
Load Scheduling and Power Trading in Systems
with High Penetration of Renewable Energy

Resources
Pedram Samadi, Student Member, IEEE, Vincent W.S. Wong, Senior Member, IEEE,

and Robert Schober, Fellow, IEEE

Abstract—In this paper, we focus on the problems of load
scheduling and power trading in systems with high penetration
of renewable energy resources (RERs). We adopt approximate
dynamic programming to schedule the operation of different
types of appliances including must-run and controllable ap-
pliances. We assume that users can sell their excess power
generation to other users or to the utility company. Since it
is more profitable for users to trade energy with other users
locally, users with excess generation compete with each other
to sell their respective extra power to their neighbors. A game
theoretic approach is adopted to model the interaction between
users with excess generation. In our system model, each user aims
to obtain a larger share of the market and to maximize its revenue
by appropriately selecting its offered price and generation. In
addition to yielding a higher revenue, consuming the excess
generation locally reduces the reverse power flow, which impacts
the stability of the system. Simulation results show that our
proposed algorithm reduces the energy expenses of the users.
The proposed algorithm also facilitates the utilization of RERs
by encouraging users to consume excess generation locally rather
than injecting it back into the power grid.

Index Terms—Demand side management, load scheduling,
power trading, approximate dynamic programming.

I. INTRODUCTION

Concerns about environmental issues and the need to reduce
greenhouse gas emission have attracted considerable atten-
tion to environmentally friendly renewable energy resources
(RERs). Regulations have been passed to increase the pro-
duction of energy from renewable energy resources. These
regulations are referred to as the renewable portfolio standard,
and require the utility companies and energy providers in the
United States and the United Kingdom to serve a specific
minimum amount of their customers’ load with RERs [1].
RERs such as solar and wind are non-dispatchable, since they
are random in nature. In systems with high penetration of
RERs, the power may flow from distributed generators (DGs)
to the substation, which negatively impacts the stability of the
system. If the reverse power flow exceeds a certain threshold, it
causes the voltage rise problem, which is a major challenge in
integrating a large number of DGs in the distribution network
[2]–[4].
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To tackle the reverse power flow problem, it is desirable
that users consume their generating power locally rather
than injecting the excess power back into the grid. Storage
facilities and demand side management (DSM) techniques
can be adopted to shape the load pattern of the users to
better match supply and demand [5]–[9]. Furthermore, users
are able to trade their excess generation with other local
users, if the underlying system is equipped with advanced
metering infrastructure (AMI), flow control infrastructure,
and communication capabilities. Such infrastructure is found
in advanced networks such as microgrids. Microgrids are
autonomous systems which can operate either in a grid-
connected or islanded mode. These systems benefit from
their own distributed generation, and to achieve a high level
of reliability, they may have a grid topology different from
the tree structure which is usually found in conventional
distribution networks [10]–[13]. Hence, in microgrids, power
can flow through different paths from one node to another.
Thus, users can control the flow of power to other users in
such systems. The probability that the voltage rise problem
occurs increases when more users decide to inject their excess
generation via the main feeder into the grid. Therefore, the
ability of users to route their excess power directly to their
neighbors reduces the probability that the voltage rise problem
occurs. Local power trading can benefit the users by providing
monetary revenue for them. Furthermore, local trading in
microgrids that act autonomously and have their own market
regulations facilitates the integration of RERs. Considering the
conventional market regulations, there are two main barriers
for the integration of RERs. First, RERs are random in nature,
and it is difficult to dispatch their output generation in a day-
ahead market. Second, the power generation from RERs is
relatively small compared to the amounts which are traded in
a day-ahead electricity market. With local trading, users can
sell their excess power generation in an opportunistic manner
in the current time slot, when they have a more accurate
estimate of their output generation compared to the estimate
they had the previous day. Furthermore, users can sell their
excess generation at a smaller scale, e.g., within a microgird.

Different DSM programs have been designed to facilitate
the integration of RERs into the power grid, and the impact
of different decision makers on the electricity market has been
studied [14]–[23]. Most of the existing work in the literature
considers the case where users can sell their excess generation
back to the grid [21]–[23]. However, despite its importance,



the possibility of trading energy among local users and the
related benefits that users may obtain due to competition
between local generators have not been well investigated.

In this paper, we focus on modeling the interaction between
users that can sell and buy locally generated electricity. In our
model, users can offer their excess local generation capacity to
other users with an appropriately selected price. For a given
user, the selected price and the offered generation capacity
depend on both the marginal cost of the user and the price
offered by other users. Thus, users form a game in which they
aim to maximize their own revenue. Due to the competition
between multiple local generators, the consuming users may
benefit from a lower price compared to the price advertised
by the utility company. Our main contributions are as follows:
• We consider a game theoretic approach to model the

interaction of users with excess power generation. Users
compete to sell their extra generation to other local
users. The revenue of competing users depends on their
own marginal cost and the offers advertised by other
competing users. Thus, each competing user chooses its
offered price and output generation such that its revenue
is maximized.

• We formulate the problem of selecting the offered price
and output generation (i.e., the trading problem) as a
linear mixed-integer program. To tackle the complexity of
the trading problem, we adopt the generalized Benders’
decomposition approach.

• We propose an approximate dynamic programming ap-
proach to schedule the operation of must-run, inter-
ruptible controllable, and non-interruptible controllable
appliances. The linearity of the proposed approximated
scheduling problem makes it possible to schedule the
operation of different appliances independently. Indepen-
dent scheduling of appliances significantly reduces the
complexity of the scheduling algorithm and makes the
real-time implementation of the algorithm possible.

