer-
ing and the Research Institute of Trustworthy Autonomous Systems at
Southern University of Science and Technology, Shenzhen, China. E-mail:
tangm3@sustech.edu.cn

• Fu Peng is with the Department of Computer Science and Engineering,
Southern University of Science and Technology, Shenzhen, China. Email:
12231135@mail.sustech.edu.cn

• Vincent W.S. Wong is with the Department of Electrical and Computer
Engineering, The University of British Columbia, Vancouver, Canada. E-
mail: vincentw@ece.ubc.ca

Manuscript received on Apr. 25, 2023; revised on Nov. 30, 2023; accepted
on Jan. 23, 2024. This work was supported in part by the Natural Sciences
and Engineering Research Council of Canada, Digital Research Alliance of
Canada (alliancecan.ca), Guangdong Basic and Applied Basic Research Foun-
dation under Grant 2023A1515012819, and the National Natural Science
Foundation of China under Grant 62202214. (Corresponding author: Ming
Tang)
Part of this work has been published in Proc. of IEEE INFOCOM [1].

Moreover, algorithms have been developed to enable cross-
silo FL. McMahan et al. [9] proposed federated average
(FedAvg) algorithm. Some works proposed algorithms to
improve the convergence rate [10]–[12] and system structure
[13]. Comprehensive surveys can be found in [2], [14], [15].

In contrast to the cross-device FL where a central entity
(e.g., an organization) recruits devices for local training,
cross-silo FL involves cooperation among multiple organi-
zations and has four distinctive features. First, each organi-
zation usually has a large number of data samples. Thus, the
training speed and cost depend on the processing capacity
(e.g., number of computing servers, processing frequency
of computing servers) that the organizations use for train-
ing. Second, in cross-silo FL, organizations perform local
training to obtain a high-accuracy global model so that the
revenue of their services can be improved. Thus, there may
not exist any central entity (as in cross-device FL) that can
compensate for the training cost of the organizations and
motivate their cooperation. Third, due to the non-excludable
nature of the global model (i.e., no organization can prevent
another organization from receiving the global model dur-
ing the FL process), an organization can become a free rider.
That is, an organization that allocates a small amount of
processing capacity for local training may be able to obtain
a high-accuracy global model, due to the high processing
capacity provided by other organizations. Fourth, some
organizations can be business competitors. They may not
trust each other or any third-party entity. These four features
make it necessary to design an incentive mechanism that can
motivate efficient cooperation among the organizations, and
the operation of the incentive mechanism should not rely on
the assistance of any central coordinator.

Blockchain together with smart contract [16] can perform
secure executions without any central coordinator. In this
work, we aim to propose a blockchain-empowered incentive
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mechanism framework that motivates efficient cooperation
of the organizations in terms of their choices of processing
capacities in cross-silo FL. Note that those existing works
which applied blockchain techniques to the FL training
process [3], [17]–[20] are not directly applicable to our
work, as they did not investigate the incentive mechanism
design and how the mechanism can be incorporated in
the blockchain. Designing such a blockchain-empowered
incentive mechanism framework has several challenges.

Challenge 1. The incentive mechanism framework needs to
address the free-rider attack resulting from the public goods nature
of the global model in cross-silo FL.

Specifically, public goods are defined as those goods that
are non-excludable and non-rivalrous [21]. In cross-silo FL,
the global model is non-excludable, because during the FL
training process, the global model is sent to all organizations
periodically for local training. Meanwhile, the global model
is non-rivalrous, i.e., there is no competition among the
organizations for owning a copy of the global model. The
public goods nature of the global model leads to the free-
rider attack in cross-silo FL, i.e., some organizations may
perform local training with a low processing capacity that
does not optimize the social welfare. This is because in prac-
tical systems, some organizations may have lower willing-
ness to improve the accuracy of the global model than some
other organizations, since they can earn only little revenue
through such a global model improvement (e.g., due to
their small customer population). Note that the free-rider
attack may result from the misbehavior of organizations
during two processes: (i) when the organizations negotiate
about their processing capacities and compensations, and
(ii) when the organizations perform FL. Although there are
various incentive mechanisms for cross-device FL, including
pricing-based schemes [22], [23], auction-based mechanisms
[24]–[27], and contract-based mechanisms [28]–[30], those
mechanisms are not applicable to cross-silo FL due to the
public goods nature. On the other hand, there are existing
works on public goods in other application scenarios, such
as multicasting [31] and energy harvesting [32] in wireless
networks. However, those mechanisms cannot be directly
applied in cross-silo FL, because the incentive mechanism
design in cross-silo FL involves a nonconvex problem for-
mulation, which poses additional difficulties.

Challenge 2. The operation of the blockchain-empowered frame-
work should (i) not rely on the private information (e.g., valuation,
cost) of the organizations and (ii) be lightweight.

In cross-silo FL, the private information of the organi-
zations is usually unknown to the public. Thus, the in-
centive mechanism should not make use of such infor-
mation. Although auction (e.g., [33]) is a commonly used
approach to address the private information issue, it is
not applicable in cross-silo FL due to the public goods
feature. In addition, there is a fee incurred in each execution
step in smart contract (e.g., gas fee in Ethereum [34]).
The fee depends on the computational resources required
for performing the execution step. Thus, the operation of
the incentive mechanism performed by smart contract has
to be lightweight such that it has a low computational
complexity and consumes a small amount of computa-

tional resources. Although pricing-based [22], [23], auction-
based [24]–[27], and contract-based mechanisms [28]–[30]
can achieve lightweight execution in smart contract, they
are not applicable to cross-silo FL due to Challenge 1.

Challenge 3. The blockchain-empowered framework should min-
imize the monetary transfer between organizations.

Different from cross-device FL where the central entity
recruits mobile devices for training, in cross-silo FL, orga-
nizations need to pay each other to compensate for their
training cost. Since the blockchain charges a fee for each
transaction, the organizations need to minimize the number
of transactions in order to reduce the transaction cost.

1.2 Related Works
Some recent works proposed incentive mechanisms for
cross-silo FL. Wu et al. in [35] analyzed the market share of
the organizations participating in FL. However, they did not
consider the training cost of the organizations. Zhang et al.
in [36] proposed a mechanism that motivates organizations
to truthfully submit their model updates. Zhang et al. in [37]
considered a repeated game setting and proposed a scheme
where the organizations deviating from certain strategies
will be punished. However, the works in [36], [37] did not
consider the processing capacities that the organizations
should allocate for local training. Huang et al. in [38] pro-
posed a minimum threshold-based incentive mechanism to
prevent the free-rider attack, where the organizations con-
tributing resources lower than a threshold will be removed
from the system. Lim et al. in [39] proposed a coalitional
game-based mechanism to motivate the organizations to
form FL coalitions. The algorithms proposed in [38], [39]
rely on the knowledge of the payoff of the organizations,
which did not address Challenge 2 (i). Furthermore, those
approaches in [35]–[39] rely on the assistance of a trusted
central coordinator. It may be difficult to incorporate those
approaches in a blockchain-empowered system due to the
lightweight requirement in Challenge 2 (ii) and the mini-
mization of monetary transfer requirement in Challenge 3.

Some existing works (e.g., [40], [41]) considered secure
aggregation of the global model, while they did not consider
incentivizing efficient cooperation. Other recent works (e.g.,
[23], [42]–[45]) have considered blockchain-empowered in-
centive mechanisms for FL. However, in those works, there
exists a task requester who requests the global model and
provides payment to the organizations (in cross-silo FL) or
devices (in cross-device FL). Thus, those mechanisms do not
address the free-rider attack (Challenge 1) in cross-silo FL.

1.3 Solution and Contributions
In this work, we propose a blockchain-empowered incen-
tive mechanism framework for cross-silo FL that addresses
Challenges 1–3. Our proposed mechanism helps the organi-
zations to address the following questions: (i) How much
processing capacity should each organization allocate for
local training? (ii) How much should each organization be
compensated by other organizations for its local training?
Our main contributions are summarized as follows:

• Incentive Mechanism Design Problem Formula-
tion: We formulate a social welfare maximization
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problem for cross-silo FL, which is a nonconvex
problem. Then, we formulate an incentive mecha-
nism design problem, considering the public goods.

• An Incentive Mechanism for Cross-Silo FL: We
propose an incentive mechanism that addresses the
free-rider attack (Challenge 1). Given our proposed
mechanism, the interaction between the organiza-
tions is formulated as a non-cooperative game. We
prove that the Nash equilibrium (NE) of the game
has several properties, including social efficiency (i.e.,
the social welfare is maximized), individual rationality
(i.e., each organization is no worse off by participat-
ing in FL), and budget balance (i.e., no third party
investment is required). Moreover, we prove that
after reaching an agreement based on our proposed
mechanism, the organizations prefer to behave ac-
cording to their agreement during the FL process.

