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Abstract—In a mobile crowdsensing system, the platform
utilizes ubiquitous smartphones to perform sensing tasks. For
a successful mobile crowdsensing application, the consideration
of the heterogeneity of quality of sensing from different users
as well as a proper incentive mechanism to motivate users
to contribute to the system are essential. In this paper, we
introduce quality of sensing into incentive mechanism design.
Under a budget constraint, the platform aims to maximize the
valuation of the performed tasks, which depends on the quality
of sensing of the users. We propose ABSee, an auction-based
budget feasible mechanism, which consists of a winner selection
rule and a payment determination rule. ABSee is designed by
adopting a greedy approach. We obtain the approximation ratio
of ABSee, which significantly improves the approximation ratio
of the existing budget feasible mechanisms in many cases. We
further show that the approximation ratio approaches 2e

e−1
when

a large number of smartphone users participate in the system.
ABSee also satisfies the properties of computational efficiency,
truthfulness, individual rationality, and budget feasibility. Ex-
tensive simulation results show that ABSee provides a higher
valuation to the platform when compared with existing budget
feasible mechanisms in the literature.

Index Terms—Mobile crowdsensing, auction, budget feasible
mechanism, approximation ratio.

I. INTRODUCTION

Smartphones nowadays are equipped with a variety of
sensors (e.g., microphone, camera, global positioning system
(GPS)) and have enhanced sensing capabilities. Mobile crowd-
sensing exploits the ubiquity of smartphones and utilizes their
sensors to monitor the environment [1]. In mobile crowdsens-
ing systems, the platfrom distributes the sensing tasks to the
smartphone users to collect data. Smartphone users perform
the tasks and send the results to the platform. Various mobile
crowdsensing applications have been developed. They include
monitoring the environment [2]–[4], creating wireless network
coverage maps [5], [6], and updating the traffic condition [7].

A key factor for a successful mobile crowdsensing applica-
tion is the participation of a large number of users. However,
performing sensing tasks incurs a cost on the smartphone
users, such as energy consumption for data sensing, packet
transmission charges from the service operator, and manual

Manuscript received on Mar. 16, 2016; revised on Sept. 9, 2016; accepted
on Nov. 9, 2016. This work was supported by the Natural Sciences and
Engineering Research Council (NSERC) of Canada. The review of this paper
was coordinated by Prof. Ping Wang. (B. Song and H. Shah-Mansouri both
contributed equally to this work).

B. Song is with SAP, Vancouver, BC, V6B 1A9, Canada (e-mail: boya-
song.zju@gmail.com).

H. Shah-Mansouri and V. W.S. Wong are with the Department of Electrical
and Computer Engineering, The University of British Columbia, Vancouver,
BC, V6T 1Z4, Canada (e-mail:{hshahmansour, vincentw}@ece.ubc.ca).

efforts. In order to motivate users to participate in mobile
crowdsensing, the platform should make payments to the users
to compensate their costs. The aforementioned applications in
[2]–[7] are based on voluntary participation of users, where
their participation cannot be guaranteed.

Another important issue in mobile crowdsensing is that
users provide different quality of sensing. For example, con-
sider a platform which monitors the noise level of a city.
Each sensing task corresponds to obtaining the noise level
at a sampling location in the city by utilizing the microphone
of smartphones. For a specific user, the quality of sensing
depends on the type of microphone on its smartphone (e.g.,
accuracy, calibration) and its manual effort (e.g., taking the
smartphone out of its pocket to collect the sample). If the
platform intends to obtain a high accuracy of the noise
measurement, it would assign tasks and provide payments to
the users who can provide a high quality of sensing. However,
the quality of sensing of users may not be known by the
platform in advance. Thus, it is required for the platform to
estimate the quality of sensing of users accurately and then
select the users accordingly.