• Simulation results show that our proposed algorithm
reduces the energy payment of users compared to the
case where trading is not applied. Our proposed scheme
facilitates the integration of RERs and mitigates the
reverse power flow problem by providing the users an
opportunity to trade their excess generation locally.

The rest of this paper is organized as follows. The sys-
tem model is introduced in Section II. In Section III, the
problem formulation and algorithm description are presented.
Simulation results are provided in Section IV, and Section V
concludes the paper. The most important variables used in this
paper are listed in Table I.

II. SYSTEM MODEL

We consider a smart power system with a single utility
company and several users. Each user is equipped with a
renewable DG, such as photovoltaic cells or wind turbines.
The demand requirements of the users are met by their
local generation, power imported from other users, and power
imported from the utility company. Let U denote the set of
users. We assume that each user u ∈ U is equipped with

TABLE I
LIST OF NOTATIONS AND VARIABLES USED IN THIS PAPER.

U Set of users
T Number of time slots
T Set of all time slots (T , {1, . . . , T})
Au Set of all appliances of user u
Tu,a Feasible scheduling interval of appliance a for user u

(Tu,a , [αu,a, βu,a])
αu,a Earliest time at which appliance a can start operating
βu,a Deadline by which the operation of appliance a

has to be finished
Pa Pattern of power consumption of appliance a

if no scheduling is applied (Pa , (P a
1 , . . . , P

a
Ia))

P a
i Power consumption at ith operating cycle of appliance a
Ia Number of operating cycles of appliance a
Ia Set of operating cycles of appliance a
χu,a
t State of appliance a at time slot t (χu,a

t , (qu,at , wu,a
t ))

qu,at Number of remaining operating cycles of appliance a
wu,a

t Number of time slots for which the operation of
appliance a can be delayed

xu,at Indicator showing if appliance a is scheduled to operate
at time slot t or not

Bb Storage capacity of the battery
eb Maximum charging and discharging rates of the battery
yut Charging / discharging rate of user u’s battery
Λu

t Charging state of user u’s battery at the beginning of
time slot t

gut Total power exported by user u at time slot t
Cu

t (·) Cost of providing gut units of energy for user u
at time slot t

aut Cost function parameter of user u
but Cost function parameter of user u
cut Cost function parameter of user u
λh
t Price value set by the utility company for time slot t
λl
t Price value at which the utility company buys energy

from users at time slot t
Lu

t Load of user u at time slot t
ψu

t Amount of generated power of user u at time slot t
µt Market clearing price at time slot t
jut Auxiliary binary variable
hu
t Portion of generated power sold at price µt

Xu
t Set of actions available for each appliance a at state χu

t

Yu
t Feasible operating set of the battery

Vu
t Value function of user u at time slot t

θut (·) Effective market clearing price for user u at time slot t
ηut Weight coefficient of user u at time slot t
δ Observation weight
Gt Set of all competing users at time slot t
Nt Number of competing users at time slot t
G−u
t Set of all competing users other than user u
Ou

t Offer of competing user u at time slot t
πu
t Offered price of competing user u at time slot t
gut Offered generation capacity of competing user u

at time slot t
Gu

t Maximum generating capacity of competing user u
at time slot t

O−u
t Vector of offers advertised by all competing users

other that user u at time slot t
znt Auxiliary binary variable
Sn
t Group of competing users with offered price less than

or equal to πn
t

Sn
t Aggregate offered generation of users in Sn

t

dnt , ft Auxiliary binary variables
K1,K2 Large positive constants

a smart meter which has an energy consumption controller
(ECC) capable of scheduling and adjusting the household



energy consumption. The ECC units of all users are connected.
We divide the intended operation cycle into T , |T | time
slots, where T , {1, . . . , T}.

Let Au denote the set of all appliances of user u. We
assume that based on the demand requirements of the user,
each appliance can be set as either must-run or controllable.
This setting is decided by the user and can vary from time to
time. The ECC has no control over the operation of must-run
appliances. In contrast, the operation of controllable appliances
can be delayed or interrupted if necessary. Each controllable
appliance can be either interruptible or non-interruptible. For
interruptible appliance a, the ECC may delay or interrupt its
operation. However, for non-interruptible appliance a, it is
only possible to delay its operation. We assume that the mode
of operation of the appliances, i.e., whether they are must-
run or controllable, is not pre-determined and depends on the
current preference of the user. That is, based on the preference
of the user, those appliances may work either as must-run
or controllable. Controllable appliances can be modeled as
interruptible if the appliance’s task can be completed in
disjoint time intervals, and the interruption of the operation
does not impact the completion of the task [24]. For example,
charge of electric vehicles and pool water pumps can be
modeled as interruptible controllable appliances. Since users
may only require that their vehicle be fully charged or their
pool be full of water by a given deadline, the charging or
pumping process can be interrupted and resumed as long as it
is possible to meet the deadline1. In each time slot, appliances
can be either on or off. Moreover, they can operate in a
limited number of operating modes [25], [26]. Therefore, we
model their operation as a discrete Markov process as will be
explained in the following.

At the beginning of a time slot, each appliance of user u
that is about to start operation sends an admission request
to the ECC unit. The admission request specifies whether
the appliance is must-run or controllable and its operational
specifications, i.e., Tu,a , [αu,a, βu,a], where αu,a is the
earliest time at which appliance a can start operating (i.e., the
time slot it becomes awake), and βu,a is the deadline by which
the operation of appliance a has to be finished. The power
consumption of each appliance can be different at different
cycles of its operation due to changes in the amount of current
being absorbed. We define vector Pa , (P a1 , . . . , P

a
Ia

) as the
power consumption pattern of appliance a if no scheduling
is applied, where P ai is the power consumption of appliance
a at its ith operating cycle, Ia , |Ia| is the number of
operating cycles of appliance a, and Ia , {1, . . . , Ia}. We
also assume that the duration of each operating cycle is one
time slot. In practice, if the actual operating cycle lasts for
more than one time slot, this can be modeled by introducing
multiple consecutive operating cycles having identical values
for the power consumption. An example for the pattern of
power consumption of controllable appliance a before and
after scheduling is illustrated in Fig. 1.