• A Blockchain-Empowered Framework: We pro-
pose a blockchain-empowered framework for de-
ploying our proposed incentive mechanism. Under
this framework, we develop a distributed algorithm
that enables organizations to achieve social efficiency,
individual rationality, and budget balance. This al-
gorithm does not rely on the private information of
the organizations (Challenge 2 (i)), and its execution
steps in the smart contract only involve simple oper-
ations (e.g., replacement, addition, comparison) and
have polynomial complexity (Challenge 2 (ii)). In ad-
dition, we propose a transaction minimization algo-
rithm that reduces the number of monetary transfer
among organizations in the blockchain (Challenge 3).

• Performance Evaluation: The simulation results ver-
ify that our proposed distributed algorithm can
achieve social efficiency, and it converges faster than
the conventional Lagrangian method [46, Section
8.1]. Moreover, our proposed transaction minimiza-
tion algorithm achieves comparable performance as
the optimal solution but has a significantly lower
computational time. Furthermore, we build a demon-
stration system of our blockchain-empowered in-
centive mechanism framework with Ethereum [34].
The experimental results show that it takes tens of
minutes for our proposed algorithm to converge to
the NE in real-world blockchain systems, where this
duration is relatively short when compared with the
duration of the FL process (e.g., 1-10 days [2]).

This paper is organized as follows. We present the system
model in Section 2 and the incentive mechanism in Section
3. The blockchain-empowered framework is given in Section
4. We conduct simulations and experiments in Section 5.
Section 6 concludes this work. Notations: We use R, R+,
and Z+ to denote the sets of real numbers, nonnegative real
numbers, and nonnegative integers, respectively.

2 SYSTEM MODEL

An overview of our considered cross-silo FL system is
shown in Fig. 1. Specifically, organizations first determine
their processing capacities and unit monetary transfer per
training round using an incentive mechanism. Then, they

① Incentive Mechanism (Sections 3, 4.1, and 4.2): 
Organizations submit message profiles to determine  
(A) the processing capacity, and  
(B)  the unit monetary transfer per training round.

② FL (Section 2.1):  Organizations cooperate to train 
a global model using FL according to (A). 

③ Monetary Transaction (Section 4.3): Organizations make monetary 
transactions to compensate for the training cost of each other according to (B).  

Free-rider attack

Submit message 
profiles that 

diminish the social 
welfare 

Violate the 
agreement in (A)

Fig. 1. Organizations perform incentive mechanism, FL, and transaction
processes. The free-rider attack may occur due to the misbehavior of
the organizations during either the incentive mechanism or FL process.

train a global model using FL. After the FL process, orga-
nizations need to make transactions between each other to
compensate for their training cost. In this system, the free-
rider attack corresponds to the attack where an organization
performs local training with the processing capacity that
does not optimize the social welfare. Such an attack may
result from the misbehavior of the organizations during
either the incentive mechanism or FL process. Furthermore,
in this work, we introduce a blockchain network that acts
as a decentralized agent for coordinating the incentive
mechanism, FL, and transaction processes. It is responsible
for enabling message and transaction exchange among the
organizations, performing simple executions required by the
aforementioned processes, and sending control messages.
Existing works investigated how the blockchain network
coordinates the FL process [3], [17]–[20]. We will describe
how the blockchain network can coordinate the incentive
mechanism and transaction processes in Section 4.

In this section, we present the FL process and payoff
of the organizations. Then, we formulate the social welfare
maximization and incentive mechanism design problems.

2.1 FL Process
We consider a scenario with N organizations, denoted by
set N = {0, . . . , N � 1}. Each organization has its own local
dataset. Let Sn denote the local dataset of organization n 2

N . Let Sn denote the number of data units in set Sn. The
organizations cooperate to train a global model with their
local datasets using a synchronous FL algorithm, such as
[9]–[11]. Let ! denote the global model. The organizations
aim to find the optimal weights of the global model !⇤ that
minimize the expected loss L(!) over the datasets [9], [11]:

!⇤ = argmin
!

(

L(!) ,
X

n2N

SnP
n02N Sn0

l(!;Sn)

)

, (1)

where l(!;Sn) is the loss over dataset Sn given !.
At the beginning of the FL algorithm, the coordinator1

first randomly initializes the global model !0. The FL al-
gorithm iterates for multiple training rounds. In training
round r, each organization n 2 N downloads the global
model !r�1 (determined in training round r � 1) from

1. During FL process, the coordinator can be either a blockchain
network or a central server. The choice of such a coordinator does not
affect the properties of our incentive mechanism in Section 3.
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the coordinator. It then performs K local updates over
the downloaded global model with its dataset Sn, e.g.,
the local update can correspond to a mini-batch stochas-
tic gradient descent [9]. The updated model is the local
model of organization n in training round r, where !r

n
denotes the local model. After that, organization n uploads
!r

n to the coordinator. The coordinator updates the global
model based on the received local models, e.g., by taking a
weighted average over the received local models from the
organizations !r =

P
n2N Sn!r

n/(
P

n02N Sn0) [9].
Let Dn denote the number of floating point operations

(FLOPs) required by organization n 2 N to process one data
unit. Let fn (in FLOPs per second) denote the processing
capacity used by organization n for its local training. Let
vector f = (fn, n 2 N ). Note that we adopt a standard pro-
cessing capacity model, which is applicable to model both
CPU and GPU processors [47]. Let T UL

n and T
DL
n (in seconds)

denote the time that organization n is required for upload-
ing and downloading the model updates in each training
round, respectively. Since we consider a synchronous FL
algorithm where the coordinator updates the global model
only after it has received all the local models in a training
round, the duration of each training round is given by

⌧(f) = max
n2N

⇢
SnDnK

fn
+ T

UL
n + T

DL
n

�
, (2)

which is the maximum processing and transmission dura-
tion in each training round among all organizations.

We consider that there is a fixed total training time
T 2 R+, where T is usually much larger than the uplink
and downlink duration (i.e., T UL

n + T
DL
n ) to ensure multiple

rounds of training. This corresponds to the scenario where
the organizations have a deadline for the FL process. The
number of training rounds is equal to the total training time
divided by the duration of each training round:

r(f) = T/⌧(f). (3)

Similar to [22], [44], we do not round up r(f). This is
reasonable since r(f) is usually large in practice, so the
difference between r(f) and its rounded value is negligible.

2.2 Payoff of the Organizations
2.2.1 Utility

As in the existing work [22], we define the utility of each or-
ganization as a function of the precision of the trained global
model. The precision of the trained global model is defined
as the difference between the expected loss of the trained
global model (after r(f) training rounds) and the minimum
expected loss [10], [11], [22], i.e., L(!r(f)) � L(!⇤). Note
that a smaller precision implies a smaller loss of the trained
global model and hence a better fit of the model to the
datasets. Let ✏(r(f)) denote the precision of the trained
global model with r(f) training rounds.2 We consider a gen-
eral formulation of precision function ✏(r(f)) that satisfies
the following assumption:

2. Since we focus on the organizations’ choices of processing capac-
ities (which affect the number of training rounds r(f)), the precision
function ✏(r(f)) takes r(f) as an argument. Although the precision
also depends on other factors such as the number of data samples used
for training, we omit those factors in our formulation for simplicity.

Assumption 1. Function ✏(r(f)) is a continuously differen-
tiable function that is non-increasing and convex in r(f). In
addition, ✏(0) has a finite value.

Intuitively, as r(f) increases, the degree that the global
model fits the datasets is non-decreasing, and the marginal
decrease of the precision reduces. Note that this assumption
does not limit to the setting of independent and identically
distributed (IID) datasets in FL. For example, based on [11],
with a strongly convex loss function L(!), ✏(r(f)) under
non-IID datasets can be modeled as follows:

✏(r(f)) =
✏0

✏1 +Kr(f)
, (4)

where the positive coefficients ✏0 and ✏1 can be determined
based on the loss function, the neural network structure,
and the distribution of the datasets [11]. It is easy to verify
that ✏(r(f)) in (4) satisfies Assumption 1. We use equation
(4) for the performance evaluation in Section 5.

The utility of organization n 2 N is its valuation on
the difference between the precision of the global model
without training (i.e., ✏(0)) and that after training:

Un(r(f)) = un (✏(0)� ✏(r(f))) , n 2 N , (5)

where un (in dollars per unit of loss) is the unit revenue
that organization n can earn from its market by using the
trained global model. The value of un of organization n may
be unknown to the coordinator and other organizations.

2.2.2 Cost and Payoff

The cost of an organization is defined as follows:

Cn(fn, r(f)) = (CUL
n + C

DL
n ) r(f) + C

invt
n fn

+ C
comp
n (fn)

2
SnDnKr(f), n 2 N , (6)

where the parameters C
UL
n and C

DL
n are the operating

costs for uploading and downloading the model updates
in each training round, respectively. The product C

invt
n fn

corresponds to the investment cost (e.g., leasing servers)
per processing capacity, where the linearity is due to the
linear server leasing rate [48]. The term C

comp
n (fn)2SnDnK

is the operating cost of organization n for performing local
training in one training round, where the quadratic form is
due to the widely adopted quadratic energy consumption
model for both CPU and GPU processors [47]. The cost
function Cn(fn, r(f)) of organization n may not be known
by the coordinator and other organizations.

