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Abstract—360◦ videos require significant bandwidth to pro-
vide an immersive viewing experience. Wireless systems using
terahertz (THz) frequency band can meet this high data rate
demand. However, self-blockage is a challenge in such systems.
To ensure reliable transmission, this paper explores THz-enabled
360◦ video streaming through multiple multi-antenna access
points (APs). Guaranteeing users’ quality of experience (QoE)
requires accurate viewport prediction to determine which video
tiles to send, followed by asynchronous bitrate selection for those
tiles and beamforming design at the APs. To address users’
privacy and data heterogeneity, we propose a content-based
viewport prediction framework, wherein users’ head movement
prediction models are trained using a personalized federated
learning (PFL) algorithm. To address asynchronous decision-
making for tile bitrates and dynamic THz link connections, we
formulate the optimization of bitrate selection and beamforming
as a macro-action decentralized partially observable Markov
decision process (MacDec-POMDP) problem. To efficiently tackle
this problem for multiple users, we develop two deep reinforce-
ment learning (DRL) algorithms based on multi-agent actor-critic
methods and propose a hierarchical learning framework to train
the actor and critic networks. Experimental results show that
our proposed approach provides a higher QoE when compared
with three benchmark algorithms.

Index Terms—Deep reinforcement learning (DRL), macro-
action decentralized partially observable Markov decision pro-
cess (MacDec-POMDP), personalized federated learning (PFL),
quality of experience (QoE), terahertz (THz) communication,
360◦ video, viewport prediction.

I. INTRODUCTION

In the realm of 360◦ video streaming, users delve into
an immersive visual experience using a head-mounted dis-
play (HMD) for video playback. Compared with conventional
video streaming, 360◦ video offers high-resolution 360◦ vi-
sual field across three degrees of freedom. The broader and
higher-definition visual field entails that a larger number of
pixels must be transmitted, thereby necessitating a significantly
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higher data rate [3]. The abundant bandwidth available in
the terahertz (THz) frequency band can potentially overcome
this challenge, especially for transmitting 360◦ video streams
that require a high data rate in the range of gigabits per
second (Gbps) and can provide a truly immersive user ex-
perience [4].

Wireless systems operating in THz frequency band en-
counter a number of challenges, including a limited communi-
cation range, channel impairment due to molecular absorption,
and susceptibility to blockage by obstacles [5]. Moreover,
when a user turns around to view another part of a 360◦ video
with its HMD, the THz link may be blocked by the user’s own
body, which is known as self-blockage [4]. The availability
of a line-of-sight (LoS) link is crucial for reliable THz
communication. To improve the reliability in a THz-enabled
360◦ video streaming system, multiple access points (APs) can
jointly transmit 360◦ videos to the users [6].

In a multi-user 360◦ video streaming system, delivering the
entire 360◦ video with the highest quality to all users may
exceed the available bandwidth. However, at any given time,
a user is watching a 360◦ video only from one direction.
The region of the video that a user is currently watching
is called a viewport [7]. To efficiently utilize the network
bandwidth, it is desirable that each user receives its viewport
with the maximum possible quality, rather than the entire
video frame [8]. Viewport prediction is a key enabler for
streaming 360◦ videos over wireless systems.

Viewport prediction is categorized into content-independent
and content-based approaches. The content-independent ap-
proach relies on users’ historical head movements, while the
content-based approach utilizes both the video content and
users’ historical head movements to predict future viewports.
Thus, the content-based approach can achieve higher predic-
tion accuracy [9]. In multi-user 360◦ video streaming systems,
users’ different viewing patterns lead to data heterogeneity.
Additionally, users may be reluctant to share their historical
data due to privacy concerns. To address these challenges,
a personalized federated learning (PFL) algorithm can be
employed to train the viewport prediction models [3].

For streaming 360◦ videos, each video is divided into
chunks in the temporal domain, with each chunk containing
a few seconds of video frames. In the spatial domain, each
360◦ video frame is divided into tiles [7]. Prefetching is
used to prevent video stalling during playback. Specifically,
a prefetching scheme is employed to decide when and how
the tiles for the subsequent video chunks should be sent to
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each user [10]. Each user asynchronously requests a new video
chunk based on its buffer status. Transmitting a set of tiles for
each 360◦ video chunk based on the predicted viewport of a
user can reduce bandwidth consumption and enable a more
flexible transmission mechanism through bitrate selection for
the tiles [11]. Note that higher viewport prediction accuracy
leads to better bitrate selection for tiles and an improved
prefetching scheme, thereby resulting in higher bandwidth
efficiency and better quality of experience (QoE) for the
users. Additionally, since users’ future head movements can
be captured as an integral component of viewport prediction,
proactive detection of self-blockage occurrences becomes pos-
sible in THz-enabled 360◦ video streaming systems.

In this paper, we propose a content-based viewport pre-
diction framework that utilizes a PFL algorithm to train the
head movement prediction model. This framework is an ex-
tension of the content-based approach we proposed in [1]. Our
proposed framework incorporates a more practical saliency
detection model that can be trained without requiring the
saliency map of the video frames to be part of the training
dataset. Furthermore, we describe how additional tiles that
cover a marginal region of a viewport can be selected and
sent to the users to account for prediction errors.

We study 360◦ video streaming in a multi-user THz wireless
system with multiple multi-antenna APs. Users’ requests for
video chunks give rise to an optimization problem encom-
passing bitrate selection for the video tiles and beamforming
design at the APs. Due to the asynchronous decision-making
and hierarchical structure of this problem, we formulate it
as a macro-action decentralized partially observable Markov
decision process (MacDec-POMDP) [12], [13]. To solve this
problem, we propose a hierarchical deep reinforcement learn-
ing (DRL) framework comprising two multi-agent deep de-
terministic policy gradient (DDPG) algorithms. The proposed
DRL framework is an extension of the approach we proposed
in [2]. In particular, we combine the viewport prediction
framework with the bitrate selection and beamforming design
algorithms in a 360◦ video streaming system, which is not
trivial. Furthermore, we replace the weighted minimum mean
square error (WMMSE) beamforming algorithm proposed
in [2] with a multi-agent DDPG algorithm to obtain beam-
forming vectors in a computationally efficient manner. The
main contributions of this paper are as follows:

• To support reliable transmission of 360◦ video streaming
in a THz wireless system, multiple multi-antenna APs
are used for video transmission. To improve the users’
QoE, we propose a 360◦ video streaming approach that
includes (a) a viewport prediction framework to deter-
mine which video tiles to transmit and (b) two multi-
agent DDPG algorithms to determine the bitrate selection
of the video tiles and beamforming vectors at the APs.
Fig. 1 shows an illustration of our proposed 360◦ video
streaming approach.

• In particular, we propose a content-based viewport pre-
diction framework that decouples the viewport prediction
into two models. The first model focuses on saliency
detection. The second model is for head movement pre-
diction and is trained with a PFL algorithm. Due to the

Fig. 1: Our proposed 360◦ video streaming approach.

decoupling of these two models, any saliency detection
model can be incorporated into this viewport prediction
framework. With the use of PFL, our framework can
address users’ privacy concerns and mitigate the issue
of data heterogeneity. To predict the viewport for each
user, we integrate the outputs of the aforementioned
models, namely the video saliency map and the user’s
head orientation map, through a fusion technique.

• We formulate a MacDec-POMDP problem to determine
the policies for bitrate selection and beamforming opti-
mization. Taking into account the asynchronous requests
from users for new video chunks, we propose a multi-
agent DDPG algorithm using a macro-action-based in-
dependent actor with individual centralized critic (Mac-
IAICC) approach. This algorithm can effectively obtain
the policy for determining the bitrate of video tiles.
Furthermore, we propose a multi-agent DDPG algo-
rithm using a primitive-action-based centralized actor-
critic (Prim-CAC) approach to obtain the policy for
beamforming design at the APs. To accommodate the
hierarchical structure of the problem, we develop a hi-
erarchical learning framework that facilitates training of
the actor and critic networks in these algorithms.

• We evaluate the performance of our proposed video
streaming approach using a public 360◦ video
dataset [14]. Simulation results show that our proposed
video streaming approach outperforms several benchmark
algorithms in terms of the average QoE. In particular,
when there are twelve users, our proposed approach
provides an average QoE which is 23.77%, 62.7%, and
116.57% higher than that of the video streaming with
WMMSE beamforming algorithm, the combined field-
of-view (FoV) tile-based adaptive streaming algorithm
proposed in [8], and the video streaming with viewport
prediction proposed in [15], respectively.

This paper is organized as follows. The related work is
discussed in Section II. The system model is presented in
Section III. Section IV introduces the MacDec-POMDP prob-
lem formulation. Our proposed viewport prediction framework
is presented in Section V. In Section VI, we present our
proposed DRL algorithms. Simulation results are presented
in Section VII. Conclusion is given in Section VIII.

Notations: In this paper, we represent vectors by boldface
lowercase letters (e.g., x), matrices by boldface uppercase
letters (e.g., X), and sets by calligraphic letters (e.g., X ).
The cardinality of set X is denoted by |X |. The symbol (·)H
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denotes conjugate transpose operator. IN denotes an identity
matrix of size N . ∥ ·∥ denotes the norm of a vector. 1(z ∈ Z)
denotes the indicator function which is equal to 1 if z ∈ Z ,
and is equal to zero otherwise. We define [z]+ = max{0, z}.

II. RELATED WORK

A. Viewport Prediction

Recently, deep neural networks (DNNs) have been incor-
porated into viewport prediction models to improve their pre-
diction accuracy. Chao et al. in [16] proposed a transformer-
based architecture to predict users’ viewports. Liu et al. in [17]
proposed long short-term memory (LSTM) and gated recurrent
unit (GRU) architectures to predict future viewports. DNNs
require a large amount of data for training. Thus, each user
may not be able to obtain a prediction model with high
accuracy using only its local data. The prediction accuracy can
be improved if all users collaboratively train a shared model.
Federated learning (FL) facilitates distributed training while
preserving users’ privacy. FedAvg [18], which is a popular FL
algorithm, has been used in [15] for viewport prediction. Fur-
thermore, the issue of data heterogeneity among users’ local
data can be tackled using a PFL algorithm. In PFL, different
users collaboratively train a shared global model. Then, each
user utilizes its local data samples to fine-tune the global model
and obtain a customized model [19]. Zhang et al. in [3] used a
PFL algorithm based on meta-learning for viewport prediction.
The aforementioned works fall into the category of content-
independent viewport prediction approaches.