Unlike most of the existing works (e.g., [8]–[22]), in this
paper, we consider the quality of sensing in the incentive
mechanism design. We study a practical scenario where a
platform with limited budget aims to maximize the valuation
of performed tasks, which depends on the quality of sensing of
the users. As a practical example, in urban-scale information
gathering [23]–[25], the platform with a limited budget may
utilize mobile crowdsensing systems to provide its services.
The platform adopts an incentive mechanism to motivate users
to participate. We model the interaction between the platform
and the users as an auction. The platform first announces its
tasks to the users. Each user submits its bid and the subset
of tasks it can perform to the platform. The platform then
selects the winners according to its limited budget. The win-
ners perform the tasks and receive payments accordingly. We
design an auction-based incentive mechanism, which consists
of a winner selection rule and a payment determination rule.

The budget constraint introduces inter-dependence between
the winner selection rule and the payment determination rule.
It makes the design of auction mechanism challenging. In
this paper, we consider a practical scenario where there are
many participating users in the mobile crowdsensing system.
In this scenario, the existing budget feasible mechanisms, e.g.,
[26], [27], may not always provide a high valuation for the
platform. We introduce the crowd factor θ, where 0 < θ < 1,
to model the relative contribution a winner can make to
the platform. When there are a few users, each user can



significantly increase the platform’s valuation and contribute
to the system. In this case, the crowd factor is small. When
more users participate in the auction, the relative contribution
of each user becomes smaller. The relative increment in the
platform valuation provided by each winner tends to zero
eventually in large mobile crowdsensing systems. In this case,
the crowd factor θ approaches 1. The formal definition of
the crowd factor will be given in Section IV. We use the
crowd factor to design a novel budget feasible mechanism.
The proposed incentive mechanism is applicable not only to
mobile crowdsensing systems but also to other systems where
there are a large number of users.

Our main contributions are summarized as follows:

• Novel model: We jointly study quality of sensing and
incentive mechanism design. We introduce quality of
sensing into the valuation function of the platform. The
valuation function is proven to be a submodular function.
Since the quality of sensing of users is not known a
priori, in our work, we accurately estimate the quality of
sensing for each user. We focus on tasks with continuous
values, but our model is also suitable for tasks with
discrete values, including tasks with binary values.

• Novel incentive mechanism: We propose an Auction-
based Budget feaSible mechanism, which is called AB-
See. ABSee consists of a winner selection rule and a
payment determination rule. We first determine the crowd
factor and select the winners by employing an iterative
approach. We then determine the payment to the winners
using the crowd factor. We rigorously prove that AB-
See satisfies the properties of computational efficiency,
truthfulness, individual rationality, and budget feasibility.
We further analyze the crowd factor and show that it
approaches 1 under some realistic scenarios.

• Approximation ratio: To tackle the computational com-
plexity of the auction design, ABSee adopts a greedy ap-
proach. We first prove that the approximation ratio of AB-
See, which is the ratio between the optimal valuation and
the one obtained by ABSee, is min

{
2e

θ(e−1) ,
(5−2θ)e
e−1

}
.

This always improves the approximation ratio of 5e
e−1

(≈ 7.91) in the budget feasible mechanism proposed in
[27]. We further show that the approximation ratio ap-
proaches 2e

e−1 (≈ 3.16) in mobile crowdsensing systems
with a large number of users.

• Performance evaluation: Through extensive numerical
studies, we evaluate the performance of ABSee. Results
show that a higher valuation can be obtained by adopting
ABSee when compared with the budget feasible mech-
anisms proposed in [27] under different scenarios. The
crowd factor is shown to have a significant influence
on the valuation of the platform, and approaches one
when a large number of users participate in the system.
Moreover, our results show that the quality of sensing
can be estimated accurately.

The rest of this paper is organized as follows. The related
works are summarized in Section II. In Section III, we present
the system model for the auction and quality of sensing. In
Section IV, we propose ABSee and provide a walk-through

example. We prove that ABSee achieves all mentioned prop-
erties. We further illustrate the crowd factor and analyze the
approximation ratio of ABSee in Section V. We evaluate the
performance of ABSee in Section VI. Conclusion and future
works are given in Section VII.