Let mn (in dollars) denote the monetary transfer to
organization n 2 N . If mn is positive, then organization
n receives mn from other organizations. If mn is negative,
then organization n pays |mn| to some other organizations.
The payoff of organization n 2 N is defined as follows:

Vn(fn, r(f),mn) = Un(r(f))� Cn(fn, r(f)) +mn. (7)

2.3 Problem Formulation
From the social welfare perspective, the organizations
should choose the processing capacity vector f that max-
imizes the social welfare of the system:

maximize
f

X

n2N
(Un(r(f))� Cn(fn, r(f))) (8a)

subject to fn 2 [0, fmax
n ], n 2 N , (8b)
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where f
max
n denotes the maximum processing capacity of

organization n. It is challenging to maximize the social wel-
fare for two reasons. First, problem (8) is nonconvex, since
Cn(fn, r(f)) is nonconvex in f . Second, each organization
may only be interested in maximizing its own payoff. Let
f⇤ , (f⇤

n, n 2 N ) denote the optimal solution to problem
(8). The free-rider attack is defined as follows:

Definition 1 (Free-Rider Attack). The free-rider attack is an
attack where there exists an organization n

0
2 N that performs

local training with a processing capacity fn0 6= f
⇤
n0 .

We aim to propose a blockchain-empowered incentive
mechanism framework to prevent the free-rider attack and
achieve social efficiency. As shown in Fig. 1, the organiza-
tions first determine their processing capacities and mone-
tary transfer using an incentive mechanism in 1�:

• Each organization n 2 N announces a message
profile (�n,⇡n) to other organizations. Message �n

indicates the number of training rounds that orga-
nization n is willing to have. Message ⇡n indicates
the unit monetary transfer per training round that
organization n is willing to receive or pay. Let vectors
� , (�n, n 2 N ) and ⇡ , (⇡n, n 2 N ).

• Based on the message profiles � and ⇡, organiza-
tions determine their processing capacity f(�) ,
(fn(�), n 2 N ) and unit monetary transfer per
training round ⇣(⇡) , (⇣n(⇡), n 2 N ).3

Then, in 2�, organizations are expected to cooperate on FL
with the determined processing capacity f(�). However, an
organization may use a processing capacity that differs from
the determined one. Suppose organizations perform local
training with processing capacity f . In 3�, the monetary
transfer to organization n is equal to the actual number
of training rounds r(f) multiplied by the determined unit
monetary transfer to organization n, i.e., mn = ⇣n(⇡)r(f).

Let � and ⇧ denote the space of � and ⇡, respectively. To
motivate efficient cooperation through incentive mechanism
design, we need to specify the mappings fn : � ! R+ and
⇣n : ⇧! R+ for n 2 N such that (i) organizations make an
agreement on performing local training using the optimal
processing capacity f⇤ in the incentive mechanism process,
and (ii) they follow the agreement during the FL process.
We define the properties formally as follows.

2.3.1 Properties Required in Incentive Mechanism Process

During the incentive mechanism process in 1�, organiza-
tions decide on the message profiles to announce. The strate-
gic interaction among the organizations can be modeled as
a non-cooperative game. Let (�NE

,⇡NE) denote an NE of
the game. That is, given the NE message profiles of other
organizations, organization n 2 N cannot increase its payoff
by announcing a message profile that is different from its NE
message profile (�NE

n ,⇡
NE
n ). Note that such an NE is defined

based on the setting that all organizations will follow the
determined processing capacity during the FL process. This
setting always holds, because it is considered as a required
property during the FL process (see Section 2.3.2).

3. The determined unit monetary transfer ⇣n(⇡) may be different
from the value of ⇡n specified by organization n in its message profile.

We define mn(�NE
,⇡NE) , ⇣n(⇡NE)r(f(�NE)), i.e., the

monetary transfer to organization n if everyone follows
the determined processing capacity f(�NE). Our incentive
mechanism needs to satisfy the following properties:

P1 Social efficiency: The processing capacity under NE
is the optimal solution of problem (8), i.e., f(�NE) = f⇤.

P2 Individual rationality: Each organization is no
worse off through participating in cross-silo FL, i.e.,
Vn(fn(�NE), r(f(�NE)),mn(�NE

,⇡NE)) � 0 for n 2 N .
P3 Budget balance: The monetary transfer can operate

among the organizations without any third-party invest-
ment. That is,

P
n2N mn(�NE

,⇡NE) = 0.

2.3.2 Property Required in FL Process

We use f
NE
n , fn(�NE) and ⇣

NE
n , ⇣n(⇡NE) to denote the

processing capacity and unit monetary transfer per training
round of organization n 2 N under NE message profiles,
respectively. Let vector fNE , (fNE

n , n 2 N ). Let vector
fNE
�n , (fNE

n0 , n
0
2 N \ {n}) denote the processing capacity

of all organizations excluding organization n’s. We use
the notations (fNE

n ,fNE
�n) and fNE interchangeably. During

the FL process in 2�, organizations perform FL using the
determined processing capacity fNE. Thus, our incentive
mechanism needs to satisfy the following property:

P4 Fulfillment of agreement: Each organization weakly
prefers to follow the determined processing capacity vec-
tor fNE, i.e., Vn(fNE

n , r(fNE
n ,fNE

�n), ⇣
NE
n r(fNE

n ,fNE
�n)) �

Vn(fn, r(fn,f
NE
�n), ⇣

NE
n r(fn,f

NE
�n)) for all fn 2 R+, n 2 N .

Properties P1 and P4 prevent the free-rider attack in the
incentive mechanism and FL processes, respectively.

3 INCENTIVE MECHANISM FOR CROSS-SILO FL
We design an incentive mechanism for cross-silo FL that sat-
isfies properties P1�P4. Our proposed incentive mechanism
is inspired by the existing mechanisms for public goods in
other application scenarios, e.g., [31], [32]. Different from
those existing mechanisms, our proposed mechanism can
address the following new challenges. First, the associated
social welfare maximization problem (8) is nonconvex. Sec-
ond, each organization is both a producer who contributes
resources for local training and a consumer who utilizes the
trained global model. In the following, we first propose an
incentive mechanism. We then analyze its properties.

3.1 Incentive Mechanism Design
The incentive mechanism for cross-silo FL is as follows.

Mechanism 1 (Incentive Mechanism for Cross-Silo FL). Each
organization n 2 N announces its message profile (�n,⇡n):

• �n 2 [0, r̄] indicates the number of train-
ing rounds that organization n is willing to
have. Here, r̄ , maxfn2[0,fmax

n ],n2N r(f) =
T/maxn2N {SnDnK/f

max
n + T

UL
n + T

DL
n } denotes the

maximum number of training rounds.
• ⇡n 2 R indicates the unit monetary transfer per training

round that organization n is willing to receive or pay. If ⇡n

is positive, then organization n desires to receive ⇡n from
other organizations. If ⇡n is negative, then organization n

is willing to pay |⇡n| to some other organizations.
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Based on the announced � and ⇡:

• The number of training rounds that each organization
needs to perform er(�) =

P
n2N �n/N .

• The processing capacity that organization n should use in
its local training is given by

fn(�) = f
�
n(er(�)) ,

SnDnK

T/er(�)� T UL
n � T DL

n

, (9)

where f�
n(er(�)) is the processing capacity that organiza-

tion n should use to achieve er(�) training rounds.
• The unit monetary transfer (per training round) to orga-

nization n is given by

⇣n(⇡) = ⇡µ(n+1) � ⇡µ(n+2), (10)

where µ(n+ 1) is equal to n+ 1 modulo N . That is, the
unit monetary transfer to organization n is equal to the
difference between the unit monetary transfer announced
by the organizations with indices µ(n+1) and µ(n+2).

• After FL process, the monetary transfer to organization
n is equal to the unit monetary transfer multiplied by
the number of training rounds r during FL process, i.e.,
⇣n(⇡)r. Thus, if each organization performs local training
using the processing capacity defined in (9), then

mn(�,⇡) , ⇣n(⇡)er(�). (11)

Intuitively, in Mechanism 1, to address the public goods
feature (i.e., non-excludable, non-rivalrous), each organiza-
tion n 2 N is treated equally regardless of the value of
⇡n. In Mechanism 1, the number of training rounds that
each organization has to perform (i.e., er(�)) is equal to the
average value of the number of training rounds that the
organizations are willing to have. The processing capacity
of each organization has to lead to er(�) training rounds. The
definition of monetary transfer in (11) has three features that
make our proposed incentive mechanism satisfy properties
P1�P4. First, the payoff of organization n does not rely on
the choice of ⇡n. Second, the payoff of organization n is
linear in the number of training rounds. Third, the summa-
tion of the monetary transfer to all organizations, i.e., the
summation of mn(�,⇡) over all n 2 N , is always equal to
zero. Moreover, we will show in Section 4.2.2 that equations
(10) and (11) essentially motivate each organization n to
choose its value of �n that leads to social efficiency, even
when the organizations have private information.