1To avoid frequent interruptions, it is possible to consider costs associated
with the interruption of the operation of an appliance. However, adding this
extra term makes the design more complicated and implementation in real-
time settings becomes more difficult.
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Fig. 1. An example for the pattern of power consumption of interruptible
controllable appliance a before and after scheduling.

For each appliance a of user u, we define χu,at ,
(qu,at , wu,at ) as the state of appliance a at time slot t, where
qu,at is the number of remaining operating cycles of appliance
a, and wu,at is the number of time slots for which the operation
of appliance a can be delayed. We define xu,at ∈ {0, 1}
as an indicator which shows whether appliance a of user u
is scheduled to operate at time slot t (xu,at = 1) or not
(xu,at = 0). The state of appliance a at the next time slot t+1,
χu,at+1, can be inferred from its current state χu,at , its type, and
the operating decision xu,at . For a must-run appliance a, the
initial state is χu,aαu,a

= (Ia, 0). A must-run appliance a starts
operation immediately (i.e., xu,at = 1, if qu,at ≥ 1) and its
state χu,at+1 = (qu,at+1, 0) evolves as

χu,at+1 =
(
qu,at − 1, 0

)
, for qu,at > 0. (1)

For a non-interruptible appliance a, it is only possible to delay
its operation. Once it has started operation, it is not possible to
interrupt its operation. The initial state of a non-interruptible
appliance a is χu,aαu,a

= (Ia, βu,a − αu,a − Ia + 1). The state
evolves as

χu,at+1 =

{(
qu,at , wu,at − 1

)
, ifxu,at = 0, wu,at ≥ 1,(

qu,at − 1, 0
)
, ifxu,at = 1, qu,at ≥ 1.

(2)

For an interruptible appliance a, it is not only possible to delay
operation but also to interrupt operation if required. The initial
state of an interruptible appliance a is χu,aαu,a

= (Ia, βu,a −
αu,a − Ia + 1), and it evolves as

χu,at+1 =

{(
qu,at , wu,at − 1

)
, ifxu,at = 0, wu,at ≥ 1,(

qu,at − 1, wu,at
)
, ifxu,at = 1, qu,at ≥ 1.

(3)

We also define χut = (χu,1t , . . . , χ
u,|Au|
t ).

To better utilize the RERs and match demand and supply, we
assume that each user is equipped with a storage device such
as a battery. The charging and discharging of the battery is
modeled as a continuous process. We define Bb as the storage
capacity of the battery. We assume that the maximum charging
and discharging rates of the battery are identical and denoted
by eb. For time slot t, we define variable yut ∈ [−eb, eb] as
the charging / discharging rate of user u’s battery. Moreover,
Λut is the charging state of user u’s battery at the beginning
of time slot t. Thus, we have

Λut = Λu0 +

t−1∑
k=1

yuk , (4)



where Λu0 is the initial charging state of the battery. At any time
slot t, the stored energy cannot exceed the storage capacity Bb.
Moreover, it is not possible to extract more energy from the
storage unit than what is stored, i.e.,

0 ≤ Λut ≤ Bb. (5)

Let gut denote the total power exported by user u at time slot
t. Users may utilize different technologies or different types of
RERs to generate power. The intermittent nature of the RERs
may cause problems regarding stability, voltage regulation, and
power quality. In general, the quality of the generated power
needs to be enhanced before it can be transmitted to other
users. Different techniques have been proposed to improve
the quality of power which results in additional costs for
generators [27]. Therefore, the maintenance and operation cost
is different for different users. We consider a cost function
Cut (gut ) indicating the cost incurred to user u for providing gut
units of energy at time slot t. We assume that the cost function
is increasing and strictly convex in the offered energy. In this
paper, we consider a quadratic cost function:

Cut (gut ) = aut (gut )2 + but g
u
t + cut , (6)

where aut > 0 and but , c
u
t ≥ 0 are pre-determined parameters.

III. PROBLEM FORMULATION AND ALGORITHM
DESCRIPTION

We consider the problems of load scheduling and power
trading. Each user schedules the operation of its appliances to
reduce its energy expenses. Primarily, each user uses its local
generation to meet its own demand. If the local generation is
not sufficient, then the user buys energy from its neighbors
and the utility company. On the other hand, users with excess
generation capacity compete with each other to sell their extra
generations.

We define λht as the price value set by the utility company
for each time slot t. We refer to users with excess generation
as competing users. The advertised price of competing users
should be less than λht to be economically reasonable for buy-
ers. Competing users may have different marginal production
cost. Thus, their advertised prices can be different. Among the
competing users, those with the smallest advertised price are
selected to serve the demand. The selected competing users
are referred to as providing users. Different approaches have
been proposed in the literature to clear the market and pay
the sellers. Providing users may sell their excess generation
at their advertised price, or they may adopt a market clearing
price (MCP) to serve the demand [28]. MCP is the highest
advertised price among providing users. In our system model,
we assume that the market is cleared by an MCP. Moreover,
competing users who are not selected as providing users can
still sell their extra generation back into the grid at a lower
price λlt ≤ λht .