In content-based approaches, incorporating video content in
viewport prediction can improve prediction accuracy by iden-
tifying the parts of the video frames that are more interesting
for users to watch. Nguyen et al. in [20] proposed an LSTM
architecture to predict the user’s viewport using saliency
maps of the past video frames and the user’s historical head
movements. Li et al. in [9] proposed a spherical convolution-
empowered model, where the users’ future viewports are
predicted by combining the salient spatial-temporal features of
video frames with the users’ historical viewport information.
Wu et al. in [21] proposed a preference-aware viewport pre-
diction model that utilizes an attention mechanism to combine
visual features from 360◦ video frames with users’ viewing
historical data. The aforementioned content-based viewport
prediction models require centralized training. Specifically,
since the server has access to the previous video frames, users
must provide their historical head movements to the server for
viewport prediction in those models. Decoupling the viewport
prediction model into a saliency detection model and a head
movement prediction model as proposed in this paper can offer
some advantages. First, any state-of-the-art saliency detection
model can be incorporated into the viewport prediction model.
Second, users’ privacy concerns and data heterogeneity issues
can be addressed by using PFL for training the head movement
prediction model.

B. 360◦ Video Streaming over Wireless systems

Recently, streaming 360◦ videos over wireless systems has
received considerable attention. There are two main threads

in related work. The first line of research aims to im-
prove users’ QoE by flexibly transmitting video tiles through
adaptive bitrate selection mechanisms. The second line of
research involves using new technologies, such as mobile
edge computing (MEC), rate-splitting (RS), and millimeter
wave (mmWave) band communication, in wireless system
infrastructure for video streaming. For flexible video tile trans-
mission, the main focus is on viewport prediction, selecting the
tiles that should be sent to users, and the bitrate selection for
those tiles. Kan et al. in [7] proposed a viewport identification
method, a viewport-aware adaptive tiling scheme, and a DRL-
based rate adaptation algorithm for 360◦ video streaming.
Yaqoob et al. in [8] proposed a combined FoV prediction-
assisted 360◦ video streaming algorithm and a priority-based
bitrate adaptation algorithm. The capability of adaptive bi-
trate selection mechanisms remains limited in fulfilling the
data rate requirements of high-resolution 360◦ videos. Thus,
new technologies should be incorporated into wireless system
infrastructure to enable the delivery of such 360◦ videos and
new generation of virtual reality (VR) services [22].

The main focus of the following works is on utilizing
new technologies for video streaming over wireless systems.
Zhao et al. in [23] proposed iterative algorithms to determine
the beamforming vectors for maximizing the weighted sum
rate in a multicast RS VR streaming system. Yang et al.
in [24] proposed a DRL-based algorithm to improve the users’
visual experience in a mmWave-enabled VR streaming system.
Huang et al. in [25] proposed a DRL algorithm to optimize the
intelligent reflecting surface (IRS) phase shifts, RS parameters,
beamforming vectors, and bitrate selection of video tiles in
an IRS-aided RS VR streaming system. The authors in [23]–
[25] have considered that the users’ viewports are known a
priori (i.e., perfect viewport prediction). However, combining
viewport prediction within a resource allocation optimization
problem for 360◦ video streaming over wireless systems is not
a trivial task. In particular, viewport prediction accuracy has
an impact on bandwidth efficiency and users’ QoE. Zhang et
al. in [3] used a PFL-based viewport prediction and proposed
a DRL algorithm for resource allocation in a multi-user MEC-
enabled VR streaming system. The proposed approach in [3]
is based on considering only two possible quality levels (i.e.,
high and low) for tiles. Perfecto et al. in [26] proposed a deep
recurrent neural network architecture for viewport prediction
and an algorithm based on matching theory for video frame
scheduling using mmWave multicast transmission.

The aforementioned works consider either synchronized
chunk requests or single-user video streaming. However, in
practical multi-user video streaming systems, users can request
and download new video chunks asynchronously based on
their buffer status. Asynchronous video streaming can further
improve bandwidth efficiency [27]. Moreover, it is envisioned
that a data rate of 6.37−95.55 Gbps is required for high-
resolution 360◦ video streaming and ultimate VR, a new
generation of VR services with better video quality and a
multisensory experience [4]. Such a data rate is far beyond
the maximum achievable data rate in the fifth generation (5G)
wireless systems using mmWave. Migration towards higher
frequency bands, e.g., THz bands, can address this challenge.
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C. DRL for 360◦ Video Streaming
DRL can be applied in 360◦ video streaming over wireless

systems to learn bitrate selection and resource allocation poli-
cies. Since DRL-based algorithms can adapt well to network
dynamics and provide desired solutions in a timely manner,
they have recently attracted great attention. To determine the
bitrates of tiles in a 360◦ video streaming system, the authors
in [7], [28], [29] proposed different DRL-based algorithms
using asynchronous advantage actor-critic, LSTM-based actor-
critic, and Rainbow, respectively. These DRL-based algorithms
are not multi-agent DRL. Thus, the interaction among users
in a multi-user 360◦ video streaming system has not been
explored in these works. Moreover, the DRL-based algorithms
proposed in these works are not used to obtain a resource
allocation policy in the wireless system. Specifically, it is
assumed that the allocated throughput or bandwidth to a
user in the previous time slot is given to be considered as
one of the system states in the current time slot. On the
other hand, the authors in [3], [15], [24] proposed different
DRL-based algorithms to determine the resource allocation
policy in the wireless system. In particular, the proposed
DRL-based algorithms in [3], [15], and [24] are used for
resource block allocation, IRS reflection coefficient matrix
optimization, and satisfying a predefined data rate threshold
for users, respectively. These works do not use DRL to obtain
the bitrate selection policy. The authors in [25] have shown
that DRL can be used to jointly optimize the degrees of
freedom provided by the wireless system infrastructure and the
bitrate selection of video tiles, thereby improving users’ QoE.
However, the multi-agent DDPG algorithm proposed in [25]
cannot be used when users asynchronously request video tiles.

Asynchronous video tile requests from users make multi-
user 360◦ video streaming a challenging problem. First, the
time slot that a decision should be made for bitrate selection of
tiles requested by a user may not be aligned with other users.
Second, each user cannot request a new video chunk in every
time slot due to its buffer status, while the wireless system re-
quires resource allocation in each time slot. To address the first
challenge, we formulate this problem as a MacDec-POMDP,
and define macro-actions and a shared extrinsic reward to
efficiently capture the impact of asynchronous decisions made
upon each user’s chunk request. The second challenge is
tackled by using a hierarchical learning framework, which
can consider interactions among bitrate selection and resource
allocation policies at different levels of temporal abstraction.

III. SYSTEM MODEL

Consider U users who are watching 360◦ videos in an
indoor environment, using THz wireless links as shown in
Fig. 2. We denote the set of users by U = {1, . . . , U}.
The users are stationary. However, they can turn around to
watch different parts of the video. Each user is equipped
with a wireless HMD operating at THz frequency band. Let
lu = (xu, yu, hu) denote the location of the HMD that is
worn by user u ∈ U , where xu, yu, and hu denote the x−axis
coordinate, the y−axis coordinate, and the height of user u’s
HMD from the ground, respectively. In order to mitigate self-
blockage of THz links, multiple APs are used to transmit the

Fig. 2: A THz-enabled 360◦ video streaming system. There are six users and
three APs in the environment. 360◦ video streams are sent to each user by the
APs which are not in the user’s self-blockage region. The APs are connected
to a CCU via a wired connection.

360◦ video streams to the users. Let A = {1, . . . , NAP} denote
the set of ceiling-mounted APs. We denote the location of
AP a ∈ A by la =

(
xa, ya, h

AP
)
, where xa and ya denote

the coordinate of AP a on the x− and y−axes, respectively,
and hAP is the height of the ceiling from the ground. Each
AP and each user’s HMD are equipped with a uniform linear
array (ULA) of Nt and Nr antenna elements, respectively.
Let fc denote the carrier frequency of the transmitted signals
by the APs’ antennas. The spacing between adjacent antenna
elements is chosen to be d = λc

2 , where λc is the wavelength
of carrier frequency fc.

A. THz Channel and Downlink Transmission Model

THz band communications suffer from attenuation due to
molecular absorption. Let κ(f) (in m−1) denote the molecular
absorption coefficient at frequency f . κ(f) can be predicted
for a given transmission medium using the high resolution
transmission molecular absorption database (HITRAN) [30].
We consider that κ(f) remains relatively constant for the
frequencies within the transmission bandwidth of the APs [5],
[6]. Moreover, THz band communications are highly direc-
tional, especially when high gain antennas are used by the
APs and users. Thus, we consider only the LoS path to
obtain the THz channel gain between each AP and user [31].
Let γu,a denote the LoS path gain between AP a ∈ A
and user u ∈ U . γu,a is composed of the spreading and
molecular absorption losses for the LoS path [6], [30]. We
have γu,a = c0

4πfc∥la−lu∥e
− 1

2κ(fc)∥la−lu∥, where c0 is the
speed of light. Let aa(ψAoD

u,a ) ∈ CNt and au(ψAoA
u,a ) ∈ CNr

denote the array steering vectors for ULA at AP a and
user u, respectively. ψAoD

u,a and ψAoA
u,a represent the angle-of-

departure (AoD) and the angle-of-arrival (AoA) of the THz
beam transmitted from AP a to user u, respectively. We have
aa(ψAoD

u,a ) =
(
1, ej

2πd
λc

sin(ψAoD
u,a), . . . , ej

2πd
λc

(Nt−1) sin(ψAoD
u,a)

)
and

au(ψAoA
u,a ) =

(
1, ej

2πd
λc

sin(ψAoA
u,a), . . . , ej

2πd
λc

(Nr−1) sin(ψAoA
u,a)

)
. Let

Gu,a ∈ CNt×Nr denote the channel gain matrix between AP a
and user u. We have Gu,a =

√
gaguγu,aaa(ψAoD

u,a )aHu (ψAoA
u,a ),

where ga and gu are the antenna gains (in dBi) at AP a and
user u, respectively.