3.2 Analysis of the Strategies of the Organizations
We first define the game of the organizations. Then, we
derive an NE and the properties of Mechanism 1.

3.2.1 Game of the Organizations

Given Mechanism 1, each organization can determine its
message profile to maximize its payoff. Such strategic inter-
action can be modeled as a non-cooperative game. Recall
that this game is defined under the setting that organiza-
tions perform local training using the processing capacity in
(9). This is reasonable because property P4 holds under our
proposed mechanism, which will be proven in Section 3.2.3.

Game 1 (Message Profile Announcement).

• Player: all organizations n 2 N .

• Strategy: message profile (�n,⇡n) with �n 2 [0, r̄] and
⇡n 2 R for each organization n 2 N .

• Payoff function: Vn(fn(�), er(�),mn(�,⇡)) for n 2 N .
Note that Vn(fn(�), r(f(�)),mn(�,⇡)) is equal to
Vn(fn(�), er(�),mn(�,⇡)) according to (9).

Let (��n,⇡�n) denote the message profiles announced
by all organizations excluding organization n 2 N , i.e.,
��n , (�n0 , n

0
2 N \ {n}) and ⇡�n , (⇡n0 , n

0
2 N \ {n}).

For simplicity, we will use f(�n,��n) and f(�), er(�n,��n)
and er(�), as well as mn(�n,⇡n,��n,⇡�n) and mn(�,⇡)
interchangeably. The NE of Game 1 is defined as follows.

Definition 2 (Nash equilibrium). An NE of Game 1 is a
message profile (�NE

,⇡NE) that satisfies

Vn(fn(�
NE), er(�NE),mn(�

NE
,⇡NE))

� Vn(fn(�n,�
NE
�n), er(�n,�

NE
�n),mn(�n,⇡n,�

NE
�n,⇡

NE
�n)),

�n 2 [0, r̄],⇡n 2 R, n 2 N . (12)

Based on (10) and (11), we have mn(�n,⇡n,�NE
�n,⇡

NE
�n) =

mn(�n,⇡NE
n ,�NE

�n,⇡
NE
�n) for ⇡n 2 R for any N � 3. Hence,

inequality (12) is equivalent to

Vn(fn(�
NE), er(�NE),mn(�

NE
,⇡NE))

� Vn(fn(�n,�
NE
�n), er(�n,�

NE
�n),mn(�n,⇡

NE
n ,�NE

�n,⇡
NE
�n)),

�n 2 [0, r̄], n 2 N . (13)

From (12) to (13), we replace mn(�n,⇡n,�NE
�n,⇡

NE
�n) with

mn(�n,⇡NE
n ,�NE

�n,⇡
NE
�n). In the rest of this paper, we focus

on the scenario where N � 3. When N = 1, cross-silo FL
cannot be operated. When N = 2, we can introduce an
additional virtual organization with zero utility and cost.

3.2.2 Nash Equilibrium and Properties P1–P3

According to Definition 2 and inequality (13), any NE
should satisfy the following.

Lemma 1 (Nash Equilibrium). A message profile (�NE
,⇡NE)

is an NE of Game 1 if and only if for all n 2 N ,

�
NE
n = N arg max

r2[0,r̄]
Vn(f

�
n(r), r,mn(r1,⇡

NE))�
X

n02N\{n}
�

NE
n0 ,

(14)
where 1 is an all-one vector with length N . The function
mn(r1,⇡NE) = r(⇡NE

µ(n+1) � ⇡
NE
µ(n+2)) defines the monetary

transfer to organization n under r training rounds given ⇡NE.

The proof is given in Appendix A. Lemma 1 implies
that (�NE

,⇡NE) is an NE if and only if under ⇡NE, �NE

leads to the number of training rounds er(�NE) that maxi-
mizes the payoff of each organization, i.e.,

P
n02N �

NE
n0 /N =

er(�NE) = argmaxr2[0,r̄] Vn(f�
n(r), r,mn(r1,⇡NE)), n 2 N .

According to Lemma 1 as well as equations (9)–(11),
Mechanism 1 satisfies properties P1, P2, and P3.

Theorem 1 (Social Efficiency). Under any NE of Game 1,
i.e., (�NE

,⇡NE), the determined processing capacity f(�NE)
optimizes the nonconvex problem (8).

The proof of Theorem 1 is given in Appendix B.

Proposition 1 (Individual Rationality). Under any NE of
Game 1, i.e. (�NE

,⇡NE), each organization has nonnegative
payoff, i.e., Vn(fn(�NE), er(�NE),mn(�NE

,⇡NE)) � 0, n 2 N .
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This holds because Vn(fn(�NE), er(�NE),mn(�NE
,⇡NE))

� Vn(f�
n(0), 0,mn(0,⇡NE)) = 0 for n 2 N due to Lemma

1, where 0 is a zero vector with length N .

Proposition 2 (Budget Balance). Under any NE of Game 1,
i.e., (�NE

,⇡NE), the summation of the monetary transfer of all
organizations is equal to zero, i.e.,

P
n2N mn(�NE

,⇡NE) = 0.

Proposition 2 is proven by substituting mn(�NE
,⇡NE)

defined in (11) into
P

n2N mn(�NE
,⇡NE).

3.2.3 Insights on Unit Monetary Transfer and Property P4

We now discuss the practical insights on the unit monetary
transfer to the organizations. Recall that ⇣

NE
n , ⇣n(⇡NE)

denotes the unit monetary transfer of organization n 2 N

under an NE of Game 1. Let r
NE , er(�NE), and hence

fNE , f(�NE) = f�(rNE). According to Lemma 1, the
unit monetary transfer under NE satisfies the following.

Proposition 3 (Unit Monetary Transfer). If rNE
2 [0, r̄], then

⇣
NE
n =

@Cn(f�
n(r

NE), rNE))

@rNE �
@Un(rNE)

@rNE , n 2 N . (15)

Proposition 3 holds because the partial derivative of
Vn(f�

n(r), r,mn(r1,⇡NE)) with respect to r is equal to zero
under r = r

NE. Intuitively, the unit payment of each organi-
zation n (i.e., �⇣NE

n ) is equal to its marginal benefit.
Resulting from Proposition 3, no organization would

prefer to deviate from the determined processing capacity
under NE message profiles during the FL process.

Proposition 4. For any organization n 2 N , given the unit
monetary transfer ⇣NE

n under an NE message profile,

fNE = arg max
f2RN

+

Vn

�
fn, r(f), ⇣

NE
n r(f))

�
. (16)

Proposition 4 holds because r
NE =

P
n2N �n/N maxi-

mizes the payoff of each organization based on Lemma 1,
and fNE = f�(rNE). The proof is given in Appendix C.
Based on Proposition 4, Mechanism 1 satisfies property P4.

Corollary 1 (Fulfillment of Agreement). For any or-
ganization n 2 N , given the unit monetary transfer
⇣

NE
n , we have Vn(fNE

n , r(fNE
n ,fNE

�n), ⇣
NE
n r(fNE

n ,fNE
�n)) �

Vn(fn, r(fn,f
NE
�n), ⇣

NE
n r(fn,f

NE
�n)) for all fn 2 R+, n 2 N .

Corollary 1 can be proven by contradiction. Suppose
Corollary 1 does not hold. Then, Proposition 4 is violated.
Corollary 1 implies that given the unit monetary transfer
⇣
NE
n , each organization weakly prefers to use the processing

capacity f(�NE) determined by the NE.
Recall that f⇤ is the processing capacity that optimizes

problem (8), and f⇤
�n , (f⇤

n0 , n
0
2 N \ {n}). According

to Theorem 1 and Corollary 1, our proposed incentive
mechanism can prevent the free-rider attack.

Corollary 2 (Preventing Free-Rider Attack). Under Mech-
anism 1, given ⇣

NE
n , no organization is better off by de-

viating from the optimal processing capacity f⇤ that opti-
mizes problem (8), i.e., Vn(f⇤

n, r(f
⇤
n,f

⇤
�n), ⇣

NE
n r(f⇤

n,f
⇤
�n)) �

Vn(fn, r(fn,f
⇤
�n), ⇣

NE
n r(fn,f

⇤
�n)) for all fn 2 R+, n 2 N .

4 BLOCKCHAIN-EMPOWERED FRAMEWORK

The incentive mechanism proposed in Section 3 satisfies
properties P1�P4. However, with this mechanism, the or-
ganizations can determine their NE message profiles only
when they know the private information (e.g., utility, cost)
of each other. In this section, we propose a blockchain-
empowered framework for deploying our proposed incen-
tive mechanism and enabling the organizations to deter-
mine their NE without knowing the private information.