A. Scheduling Problem Formulation

We assume that the exact information about the list of appli-
ances that are awake in each time slot, whether they are must-
run or controllable, and the deadline by which their operation

has to be finished is revealed only gradually over time to the
ECC units. The operating schedule of controllable appliances
depends on the price of electricity for the current time slot
(i.e., the MCP). On the other hand, the MCP depends on the
tentative load schedule of each user and whether the user has
excess generation or not. In general, it is difficult to formulate
and solve the joint optimization problem for determining the
MCP and the operating schedule of the controllable appliances.
To tackle this problem, we determine the operating schedule of
the appliances and the MCP in two stages, i.e., the scheduling
stage and the trading stage.

At the scheduling stage, we assume that the operating
schedule of the controllable appliances is determined based
on the estimated MCP for each time slot. Each user estimates
the average MCP for each time slot based on its observations
from past operating periods. This estimate can be different
for different users as the effects of both selling and buying
energy are taken into account. In this stage, users determine
whether they have excess generation or have to acquire energy
from neighboring users. Then, at the trading stage, competing
users compete and the exact MCP for the current time slot t
is determined. At the trading stage, competing users prefer to
sell their excess generation to their neighbors rather than to
the utility company, as they can make more profit by selling
at a price higher than λlt. Moreover, the consuming users may
also benefit from local trading because the competing users
may reduce their offered price compared to λht to obtain a
larger share of the market. We define

Lut =
∑
a∈Au

P aIa−qu,a
t +1x

u,a
t + yut − ψut (7)

as the load of user u at time slot t, where ψut is the amount
of generated power of user u at time slot t. For the case in
which the user has excess power to sell to the others, i.e.,
Lut < 0, we define Gut , −Lut as the maximum power that
can be exported to other users. For user u ∈ U at time slot
t ∈ T , we define vt

(
χut , L

u
t

)
as the payment of the user for

the known load Lut :

vt
(
χut , L

u
t

)
= µtL

u
t j
u
t +

(
µth

u
t + λlt(1− hut )

)
Lut (1− jut )

=

(
µtj

u
t +
(
µth

u
t +λlt(1−hut )

)
(1−jut )

)
Lut , (8)

where µt is the MCP at time slot t, and jut is a binary variable
specifying whether Lut ≥ 0 (jut = 1) or not (jut = 0). We
define hut , gut /G

u
t , where gut is the amount of generated

power which is processed and sold to neighboring users at
price µt.

For each user u, the power scheduling is done by its ECC
unit at current time slot t by solving the following optimization
problem, which aims to minimize the expected energy cost in
the upcoming time slots:

Vut (χut )= minimize
xu
t ∈ Xu

t ,
yut ∈ Yu

t

vt
(
χut , L

u
t

)
+E
{
Vut+1(χut+1) | χut

}
, (9)

where E{·} denotes the expectation with respect to the demand
and generation uncertainties in upcoming time slots, xut ,
(xu,1t . . . , x

u,|Au|
t ), Xut is the set of actions available for each



appliance a at state χut , and Yut , which is the feasible operating
set of the battery, is defined as

Yut =

{
yut | yut ∈ [−eb, eb], 0 ≤ Λut ≤ Bb

}
. (10)

vt
(
χut , L

u
t

)
is as (8), while the second term on the right hand

side of (9) is the expected cost of energy in the upcoming
time slots, which we will refer to it as the cost-to-go. We
refer to Vut (·) as the value function of user u at time slot t,
and VuT+1(·) , 0. Considering (8), we define

θut (χt) , µtj
u
t +

(
µth

u
t + λlt(1− hut )

)
(1− jut ) (11)

as the effective MCP for user u at time slot t. θut (·) incor-
porates the effects of both electricity payment and electricity
revenue for user u. θut (·) depends on the scheduling and trad-
ing decisions of user u, the decisions of other users, and the
realizations of random events (i.e., the power generation from
RERs and the demand requirements of the users). Thus, it is
very difficult to calculate θut (·) directly. To tackle this problem,
we propose an approximate dynamic programming approach
to estimate the solution of problem (9). One approach to
approximate the value function is to adopt parametric models
[29]. The value function is replaced with a linear regression.
Problem (9) can be approximated as

V̂ut (χut ) = minimize
xu
t ∈ Xu

t ,
yut ∈ Yu

t

ηut L
u
t + E

{
V̂ut+1(χut+1) | χut

}
, (12)

where ηut is the weight coefficient of user u at time slot
t. A comparison of (9) and (12) reveals that the coefficient
ηut approximates the function θut (χt) in (8). However, as
new observations about the true value function for each time
slot are revealed, the weight coefficients ηut are updated
accordingly, as will be explained later in this section.

The linearity of (12) makes it possible to calculate the
optimal values of xu,at and yut independently, and thus, to
separate the scheduling process of individual appliances. That
is, for each individual appliance a, we need to solve the
following dynamic program:

V̂u,at (χu,at ) = minimize
xu,a
t ∈ Xu,a

t

ηut P
a
Ia−qu,a

t +1x
u,a
t + V̂u,at+1(χu,at+1),

(13)
where Xu,at is the set of actions available for appliance a at
state χu,at , and V̂u,at (χu,at ) is the approximate value function
for appliance a in state χu,at . When state χu,at is equal to
(0, wu,at ), V̂u,at (χu,at ) = 0 since the operation of the appliance
is finished. Problem (13) can be solved by backward induction.

For operation of the battery, due to the continuity of the
decision variables, it is more convenient to represent its
scheduling process in the form of an optimization problem

V̂u,bt (Λut ) = minimize
yuk ∈ Yu

k ,
k ∈ Tt

∑
k∈Tt

ηuky
u
k , (14)

where V̂u,bt (Λut ) is the approximate value function for the
battery in state Λut , and Tt , {t, . . . , T}.