II. RELATED WORK

Different forms of incentive mechanisms have been pro-
posed in the literature. A platform-centric model and a user-
centric model are proposed in [8] to maximize the utility of
the platform, which is the valuation of performed tasks minus
the total payment to the users. An all-pay auction is designed
in [9] to maximize the utility, where the users’ population
is stochastic. In [10], an auction mechanism is proposed to
minimize the social cost of smartphone users. An online
auction mechanism is designed in [11] for dynamic arrival and
departure of smartphone users, with the goal of maximizing
the valuation of performed tasks. Another online incentive
mechanism is proposed in [12] to maximize the utility of
the platform. Zhang et el. in [13] proposed different auction
mechanisms for mobile crowdsourcing systems by considering
the cooperation and competition among the users. They proved
that the mechanisms are truthful, individually rational, budget
feasible, computationally efficient, and the platform is guar-
anteed to obtain non-negative utility. An incentive mechanism
is proposed in [14] to provide the long-term incentives to
guarantee the users will participate for a long time. Ji et al.
in [15] focused on the discretized crowdsensing where users
participate in crowdsensing system in discrete time-slots. A
game theoretic approach is used based on the perfect Bayesian
equilibrium to maximize the platform’s utility. However, qual-
ity of sensing is not considered in the aforementioned works.

The existing works on quality of sensing mainly focus on
tasks with discrete values. A quality aware task assignment
system is designed in [16] by considering quality measures
for crowdsourcing applications. An efficient budget allocation
algorithm is proposed in [17] to guarantee the accuracy of
estimation of tasks with binary values. An online learning
approach is adopted in [18] to maximize the quality of sensing
to guarantee the robustness of the crowdsourcing system. In
the data mining area, the work in [19] used expectation max-
imization and maximum likelihood estimation to determine
the quality of sensing of tasks with binary values in social
sensing applications. Davami et al. in [20] compared five trust
prediction algorithms and calculated the quality of sensing of
users for a parking application. Li et al. in [21] formulated
an optimization problem to obtain the estimated value of the
tasks and minimize the estimation error by considering tasks
with both continuous and discrete values.

Besides, a few existing incentive mechanisms consider
quality of sensing of tasks. Koutsopoulos in [28] proposed an
incentive mechanism which considers the quality of sensing.
However, the platform does not have a budget constraint and
only has one task. An auction mechanism is designed in [29]
to maximize the platform’s valuation, where the quality of
sensing of each user is assumed to be known by the platform.
A sequential Bayesian approach is used in [30] to determine



TABLE I
COMPARISON OF BUDGET FEASIBLE MECHANISMS

Mechanism Approximation ratio Setting

[26] 117.7 General submodular
functions

[27] 5e
e−1
≈ 7.91

General submodular
functions

[33] 31 Coverage model (a spe-
cial submodular function)

ABSee min{ 2e
θ(e−1)

, (5−2θ)e
e−1

} General submodular
functions

the quality of sensing of users, but the auction mechanism is
designed specifically for tasks with binary values with prior
information of quality of sensing of the users. A quality-based
incentive mechanism is designed in [31]. However, it does not
consider the strategic behavior of users, who are interested
in maximizing their own utilities and may adopt strategies
to manipulate the mechanism. A quality-aware algorithm is
proposed in [32], where it only considers the coverage quality.
Unlike the aforementioned existing works, we consider strate-
gic users and propose an incentive mechanism for the platform
under a budget constraint, where we estimate the quality of
sensing of users.

Budget feasible mechanisms for submodular functions are
proposed by Singer [26] and improved by Chen et al. [27].
Recently, these mechanisms have been used in several ap-
plications. For example, an influence maximization prob-
lem is studied by utilizing a coverage model and a budget
feasible mechanism in [33]. In this paper, we propose a
novel budget feasible mechanism by introducing the crowd
factor and utilizing an iterative winner selection algorithm.
ABSee outperforms [27] in terms of the platform valuation.
This is achieved through using the crowd factor, which is
uniquely introduced in this work. ABSee can achieve a better
approximation ratio comparing to the other budget feasible
mechanisms as summarized in Table I. Later in Sections V and
VI, we will show that θ is close to 1 and the approximation
ratio of ABSee approaches 2e

e−1 ≈ 3.16.