The APs are connected to a central control unit (CCU) via a
wired connection. Given the THz LoS link availability between
the APs and users, as well as the channel gain matrices, the
beamforming vectors can be determined by the CCU in each
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Fig. 3: Illustration of the latitude and longitude angles of a user’s head, as well
as its self-blockage region. AP 2 is located within the self-blockage region,
whereas AP 1 is not.

time slot. Let T = {1, 2, . . .} denote the set of time slots. Each
time slot has a duration of T slot (in millisecond (ms) [26]). Let
bu,a(t) ∈ CNt denote the beamforming vector from AP a ∈ A
to user u ∈ U in time slot t ∈ T . Considering Pmax as the
maximum transmit power of an AP, we have∑

u∈U
∥bu,a(t)∥2 ≤ Pmax, a ∈ A, t ∈ T . (1)

An HMD has internal sensors (e.g., gyroscope, accelerome-
ter) that enable it to track the head movement of its user [32].
For each user u ∈ U , let θu(t) and ϕu(t), respectively, denote
the latitude and longitude angles of its head orientation in
time slot t ∈ T in the local spherical coordinate system1.
The latitude angle θu(t), where 0 ≤ θu(t) ≤ π, is the angle
measured from the z−axis. The longitude angle ϕu(t), where
0 ≤ ϕu(t) ≤ 2π, is the angle measured from the x−axis after
projection onto the x−y plane. We define a self-blockage angle
ϕblocked to characterize the self-blockage region of the users
with respect to the locations of the APs [4], [5]. Fig. 3 shows
an illustration of a user’s self-blockage region. Let Anb

u (t)
denote the set of APs which are not in the self-blockage region
of user u ∈ U in time slot t ∈ T . We have

Anb
u (t) =

{
a
∣∣∣ a ∈ A, |ϕu(t)− ϕu,a − π| ≥ ϕblocked

2

}
, (2)

where ϕu,a = mod(arctan2(ya − yu, xa − xu), 2π) denotes
the longitude angle of the LoS link between user u and AP a.
arctan2(·, ·) returns an angle, ranging from −π to π, that
represents the angle between the positive x−axis and a given
vector. mod(·, 2π) is the modulo operator, which is used to
obtain a value between 0 and 2π for ϕu,a.

Let ru(t) denote the data rate of user u ∈ U in time slot
t ∈ T . For the sake of brevity, we define vector du,u′(t) =∑
a∈Anb

u′ (t)∩Anb
u (t) G

H
u,abu′,a(t). We have [33]:

ru(t) = B log2
(
1 + dHu,u(t)Γ

−1
u (t)du,u(t)

)
, (3)

where B is the transmission bandwidth and Γu(t) is the
interference-plus-noise covariance matrix at user u. We have
Γu(t) =

∑
u′∈U\{u} du,u′(t)dHu,u′(t)+σ2INr , where σ2 is the

variance of the additive white Gaussian noise.

1The local spherical coordinate system of each user u ∈ U has its origin at
point lu and its axes are aligned with the three-dimensional (3D) Cartesian
coordinate system.

Fig. 4: Illustration of a video chunk. There are F video frames within each
chunk. Each video frame is divided into 24 tiles using 6 × 4 tiling pattern.
The tiles in the viewport are shown in green, while those in the marginal
region are shown in yellow. Other tiles are considered in the invisible region.

B. Tile Request and Buffer Model

To enhance bandwidth efficiency in streaming 360◦ videos,
we leverage a tile-based approach. Let V = {1, . . . , V }
denote the set of available 360◦ videos. In the time domain,
each video v ∈ V is segmented into Cv chunks. Let Cv =
{1, . . . , Cv} denote the chunk indices for video v. As shown in
Fig. 4, we consider that each video chunk has a fixed duration
of T chunk (in time slot) and contains F video frames. Let
F = {1, . . . , F} denote the set of indices of the video frames
within a chunk. In the spatial domain, each video frame is
divided into N tiles. Let N = {1, . . . , N} denote the set of
indices corresponding to the tiles of each video frame.

360◦ videos are streamed to users as chunks. We consider
a prefetching scheme in which each user downloads one
chunk at a time and subsequently requests the next chunk
based on its buffer status [34]. When a user requests a video
chunk, a viewport prediction framework, to be presented
in Section V, is utilized to predict the tiles that may be
viewed by the user for that chunk. The viewport prediction
framework facilitates dividing each video frame into three
regions: viewport, marginal, and invisible regions. To save
wireless system bandwidth, the tiles corresponding to the
invisible region are not transmitted to the users. To provide
a high QoE, the tiles covering both the viewport and marginal
regions are transmitted to the users. For user u ∈ U requesting
chunk c ∈ Cv of video v ∈ V , let N view

u,f,c,v and Nmarg
u,f,c,v ⊂ N

denote the set of tile indices corresponding to the viewport
and marginal regions of video frame f ∈ F , respectively. Let
N pred
u,c,v denote the set of tile indices that are predicted to be

transmitted to user u upon its request for chunk c of video v.
We have N pred

u,c,v = ∪f∈F
(
N view
u,f,c,v ∪N

marg
u,f,c,v

)
.

In our proposed tile-based 360◦ video streaming approach,
after receiving the chunk request from a user, the CCU needs
to determine the quality level of the tiles. When a tile is
encoded at a better quality level, it requires a higher bitrate
for transmission accordingly. LetM = {1, . . . ,M} denote the
set of quality levels, where the lowest quality is represented
by 1. We consider that the tiles with the same quality level
have identical bitrate [25], [35]. Let νm (in bits/s) denote the
bitrate required to encode a tile at quality level m ∈ M. We
use the binary decision variable βu,n,m to indicate whether
quality level m ∈M is selected for tile n ∈ N pred

u,c,v when user
u ∈ U requests chunk c ∈ Cv of video v ∈ V (βu,n,m = 1) or
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not (βu,n,m = 0). We have∑
m∈M

βu,n,m ≤ 1, u ∈ U , n ∈ N pred
u,c,v, c ∈ Cv, v ∈ V. (4)

The time when a user requests for a new video chunk
depends on its buffer status (i.e., the playback time of the pre-
viously downloaded video chunks in its buffer). Let τREQ

u,c,v (in
time slot) denote the time when the tiles of video chunk c ∈ Cv
are requested by user u ∈ U who is watching video v ∈ V .
Since the chance of playback stalling depends on the video
delivery time, we employ a time slot-based definition for the
buffer status of the users. Let Bu

(
τREQ
u,c,v

)
(in time slot) denote

the buffer status of user u in time slot τREQ
u,c,v . To prevent buffer

overflow, each user only requests a new video chunk when its
buffer status is below a certain threshold [7]. Let BTHR

u (in
time slot) denote the buffer size threshold for user u. When
the buffer status of user u is above BTHR

u , the user will wait
for a period of time before requesting the next video chunk
to avoid buffer overflow. Let τWT

u,c,v (in time slot) denote the
waiting time for user u after receiving chunk c of video v. We
have

τWT
u,c,v =

[[
Bu

(
τREQ
u,c,v

)
− τTD

u,c,v

]+
+ T chunk −BTHR

u

]+
, (5)

where τTD
u,c,v (in time slot) denotes the time it takes for

chunk c of video v to be transmitted from the APs to user
u. It is given by τTD

u,c,v = min
{
t′ ∈ T

∣∣ ∑t′

t=τREQ
u,c,v

ru(t) ≥
T chunk ∑

n∈N pred
u,c,v

∑
m∈M βu,n,mνm

}
− τREQ

u,c,v + 1.
Considering the waiting time τWT

u,c,v , the next chunk of
video v ∈ V is requested by user u ∈ U in the following
time slot:

τREQ
u,c+1,v = τREQ

u,c,v + τTD
u,c,v + τWT

u,c,v,

u ∈ U , c ∈ Cv\{Cv}, v ∈ V. (6)

The buffer status of user u at time slot τREQ
u,c+1,v is given by

Bu(τ
REQ
u,c+1,v) =

[
[Bu(τ

REQ
u,c,v)− τTD

u,c,v]
+ + T chunk − τWT

u,c,v

]+
.

C. Quality of Experience Model

The CCU aims to maximize the users’ QoE. Let Υu,c,v
denote the QoE of user u ∈ U for chunk c ∈ Cv of
video v ∈ V . We consider that Υu,c,v depends on four factors:
the average quality of the tiles in the viewport ℓ̄view

u,c,v , the spatial
quality smoothness of the tiles in the viewport ℓspatial

u,c,v , the
temporal quality smoothness of the tiles in the viewport ℓtemp

u,c,v ,
and the rebuffering delay τRD

u,c,v [8]. In the following, we
describe how CCU obtains each of these QoE factors.

Let N actual
u,c,v denote the set of tile indices that user u ∈ U

has actually viewed for chunk c ∈ Cv of video v ∈ V . ℓ̄view
u,c,v

is obtained by averaging the quality of the tiles in set N actual
u,c,v .

We have ℓ̄view
u,c,v =

1

|N actual
u,c,v|

∑
n∈N actual

u,c,v

∑
m∈M βu,n,mm.

The spatial quality smoothness factor measures the intra-
chunk quality switch. In particular, the variance of the quality
level of the tiles in the viewport, i.e., ℓspatial

u,c,v , may lead to view-
ing irritation, cybersickness, and other physiological effects
including fatigue, nausea, and aversion [8]. ℓspatial

u,c,v is obtained
as ℓspatial

u,c,v = 1

|N actual
u,c,v|

∑
n∈N actual

u,c,v

(∑
m∈M βu,n,mm− ℓ̄view

u,c,v

)2
.

The temporal quality smoothness factor measures the inter-
chunk quality switch. The user’s QoE degrades when the
average quality level of the tiles in the viewport differs
between two consecutive chunks [7]. For c = 1, we set
ℓtemp
u,c,v = 0. For c > 1, we have ℓtemp

u,c,v =
∣∣ℓ̄view
u,c,v − ℓ̄view

u,c−1,v

∣∣.
The rebuffering delay τRD

u,c,v captures video stalling during
playback [7]. A video is stalled when the downloading time of
chunk c exceeds the user’s buffer status at chunk c’s request
time. We have τRD

u,c,v =
[
τTD
u,c,v −Bu

(
τREQ
u,c,v

)]+
.

The QoE of user u ∈ U for chunk c ∈ Cv of video v ∈ V
is the weighted sum of the mentioned factors. We have

Υu,c,v = ℓ̄view
u,c,v− λspatialℓspatial

u,c,v − λtempℓtemp
u,c,v− λRDτRD

u,c,v,

u ∈ U , c ∈ Cv, v ∈ V, (7)

where λspatial, λtemp, and λRD are the non-negative weighting
coefficients which penalize user u’s QoE due to the nonzero
intra-chunk quality switch, inter-chunk quality switch, and
rebuffering delay, respectively.