We assume that at the end of the operation period, the
true value function for the whole operation period can be

observed (i.e., the total electricity cost for all T time slots).
We denote the true value function for user u as Vu. However,
based on the column vector of value function parameters,
ηu = (ηu1 , . . . , η

u
T ), and the column vector of total load in

each time slot, Lu = (Lu1 , . . . , L
u
T ), the approximated value

function is
V̂u = LT

uηu, (15)

where T is the transpose operator. After the true value function
has been observed, this new information is used to adjust the
old estimate of parameter ηu. Let m denote the number of
observations obtained so far. We define Vu,m, V̂u,m, ηu,m,
and Lu,m as the values of Vu, V̂u, ηu, and Lu corresponding
to the mth observation, respectively. As the new (m + 1)th
observation arrives, we update the value function parameters
based on the recursive least square method, i.e.,

ηu,m+1 = ηu,m

+
HmLu,m+1

1
δ + LT

u,m+1HmLu,m+1

(
Vu,m+1 − V̂u,m+1

)
,

where
V̂u,m+1 = LT

u,m+1ηu,m,

and

Hm+1 = Hm −
HmLu,m+1L

T
u,m+1Hm

1
δ + LT

u,m+1HmLu,m+1

.

Here, H0 is a positive definite matrix, and 0 < δ < 1 is the
observation weight. We note that the influence of the recent
observations decreases more rapidly for smaller values of δ.

B. Trading Problem Formulation

In this section, we consider the trading stage and focus on
the competing users and how they interact. If the aggregate
excess generation of the competing users is more than the
demand, the competing users choose their offered price and
generation such that they will be selected as providing users,
and their payoff will be maximized. The competing users also
take into account the offers advertised by other competing
users. In our system model, users do consider the effect of
their actions on the MCP. Thus, we need to analyze the Nash
equilibrium of the game played among multiple competing
users who compete to have some share of the market. In this
game theoretic model, the strategy of each user consists of
its offered price and generation for sale to other users. Let
Gt = {1, . . . , Nt} be the set of all competing users at time
slot t, where Nt , |Gt|. Moreover, G−ut , Gt \ {u} is
defined as the set of all competing users other than user u.
We denote the offer of competing user u as Out , (πut , g

u
t ),

where πut is the offered price and gut is the offered generation
capacity. We define O−ut , (Ont |n ∈ G−ut ) as the vector of
offers advertised by all competing users other than user u. The
information about the offers of the other users, i.e., O−ut is
received by user u. Without loss of generality, we assume that
the elements of vector O−ut are sorted in an ascending order
based on the entries πnt , n ∈ G−ut .

User u chooses its offer Out such that it will be selected
as a providing user and its payoff is maximized. To identify



whether offer Out will place user u among the providing users
or not, the rank of offer Out among other offers O−ut has to be
evaluated. We adopt the binary auxiliary variable znt , n ∈ G−ut ,
to indicate whether the offered price πnt is lower or equal to
the selected price πut (znt = 1) or not (znt = 0). Thus,

rut =
∑

n∈G−u
t

znt (16)

indicates the number of users with lower offered prices than
user u (i.e., the rank of offer Out among other offers O−ut ). To
calculate binary variable znt , the following constraint is added
to the trading optimization problem

πut
πnt

> znt , ∀ n ∈ G−ut . (17)

If πnt > πut , constraint (17) ensures that znt = 0, i.e., the
constraint is active. If the constraint is inactive, i.e., πnt ≤ πut ,
znt can be either 0 or 1. To enforce znt = 1 while the constraint
is inactive, an auxiliary term is added to the objective of
the optimization problem such that, znt is set to 1. To this
end, a term −K1z

n
t is added to the objective of the user’s

minimization problem, where K1 is a large positive constant.
That is, while constraint (17) is inactive, znt is set to 1 for
minimization of the objective function.

Starting from the user with the smallest offered price,
competing users will be added to the set of providing users
until there is enough generation to serve the demand. In this
case, the MCP will be equal to the highest offered price among
the group of providing users. We define Snt , n ∈ Gt, as a group
of competing users with offered price less than or equal to πnt .
The MCP will be equal to πnt , n ∈ Gt, if the following two
conditions are satisfied:

a) The aggregate offered generation of the users within Snt ,
n ∈ Gt, is sufficient to meet the demand.

b) Among all groups that satisfy condition (a), Snt has the
smallest number of members.

Condition (b) ensures that the process of adding competing
users to the set of providing users will be stopped if we
have enough generation to meet the demand. If the aggregate
offered generation of all competing users is less than the total
demand, all competing users will be selected as providing
users and the MCP will be equal to the price advertised by
the utility company.

We define Snt , n ∈ Gt, as

Snt =
∑
i∈Snt

git

=

{ ∑n
i=1 g

i
t + (1− znt )gut , if n ∈ G−ut ,∑

i∈G−u
t
zitg

i
t + gut , if n = u

(18)

to denote the aggregate offered generation of the users within
Snt . For each group Snt , n ∈ Gt, we assign a binary auxiliary
variable dnt to indicate whether the MCP is set to the offered
price πnt (dnt = 1) or not (dnt = 0). We also define auxiliary
variable d0t which plays the same role as dnt for the utility
company’s price λht . The MCP is finally selected from one of
the advertised prices πnt or λht . Thus, we have∑

n∈Gt

dnt + d0t = 1. (19)