4.1 Overview of the Proposed Framework
Our proposed blockchain-empowered incentive mechanism
framework is shown in Fig. 2. Specifically, organizations
iteratively update and exchange their message profiles �n(t)
and ⇡n(t) until convergence to NE through interacting with
the blockchain, where t 2 Z+ denotes the iteration index.
The blockchain network includes (a) a smart contract for
coordinating the message profile exchange between organi-
zations, (b) a state that indicates the recent message profiles
and convergence flags, and (c) a ledger for tracking the
historical message profiles submitted by the organizations.

The smart contract is a self-executing digital agree-
ment. It has three modules. The message profile collection
module is responsible for gathering the message profiles
�n(t) and ⇡n(t) of all organizations n 2 N and sends
�(t) = (�n(t), n 2 N ) and ⇡(t) = (⇡(t), n 2 N ) back
to the organizations, based on which the organizations
update their message profiles. The convergence check module
is responsible for gathering the convergence flag, denoted
by Convg flag n, of all organizations n 2 N . Based on the
flags, this module determines whether the message profiles
of all organizations have converged to NE or not and
informs the organizations with the Global convg flag. If
Convg flag n is True for all n 2 N , then Global convg flag
is set to True. Otherwise, Global convg flag is set to False. If
Global convg flag is True, then the convergence check mod-
ule sends the NE message profiles �NE and ⇡NE to the or-
ganizations. Based on the monetary transfer mn(�NE

,⇡NE)
for n 2 N determined by (11), the transaction minimization
module determines the monetary transfer mn0,n(�NE

,⇡NE)
from organization n

0
2 N to organization n 2 N \ {n

0
} (see

Section 4.3) and informs the organizations accordingly.
Recall that the protocol must be lightweight (Challenge

2 (ii)). Both the message profile collection and convergence
check modules perform only simple executions (e.g., com-
parison, replacement) and have a computational complexity
of O(NI), where I denotes the number of iterations that the
algorithm takes before convergence. Based on the numerical
results in Section 5, I increases quadratically in N . We
will show in Section 4.3 that the transaction minimization
module has a complexity of O(N2 log2 N). Thus, all these
modules have polynomial complexity.

In organization n 2 N , there are three modules. The
submit message profile module sends the recent message
profile �n(t) and ⇡n(t) to the blockchain and requests �(t)
and ⇡(t). These profiles �(t) and ⇡(t) will be used for
updating �n(t+1) and ⇡n(t+1) using message profile update
module (see Section 4.2). The convergence check module is
responsible for determining the recent Convg flag n and
uploading it to the blockchain. If the Global convg flag sent
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Fig. 2. An illustration of blockchain-empowered incentive mechanism framework.

by the blockchain is False, then organization n continues the
iterative process and submits the updated message profile
�n(t + 1) and ⇡n(t + 1). If Global convg flag is True, then
the convergence check module determines the processing
capacity fn(�NE) based on �NE and obtains the values of
mn0,n(�NE

,⇡NE) for n0
2 N from the blockchain. Note that

during the entire iterative process, organizations send only
their message profiles and convergence indicators but not
their private information to the blockchain (Challenge 2 (i)).

Under this framework, there are two remaining ques-
tions. First, how should each organization n update �n(t+1)
and ⇡n(t+1) using the message profile update module such
that the message profiles of all organizations can converge to
an NE of Game 1? Second, how to determine the monetary
transfer between each pair of organizations using the trans-
action minimization module? To answer these questions,
we propose a distributed algorithm in Section 4.2, which
defines the message profile update steps and the associated
executions at each organization n 2 N in Fig. 2. We propose
an algorithm for transaction minimization in Section 4.3.

4.2 A Distributed Message Profile Update Algorithm
In our proposed framework, it is challenging to design an
algorithm that enables organizations to iteratively update
their message profiles based on their private information
as well as �n(t) and ⇡n(t) such that the message profiles
can gradually converge to the NE. This is due to the non-
convexity of the social welfare maximization problem (8).
To address this, we first reformulate problem (8). Since the
saddle point of the Lagrangian of the reformulated problem
is an NE of Game 1, we can then design an algorithm that
converges to the saddle point of the Lagrangian and hence
an NE of Game 1. We first reformulate the social welfare
maximization problem. Then, we propose the algorithm.

4.2.1 Problem Reformulation

We introduce an auxiliary variable vector r = (rn, n 2 N ),
where rn is the number of training rounds that organization
n performs. Since rn should be the same for all n 2 N , we
have the following social welfare maximization problem:

maximize
r

X

n2N
(Un (rn)� Cn (f

�
n(rn), rn)) (17a)

subject to rµ(n�2) = rµ(n�1), n 2 N , (17b)
rn 2 [0, r̄], n 2 N . (17c)

Constraint (17b) can be expanded as rN�2 = rN�1 for n =
0, rN�1 = r0 for n = 1, and rn�2 = rn�1 for 2  n  N�1.

It implies that rn has to be identical for all n 2 N . We write it
in the form of rµ(n�2) = rµ(n�1), n 2 N for the simplicity of
algorithm design. Let r⇤ be the optimal solution to problem
(17), and let r⇤ = r

⇤
0 = · · · = r

⇤
N�1. Then, the processing

capacity f�(r⇤) = (f�
n(r

⇤), n 2 N ) optimizes problem (8).
We define the Lagrangian of problem (17), i.e., L :

[0, r̄]N ⇥ RN
! R, as follows:

L(r,�) =
P

n2N (Un (rn)� Cn (f�
n(rn), rn))

�
P

n2N �n

�
rµ(n�2) � rµ(n�1)

�
, (18)

where � = (�n, n 2 N ) is the vector of the Lagrange mul-
tipliers. Note that L(r,�) can be decoupled into multiple
functions. That is, L(r,�) =

P
n2N Ln(rn,�), where

Ln(rn,�) = Un (rn)� Cn (f
�
n(rn), rn)

�
�
�µ(n+2) � �µ(n+1)

�
rn, n 2 N . (19)

For n 2 N , �µ(n+2) and �µ(n+1) are the Lagrange multipli-
ers correspond to constraints rn = rµ(n+1) and rµ(n�1) =
rn, respectively. Based on (7), (10), (11), and (19), we have
Ln(rn,�) = Vn (f�

n (rn) , rn,mn(rn1,�)), i.e., the payoff of
organization n under rn training rounds given �.

For problem (17), strong duality holds according to
Slater’s condition. Hence, the saddle point of Lagrangian
L(r,�), denoted by (r⇤,�⇤), exists. That is, L(r,�⇤) 
L(r⇤,�⇤)  L(r⇤,�) for any r 2 [0, r̄]N , � 2 RN . Thus, we
can prove that if (r⇤,�⇤) is a saddle point of L(r,�), then
it is an NE of Game 1, with the proof given in Appendix D.

Lemma 2 (Saddle Point and NE). For any saddle point
of L(r,�), denoted by (r⇤,�⇤), the message profile (�NE =
r⇤,⇡NE = �⇤) is an NE of Game 1.

4.2.2 Algorithm Design

We propose the message profile update algorithm based on
the distributed accelerated augmented Lagrangian method
[49], which is a distributed algorithm for achieving the
saddle point of the Lagrangian of a constrained problem
and has a high convergence rate. We have modified the
algorithm in [49] to adapt to the cross-silo FL scenario. In
our proposed algorithm, we replace the notations r and
� in L(r,�) with notations � and ⇡, respectively. The
organizations aim to find a saddle point of L(�,⇡) =P

n2N Ln(�n,⇡) =
P

n2N Vn (f�
n (�n) , �n,mn(�n1,⇡)).