IV. OPTIMIZING TILE BITRATE SELECTION AND
BEAMFORMING DESIGN

Each user asynchronously requests a new video chunk based
on its buffer status (see eqn. (6)). Upon receiving a chunk
request, the CCU chooses an action (i.e., tile bitrate selection)
given the observed system state information. The CCU aims
to maximize the users’ expected long-term QoE. To this end,
the CCU should make asynchronous decisions on the quality
level of the tiles requested by the users. Furthermore, the
design of beamforming vectors in each time slot affects the
rebuffering delay. At the beginning of each time slot, the
CCU obtains an observation from the system and chooses
an action (i.e., beamforming design) based on the selected
bitrate for tiles. Given the asynchronous decision-making and
hierarchical structure of this problem, we formulate it as a
MacDec-POMDP [12], [13] with Tmax decision epochs. In
particular, we consider that for each user, an agent in the CCU
is responsible to make decision on behalf of that user2. The
agents cooperatively determine the bitrate of tiles by taking
asynchronous macro-actions. The agents also cooperatively de-
sign the beamforming vectors through synchronized primitive-
actions. Next, we describe the observation, action, and reward
of each agent.

A. Observation

The global system state comprises the set of indices of
the tiles that are actually viewed by the users (i.e., N actual

u,c,v ).
It also contains the set of APs which are not in the users’
self-blockage region in each time slot (i.e., Anb

u (t)). However,
the CCU does not have access to the global system state.
Instead, it obtains a partial observation of the underlying
system state. Among the N available tiles, let binary vector
υu,c,v ∈ {0, 1}N indicate the tile indices predicted by the
viewport prediction framework to be transmitted to user u ∈ U
upon its request for chunk c ∈ Cv of video v ∈ V . The n-th
element of vector υu,c,v is equal to 1(n ∈ N pred

u,c,v). As we

2Considering one agent for each user makes our approach scalable. It also
facilitates compatibility with existing adaptive bitrate streaming techniques.



7

will discuss in Section V-C, our proposed viewport prediction
framework provides a fused feature map for each video frame
by integrating the video saliency map and the user’s head
orientation map. We segment the fused feature map into N
tiles. A higher feature value assigned to a tile on the map
indicates that it is more likely for the user to view that tile
in the corresponding video frame. We normalize the feature
value of the tiles in the fused feature map to be within [0, 1].
Let vector χ̄u,c,v ∈ [0, 1]N denote the average feature value
of tiles when chunk c of video v is requested by user u. The
n-th element of vector χ̄u,c,v is equal to the average feature
value of the n-th tile across all video frames in chunk c. We
also denote the average quality level of the tiles transmitted to
user u upon its request for chunk c of video v by ℓ̄trans

u,c,v . We
have ℓ̄trans

u,c,v =
1

|N pred
u,c,v|

∑
n∈N pred

u,c,v

∑
m∈M βu,n,mm.

For the sake of brevity, we refer to the agent responsible
to make decision on behalf of user u ∈ U as agent u.
Let om

u (t) denote the macro-observation vector of agent u
at the beginning of time slot t ∈ T . When chunk c ∈
Cv of video v ∈ V is requested by user u, the macro-
observation vector of agent u contains υu,c,v and χ̄u,c,v .
om
u (t) also contains the average quality level of the pre-

viously transmitted video chunk to user u (i.e., ℓ̄trans
u,c−1,v)

and the buffer status of user u in time slot τu,c,v (i.e.,
Bu

(
τREQ
u,c,v

)
). For t ∈ {τREQ

u,c,v, τ
REQ
u,c,v + 1. . . . , τREQ

u,c+1,v − 1}, we
have om

u (t) =
(
υu,c,v, χ̄u,c,v, ℓ̄

trans
u,c−1,v, Bu

(
τREQ
u,c,v

))
. Let Om

u

denote the macro-observation space over agent u. We have
Om
u = {0, 1}N × [0, 1]N × [1,M ]× {0, . . . , BTHR

u }.
Each agent u ∈ U selects the bitrate of the tiles in

set N pred
u,c,v based on its macro-observation vector om

u (t) ∈ Om
u .

At the beginning of each time slot t ∈ T , the agents design
the beamforming vectors based on their primitive-observation
vector. We denote agent u’s primitive-observation vector at
the beginning of time slot t by op

u(t). At time slot t, the CCU
does not have access to ϕu(t). Instead, using our proposed
viewport prediction framework, the CCU obtains the predicted
longitude angle of user u’s head orientation (i.e. ϕ̂u(t)). Thus,
the CCU can proactively determine the self-blockage region
of user u. We denote the set of APs which are predicted to be
not in user u’s self-blockage region in time slot t by Ânb

u (t).
Let binary vector ϱu(t) ∈ {0, 1}NAP indicate the APs which
are not in the self-blockage region of user u in time slot t.
The a-th element of vector ϱu(t) is equal to 1(a ∈ Ânb

u (t)).
Let ∆rem

u (t) denote the remaining bits of the requested
chunk available for transmission to user u ∈ U in time
slot t ∈ T . At time slot t = τREQ

u,c,v , ∆rem
u (t) is initial-

ized to be T chunkT slot ∑
n∈N pred

u,c,v

∑
m∈M βu,n,mνm. For t ∈

{τREQ
u,c,v + 1, τREQ

u,c,v + 2, . . . , τREQ
u,c+1,v − 1}, ∆rem

u (t) is updated
as ∆rem

u (t) =
[
∆rem
u (t− 1)− T slotru(t− 1)

]+
. We also define

parameter ∆time
u (t) as the remaining time that user u can obtain

its requested chunk without experiencing video stalling during
playback. We initialize ∆time

u (t) = Bu
(
τREQ
u,c,v

)
at time slot

t = τREQ
u,c,v . For t ∈ {τREQ

u,c,v + 1, τREQ
u,c,v + 2, . . . , τREQ

u,c+1,v − 1},
∆time
u (t) is updated as ∆time

u (t) = ∆time
u (t − 1) − 1 when

∆rem
u (t) > 0, and is set to

[
Bu

(
τREQ
u,c,v

)
− τTD

u,c,v

]+
+ T chunk

when ∆rem
u (t) = 0.

At the beginning of time slot t ∈ T , we have op
u(t) =

(
ϱu(t), ∆

rem
u (t), ∆time

u (t)
)

for each agent u ∈ U . We de-
note the primitive-observation space over agent u by Op

u =
{0, 1}NAP×R+∪{0}×Z−∪{0, . . . , BTHR

u +T chunk−1}. Agent u
takes a primitive-action in time slot t based on op

u(t) ∈ Op
u.

B. Action

When user u ∈ U requests chunk c ∈ Cv of video v ∈ V at
time slot t = τREQ

u,c,v , agent u will take a macro-action which
remains unchanged for t ∈ {τREQ

u,c,v, τ
REQ
u,c,v+1, . . . , τREQ

u,c+1,v−1}.
Let am

u (t) denote the macro-action which is taken by agent u
at time slot t. From Section III-B, recall that the quality level
of the tiles is selected from setM. Let νu,n denote the bitrate
of tile n ∈ N pred

u,c,v when user u requests chunk c of video v.
We set νu,n = 0 for n /∈ N pred

u,c,v . Agent u selects the bitrate
of tile n ∈ N pred

u,c,v using the following relaxed constraint:

ν1 ≤ νu,n ≤ νM , u ∈ U , n ∈ N pred
u,c,v, c ∈ Cv, v ∈ V. (8)

Thus, we have am
u (t) = (νu,n, n ∈ N ) for u ∈ U and t ∈

{τREQ
u,c,v, τ

REQ
u,c,v + 1, . . . , τREQ

u,c+1,v − 1}. After determining νu,n,
agent u rounds it down to the nearest possible bitrate based on
the quality levels available in set M. Note that the variables
βu,n,m, u ∈ U , n ∈ N , m ∈ M can be determined using
the obtained bitrate for the tiles. We denote the macro-action
space over agent u by Am

u = {{0} ∪ [ν1, νM ]}N . Each agent
ends its previous macro-action upon receiving a new video
chunk request.

At the beginning of each time slot t ∈ T , agent u ∈ U
will take a primitive-action to determine the beamforming
vectors. Let ap

u(t) denote the primitive-action which is taken
by agent u at the beginning of time slot t. We have ap

u(t) =
(bu,a(t), a ∈ A), u ∈ U , t ∈ T . We denote the primitive-
action space over agent u by Ap

u = CNt×NAP .

C. Reward

The agents aim to cooperatively maximize the QoE of the
users. In each time slot t ∈ T , we consider a shared extrinsic
reward over agents denoted by Rextr(t). Given Υu,c,v from
eqn. (7) as the QoE of user u ∈ U for chunk c ∈ Cv of video
v ∈ V , we have

Rextr(t) =
∑
u∈U

∑
v∈V

∑
c∈Cv

Υu,c,v1
(
τREQ
u,c,v + τTD

u,c,v = t
)
. (9)

Based on the defined Rextr(t) in (9), the agents receive a non-
zero reward in time slot t when at least one of the users has
completely downloaded its requested video chunk3.

By performing macro-action am
u (t) ∈ Am

u in time slot t =
τu,c,v , the number of bits required for transmitting chunk c ∈
Cv of video v ∈ V to user u can be determined. The agents
aim to maximize the system’s sum-rate in each time slot while

3In this work, we use a 360◦ video dataset that includes the users’ viewport
during video playback. Thus, the CCU can obtain Υu,c,v once user u has
downloaded chunk c of video v. However, without such a dataset, the CCU
can obtain Υu,c,v only after user u has watched chunk c of video v from
its playback buffer. Hence, obtaining a policy without using a recorded 360◦
video dataset may lead to a delayed reward environment [36]. While dealing
with delayed rewards is not within the scope of this work, this issue can
be addressed by redefining the reward function and the observation-action
trajectories in our proposed algorithms.
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satisfying the selected bitrate of the requested video tiles for
users through a sequence of primitive actions. The agents
receive an intrinsic reward, denoted by Rintr(t), for performing
primitive-actions ap

u(t) ∈ Ap
u, u ∈ U in time slot t ∈ T .

Rintr(t) is shared over the agents and is obtained as follows:

Rintr(t) =
∑
u∈U

ru(t)− λintr
∑
u∈U

[
∆rem
u (t)− T slotru(t)

]+
, (10)

where λintr is a positive scaling factor.