To enforce condition (a) for evaluating the MCP, the con-
straint

Snt
Dt
≥ dnt , ∀ n ∈ Gt (20)

is added to the trading optimization problem, where Dt is
the total demand at time slot t. If Snt < Dt, then constraint
(20) is active and dnt = 0. If constraint (20) is inactive, i.e.,
Snt ≥ Dt, dnt can be either 0 or 1. To satisfy constraint (19)
and to enforce condition (b) for evaluating the MCP, one of
the variables dnt , n ∈ Gt, or d0t has to be set to 1 if its
corresponding constraint (20) is inactive and the associated
set Snt has the smallest number of members. To this end, an
auxiliary term K2

(∑
n∈G−u

t
ndnt + (Nt + 1)d0t + rut d

u
t

)
is

added to the objective function of the trading optimization
problem, where K2 is a large positive constant. For the added
term, the coefficients of the binary variables dnt , n ∈ Gt, are
equal to the size of the groups Snt . Thus, to minimize the
objective function, among the variables dnt , n ∈ Gt, for which
the corresponding constraint (20) is inactive, the one with the
smallest weight is set to 1. However, if the corresponding
constraint (20) is active for all variables dnt , n ∈ Gt, variable
d0t will be set to 1. Finally, to evaluate the payoff of user u,
we define the auxiliary variable ft which indicates whether
the offer Out will place user u in the set of providing users
(ft = 1) or not (ft = 0).

Given O−ut , each competing user u solves the following op-
timization problem to calculate its offered price and generation
capacity

minimize
It,Ct

F(It,Ct) (21a)

subject to ft, d0t , d
n
t , z

n
t , d

u
t ∈ {0, 1}, ∀ n ∈ G−ut , (21b)

constraints (17), (19), (20), (21c)∑
n∈Gt d

n
t π

n
t + d0tλ

h
t

πut
≥ ft, (21d)

λlt ≤ πut ≤ λht , (21e)
0 ≤ gut ≤ Gut , (21f)

where It = (dt, zt, ft), Ct = (gut , π
u
t ), dt , (d0t , d

n
t |n ∈

Gt), zt , (znt |n ∈ G−ut ), and

F(It,Ct) =Cut (gut )−
(∑
n∈Gt

dnt π
n
t + d0tλ

h
t

)
gut ft−λlt

(
Gut −gut

)
−K1

∑
n∈G−u

t

znt −K2ft

+K2

(∑
n∈G−u

t

ndnt + (Nt + 1)d0t + rut d
u
t

)
, (22)

where K1 � K2, and Gut is the maximum power that can
be provided to other users by user u at time slot t. The first
term in (22) is the cost of providing gut units of energy for
the intended user u, c.f. (6). The second and the third terms
reflect the revenue of user u for the offer (πut , g

u
t ). The term

µt =
∑
n∈Gt

dnt π
n
t + d0tλ

h
t (23)

is equal to the MCP. Constraint (21d) checks whether or not
the considered user u is selected as a providing user. If the



offered price πut is greater than the MCP, then user u is not
a providing user (ft = 0). Otherwise, ft can be either 0 or
1. In this case, as ft appears in the objective function with
a negative sign, it will be set to ft = 1. The offered price
cannot exceed the price advertised by the utility company and
the amount of generation cannot exceed the total generation
capacity as reflected by (21e) and (21f), respectively.

Problem (21) is a mixed-integer program. By adopting the
generalized Benders’ decomposition approach [30], problem
(21) can be re-written as

minimize
It

V(It) (24a)

subject to (19), (21b), (24b)
πu∗t
πnt
≥ znt , ∀ n ∈ G−ut , (24c)

Sn∗t
Dt
≥ dnt , ∀ n ∈ Gt, (24d)∑

n∈G−u
t
dnt π

n
t + dut π

u∗
t + d0tλ

h
t

πu∗t
≥ ft, (24e)

where

V(It) = minimize
Ct

F(It,Ct) (25a)

subject to (21c)-(21f), (25b)

and problem (25) should be feasible for the set of complicating
variables It that are held fixed. Here, C∗t = (πu∗t , gu∗t ) is the
solution of (25), and Sn∗t is as in (18), where Ct is set to C∗t .

The procedure for solving problem (21) is as follows:
Step 1: Let I0t be an initial vector of complicating variable

It for which problem (25) is feasible. Solve subproblem (25) to
obtain optimal vector C∗t . BFS = F(I0t ,C

∗
t ) is the best value

of problem (21) found so far, and V(It) = F(It,C
∗
t ) forms

the objective function of problem (24). Select the convergence
tolerance parameter ε > 0.

Step 2: Solve problem (24) to obtain I∗t and V(I∗t ). If
|V(I∗t )−BFS| < ε, terminate.

Step 3: Solve subproblem (25) to obtain C∗t for the compli-
cating variables found in Step 2, I∗t . If |F(I∗t ,C

∗
t )−BFS| < ε,

terminate. If F(I∗t ,C
∗
t ) ≤ BFS, update BFS = F(I∗t ,C

∗
t ).

Return to Step 2.
We note that for a fixed value of It, problem (25) is a

convex quadratic optimization problem and can be solved ef-
ficiently by convex optimization techniques. Moreover, V(It)
is bounded. Furthermore, problem (24) is a quadratic integer
program, which can be solved efficiently with optimization
software such as MOSEK [31]. Following the discussion in
[30], the adopted generalized Benders’ decomposition pro-
cedure converges to the optimum value. The proof of the
following theorem can be found in [30].

Theorem 1: For a finite discrete vector It, the generalized
Benders’ decomposition procedure to solve (21) terminates in
a finite number of steps for any given ε > 0.