III. SYSTEM MODEL

A. Auction Framework

A mobile crowdsensing system, as shown in Fig. 1, is
composed of a platform residing in the cloud computing center
and many smartphone users. Users are connected with the
cloud via wireless access networks (e.g., WiFi, LTE). The set
of smartphone users is denoted by N = {1, . . . , N}, where
N is the number of users. We assume that N > 1. Note that
an auction with only one user cannot guarantee truthfulness.
The platform announces the sensing tasks to the smartphone
users. We use Γ = {τ1, . . . , τM} to denote the set of tasks and
there are M tasks in total.

We model the interactive process between the platform and
the users as an auction. Each user n ∈ N submits bid bn for
the subset of tasks Γn ⊆ Γ that it can perform to compensate
its cost cn. The platform collects the bids from all of the users
and chooses a subset of users S to perform the tasks. These
users are called the winners. The winners perform tasks and
send the data to the platform. Then, the platform makes a

Fig. 1. A mobile crowdsensing system consists of a platform and many
smartphone users. The auction mechanism is modeled as an interactive process
between the platform and the users.

payment pn to each winner n ∈ S . Each user is assumed to
be rational and chooses a strategy (i.e., submits bid bn) to
maximize its own utility. The utility of user n ∈ N is

un =

{
pn − cn, if user n is a winner,
0, otherwise.

(1)

Note that the bid bn determines whether user n can be selected
as a winner or not.

B. Quality of Sensing

In a mobile crowdsensing system, the quality of sensing of
a user depends on its effort and expertise to perform the tasks
and the quality of the sensors of its smartphone. The quality
of sensing of user n ∈ N , i.e., the accuracy of the sensed data,
is modeled by a quality indicator qn > 0, which is not known
a priori and needs to be calculated. Notice that user n may
have participated in the auction multiple times if the platform
conducts the auction many times1. For example, recall the
noise map application in Section I. The platform may need
to determine the noise level of some locations in the city at
different times for several days. It keeps a historical record of
the quality indicators of different users2. The platform collects
all sensed data from the winners and calculates the estimated
value of the tasks. It then measures the quality indicators of
the winners and updates its historical record.

We now determine the quality of sensing based on the
collected sensed data. Assume user n has participated in the
auction and has been a winner in L auctions in the past.
In the lth auction, where l ∈ {1, . . . , L}, we use δ̂

(l)
k and

δ̂
(l)
k,n to denote the estimated value of task τk performed by

the winners and the value of task τk obtained from user
n, respectively. The platform can estimate δ̂(l)

k accurately by
adopting a truth discovery approach [21]. Let q̂(l)

n denote the
quality indicator of user n obtained in the lth auction. Then,
q̂

(l)
n can be measured as the variance of sensed data provided

by user n as follows:

q̂(l)
n =

1

|Γ(l)
n |

∑
τk∈Γ

(l)
n

(
δ̂

(l)
k,n − δ̂

(l)
k

)2

, (2)

1When the platform runs the auction for multiple times, smartphone users
may learn the other participants’ bids and information due to privacy leakage.
This issue has been studied and addressed in [34], [35], and [36], and is
beyond the scope of this paper.

2Notice that a fixed pool of users is not required to estimate the quality
indicators. The users can move dynamically and participate in performing
different tasks in different locations. In each round of auction, the platform
estimates the quality indicators and updates the historical records for those
users who win the auction and perform the sensing tasks. This captures the
nature of a dynamic mobile crowdsensing system.



where Γ
(l)
n is the set of tasks of winner n in the lth auction.

Notice that q̂(l)
n in (2) is obtained individually for user n by

taking the variance of the sensed data provided by this user.
If user n is able to perform a large number of sensing tasks
and submits a large set Γ

(l)
n , then q̂

(l)
n can be obtained more

accurately. Let q̄(l)
n denote the quality indicator of user n after

the lth auction. Then, q̄(l)
n can be obtained as

q̄(l)
n = γq̂(l)

n + (1− γ)q̄(l−1)
n , l ∈ {1, . . . , L}, (3)

where constant 0 < γ < 1 is the weight for the most recent
quality indicator. The platform will then store the updated
quality indicator in its historical record. Notice that q̄

(0)
n

represents the initial value of quality indicator, which depends
on the mobile crowdsensing application. By conducting more
rounds of auction, the platform can obtain a more accurate
estimate of q̄(l)

n using (3). The estimated value approaches the
true value when the platform has conducted the auction for
many rounds. For the sake of simplicity, we abuse the notation
and remove the round of auction (i.e., (l)) and use qn, since
we focus on a specific round of auction.