D. Problem Formulation
In a POMDP, an agent does not have direct access to the

underlying system state. However, a history of observations
and actions provides sufficient statistics for the agent to make
decisions [37], [38]. Let hm

u (t) and hp
u(t), respectively, denote

the macro- and primitive-observation-action history of agent u
in time slot t ∈ T . Both macro- and primitive-actions are high-
dimensional continuous control variables. Each agent u selects
a macro-action am

u (t) = µu (h
m
u (t)) using a deterministic

policy µu : Hm
u → Am

u based on its macro-observation-action
history hm

u (t) ∈ Hm
u in time slot t. Agent u also uses a

deterministic policy πu : Hp
u → Ap

u to select a primitive-
action ap

u(t) = πu
(
hp
u(t)

)
given hp

u(t) ∈ Hp
u in time slot t.

Let µ = (µu, u ∈ U) and π = (πu, u ∈ U) denote the agents’
joint policies for bitrate selection and beamforming design,
respectively. We also denote the joint macro- and primitive-
actions performed by all agents in time slot t by am(t) =
(am
u (t), u ∈ U) and ap(t) =

(
ap
u(t), u ∈ U

)
, respectively.

By employing a hierarchical learning framework [39], both
µ and π are learned in order to maximize the expected
discounted extrinsic and intrinsic rewards, respectively. Let
Q∗ (hm,am) denote the maximum action-value function when
agents choose the joint macro-action am given the joint macro-
observation-action history hm. For tile bitrate selection, we
formulate the following optimization problem:

Pm : Q∗ (hm,am) = maximize
µ

Eµ

{
Tmax∑
t′=t

γt
′−tRextr(t′)

∣∣∣
hm(t) = hm, am(t) = am

}
subject to constraint (8),

where γ is the discount factor. Problem Pm aims to learn a
joint policy that maximizes the expected discounted extrinsic
reward over a sequence of macro-actions when starting from
hm(t) = hm ∈

∏
u∈U Hm

u , having the agents take am(t) =
am ∈

∏
u∈U Am

u , and thereafter following policy µ.
Let Q∗ (hp,ap;am) denote the maximum action-value func-

tion when the agents choose the joint primitive-action ap

given the joint primitive-observation-action history hp and the
specified joint macro-action am. The beamforming problem
can be formulated as follows:

Pp : Q∗ (hp,ap;am) = maximize
π

Eπ

{
Tmax∑
t′=t

γt
′−tRintr(t′)

∣∣∣
hp(t) = hp, ap(t) = ap, am(t) = am

}
subject to constraint (1).

Fig. 5: PAVER model for saliency detection.

Problem Pp aims to learn a joint policy that leads to the
maximum expected discounted intrinsic reward when starting
from hp(t) = hp ∈

∏
u∈U H

p
u, given the joint macro-action

am ∈
∏
u∈U Am

u executed by the agents in time slot t.
In problem Pp, the expected discounted intrinsic reward is
maximized over a sequence of primitive-actions, when the
agents take ap(t) = ap ∈

∏
u∈U A

p
u, and thereafter follow

policy π. Problems Pm and Pp are finite-horizon stochastic
optimal control problems. These problems are difficult to solve
due to their asynchronous decision-making and hierarchical
structure. Moreover, the dynamics of users’ viewports and their
connections to APs are not known in advance. To address these
challenges, we first propose a viewport prediction framework
in Section V to predict the tiles in set N pred

u,c,v as well as
the head orientation of each user u. Then, in Section VI,
we present two DRL algorithms based on multi-agent actor-
critic methods to enable efficient macro- and primitive-action
selection for the agents. These two algorithms are developed
within a hierarchical learning framework to learn the joint
policies µ and π for problems Pm and Pp, respectively.

V. VIEWPORT PREDICTION FRAMEWORK

In this section, we follow the idea proposed in our previ-
ous work [1] to develop a content-based viewport prediction
framework. In particular, our proposed viewport prediction
framework consists of three main components: a saliency
detection model, a head movement prediction model, and an
integration mechanism using fusion techniques. In the follow-
ing subsections, we describe each of these three components.

A. Saliency Detection Model

A saliency detection model determines the saliency map
for each video frame. This map helps identify those parts of a
video frame that are more interesting to users. In this work, we
use the PAVER model, proposed in [40], for saliency detection.
The PAVER model can be trained without requiring explicit
supervision. In particular, when using this model, it is not
required that the saliency map of the video frames be part of
the training dataset. This is important because the availability
of saliency datasets is limited, and collecting saliency maps
for 360◦ videos through human supervision is expensive [20].
Another advantage of PAVER is its ability to leverage the
pretrained weights of a vision transformer (ViT) model, which
has been trained on 2D images or videos. By using these
pretrained weights, the saliency detection performance of the
PAVER model on 360◦ video frames can be improved.

Let Ef,c,v ∈ R3×W×H and Sf,c,v ∈ RW×H denote
frame f ∈ F of chunk c ∈ Cv of 360◦ video v ∈ V in
equirectangular projection (ERP) format and its corresponding
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Fig. 6: GRU-based head movement prediction model.

saliency map, respectively. W × H denotes the video frame
resolution (i.e., the number of pixels across the width and
height of the video frame). As shown in Fig. 5, the PAVER
model takes an ERP video frame as input. The output is the
predicted saliency map. The input is divided into I = W

L ×
H
L

patches, each having a resolution of L × L. These patches
pass through an encoder and a decoder module. The encoder
module consists of a deformable convolution layer, a trans-
former encoder layer, and a fusion layer. The encoder module
captures the local and global context of the input video frame.

The decoder module computes a saliency score for each
patch. Local, temporal, and spatial saliencies are considered in
determining the saliency score for each patch. All the saliency
scores corresponding to the patches of the video frame Ef,c,v

are collected in the saliency matrix Ŝf,c,v ∈ RW
L ×H

L . The
final saliency map Sf,c,v is obtained using spherical Gaussian
smoothing [40] to upsample from RW

L ×H
L to RW×H .

All 360◦ video frames are stored at the edge server. Thus,
the saliency detection model can be trained entirely at the edge
server. The weights of the deformable convolution and trans-
former encoder layers can be transferred from the pretrained
ViT models without fine-tuning. Without any ground truth
labels, the other layers in the PAVER model are trained by
minimizing a weighted sum of the spatio-temporal consistency
losses and the global context loss using Adam optimizer [41].

B. Head Movement Prediction Model

User u ∈ U is watching frame f̃ ∈ F of chunk c̃ ∈ Cv from
its playback buffer, when it requests chunk c of video v ∈ V at
time slot τREQ

u,c,v . The head orientation angles of user u at time
slot τREQ

u,c,v , i.e.,
(
θu(τ

REQ
u,c,v), ϕu(τ

REQ
u,c,v)

)
, can be equivalently

represented by
(
θu,f̃ ,c̃,v, ϕu,f̃ ,c̃,v

)
. To predict the head orienta-

tion angles of user u, a head movement prediction model takes
a sequence with length Qhist of the current and previous head
movements (i.e., shist

u,f̃ ,c̃,v
) as input, and returns a sequence with

length Qpred which contains the predicted head movements for
the frames of chunk c (i.e., spred

u,f̃ ,c̃,v
). To train the same model

for all users, we set Qpred = F +
⌊
F maxu∈U B

THR
u /T chunk

⌋
.

Model: As shown in Fig. 6, the head movement prediction
model comprises an encoder and a decoder, each containing
four GRU layers. Each GRU layer has Qhist and Qpred GRU
cells in the encoder and decoder modules, respectively. Let
dGRU denote the number of features in the hidden state of each
GRU cell. h0

i ∈ RdGRU
is the initial hidden state of layer i ∈

{1, . . . , 4}. h0
i is initialized to zero for the first input sequence

of user u’s head movements corresponding to each video. The
input of the first GRU layer in the encoder module is the

Algorithm 1 PFL-based Training Algorithm
1: Set the number of communication rounds R, the number of local update

iterations ρ, and the learning rate ηhead.
2: Randomly initialize wGRU

0 and wFC
0 ; set wFC

u := wFC
0 , u ∈ U .

3: for each communication round r ∈ R = {1, . . . , R} do
4: for each user u ∈ U in parallel do
5: Given wGRU

r−1 and Lhead
u in (11), perform ρ local update iterations

to obtain the updated wGRU
u,r .

6: end for
7: wGRU

r :=
∑

u∈U αuwGRU
u,r .

8: end for
9: for each user u ∈ U in parallel do

10: Fine-tune the learning model wu := {wGRU
R ,wFC

u } using the local
historical data.

11: end for

sequence shist
u,f̃ ,c̃,v

. The output of the last GRU layer in the
decoder module passes through a fully connected (FC) layer.
The output of the FC layer is the sequence spred

u,f̃ ,c̃,v
.

Loss Function: Let Vhead-tr
u denote the set of videos for which

user u ∈ U has its head movement measurements in the local
training dataset. Let wu denote the learning parameters of the
head movement prediction model for user u. Each user u aims
to determine wu by minimizing the following loss function
based on its local historical head movement:

Lhead
u =

1

|Vhead-tr
u |

∑
v∈Vhead-tr

u

1

Cv

∑
c̃∈Cv\{Cv}

1

F

∑
f̃∈F

ϵ2
u,f̃ ,c̃,v

, (11)

where ϵu,f̃ ,c̃,v =
∥∥spred

u,f̃ ,c̃,v
− sactual

u,f̃ ,c̃,v

∥∥, and sactual
u,f̃ ,c̃,v

is the
sequence of user u’s actual head movements in its dataset.
Training: We propose a PFL algorithm for training the head
movement prediction model to address the data heterogeneity
issue and preserve the users’ privacy. Model decomposition
has recently emerged as a promising method for PFL. For
model decomposition, we use an approach similar to Fed-
BABU [19] and PerFedMask [42]. For each user u ∈ U ,
we decompose the learning model wu into a global learning
model wGRU and a local head model wFC

u . We have wu =
{wGRU,wFC

u }. wGRU and wFC
u contain the learning parameters

of the GRU layers and the FC layer, respectively. All the
local head models wFC

u , u ∈ U , are initialized with the same
random weights wFC

0 and are kept fixed during training of
the global model wGRU. After convergence to a global model,
each user u obtains its personalized model by fine-tuning the
learning model wu based on its local historical data.