The obtained saddle point is an NE of Game 1.
Our proposed algorithm is given in Algorithm 1, which

specifies the detailed executions of the modules at each
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Algorithm 1: Distributed Augmented Lagrangian-
Based Message Profile Update Algorithm

1 Randomly initializes �n(0), ⇡n(0);
2 Convg flag n False, t 0;
3 Send Convg flag n to the blockchain and wait for

Global convg flag;
4 while Global convg flag is False do
5 Submit (�n(t),⇡n(t)) and wait for the reply from

the blockchain that contains �(t) and ⇡(t);
6 �̂n(t) argmax�n2[0,r̄] V

⇢
n (�n,��n(t),⇡(t));

7 �n(t+ 1) �n(t) + ⌘ (�̂n(t)� �n(t));
8 ⇡n(t+ 1) ⇡n(t) + ⇢⌘(�µ(n�2)(t)� �µ(n�1)(t));
9 if |�n(t+ 1)� �n(t)|  � then

10 Convg flag n True;
11 end
12 Send Convg flag n to the blockchain and wait

for Global convg flag, t t+ 1;
13 end

organization n 2 N in Fig. 2. Specifically, the organizations
update the message profiles for multiple iterations using the
blockchain network until convergence. Each organization n

first randomly initializes its message profile (�n(0),⇡n(0)).
While the convergence indicator Global convg flag is False,
each organization n submits (�n(t),⇡n(t)) to the blockchain
in iteration t. Then, the organizations wait for the reply
from the blockchain, which contains the message profiles
of all organizations (�(t),⇡(t)). Steps 6�8 define how each
organization n updates its message profile in the message
profile update module. In Step 6, organization n computes
�̂n(t) by deriving the value of �n 2 [0, r̄] that maximizes

V
⇢
n (�n,��n,⇡) = Vn(f

�
n(�n), �n,mn(�n1,⇡))

�⇢
P

n2N
�
�µ(n�2) � �µ(n�1)

�2
, (20)

where ⇢ is a penalty coefficient. The second term can be
regarded as a term for penalizing the different number of
training rounds submitted by the organizations. In Steps
7 and 8, organization n computes the updated message
profile (�n(t + 1),⇡n(t + 1)) by considering a step size
⌘ 2 (0, 1). A larger ⌘ implies a more aggressive update. An
intuition behind Step 8 is as follows. Suppose the number of
training rounds submitted by organization µ(n�2) is much
larger than that submitted by organization µ(n�1) (i.e., the
difference �µ(n�2)(t) � �µ(n�1)(t) is large). Then, ⇡n(t + 1)
is large based on Step 8. According to (10) and (11), the large
value of ⇡n(t + 1) will lead to a small monetary transfer to
organization µ(n�2) and a large monetary transfer to orga-
nization µ(n�1). Hence, in the next iteration, organizations
µ(n� 2) and µ(n� 1) will reduce and increase the number
of training rounds that they submit, respectively.

The algorithm terminates when the absolute difference
between �n(t + 1) and �n(t) for all n 2 N is smaller than
a predefined threshold �. Thus, the organizations check
whether their values of |�n(t + 1) � �n(t)| is smaller than
threshold � or not. They send their Convg flag n to the
blockchain and wait for the Global convg flag replied by
the blockchain. When the threshold � is sufficiently small,

Algorithm 1 is proven to converge to the NE of Game 1. This
can be proven based on [49, Theorem 2] and Lemma 2.

Proposition 5 (Convergence). For any ⇢ 2 R+ that ensures
V

⇢
n (�n,��n,⇡) to be strictly concave for � 2 [0, r̄]N , ⇡ 2 RN ,

n 2 N , Algorithm 1 converges to the NE of Game 1.

Recall that I denotes the number of iterations that Al-
gorithm 1 takes to converge. Suppose a gradient decent
(GD) algorithm is used for computing �̂n(t) in Step 6, and
suppose this GD algorithm terminates when it finds a �n

that improves function V
⇢
n (�n,��n(t),⇡(t)) by less than �.

Lemma 3 (Complexity). If a GD algorithm is used for comput-
ing �̂n(t) in Step 6, then the computational complexity of Algo-
rithm 1 executed at organization n 2 N is O(I log(1/�) + I).

Lemma 3 holds because V
⇢
n (�n,��n(t),⇡(t)) is concave

in �n, under which the complexity of a GD algorithm for
computing �̂n(t) in Step 6 is log(1/�), and the executions in
Steps 7–12 take a constant number of operations. In Section
5, we show numerically that I is around O(N2), under
which Algorithm 1 has a polynomial complexity.

4.3 Transaction Minimization
When Algorithm 1 has converged to the NE message pro-
files �NE and ⇡NE, organization n can determine its pro-
cessing capacity fn(�NE) based on (9) and the monetary
transfer mn(�NE

,⇡NE) based on (11). However, an arbitrary
organization n

0 still needs to determine the exact payment to
another organization n, denoted by mn0,n(�NE

,⇡NE) � 0.
In the blockchain network, each transaction between two
organizations incurs a transaction fee. Thus, the transaction
minimization module in the smart contract needs to deter-
mine the values of mn0,n(�NE

,⇡NE) in order to minimize
their total payment for transactions (Challenge 3).

We use m
NE
n to denote mn(�NE

,⇡NE). We use mn0,n to
denote mn0,n(�NE

,⇡NE), which is a decision variable. Let
N

+ and N
� denote the set of organizations with nonnega-

tive and negative m
NE
n , respectively. The organizations aim

to minimize the number of transactions:

minimize
m

P
n2N

P
n02N 1 (mn0,n > 0) (21a)

subject to
P

n02N mn0,n = m
NE
n , n 2 N

+
, (21b)

P
n02N mn,n0 = |m

NE
n |, n 2 N

�
, (21c)

mn0,n � 0, n0
, n 2 N . (21d)

In problem (21), the objective is to minimize the number of
positive mn0,n, under which a transaction fee is incurred.
Constraint (21b) ensures that each organization n 2 N

+

gets paid m
NE
n , and constraint (21c) ensures that each orga-

nization n 2 N
� pays a total of mNE

n to other organizations.
Problem (21) is NP-hard. This is because even if we restrict
m

NE
n to be integers, this problem can be reduced to the sub-

set sum problem [50], which is a typical NP-hard problem.

4.3.1 Transaction Minimization Algorithm

To solve problem (21), we propose Algorithm 2, which will
be performed by the transaction minimization module in
the smart contract. At the beginning of Algorithm 2, we
initialize M+ and M� as the vectors with nonnegative
and negative monetary transfer, respectively. Let M

+
i and
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Algorithm 2: Transaction Minimization

1 M+
 (mNE

n , n 2 N
+), M�

 (mNE
n , n 2 N

�);
2 mn0,n  0 for n0

, n 2 N ;
3 while M+

6= 0 and M�
6= 0 do

4 while Set C , {(i, j) | M+
i = �M�

j ,M
+
i 6= 0} is

nonempty do
5 (i, j) an arbitrary element in C;
6 mn�(j),n+(i)  M

+
i ;

7 M
+
i  0, M�

j  0;
8 end
9 i argmini0{|M

+
i0 | | M

+
i0 6= 0, i0 2 N

+
};

10 j  argminj0{|M
�
j0 | | M

�
j0 6= 0, j0 2 N

�
};

11 mn�(j),n+(i)  min{M+
i ,M

�
j };

12 M
+
i  M

+
i �mn�(j),n+(i);

13 M
�
j  M

�
j +mn�(j),n+(i);

14 end

M
�
j denote the i

th element in vector M+ and j
th element

in vector M�, respectively. Let n
+(i) and n

�(j) denote
the organization indices associated with M

+
i and M

�
j ,

respectively. The values of M
+
i and M

�
j will be updated

across iterations. They represent the remaining monetary
transfer of the corresponding organizations that have not
been assigned to pay or receive by those transactions mn0,n

for n0
, n 2 N which have already been determined.

The iteration continues as long as vectors M+ and M�

are nonzero. Note that exactly one of M+ and M� being
a nonzero vector cannot happen, because

P
n2N m

NE
n = 0

holds based on Proposition 2. In steps 4�8, we find pairs
of elements in M+ and M� such that M

+
i = �M

�
j .

These are the element pairs that can be canceled out by
letting organization n

�(j) compensate organization n
+(i)

with payment M
+
i . If no such pair exists, then in steps

9�10, we find the indices of M+
i and M

�
j which have the

minimum nonzero absolute value. In steps 11�13, organiza-
tion n

�(j) compensates organization n
+(i) with payment

min{M+
i ,M

�
j }. The values of M

+
i and M

�
j are updated

accordingly. Through steps 9�13, in each iteration, at least
one element in vectors M+ and M� can be reduced to zero.

Let L
⇤ denote the minimum number of transactions,

i.e., the optimal value to problem (21). Let L
� denote the

number of transactions obtained using Algorithm 2. We
show that the output of Algorithm 2 is no larger than
twice the minimum number of transactions, and it has a
polynomial complexity. Propositions 6 and 7 are proven in
Appendices E and F, respectively.

Proposition 6 (Competitive ratio). Algorithm 2 achieves a
competitive ratio of two, i.e., L�

/L
⇤
 2.

Proposition 7 (Complexity). Algorithm 2 has a computational
complexity of O(N2 log2 N).

5 PERFORMANCE EVALUATION

We first conduct simulations to evaluate the performance
of our proposed Mechanism 1, Algorithm 1, and Algo-
rithm 2. Then, we implement our proposed framework with
Ethereum [34] for real-world evaluation. Table 1 shows the

TABLE 1
List of Parameters

Par. Value Par. Value
N 10 Model size 0.16 Mbits
K 5 DL speed 78.26 Mbps [51]
T 60 seconds UL speed 42.06 Mbps [51]
Dn 0.01 gigacycles Invest. cost $0.22 per GHz per hour [52]
Sn 600 samples DL energy 3 Joules per Mbit [53]
✏0 9.82 UL energy 3 Joules per Mbit [53]
✏1 4.26 Elec. rate $0.174 per kWh [54]

parameter settings. We perform FL using the MNIST dataset
with convolutional neural network model, based on which
we obtain parameters Sn, Dn, model size (i.e., the size of w),
✏0, and ✏1. In the simulations, MNIST dataset is randomly
distributed to organizations.4 The values of ✏0 and ✏1 are
determined by fitting the FL precision using function (4).