C. Market Clearing Game
From problem (21), the payoff of each user depends on its

offer (πut , g
u
t ) as well as the offers of the other users. Hence,

we have the following game among the users:

• Players: Competing users.
• Strategies: Each user selects its offered price and gener-

ating capacity (πut , g
u
t ) to minimize its cost.

• Costs: The cost of each user is determined based on
optimization problem (21).

In the proposed market clearing game, first, each competing
user assumes random offers for other competing users O−ut .
This assumption is required since at the beginning, competing
user u has no prior information about the other users. Next,
each competing user u solves its own local problem (21). That
is, each user plays its best response to the offers advertised
by other users. Each competing user broadcasts its new offer
through the communication infrastructure. We note that each
user broadcasts its offer only if it has been changed com-
pared to its previous offer. Moreover, it will update its local
information about the offers of the other users whenever it
receives a broadcast message. This procedure continues until
no competing user changes its offer.

We note that for any practical trading scenario, users are
not allowed to apply arbitrarily small changes to their offered
prices and generations. That is, offered prices and generations
are selected from a countable finite set. Therefore, the exis-
tence of a Nash equilibrium for the considered game directly
follows from [32, Theorem 3.3.22] . For the Nash equilibrium
to be unique, the best response mapping of the users is required
to be concave [33]. The best response mapping is a function
which maps the offer profile of all the competing users to
a new offer profile. Based on this mapping, the new offer
of each user is the best response of the user to the previous
offer profile of all the other users. For our proposed trading
algorithm, the best response of the user is determined as the
solution to optimization problem (21). Therefore, it does not
have a closed-form solution, and it is difficult to show its
concavity. However, we have simulated different scenarios
and observed the uniqueness of the Nash equilibrium in all
instances. Nevertheless, since we are not able to simulate all
possible scenarios, this is not a proof for the uniqueness of
the Nash equilibrium for the proposed trading algorithm.

D. Algorithm Description

In this subsection, we explain the steps of the proposed
Algorithm 1 for load scheduling and power trading. At the
beginning, the list of the appliances that should be scheduled
is updated, c.f. Line 1. Based on the estimated MCP, the
operating schedule of each appliance is determined as in (13).
Moreover, the charging and discharging rate of the battery is
calculated as in (14), c.f. Line 2. At the end of the scheduling
stage, the user determines whether it has excess generation
or not. Users with excess generation receive the information
about the offers of other competing users. Each competing user
solves (21) by adopting the generalized Benders’ decomposi-
tion approach to obtain Out . Users update their offered price
and generation in response to the advertised prices by other
competing users. This process continues until the users reach a
Nash equilibrium of the trading game as described in Section
III-C, c.f. Lines 4 to 7. Users that are selected as providing
users sell gut units of their extra generation to consuming users



Algorithm 1 : Load scheduling and power trading algorithm
executed at each time slot t ∈ T for user u ∈ U .

1: Update the list of the appliances that are to be scheduled.
2: Schedule the appliances as in (13) and (14).
3: if there is excess generation
4: repeat
5: Receive offers of other users O−ut .
6: Solve (21) to obtain the offer Out .
7: until a Nash equilibrium of the trading game is

reached
8: if selected as a providing user
9: Sell gut units of excess generation to other users at

the MCP.
10: end if
11: Sell the remaining generation to the grid at price λlt.
12: end if

at the MCP, c.f. Line 9. Competing users that are not selected
as providing users can sell their excess generation back to the
grid at the lower price λlt, c.f. Line 11.

IV. PERFORMANCE EVALUATION

In this section, we present simulation results and assess the
performance of our proposed DSM program. In our simulation
setting, we assume that the operation period is divided into 24
one-hour time slots. The scheduling and trading stages take
place at the beginning of each time slot. For our problem
formulation, since the trading algorithm converges in a few
iterations, this stage lasts only for a few seconds. However,
we note that the time granularity depends on how accurate we
can estimate the power generation from the RERs, and how
fast the trading stage is finished. In any case, the duration
of the trading stage should be kept small compared to the
duration of each time slot. To this end, a practical scenario,
the trading algorithm may be confined to a limited number of
iterations. We consider a system with |U| = 50 users. Each
user possesses various must-run and controllable appliances.
We assume that the information about the energy requirements
of the users is not known at the beginning of the operation
period. That is, the list of appliances that are awake in each
time slot, whether they are must-run or controllable, and the
deadline by which the operation of each appliance has to
be finished are not known a priori. We run the simulation
multiple times with different patterns for the times at which the
appliances become awake. We then present the average results.
For a typical user, we consider on average 16 appliances. We
consider different power consumptions for different operation
cycles of the appliances. The pattern of power consumption of
the appliances is known to the ECC. Some of the appliances
and their operating specifications are summarized in Table II.
In our simulation settings, we assume that λht varies between
12 cents/kWh and 24 cents/kWh for off-peak and on-peak time
slots, respectively. The parameter λlt is set to 4 cents/kWh. The
cost function parameters aut and but are different for different
users varying between 0.1 and 0.6, and cut is set to 0, c.f. (6).