The global model wGRU is trained through communication
rounds. Let R = {1, . . . , R} denote the set of communication
rounds. At the beginning of each communication round r ∈
R, the users download the latest global model wGRU

r−1 from
the server. wGRU

0 is initialized randomly. Each user u ∈ U
initializes its global model wGRU

u,r by the downloaded global
model. We have wGRU

u,r = wGRU
r−1 , u ∈ U . Then, each user

performs ρ local update iterations to update the global model
using its local historical data. For each local update iteration,
we have wGRU

u,r ← wGRU
u,r − ηhead∇wGRULhead

u

∣∣
wGRU=wGRU

u,r
, where

ηhead is the learning rate. After completing the local update
iterations, each user uploads its updated global model wGRU

u,r

to the server. At the end of each communication round r, the
server computes a new global model wGRU

r by aggregating the
updated global models it has received from the users. We have
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Fig. 7: Regional fusion for obtaining the fused feature map.

wGRU
r =

∑
u∈U αuw

GRU
u,r , where αu =

∑
v∈Vhead-tr

u
Cv∑

u′∈U
∑

v′∈Vhead-tr
u′

Cv′

is the weight of user u in model aggregation. Algorithm 1
summarizes our PFL-based training.
Head Orientation Map: User u ∈ U uses its pre-trained head
movement prediction model wu to predict its head orientation
for frame f ∈ F of chunk c ∈ Cv of video v ∈ V . When user u
requests video chunk c at time slot τREQ

u,c,v , it also provides the
server with its predicted head orientations

(
θ̂u,f,c,v, ϕ̂u,f,c,v

)
,

f ∈ F . Then, the server employs a Gaussian kernel [20] to
obtain the head orientation maps of user u. We denote the
head orientation map corresponding to user u’s predicted head
orientation, i.e.,

(
θ̂u,f,c,v, ϕ̂u,f,c,v

)
, by Mu,f,c,v ∈ RW×H .

C. Integration of Saliency and Head Orientation Maps

When the server receives a request from user u ∈ U for
chunk c ∈ Cv of video v ∈ V , it aims to obtain the set of
tile indices corresponding to viewport and marginal regions
of each video frame f ∈ F , i.e., N view

u,f,c,v and Nmarg
u,f,c,v ⊂ N ,

respectively. The saliency and the user’s head orientation maps
for video frame f are first divided into N tiles. Then, a fused
feature map is obtained by integrating those maps using the
regional fusion technique [1]. Finally, the tiles covering the
viewport and marginal regions of a video frame are determined
based on the feature value of the tiles in the fused feature map.
Regional Fusion Technique: In this fusion technique, we first
normalize each feature in the maps Sf,c,v and Mu,f,c,v to
be within [0, 1]. Let S̃f,c,v and M̃u,f,c,v ∈ RW×H denote
the normalized versions of Sf,c,v and Mu,f,c,v, respectively.
We segment S̃f,c,v and M̃u,f,c,v into N tiles. We obtain the
maximum saliency score of the pixels in each tile of S̃f,c,v and
M̃u,f,c,v, and collect them in vectors smax

f,c,v and mmax
u,f,c,v ∈

RN , respectively. By integrating S̃f,c,v and M̃u,f,c,v, the fused
feature map Xu,f,c,v is obtained as shown in Fig. 7. We have
Xu,f,c,v =

(
maxn∈N smax

f,c,v[n]−
1
N

∑
n∈N smax

f,c,v[n]
)2
S̃f,c,v+(

maxn∈N mmax
u,f,c,v[n]−

1
N

∑
n∈N mmax

u,f,c,v

)2
M̃u,f,c,v.

Tile Selection: The number of tiles that cover the viewport
region depends on the FoV of the user’s HMD. Thus, the
size of FoV specifies

∣∣N view
u,f,c,v

∣∣. The server selects the tiles
in the viewport region (i.e., N view

u,f,c,v) based on the adjacent
tiles with the maximum feature values in the fused feature
map Xu,f,c,v. On the other hand, the number of tiles that
cover the marginal region depends on the prediction accuracy
of the user u’s predicted head orientation [43]. The difference
between the requested chunk index c and the last watched
chunk index c̃ by user u at time slot τREQ

u,c,v has a direct
impact on the prediction accuracy. Thus, we consider that

Fig. 8: Mac-IAICC and Prim-CAC are used within the agents and the
joint agent, respectively. Each agent executes a macro-action based on its
macro-observation. The joint agent executes the primitive-action based on the
primitive-observation. At each time slot, the transition tuples of the agents
and the joint agent are stored in the Mac-CERTs buffer and Dp, respectively.

the number of tiles in the marginal region is obtained as
Nmarg
u,f,c,v =

[⌊
(αmarg(c− c̃)−1)|N view

u,f,c,v|
⌋]+

, where αmarg is a
scaling factor that can be empirically determined. To obtain the
tiles in setNmarg

u,f,c,v, the server initializesN pred
u,f,c,v to beN view

u,f,c,v

and invokes the following step Nmarg
u,f,c,v times: the server

selects a tile n /∈ N pred
u,f,c,v which is adjacent to set N pred

u,f,c,v

and has the maximum feature value in the fused feature map
to be added to set N pred

u,f,c,v. The tiles in the marginal region
are determined as Nmarg

u,f,c,v = N
pred
u,f,c,v\N view

u,f,c,v.

VI. DRL ALGORITHM DESIGN

In this section, we develop a hierarchical learning frame-
work using two DRL algorithms based on multi-agent coop-
erative actor-critic methods to solve problems Pm and Pp.
For each problem, we propose a DDPG algorithm to learn the
agents’ policy and action-value functions using actor and critic
networks, respectively. Note that independent actor and critic
networks for each agent may lead to a non-stationary learning
environment in a multi-agent setting [44]. In particular, if each
agent independently performs policy updating and exploring,
it may not be possible for the agents to obtain high-quality
cooperative policies. To address this issue, we leverage the
centralized training with decentralized execution (CTDE) ap-
proach [12] to solve problem Pm. By using this approach,
we can learn a Mac-IAICC for each agent. Mac-IAICC
facilitates offline training using centralized information and
online execution in a decentralized manner for the agents.
Thus, it is a suitable approach for selecting the bitrate of
tiles requested asynchronously by users. To solve problem Pp,
which requires the agents to work in a synchronized manner,
we use the Prim-CAC approach. This approach enables the
agents to cooperatively design the beamforming vectors in
each time slot. Fig. 8 shows an illustration of the interaction
among the agents and the environment. Next, we present two
algorithms for solving Pm and Pp using Mac-IAICC and Prim-
CAC, respectively. Then, we propose a hierarchical learning
framework to train the actor and critic networks.

A. Solving Problem Pm Using Mac-IAICC

To solve problem Pm, we develop a DDPG algorithm to
learn an independent actor and an individual centralized critic
for each agent. Let ωu and ϑu denote the learnable parameters
of the neural networks corresponding to the actor and critic of
agent u ∈ U , respectively. Agent u’s actor network specifies
the policy of that agent for tile bitrate selection. We have
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Algorithm 2 Parameters Update in Mac-IAICC with DDPG
1: function MacUpdateParams(Bm, Dm, Du, ϑu, ωu)
2: Sample a random minibatch of Bm consecutive transition tuples from

the sets Dm and Du.
3: Obtain the gradient of LTD

u (ϑu) in (12) and update ϑu using Adam
optimizer.

4: Determine the gradient in (13) and update ωu using Adam optimizer.
5: Return ϑu and ωu

6: end function

am
u (t) = µωu

(hm
u (t)). The centralized critic network of

agent u learns the action-value function Qϑu
(hm(t),am(t)).

Note that hm
u (t) can be generated implicitly for the actor and

critic networks by leveraging an LSTM layer within their
neural network architectures [12].

DDPG is an off-policy algorithm that is able to learn
the policy and action-value functions in a stable and robust
manner using a replay buffer and separate target networks [38].
Since agents in a MacDec-POMDP asynchronously start and
complete their macro-actions, a new replay buffer needs to
be designed. Thus, we collect the macro-observation, macro-
action, and extrinsic reward of the agents into a buffer called
macro-action concurrent experience replay trajectories (Mac-
CERTs) in each time slot. The Mac-CERTs buffer has been
used in [12] to solve a MacDec-POMDP problem using policy
gradient algorithm. In this work, we utilize Mac-CERTs buffer
to train the actor and critic networks of each agent using a
DDPG algorithm. For t ∈ {τREQ

u,c,v, τ
REQ
u,c,v+1, . . . , τREQ

u,c+1,v−1},
agent u ∈ U receives a cumulative reward for the macro-action
at time slot τREQ

u,c,v as Rc
u(t) =

∑t
t′=τREQ

u,c,v
γt

′−τREQ
u,c,vRextr(t′).

Then, at the end of each time slot t, agent u stores its
transition experience in the Mac-CERTs buffer as a tuple
(om
u (t),a

m
u (t),o

m
u (t+ 1), Rc

u(t)). Note that om
u (t), a

m
u (t), and

om
u (t+1) remain unchanged until agent u completes its current

macro-action at the end of time slot t = τREQ
u,c+1,v − 1. Thus,

a macro action am
u (t) takes ∆τ (a

m
u (t)) = τREQ

u,c+1,v − τREQ
u,c,v

time slots to complete. When training the actor network of
agent u, we only consider the tuples in the Mac-CERTs
buffer that correspond to agent u. We filter those tuples by
selecting the ones that agent u completes its macro-action.
However, training each agent’s critic network requires all the
joint macro-observation-action information. To train the critic
networks, we filter the tuples in the Mac-CERTs buffer by
selecting the ones that an agent has completed its macro-
action. Let Du and Dm denote the set of tuples which are used
for training agent u’s actor and critic networks, respectively.

Each agent u updates the learnable parameters of its critic
network (i.e., ϑu) by minimizing the temporal difference (TD)
error over the tuples sampled from set Dm. We create a copy
of the actor and critic networks to be used as target networks.
Let ω−

u and ϑ−
u , respectively, denote the weights of agent

u’s target actor and critic networks. The weights of agent u’s
target networks are updated by slowly tracking the learned
parameters of its actor and critic networks. The TD error is
obtained as follows:

LTD
u (ϑu) = EΛm

u∼Dm

{(
Qϑu

(
hm,am)− Q̂

ϑ
−
u
(hm,am)

)2}
,

(12)

where Λm
u =

(
om,am,o′m, Rc

u

)
and Q̂

ϑ
−
u

(
hm,am

)
= Rc

u +

Algorithm 3 Parameters Update in Prim-CAC with DDPG
1: function PrimUpdateParams(Bp, Dp, ϑ, ω)
2: Sample a random minibatch of Bp consecutive transition tuples from

the set Dp.
3: Obtain the gradient of LTD(ϑ) in (14) and update ϑ using Adam

optimizer.
4: Determine the gradient in (15) and update ω using Adam optimizer.
5: Return ϑ and ω
6: end function

γ∆τ (a
m
u)Q

ϑ
−
u

(
h′m, a′m). We obtain a′m using the target actor

networks of the agents. We have a′m =
(
µ
ω

−
u

(
h′m
u

)
, u ∈ U

)
.