5.1 Performance of Mechanism 1 and Algorithm 1
We conduct simulations to show the performance of our
proposed Mechanism 1, denoted by “our mechanism”. Al-
gorithm 1 is used to determine the output of Mechanism
1. The performance is compared with the optimal value of
problem (8), denoted by “optimal”, and the performance
without any incentive mechanism (denoted by “without in-
centive”). We consider a scenario where organizations have
heterogeneous unit revenue (i.e., heterogeneous valuation
over the global model): un = u for n 2 {0, 1, ..., bN/2c � 1}
and un = u for n 2 {bN/2c, bN/2c+1, ..., N�1}, where the
average unit revenue is 10.5 Fig. 3 shows that our proposed
mechanism always leads to the same performance (i.e., the
number of training rounds r(f) in FL process and social
welfare) as the optimal solution, which validates Theorem
1. When compared with the scenario of “without incentive”,
our proposed mechanism improves the number of training
rounds that organizations perform in FL process and im-
proves the social welfare, which validates its capability in
preventing the free-rider attack. The improvement is more
significant when the valuation difference is higher.

We evaluate the convergence of our proposed Algo-
rithm 1 (denoted by “Augmented Lagrangian”) and another
Lagrangian-based algorithm [46, Section 8.1],6 denoted by
“Lagrangian”. Note that both algorithms can be used to
determine the output of Mechanism 1 and converge to the
NE of Game 1. We conduct 100 simulation rounds. In each
round, the values of un for n 2 N are randomly generated
using the truncated normal distribution with a mean of 10
and a standard deviation of one. The results are shown
using boxplot. In Fig. 4(a), our proposed algorithm reduces
the number of iterations by 38.7% � 69.9%. The reduction
is more significant when the number of organizations is
large. Fig. 4(b) shows that as the number of organizations

4. This corresponds to the scenario where organizations have IID
datasets. The non-IID scenario affects only the values of ✏0, and ✏1,
while the practical insights (e.g., in terms of algorithm convergence,
social welfare improvement) remain unchanged.

5. The NE under un = 10 for n 2 N leads to the number of training
rounds that can achieve a digit recognition correctness rate of more
than 90%. Our observations also hold for other values of the mean.

6. The Lagrangian-based algorithm [46, Section 8.1] is an algorithm
for finding the saddle point of any Lagrangian. In the simulation, it has
been modified to solve the problem in the cross-silo FL scenario.
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Fig. 3. Comparison between the optimal solution to problem (8), perfor-
mance without incentive mechanism, and with our proposed incentive
mechanism: (a) number of training rounds in FL; (b) social welfare.
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Fig. 4. (a) Comparison between the benchmark method “Lagrangian”
and Algorithm 1, denoted by “Augmented Lagrangian”. The red solid
and black dash lines show the corresponding median and mean values,
respectively. (b) Empirical computational complexity of Algorithm 1.

increases, the number of iterations that our proposed algo-
rithm takes has a polynomial complexity.

5.2 Performance of Algorithm 2
We conduct simulations to evaluate the performance of
Algorithm 2 (denoted by “TransMin alg.”) for transaction
minimization. The results are compared with a greedy al-
gorithm, where the organizations with negative monetary
transfer greedily compensate the organizations with posi-
tive monetary transfer in sequence (according to the order of
their indices), and the optimal solution to problem (21). We
run simulations for a hundred rounds. In each round, each
monetary transfer between the organizations is randomized
with uniform distribution within the range [�1, 1].7 Fig. 5(a)
shows that our proposed algorithm achieves a comparable
performance with the optimal solution. When compared
with the greedy algorithm, our proposed algorithm reduces
the number of transactions by up to 21.6%. In Fig. 5(b),
when compared with the optimal solution, our algorithm
reduces the computational time for determining the trans-
actions between organizations by up to 99.9%.

5.3 Real-World Implementation with Ethereum
We build a testbed using Ethereum to evaluate the perfor-
mance of our proposed blockchain-empowered framework.
The smart contract is written in Solidity, and the programs
at organizations are written in Python. In the following
experiments, we consider two scenarios: a homogeneous
scenario where all organizations have the same unit revenue
un = 10; a heterogeneous scenario where un = 4 for

7. Such a distribution range does not lose the generality of the simu-
lation results, because only the relative monetary transfer (rather than
the actual values) between the organizations affects the performance.
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5

10

15

6.4%

12.0%

17.7%
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(a) (b)
Fig. 5. Comparison between the optimal solution to problem (21), a
greedy algorithm, and Algorithm 2 (denoted by TransMin Alg.): (a)
number of transactions; (b) computational time. The black dash lines
show the corresponding mean values.

(a) (b)

(c) (d)
Fig. 6. Convergence of the message profiles (N = 10) in the testbed:
(a) �n in homogeneous scenario; (b) ⇣n in homogeneous scenario; (c)
�n in heterogeneous scenario; (d) ⇣n in heterogeneous scenario.

organizations n 2 {0, 1, ..., bN/2c � 1} and un = 16 for
n 2 {bN/2c, bN/2c+ 1, ..., N � 1}.

Fig. 6 shows the convergence of the message profiles
submitted by the organizations across wall-clock time. Figs.
6(a) and 6(b) correspond to the homogeneous scenario. As
the time increases, �n gradually converges to the optimal
number of training rounds r(f⇤) for all n 2 N , where
f⇤ is the optimal solution to problem (8). This implies
that after the algorithm has converged, the social wel-
fare is maximized. In addition, the unit monetary transfer
⇣n , ⇡µ(n+1) � ⇡µ(n+2) converges to zero for all n 2 N .
Intuitively, since the organizations are homogeneous, they
do not need to pay each other to motivate cooperation.

Figs. 6(c) and 6(d) correspond to the heterogeneous
scenario. As the time increases, �n gradually converges to
r(f⇤). For the unit monetary transfer, ⇣n for n 2 {0, 1, ..., 4}
converges to a positive value ⇣NE, and ⇣n for n 2 {5, 6, ..., 9}
converges to the negative value of ⇣

NE, i.e., �⇣NE. Note
that ⇣

NE and �⇣NE are the unit monetary transfer for an
organization n 2 {0, 1, ..., 4} and n 2 {5, 6, ..., 9} under
NE, respectively. Intuitively, organizations in set {0, 1, ..., 4}
have a lower valuation, so the other organizations have to
pay them to motivate their participation.

Fig. 7 shows the convergence of Algorithm 1 under
values of N in the testbed. In Fig. 7(a), as N increases from 6
to 12, an additional organization leads to approximately 12.6
more iterations on average. Meanwhile, the unit revenue
of the organizations (i.e., homogeneous or heterogeneous)
does not affect the convergence. In Fig. 7(b), as N increases,
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Fig. 7. Convergence under different number of organizations: (a) number
of iterations; (b) wall-clock time.

the time that Algorithm 1 takes until convergence increases,
and the marginal increase is non-decreasing. This is because
when there are more organizations submitting messages, the
blockchain system needs a longer time to generate blocks
and to update the state and ledger. When N is equal to 10,
the organizations require 1.11 hours to reach an agreement
in terms of processing capacity and monetary transfer. This
duration is relatively short when compared with the dura-
tion of the FL process (e.g., 1-10 days [2]).

6 CONCLUSION
In this work, we proposed a blockchain-empowered incen-
tive mechanism framework in order to motivate efficient
cooperation of the organizations in terms of their choices
of processing capacities in cross-silo FL. This framework
prevents the free-rider attack and enables organizations
to achieve social efficiency, individual rationality, budget
balance, and fulfillment of agreement without any central
entity and the private information of the organizations. Sim-
ulation results verify that our proposed distributed message
profile update algorithm converges to social efficiency solu-
tion and has a faster convergence than the conventional La-
grangian method Thus, this algorithm reduces the computa-
tional load in the smart contract. Our proposed transaction
minimization algorithm empirically achieves a near-optimal
solution with polynomial complexity. We implemented our
proposed framework in a testbed and showed that it takes
tens of minutes for our proposed algorithm to converge
to the NE in real-world blockchain systems. One future
direction is to incentivize efficient participation by jointly
considering the computational resource, the number of local
epochs, and the number of data samples used for training.
Another direction is to allow organizations to join in only
some of the training rounds based on their valuations.
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APPENDIX A
PROOF FOR LEMMA 1
Suppose (�NE

,⇡NE) satisfies (14) but is not an NE. Then,
there exists �0

n for n 2 N such that for �0 = (�0
n,�

NE
�n),

Vn(f
�
n(er(�

0)), er(�0),mn(er(�0)1,⇡NE))

> Vn(f
�
n(er(�

NE)), er(�NE),mn(er(�NE)1,⇡NE)), (22)

where inequality (22) contradicts inequality (14).
Suppose (�NE

,⇡NE) is an NE of Game 1, while (14)
does not hold for some n 2 N . Then, there exists �

0
n for

an organization n 2 N such that for �0 = (�0
n,�

NE
�n),

Vn(fn(�
0), er(�0),mn(�

0
,⇡NE))

> Vn(fn(�
NE), er(�NE),mn(�

NE
,⇡NE)), (23)

which violates the assumption that (�NE
,⇡NE) is an NE.