We denote the quality of sensing for task τk given the
winners S as gk(S). It represents the accuracy of the estimated
value of task τk after aggregating all sensed data from the
winners. For tasks with continuous values, the accuracy of the
estimated value can be defined by the mean squared estimation
error. We calculate gk(S) by adopting the maximum likelihood
estimation [37]:

gk(S) =

( ∑
n∈S:τk∈Γn

1

qn

)−1

. (4)

A smaller value of gk(S) represents a higher accuracy of the
estimated value of task τk, i.e., better quality of sensing. We
illustrate the model for quality of sensing by using tasks with
continuous values, but our model is suitable for tasks with
discrete values as well by updating (2) and (4). In statistics,
for tasks with discrete values, q̂(l)

n can be estimated by 0-1
loss function or squared loss function and gk(·) can denote
the estimation error rate [21].

C. Problem Formulation

We denote the valuation function obtained from the winners
S as V (S). We consider that each task has a different weight,
which can be regarded as the importance of that task to the
platform. Let µk > 0 denote the weight of task τk. The
valuation function is

V (S) =
∑

τk∈
⋃

s∈S Γs

µk log
(
1 + gk(S)−1

)
. (5)

The log term in (5) reflects the diminishing marginal returns
on the quality of sensing, where qn is the quality indicator of
user n in a specific round of auction. The valuation function
V is defined based on qn to reflect the valuation of the
performed tasks to the platform. In general, the platform aims
to have a high quality of sensing of task τk as denoted by
gk(S)−1, which is obtained based on the quality indicators
(i.e., qn) of those users n ∈ N who can perform the task. The

higher the quality indicator (i.e., the smaller qn), the higher
valuation the platform can obtain. In addition, the weighting
factor µk reveals the importance of task τk to the valuation
of the platform. Similar to [9], [11], [13], we assume that
the platform aims to maximize the total valuation function as
given in (5) instead of considering the valuation obtained from
each task individually. According to this model, any task can
contribute to the valuation function if there are some winners
to perform the task. By maximizing the valuation function, the
platform can perform the tasks in a weighted proportionally
fair manner.

We first define submodular functions. Through Lemma 1,
we then prove that V (S) is a non-negative non-decreasing
submodular function. It should be noted that all results of this
paper hold for any subdomular valuation functions.

Definition 1. For a finite set Y , function f : 2Y → R is
submodular if [38]

f(C ∪ {y})− f(C) ≥ f(D ∪ {y})− f(D),

for any C ⊆ D ⊆ Y and y ∈ Y \ D. Moreover, a submodular
function f is non-decreasing if f(C) ≤ f(D) for any C ⊆ D.

Lemma 1. The valuation V (S) in (5) is a non-negative non-
decreasing submodular function.

Proof. The proof can be found in Appendix A. �

The platform, which has a limited budget G, aims to
maximize its valuation V (S) by selecting the set of winners
S and making payments to them properly. We aim to design a
mechanismM = (F ,P), which consists of a winner selection
rule F and a payment determination rule P . Given vector
b = (b1, . . . , bN ) (i.e., the bids from all users) and budget G
as inputs, F returns the set of winners S, and P returns the
payment vector p = (p1, . . . , pN ). The mechanism M should
satisfy the following properties:
• Computational Efficiency: Both the winners and pay-

ments are determined in polynomial time.
• Truthfulness: Each participating user submits its true cost

for its bid, i.e., bn = cn, n ∈ N , by which it can
maximize its own utility.

• Individual Rationality: Each participating user has a non-
negative utility, i.e., un ≥ 0, ∀ n ∈ N .

• Budget Feasibility: The total payment to the users should
be within the limited budget G of the platform, i.e.,∑
n∈N pn ≤ G.

The importance of computational efficiency, individual ra-
tionality, and budget feasibility is obvious while truthfulness
is necessary to avoid market manipulation. Since the users
are strategic, they will submit bids which maximize their own
utilities. However, with truthfulness, the dominant strategy
of users is to submit their true costs. These four properties
together guarantee the successful practical implementation of
the auction mechanism.