Each agent u ∈ U updates the learnable parameters of its
actor network (i.e., ωu) using the gradient of the action-value
function. The policy gradient is obtained as follows [38]:

∇ωu
LPG
u = Eom

u∼Do
u

{
∇am

u
Qϑu

(hm,am)
∣∣
am

u=µωu (hm
u)

×∇ωu
µωu

(hm
u )

}
, (13)

where Do
u =

{
om
u

∣∣ (om
u ,a

m
u ,o

′m
u , R

c
u

)
∈ Du

}
. Algorithm 2

describes the MacUpdateParams function, which updates the
actor and critic network parameters for each agent u.

B. Solving Problem Pp Using Prim-CAC

The agents aim to cooperatively solve problem Pp in a
synchronized manner. This problem can be efficiently solved
by treating all the agents as a joint agent. As a result, the learn-
ing environment turns into a fully centralized learning setting,
where the joint agent trains both the centralized actor and critic
networks to obtain πω

(
hp

)
and Qϑ

(
hp,ap;am

)
, respectively.

To this end, the joint agent collects the joint primitive-
observations and actions, as well as the intrinsic rewards into a
replay buffer. Recall from Section IV-C that Rintr(t) represents
the agents’ intrinsic reward in time slot t ∈ T . At the end of
each time slot t, the tuple

(
op(t),ap(t),op(t + 1), Rintr(t)

)
is stored in the replay buffer. Let Dp denote the set of
tuples in the replay buffer. The learnable parameters of the
centralized critic network (i.e., ϑ) are updated by minimizing
the following TD error:

LTD(ϑ)=EΛp∼Dp

{(
Qϑ (hp,ap;am)−Q̂ϑ− (hp,ap;am)

)2}
,

(14)

where Λp =
(
op,ap,o′p, Rintr

)
and Q̂ϑ−

(
hp,ap;am

)
= Rintr

+ γQϑ−
(
h′p, πω−

(
h′p);a′m). We update the centralized ac-

tor network’s parameters using the following policy gradient:

∇ωLPG = Eop∼Do

{
∇apQϑ (hp,ap;am)

∣∣
ap=πω(hp)

×∇ωπω (hp)
}
, (15)

where Do =
{
op

∣∣ Λp ∈ Dp
}

. Algorithm 3 describes the
PrimUpdateParams function, which updates the actor and critic
network parameters for the joint agent.

C. Hierarchical Learning Framework

The parameters of the Mac-IAICC for each agent and the
parameters of the Prim-CAC for the considered joint agent
are learned at different time scales. In particular, the joint
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Algorithm 4 Our Proposed Hierarchical Learning Framework
1: Set the maximum number of episodes Emax, the minibatch sizes Bm and

Bp, the learning rate for the actor network ηa, the learning rate for the
critic network ηc, and the soft target network update constant ε ∈ (0, 1).

2: Randomly initialize the learnable parameters ϑu and ωu for each
agent u ∈ U , and the learnable parameters ϑ and ω for the joint agent.

3: Set the target network weights ϑ−
u := ϑu and ω−

u := ωu for each
agent u ∈ U , as well as ϑ− := ϑ and ω− := ω for the joint agent.

4: Initialize the set Du for each agent u ∈ U , as well as the sets Dm and
Dp by performing random exploration for Twarm-up time slots.

5: for each episode do
6: Initialize the macro-observation vector om

u for each agent u ∈ U .
7: Determine the macro-action am

u ← µωu (hm
u)+ϱm for each agent u.

8: Obtain the joint primitive-observation op.
9: for each time slot t ∈ {1, . . . , Tmax} do

10: Determine the joint primitive-action ap = πω
(
hp

)
+ ϱp.

11: Obtain the next macro-observation vector o′m
u and the cumulative

reward Rc
u for each agent u.

12: for each agent u ∈ U do
13: Store the tuple

(
om
u ,a

m
u ,o

′m
u , R

c
u

)
in the Mac-CERTs buffer.

14: if macro-action am
u is completed then

15: om
u ← o′m

u and am
u ← µωu (hm

u) + ϱm.
16: end if
17: end for
18: Obtain the next observation o′p and the intrinsic reward Rintr.
19: Store the tuple

(
op,ap,o′p, Rintr

)
in set Dp.

20: Update ϑu and ωu using Algorithm 2 for each agent u ∈ U .
21: Update ϑ and ω using Algorithm 3 for the joint agent.
22: Update the target network weights for each agent u ∈ U as follows:

ϑ−
u ← εϑu + (1− ε)ϑ−

u and ω−
u ← εωu + (1− ε)ω−

u .
23: Update the target network weights for the joint agent as follows:

ϑ− ← εϑ+ (1− ε)ϑ− and ω− ← εω + (1− ε)ω−.
24: op ← o′p.
25: end for
26: end for
27: Outputs are ωu for each agent u ∈ U , and ω for the joint agent.

agent’s transition experiences are collected at each time slot.
However, to train the Mac-IAICC for each agent, we use
the agents’ transition experiences when their macro-actions
are completed. Furthermore, the agents’ macro-actions will
change the primitive-observation vector for the joint agent,
while the joint agent’s action affects the extrinsic rewards
obtained by the agents. To effectively learn both policies µ
and π, we propose a hierarchical learning framework which
considers the interaction among the agents’ policies at different
levels of temporal abstraction and trains their actor-critic
networks accordingly. Algorithm 4 describes our proposed
hierarchical learning framework.

In Algorithm 4, each agent u ∈ U and the joint agent
randomly explore the environment for Twarm-up time slots and
initialize the sets Du, Dm, and Dp. Then, we train the actor
and critic networks of the agents and the joint agent for Emax

episodes, each with Tmax time slots. To encourage effective
exploration and learning, we add an exploration noise ϱm to
the actions determined by the actor network of each agent. We
also add an exploration noise ϱp to the actions determined by
the actor network of the joint agent. Both ϱm and ϱp follow the
Ornstein-Uhlenbeck process with parameters (θϱm , σϱm) and
(θϱp , σϱp), respectively. To stabilize the training process, we
update the target networks at the end of each time slot using
the soft update technique with constant ε, where 0 < ε < 1.

D. Computational Complexity

For the actor and critic networks, we consider neural net-
works comprising one LSTM layer and two FC layers. There

is a leaky rectified linear unit (leaky ReLU) activation layer
between the LSTM and the first FC layer, as well as between
the two FC layers. A hyperbolic tangent (tanh) activation layer
is utilized after the second FC layer in the actor networks. Let
dA

h and dJ
h denote the hidden sizes of each agent’s LSTM layer

and the joint agent’s LSTM layer, respectively. The output
sizes of the first and second FC layers corresponding to the
neural networks of each agent are denoted by dA

fc and dA
out,

respectively. We denote the output sizes of the first and second
FC layers corresponding to the neural networks of the joint
agent by dJ

fc and dJ
out, respectively.

After training, the computational complexity of the on-
line tile bitrate selection using the pre-trained actor net-
work obtained by Algorithms 2 and 4 for each agent is
O(dA

ind
A
h + (dA

h )
2 + dA

h d
A
fc + dA

fcd
A
out), where dA

in is the size
of the input layer for the agent’s actor network. Similarly,
after training, the computational complexity of the online
design of beamforming vectors using the pre-trained actor
network obtained by Algorithms 3 and 4 for the joint agent is
O(dJ

ind
J
h +(dJ

h)
2+ dJ

hd
J
fc + dJ

fcd
J
out), where dJ

in is the size of the
input layer for the joint agent’s actor network.

VII. PERFORMANCE EVALUATION

A. Experimental Setup

Wireless Environment: We consider a 10 m × 10 m × 4 m
indoor environment and three APs as shown in Fig. 2. The APs
are located at l1 = (9, 1, 4), l2 = (5, 5, 4), and l3 = (1, 9, 4).
We consider the APs to be operating at a carrier frequency
of fc = 1.05 THz. The molecular absorption coefficient is
determined as κ(fc) = 0.07512 m−1. Unless stated otherwise,
we consider U = 6 users, each with a height of hu = 1.6 m.
The floor of the indoor environment is divided into U equal
areas. Each user is positioned at the center of an area. We set
the self-blockage angle of the users to ϕblocked = π. We set the
number of antenna elements for each AP Nt and each user’s
HMD Nr to be 6 and 2, respectively.
Dataset: We conduct our experiments using a public 360◦

video dataset [14]. The dataset consists of 104 videos includ-
ing five sports events: basketball, parkour, BMX, skateboard-
ing, and dance. There are 27 viewers in this dataset. Each video
has been watched by at least 18 viewers. For each viewer, the
eye gaze points are recorded when watching the videos.
Simulation Setting: A frame rate of 30 frames per second and
a chunk duration of one second are considered for the videos.
Each video frame is divided into 24 tiles using 6 × 4 tiling
pattern as shown in Fig. 4. The time slot duration T slot is set
to 100 ms. The FoV of each user’s HMD is set to 90◦×135◦.
We consider five quality levels. We select the bitrate value for
encoding the tiles from set {28, 33, 38, 43, 48} Mbps.
Algorithms Parameters Setting: For the head movement
prediction model, we set Qhist = 90 and dGRU = 64. In
Algorithm 1, we set R = 50, ρ = 3, and ηhead = 0.01.
For each user, we consider 80 and 24 videos in the training
dataset Vhead-tr

u and test dataset Vhead-tst
u , respectively. Since

all the video frames are available at the server and our pro-
posed viewport prediction framework decouples the saliency
detection and head movement prediction models, the saliency
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Fig. 9: (a) Average tiles overlap and (b) average number of tiles in the marginal
region versus the scale factor αmarg.