APPENDIX B
PROOF FOR THEOREM 1
To prove Theorem 1, we formulate an optimization problem
to determine the number of training rounds r:

maximize
r

X

n2N
(Un(r)� Cn(f

�
n(r), r)) (24a)

subject to r 2 [0, r̄]. (24b)

If r
⇤ is an optimal solution to problem (24), then we

can prove that the processing capacity vector f�(r⇤) =
(f�

n(r
⇤), n 2 N ) is an optimal solution to problem (8).

We now prove that for any NE of Game 1 (�NE
,⇡NE),

f(�NE) is an optimal solution to problem (8). This is proven
by showing that r

NE , er(�NE) is the optimal solution to
problem (24). In the following, we first analyze problem (24)
and then prove that rNE is an optimal solution to (24).

Based on Assumption 1 and the definitions of the utility
and cost functions, the objective function (24a) is concave
in r. Meanwhile, since the constraint in (24b) is linear, the
Karush-Kuhn-Tucker (KKT) conditions of problem (24) are
sufficient for optimality. Note that the utility and cost func-
tions are continuously differentiable. Thus, r⇤ is an optimal
solution to problem (24) if there exist Lagrange multipliers
↵
⇤ and �

⇤ such that the following KKT conditions are
satisfied:1

X

n2N

✓
@Un(r⇤)

@r⇤
�

@Cn(f�
n(r

⇤), r⇤)

@r⇤

◆
+ ↵

⇤
� �

⇤ = 0, (25a)

r
⇤
� 0, r⇤  r̄, ↵

⇤
� 0, �⇤

� 0, (25b)

↵
⇤
r
⇤ = 0, �⇤(r⇤ � r̄) = 0. (25c)

In terms of the NE (�NE
,⇡NE) and the resulting r

NE,
according to Lemma 1, there exist ↵NE = (↵NE

n , n 2 N )
and �NE = (�NE

n , n 2 N ) such that the following holds:

r
NE =

X

n2N
�
NE
n /N, (26a)

1. We use ↵ and � to refer to the Lagrange multipliers in this
appendix in order to distinguish them from the Lagrange multipliers in
Section 4.

@Un(rNE)

@rNE �
@Cn(f�

n(r
NE), rNE)

@rNE

+ (⇡NE
µ(n+1) � ⇡

NE
µ(n+2)) + ↵

NE
n � �

NE
n = 0, n 2 N , (26b)

r
NE

� 0, rNE
 r̄,↵

NE
n � 0, �NE

n � 0, n 2 N , (26c)

↵
NE
n r

NE = 0, �NE
n (rNE

� r̄) = 0, n 2 N . (26d)

Conditions (26b)�(26d) correspond to the KKT conditions
of maxr2[0,r̄] Vn(f�

n(r), r,mn(r1,⇡NE)) for each n 2 N .
To prove that r

NE is an optimal solution to problem
(24), let ↵

⇤ =
P

n2N (⇡NE
µ(n+1) � ⇡

NE
µ(n+2)) +

P
n2N ↵

NE
n =P

n2N ↵
NE
n , and let �

⇤ =
P

n2N �
NE
n . Then, we have

(r⇤ = r
NE

,↵
⇤
,�

⇤) satisfies the KKT conditions in (25).

APPENDIX C
PROOF FOR PROPOSITION 4
According to (14), r

NE is the optimal solution to the
optimization problem maxr2[0,r̄] Vn(f�

n(r), r,mn(r1,⇡NE)).
Then, we can prove (16) by showing that r(fNE) = r

NE,
and Vn(f�

n(r
NE), rNE

, ⇣
NE
n r

NE) � Vn(f 0
n, r

NE
, ⇣

NE
n r

NE) for
all n 2 N under any f 0 , (f 0

n, n 2 N ) 2 RN
+ that

satisfies r(f 0) = r
NE. This inequality holds for n 2

N because Un(r(f
NE)) = Un(rNE) = Un(r(f

0)), but
Cn(f�

n(r
NE), r(fNE))  Cn(f 0

n, r(f
0)) based on (9).

APPENDIX D
PROOF FOR LEMMA 2
The saddle point of L(r,�), denoted by (r⇤,�⇤), satisfies
the KKT conditions of problem (17) as follows:

@Un(r⇤n)

@r⇤n
�

@Cn(f�
n(r

⇤
n), r

⇤
n)

@r⇤n
�

⇣
�
⇤
µ(n+2) � �

⇤
µ(n+1)

⌘

+ e↵⇤
n � e�⇤

n = 0, n 2 N , (27a)

r
⇤
µ(n�2) = r

⇤
µ(n�1), r

⇤
n � 0, r⇤n  r̄, n 2 N , (27b)

e↵⇤
n � 0, e�⇤

n � 0, e↵⇤
nr

⇤
n = 0, e�⇤

n(r
⇤
n � r̄) = 0, n 2 N , (27c)

where e↵⇤
n and e�⇤

n are the Lagrange multipliers correspond-
ing to constraints rn � 0 and rn  r̄ for n 2 N , respectively.
Let �

NE
n = r

⇤
n, ⇡

NE
n = �

⇤
n, ↵

NE
n = e↵⇤

n, and �
NE
n = e�⇤

n
for n 2 N . Then, (�NE

,⇡NE
,↵NE

,�NE) leads to (26), i.e.,
(�NE

,⇡NE) is an NE of Game 1.

APPENDIX E
PROOF FOR PROPOSITION 6
We first present an equivalent problem to problem (21).
Consider a complete bipartite graph G = (N+

,N
�
, E),

where E = N
+
⇥N

� denotes the set of edges in this graph.
Each vertex n in sets N

+ and N
� is assigned a value of

m
NE
n . Consider an arbitrary subset of edges E

S
✓ E that

satisfies the following condition.

Condition 1. Let mn0,n(ES) 2 R denote the weight assigned
to edge (n0

, n) 2 E
S. Subset E

S
✓ E must ensure that there

exist weights m(ES) = (mn0,n(ES), (n0
, n) 2 E

S) such thatP
n02N mn0,n(ES) = m

NE
n for all n 2 N

+
[N

�.

Note that L
⇤

� max{|N+
|, |N

�
|}. If L

⇤ = |E
S⇤
| <

max{|N+
|, |N

�
|}, then there exists a vertex n 2 N

+
[N

�
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such that it is not the end point of any edge in E
S⇤. Thus,

there cannot exist any m(ES) satisfying mn0,n(ES) = m
NE
n .

This contradicts to the requirement of ES.
The value of L� is no larger than |N

+
| + |N

�
|. Specif-

ically, with Algorithm 2, we solve the aforementioned bi-
partite graph problem by adding edge (n�(j), n+(i)) to
E

S whenever mn�(j),n+(i) is set to a positive value. Note
that based on Algorithm 2, when an mn�(j),n+(i) is set
to a positive value (e.g., in Step 5 or 10), at least one of
the corresponding remaining monetary transfer M

+
i and

M
�
j is set to be zero (e.g., in Step 6, 11, or 12). If M

+
i

is set to zero, then no other mn,n+(i) for n 2 N
� will

be updated in the following iterations, i.e., no other edges
(n, n+(i)) for n 2 N

� will be added to E
S in the following

iterations. Similarly, if M
�
j is set to zero, then no other

edges (n�(j), n) for n 2 N
+ will be added to E

S in the
following iterations. Thus, at most |N+

| + |N
�
| edges are

added to E
S before the algorithm terminates. Thus, with

Algorithm 2, |E
S
|, or equivalently L

�, is no larger than
|N

+
| + |N

�
|. As a result, the competitive ratio is equal to

L
�
/L

⇤ = (|N+
|+ |N

�
|)/max{|N+

|, |N
�
|}  2.

APPENDIX F
PROOF FOR PROPOSITION 7
Algorithm 2 terminates after no more than |N

+
| + |N

�
|

iterations, which is on the order of O(N). This is because in
each iteration, at least one element of vectors M+ and M�

is set to zero. In each iteration, the existence of i and j in Step
4 can be found by first sorting the elements in vector M+

and M�. These two sorting processes have a computational
complexity of O(|N+

| log2 |N
+
|) and O(|N�

| log2 |N
�
|),

respectively, both of which are O(N log2 N). After sorting,
the associated M

+
i and M

�
j (in Step 4) and the minimum

elements in M+ and M� (in Steps 9 and 10) can be found
with complexity O(N). Thus, the computational complexity
of Algorithm 2 is O(N(N log2 N +N)) = O(N2 log2 N).