IV. AUCTION-BASED BUDGET FEASIBLE MECHANISM

In this section, we first propose our budget feasible mech-
anism ABSee by designing the winner selection rule F and



the payment determination rule P . We then illustrate ABSee
in details by a walk-through example.

Budget feasibility distinguishes our mechanism from other
auction mechanisms and makes the mechanism design chal-
lenging. With the budget constraint, the winner selection rule
F and the payment determination rule P are inter-dependent.
The platform must ensure that the total payment for all selected
winners is within the budget limit, while the payment should
be determined carefully to ensure truthfulness. To guarantee
that ABSee achieves truthfulness, according to the Myerson’s
characteristics [39], we have

Proposition 1. An auction mechanism is truthful iff:
• The winner selection rule F is monotone, i.e., if user n

wins the auction by bidding bn for Γn, it can also win
the auction by bidding b′n ≤ bn for Γn.

• Each winner is paid the threshold payment, which refers
to the highest bid the user can submit to win the auction.

Since V (S) is a submodular function, we can adopt a greedy
approach to design the monotone winner selection rule F .
Given a subset A ⊆ N , the marginal contribution of user
j ∈ N \ A is

Vj(A) = V (A ∪ {j})− V (A). (6)

In F , we sort the users based on their marginal contributions
per bid. The ith user in the sorted list, denoted by xi, has the
largest marginal contribution per bid in subset N \ Si−1, i.e.,

xi = arg max
j∈N\Si−1

Vj(Si−1)

bj
, (7)

where Si−1 = {x1, x2, . . . , xi−1} and S0 , ∅. Considering
the submodularity of V (S), the sorting implies that:

Vx1(S0)

bx1

≥ Vx2(S1)

bx2

≥ · · · ≥ VxN
(SN−1)

bxN

. (8)

The platform selects the winners from the above sorted list
such that their marginal contribution per bid is not less than a
certain threshold. The threshold determines the stopping crite-
rion of the winner selection rule. To introduce the threshold,
we first formally define θ as follows.

Definition 2. We define the crowd factor as

θ , 1− V max

V (S)
, (9)

where
V max = max

j∈N
V ({j}). (10)

To be selected as a winner, the marginal contribution per
bid of user xi must not be less than V (Si)

θ̃G
, where

θ̃ , max

{
1

2
, θ

}
. (11)

We use the crowd factor θ and θ̃ given in (9) and (11),
respectively, to determine the portion of the budget used in
the winner selection rule (i.e., θ̃G) and design its stopping
criterion. We will later show that using θ̃G amount of budget

for winner selection rule guarantees budget feasibility. For a
fixed value of θ̃, let w ∈ N be the largest index such that
Vxw (Sw−1)

bxw
≥ V (Sw)

θ̃G
, i.e.,

bxw
≤ θ̃GVxw

(Sw−1)

V (Sw)
. (12)

Then, S = {x1, x2, . . . , xw} is the set of winners. However,
notice that we cannot obtain θ and θ̃ directly since the winners
set S is not known a priori. We adopt an iterative approach
to determine θ and S together. The value of θ in iteration
t is denoted by θ(t). In each iteration t, the winners set S
is obtained by utilizing θ(t), and then S is used to calculate
θ(t+1). When θ(t) increases, there will be more winners added
to set S , and thus V (S) increases. In this case, both θ(t)

and V (S) increase monotonically. Since S ⊆ N is finite,
the iteration converges. When θ decreases, V (S) will always
be decreasing and similar results can be obtained. Thus, the
convergence of the iteration is guaranteed. The value of θ̃ can
be obtained by substituting θ(t) into (11) and the set of winners
can be obtained accordingly.

According to the Myerson’s characteristics, the goal of
the payment determination rule P is to pay each winner
the threshold payment. For each winner xi ∈ S, similar
to the winner selection rule F , we sort the users in set
N ′ , N \ {xi}, based on their marginal contributions per
bid. We use Qk to denote the first k users in this sorting, and
ik to denote the kth user, i.e.,

ik = arg max
j∈N ′\Qk−1

Vj(Qk−1)

bj
.