To have a baseline to compare with, we consider a system
without ECC deployment and trading opportunity, where each

TABLE II
OPERATING SPECIFICATIONS OF DIFFERENT APPLIANCES.

average P a
i (kW) arrival interval

Electric stove 1.5 [06:00, 14:00]
Clothes dryer 0.5 [14:00, 22:00]

Vacuum cleaner 1 [06:00, 15:00]
Refrigerator 0.125 [06:00, 09:00]

Air conditioner 1 [12:00, 22:00]
Dishwasher 1 [15:00, 24:00]

Heater 1.5 [15:00, 03:00]
Water heater 1.5 [06:00, 23:00]
Pool pump 2 [12:00, 21:00]

Electric vehicle 2.5 [16:00, 24:00]
Lighting 0.5 [16:00, 24:00]

TV 0.25 [16:00, 01:00]
PC 0.25 [08:00, 24:00]

Ironing appliance 1 [06:00, 16:00]
Hairdryer 1 [06:00, 13:00]

Other 1.5 [06:00, 24:00]
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Fig. 2. Average imported power from utility company for different scenarios.

appliance a starts operation with its power pattern Pa directly
after it has sent an admission request to the ECC unit. In
this model, the excess generation of each user is sold to the
utility company if it is not consumed or stored. For the system
without ECC deployment, users are not responding to the
variations of the price parameters. In order to be able to better
evaluate the effect of trading, we also consider a system in
which each users is equipped with an ECC unit to schedule
the operation of its controllable appliances, but is not able to
trade its excess generation with other users. Our simulations
were executed on a computer system with Intel(R) Core(TM)
i7 CPU 3.07 GHz processor, 12 GB RAM, and Windows 7
operating system.

Fig. 2 depicts simulation results for the average total power
imported from the utility company for the proposed load
scheduling algorithm, the system without ECC deployment
and trading, and the system with ECC deployment but without
trading. The average imported energy for the system without
ECC deployment and trading is 1360.9 kWh, while this value
is 1313.6 kWh for the system in which users are equipped with
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Fig. 4. Run time of trading algorithm vs. the percentage of users equipped
with RERs (Case 1: Gu

t = 6 kW, Case 2: Gu
t = 3 kW).

ECCs but cannot trade. The patterns of power consumption of
the latter two systems are different since the system with ECC
deployment shifts most of the load to low price time slots.
Our proposed load scheduling algorithm reduces the average
imported energy to 820.2 kWh because of the trading among
the users. The average electricity cost of the users for the
system without ECC deployment and trading is $62.91. For the
system with ECC deployment but without trading, this value
is reduced to $54.73. Our proposed algorithm further reduces
the electricity cost of the users to $40.37. The advantages
of the proposed algorithm are twofold. First, users are able
to decrease their energy expenses by selling their excess
generation to other users with a price higher than λlt. Second,
buyers may also benefit from the price reduction due to the
competition between multiple sellers.

To assess the speed of convergence of our proposed trading
algorithm, the number of iterations required to find a Nash
equilibrium for different percentage of users that are equipped
with RERs is illustrated in Fig. 3. Moreover, Fig. 4 depicts
the corresponding average run time of the trading algorithm
for different percentage of users that are equipped with RERs.
We consider two different cases for the average generating
capacity of the users equipped with RERs. In the first case,
we assume on average Gut = 6 kW, while for the second case,
we have Gut = 3 kW. Simulations are repeated multiple times
and only the average results are presented. We note that as
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Fig. 5. Reverse power flow vs. the percentage of users equipped with RERs.
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the percentage of users equipped with RERs increases, more
users are likely to participate in the trading game to sell their
excess generation. Therefore, the number of iterations required
by the trading algorithm to converge increases. However, even
for a high percentage of users equipped with RERs, the trading
algorithm converges in only a few iterations which makes
the implementation of the algorithm in practical applications
possible.

Our proposed DSM program encourages the utilization of
RERs by providing a trading opportunity for the users. To
evaluate the effect of the proposed algorithm on the amount
of power being injected back into the grid (i.e., the reverse
power flow), due to the mismatch between supply and demand,
we show in Fig. 5 the reverse power flow as a function of the
percentage of users that are equipped with RERs. Fig. 5 reveals
that the amount of reverse power flow is significantly reduced
for the proposed algorithm.

Due to the competition between the users, the electricity
may be offered at a price lower than the price advertised by
the utility company. To better understand the effect of the
competition between the users on the MCP, we focus on a
simplified model in which a single time slot is considered,
and three competing users try to sell their excess generation
to serve a demand of Dt = 10 kW. We consider two different
cases. In the first case, each competing user has enough
generation to meet the demand (i.e., Gut = 12 kW), whereas
in the second case, the generation capacity of each user is



not sufficient to meet the total demand (i.e., Gut = 6 kW).
We assume λht = 12 cents/kWh, and the cost parameters of
the last two users are fixed. Simulation results for the MCP
for different values of the first user’s parameter aut in (6) are
depicted in Fig. 6. The parameter aut for the last two users is
set to 0.6. For the first case, if the production cost of the first
user is low enough, the user prefers to reduce its production
and shares a small portion of the market with other competing
users with higher offered prices to keep the price as high as
possible to maximize its revenue. On the other hand, if the
production costs of the users are comparable, the users will
also share the market. In this case, the MCP will drop due
to the competition between the users. When the generating
capacity of each individual user is not sufficient to meet the
total demand, the users will share the market and try to keep
the price high to maximize their revenue.

V. CONCLUSIONS

In this paper, we proposed a load control algorithm for
DSM. We considered the problem of joint load scheduling
and power trading. An approximate dynamic program was
proposed to schedule the operation of different types of appli-
ances, and a game theoretic approach was adopted to model
the interaction of the users with excess power generation.
Users with excess power generation choose their offered price
and output generation such that they obtain a larger share of
the market and their revenue is maximized. Simulation results
showed that our proposed algorithm reduces the energy costs
of the users. That is, competing users may sell their extra
generation to local users at a price higher than the buying
price of the utility company, and consuming users may buy
the electricity from neighboring users at a price lower than the
selling price of the utility company. Moreover, the possibility
to trade facilitates the integration of RERs by encouraging
the users to consume their excess generation locally which
mitigates the reverse power flow problem.
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