TABLE I: Simulation Parameters

Parameter Value Parameter Value Parameter Value Parameter Value

ηa, ηc 10−4 σϱm , σϱp 0.15 Emax 5000 Pmax 5 dBm
ε 10−2 λspatial, λtemp 0.5 Tmax 153 ga 25 dBi

Bm, Bp 512 λRD 0.5 Twarm-up 5200 gu 15 dBi
θϱm , θϱp 0.1 λintr 2 γ 0.99 σ2 −77 dBm

map corresponding to each video frame can be obtained and
stored at the server in advance. In particular, each user sends
its predicted head orientations to the server when requesting
a new video chunk. Upon receiving a new video chunk
request, the server can retrieve the saliency maps of the video
frames corresponding to the requested video chunk, as well
as the user’s head orientation maps corresponding to those
video frames. Given the saliency maps and the user’s head
orientation maps, the tiles covering the viewport and marginal
regions of the requested video frames can be determined using
the integration mechanism described in Section V-C, which
has a computational complexity of O(N). We empirically
determine the value of αmarg by comparing the average tiles
overlap and the average number of tiles in the marginal region
for various values of αmarg. The tiles overlap is obtained as∣∣N pred

u,c,v ∩N actual
u,c,v

∣∣/∣∣N actual
u,c,v

∣∣ for tiles that are predicted to be
transmitted for user u ∈ U upon its request for chunk c ∈ Cv of
video v ∈ Vhead-tst

u . Fig. 9 shows that increasing αmarg leads to
a higher average tiles overlap and a higher average number of
tiles in the marginal region. To achieve an average tiles overlap
above 90% without consuming excessive network bandwidth
on the transmission of additional tiles, we set αmarg = 0.15.
For the agents, we set dA

h = 512 and dA
fc = dA

out = 256. For
the joint agent, we set dJ

h = 1024 and dJ
fc = dJ

out = 512. Other
simulation parameters are summarized in Table I.
Benchmarks: We compare the performance of our proposed
algorithms with the following algorithms as benchmarks:

• Video streaming with viewport prediction using Fed-
Avg: In this algorithm, instead of using our proposed
viewport prediction framework, we use FedAvg to train
the head movement prediction model as proposed in [15].

• Combined FoV tile-based adaptive streaming algo-
rithm [8]: In this algorithm, the viewport is predicted
by combining the current chunk’s viewport and another
viewport obtained by spherical walk. A priority-based
bitrate adaptation algorithm is used to select the bitrate
of tiles. Each user’s data rate is predicted by dividing
the number of bits in the previous video chunk by its
transmission delay. Since users’ head movements are not
predicted, we consider that the APs in the self-blockage
region of users are determined only after detecting beam

failure, a process that takes 300 ms.
• Video streaming with WMMSE beamforming algo-

rithm: In this algorithm, the joint agent employs a
WMMSE algorithm [25], [33] to obtain the beamforming
vectors instead of utilizing our actor-critic algorithm.

B. Experimental Results

In Fig. 10, we study the impact of increasing the maximum
buffer size threshold on the 360◦ video streaming system
performance. The users can prefetch more video chunks when
the buffer size threshold increases. The results in Fig. 10(a)
illustrate that as the maximum buffer size threshold increases,
the average viewport tile quality decreases for the combined
FoV tile-based adaptive streaming algorithm and video stream-
ing with viewport prediction using FedAvg. This is because
the increase in the maximum buffer size threshold leads to
a degradation in viewport prediction performance for these
algorithms. Moreover, such degradation in viewport prediction
performance results in lower average intra- and inter-chunk
quality switch as shown in Figs. 10(b) and 10(c), respectively.
However, by transmitting more video tiles based on the value
of αmarg and by using the Mac-IAICC approach for tile bitrate
selection, our proposed video streaming approach can achieve
a higher average viewport tile quality and a lower average
intra- and inter-chunk quality switch. By increasing the max-
imum buffer size threshold, users have more time to prefetch
their requested chunks without experiencing video stalling.
Thus, as shown in Fig. 10(d), the average rebuffering delay de-
creases for all the algorithms. In video streaming with viewport
prediction using FedAvg, only the predicted tiles for viewport
are sent to the users. Thus, this algorithm can achieve a lower
average rebuffering delay and a higher average sum-rate as
shown in Figs. 10(d) and 10(e), respectively. The combined
FoV tile-based adaptive streaming algorithm uses a reactive
THz beam failure detection. Thus, it has the highest average
rebuffering delay and the lowest average sum-rate. Moreover,
the results in Figs. 10(d) and 10(e) illustrate that the Prim-CAC
approach employed by the joint agent in our proposed video
streaming approach effectively reduces the average rebuffering
delay and increases the average sum-rate compared with using
the WMMSE beamforming algorithm. Overall, as shown in
Fig. 10(f), our proposed approach provides a higher average
QoE compared with the considered benchmarks when the
maximum buffer size threshold increases.

In Fig. 11, we investigate the impact of increasing the
number of users on average QoE. With more users, designing
the beamforming vectors becomes more challenging due to the
limited bandwidth of the APs and the self-blockage region
of the users. The results in Fig. 11 illustrate that when the
number of users is equal to 12, our proposed video streaming
approach can achieve an average QoE which is 23.77%,
62.7%, and 116.57% higher than that of the video streaming
with WMMSE beamforming algorithm, combined FoV tile-
based adaptive streaming algorithm, and video streaming with
viewport prediction using FedAvg, respectively.

In Fig. 12, we show the impact of the number and location
of APs on the performance of the considered THz-enabled
360◦ video streaming system. Due to self-blockage, the system
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Fig. 10: (a) Average viewport tile quality, (b) average intra-chunk quality switch, (c) average inter-chunk quality switch, (d) average rebuffering delay,
(e) average sum-rate, and (f) average QoE over users versus the maximum buffer size threshold. We set B = 0.5 GHz.
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Fig. 11: Average QoE over users when the number of users is increased. To
support more users, we set B = 5 GHz and maxu∈U BTHR

u = 30 time slots.

requires more than one AP. Also, as shown in Fig. 2, there
is a symmetry in the APs’ locations. Thus, we consider the
following three scenarios: all three APs are available; only two
APs located at l1 = (9, 1, 4) and l3 = (1, 9, 4) are available;
and only two APs located at l1 = (9, 1, 4) and l2 = (5, 5, 4)
are available to transmit the video tiles to the users. Fig. 12(a)
illustrates the complementary cumulative distribution function
(CCDF) of the average QoE. A higher CCDF indicates a
higher probability of obtaining an average QoE above a given
threshold value. Fig. 12(b) presents the cumulative distribution
function (CDF) of the average rebuffering delay for each of
the considered scenarios. A higher CDF indicates a higher
probability of obtaining an average rebuffering delay below a
given threshold value. The results in Fig. 12 show that with
three APs, we can consistently achieve a higher average QoE
(> 2.28) and a lower average rebuffering delay (< 1.67 time
slots) with a higher probability compared to scenarios with
only two APs. Furthermore, Fig. 12 illustrates that the APs’
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Fig. 12: (a) CCDF of the average QoE and (b) CDF of the average rebuffering
delay. We set B = 0.5 GHz and maxu∈U BTHR

u = 30 time slots.

locations have a significant impact on the system performance
when only two APs are available for video tile transmission to
the users. In particular, locating two APs at l1 and l3 can better
cope with self-blockage. For example, as shown in Fig. 12(b),
the probability of having an average rebuffering delay below
2 time slots is approximately 0.96 when APs are located at
l1 and l3, while this probability is close to 0.47 when APs
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Fig. 14: Average tiles overlap of our proposed viewport prediction framework
for different users and the average tiles overlap obtained by averaging across
users compared to the considered benchmarks.

are located at l1 and l2. Thus, a more reliable transmission
of 360◦ videos over THz links is provided if the two APs are
located at l1 and l3.

As shown in Fig. 1, our proposed 360◦ video streaming
approach consists of three algorithms: a viewport prediction
framework, a multi-agent DDPG algorithm for bitrate selec-
tion, and a multi-agent DDPG algorithm for beamforming
design. To demonstrate the performance gains contributed by
each algorithm in our approach, we assess their impact by
fixing two of our proposed algorithms and replacing the third
one with an existing algorithm from the literature. Fig. 13 illus-
trates the CCDF of the average QoE for our proposed approach
compared with three benchmarks. In the first benchmark, we
replace the DDPG-based beamforming design algorithm with a
WMMSE-based beamforming algorithm. In the second bench-
mark, we replace the DDPG-based bitrate selection algorithm
with a priority-based bitrate adaptation algorithm. In the third
benchmark, our proposed viewport prediction framework is
replaced by a FedAvg-based viewport prediction algorithm.
As shown in Fig. 13, the probability of achieving an average
QoE above 4 with our proposed approach is 1.25 times higher
than with the WMMSE-based beamforming algorithm, 8.86
times higher than with the priority-based bitrate adaptation
algorithm, and 40.12 times higher than with the FedAvg-based
viewport prediction. Thus, each of the algorithms comprising
our proposed approach definitely has its own merits on pro-
viding the users with an immersive viewing experience.
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Fig. 15: Rebuffering delay of each user. We set B = 0.5 GHz.

In Fig. 14, we compare the performance of our proposed
viewport prediction framework with the algorithms proposed
in [8] and [15]. The results in Fig. 14 show that our proposed
content-based viewport prediction framework can achieve an
average tiles overlap which is on average 2.41% and 15.93%
higher than that of the viewport prediction algorithms pro-
posed in [8] and [15], respectively.

In Fig. 15, we show the rebuffering delay of each user for
two scenarios. The first scenario is when users request their
next video chunks asynchronously. The second scenario is
when they request them synchronously. The results in Fig. 15
illustrate that asynchronous video chunk requests can provide
a lower rebuffering delay for each user (even zero rebuffering
delay for users 1, 5, and 6) compared with synchronous video
chunk requests. This is due to the fact that in synchronous
video chunk request: (a) each user may need to wait an extra
amount of time during which the user watches the prefetched
video tiles in its buffer, leading to a lower value of Bu

(
τREQ
u,c,v

)
;

and (b) all users request their next video chunk simultaneously
and compete for the limited wireless resources, leading to a
higher transmission delay τTD

u,c,v .

VIII. CONCLUSION

In this paper, we proposed a content-based viewport pre-
diction framework for 360◦ videos. To address users’ pri-
vacy concerns and the data heterogeneity issue, our proposed
framework employs a PFL algorithm for training the users’
head movement prediction models. We applied the proposed
viewport prediction framework in a THz-enabled 360◦ video
streaming system to determine which video tiles should be
transmitted to the users. We modeled the bitrate selection
for video tiles and the design of beamforming vectors for
the APs, as a MacDec-POMDP. To solve this problem, we
proposed a hierarchical DRL framework consisting of two
multi-agent DDPG algorithms. We determined a policy for
tile bitrate selection using the Mac-IAICC approach and a
policy for beamforming design using the Prim-CAC approach.
The results on a public 360◦ video dataset showed that our
proposed video streaming approach provides a higher QoE
for the users compared with three benchmark algorithms. One
direction for future work is to employ our proposed video
streaming approach in Metaverse systems, where users are
mobile and uplink transmission is used to send their motion
tracking data.
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