Then, Vik(Qk−1) is the marginal contribution of the kth user
in this sorting. Similarly, we can obtain

Vi1(Q0)

bi1
≥ Vi2(Q1)

bi2
≥ · · · ≥

ViN−1
(QN−2)

biN−1

. (13)

We use w′ ∈ N ′ to denote the largest index such that

biw′ ≤ θ̃G
Viw′ (Qw′−1)

V (Qw′)
. (14)

Let βi(k) denote the highest bid that winner xi can submit
to replace user ik in the kth position. Furthermore, let ρi(k)

denote the highest bid that xi can submit so that the marginal
contribution per bid is not less than V (Qk−1∪{xi})

θ̃G
. We have

βi(k) =
Vxi

(Qk−1)bik
Vik(Qk−1)

, ρi(k) = θ̃G
Vxi

(Qk−1)

V (Qk−1 ∪ {xi})
.

Since xi can be placed in any position k from 1 to w′ + 1 to
be selected as a winner, the payment pxi for winner xi is

pxi = max
k∈{1,...,w′+1}

{min(βi(k), ρi(k))}. (15)

Our proposed budget feasible mechanism is shown in Algo-
rithm 1. Through Steps 2 to 13, the crowd factor is obtained.
We set 0 < θ(1) < 1 for initialization. An iterative approach
is adopted to calculate θ(t). In each iteration (i.e., Steps 4 to
12), the winners are selected in a greedy manner according to
their marginal contribution per bid. The value of θ̃ is obtained
from Step 14. Steps 15 to 20 show the winner selection rule



Algorithm 1: ABSee Budget Feasible Mechanism
1 Input Γ, V (·), G, N , b
/* Winner selection F */

2 0 < θ(1) < 1, t← 0, V max ← maxj∈N V ({j})
3 do
4 t← t+ 1, i← 1, S ← ∅
5 xi ← arg maxj∈N

Vj(∅)
bj

6 while bxi ≤ θ(t)G
Vxi

(S)
V (S∪{xi})

do
7 S ← S ∪ {xi}
8 i← i+ 1

9 xi ← arg maxj∈N\S
Vj(S)
bj

10 end
11 if S = ∅ then break;
12 θ(t+1) ← 1− V max

V (S)
13 while θ(t+1) 6= θ(t);
14 θ̃ ← max

{
1
2
, θ(t)

}
15 i← 1, S ← ∅, xi ← arg maxj∈N

Vj(∅)
bj

16 while bxi ≤ θ̃G
Vxi

(S)
V (S∪{xi})

do
17 S ← S ∪ {xi}
18 i← i+ 1

19 xi ← arg maxj∈N\S
Vj(S)
bj

20 end
/* Payment determination P */

21 pn ← 0, ∀ n ∈ N
22 for xi ∈ S do
23 N ′ ← N \ {xi}, Q ← ∅, k ← 0
24 do
25 k ← k + 1

26 ρi(k) ←
θ̃GVxi

(Q)

V (Q∪{xi})
27 if N ′ \ Q = ∅ then
28 pxi ← max{pxi , ρi(k)}
29 break
30 else
31 ik ← arg maxj∈N ′\Q

Vk(Q)
bj

32 βi(k) ←
Vxi

(Q)bik
Vik

(Q)

33 pxi ← max{pxi ,min{βi(k), ρi(k)}}
34 Q ← Q∪ {ik}
35 end
36 while bik > θ̃G

Vik
(Q\{ik})
V (Q)

;
37 end
38 return (S,p)

F . The set of winners will be updated when θ(t) is replaced
by θ̃. Steps 21 to 37 show the payment determination rule. We
finally obtain the set of winners S and the payment vector p.

We use the example in Fig. 2 to provide a walk-through
example. In this figure, the squares represent the users and
the circles represent the tasks. The bid for the tasks each user
can perform and the quality indicator of the user are given
above the squares. The weight of each task is also given in
this figure. Assume the platform has a budget G = 30.

Winner selection:

1) According to Step 2 of Algorithm 1, suppose we choose
θ(1) = 1

2 and calculate V max = V ({2}) = 7 × log(1 +
1

0.1 ) = 16.79. Then, according to Steps 3 to 13, winners
are selected and θ is updated in each iteration as follows.

2) t = 1. θ(1) = 1
2 .

• S = ∅: V1(∅)
b1

= V ({1})
b1

=
8×log(1+ 1

0.2 )

4 = 3.58,
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Fig. 2. An instance of the system with four users and five tasks. N =
{1, . . .}, Γ = {τ1, . . .}, q1 = 0.2, q2 = 0.1, q3 = 0.8, q4 = 0.5, b1 = 4,
b2 = 6, b3 = 3, b4 = 10, µ1 = 5, µ2 = 3, µ3 = 7, µ4 = 9, µ5 = 1,
Γ1 = {τ1, τ2}, Γ2 = {τ3}, Γ3 = {τ2, τ4, τ5}, and Γ4 = {τ3, τ5}.

V2(∅)
b2

= 2.8, V3(∅)
b3

= 3.51, V4(∅)
b4

= 0.88.
x1 = 1, 3.58 = V1(∅)

b1
≥ V (∅∪{1})

θ(1)G
= 14.33

15 = 0.96.
• S = {1}: V2({1})

b2
= 2.8, V3({1})

b3
= 2.89, V4({1})

b4
=

0.88.
x2 = 3, 2.89 = V3({1})

b3
≥ V ({1,3})

θ(1)G
= 23.01

15 = 1.53.
• S = {1, 3}: V2({1,3})

b2
= 2.8, V4({1,3})

b4
= 0.83.

x3 = 2, 2.8 = V2({1,3})
b2

≥ V ({1,2,3})
θ(1)G

= 39.8
15 =

2.65.
• S = {1, 2, 3}: V4({1,2,3})

b4
= 0.18.

x4 = 4, 0.18 = V4({1,2,3})
b4

< V ({1,2,3,4})
θ(1)G

= 2.8.

Thus, S = {1, 2, 3}, θ(2) = 1 − V max

V (S) = 0.58, and
θ(2) 6= θ(1).

3) t = 2. θ(2) = 0.58.

• S = ∅: x1 = 1, 3.58 = V1(∅)
b1
≥ V (∅∪{1})

θ(2)G
= 0.82.

• S = {1}: x2 = 3, 2.9 = V3({1})
b3

≥ V ({1,3})
θ(2)G

= 1.32.
• S = {1, 3}: x3 = 2, 2.8 = V2({1,3})

b2
≥ V ({1,2,3})

θ(2)G
=

39.8
17.4 = 2.29.

• S = {1, 2, 3}: x4 = 4, 0.18 = V4({1,2,3})
b4

<
V ({1,2,3,4})

θ(2)G
= 42.07

17.4 = 2.42.

Thus, we still have S = {1, 2, 3} with θ(3) = 1− V max

V (S) =

0.58 and θ(2) = θ(3).
4) According to Step 14 of Algorithm 1, since θ(3) > 0.5,

we obtain θ̃ = θ(3) = 0.58. Thus, the set of winners
S = {1, 2, 3}.

Payment determination:

1) x1 = 1: Winners and the next user after the selected
winners are 11 = 3, 12 = 2, and 13 = 4.
β1(1) =

Vx1
(Q0)b11

V11 (Q0) = V1(∅)b3
V3(∅) = 4.08, ρ1(1) =

θ̃GVx1
(Q0)

V (Q0∪{x1}) = θ̃G = 17.4, β1(2) = 4.45, ρ1(2) = 9.43,
β1(3) = 69.3, ρ1(3) = 5.45. Thus, px1 = 5.45.

2) x2 = 3: Winners and the next user after the selected
winners are 21 = 1, 22 = 2, and 23 = 4.
β2(1) = 2.94, ρ2(1) = 17.4, β2(2) = 3.1, ρ2(2) = 6.56,
β2(3) = 37.74, ρ2(3) = 3.79. Thus, px2

= 3.79.
3) x3 = 2: Winners and the next user after the selected

winners are 31 = 1, 32 = 3, and 33 = 4.
β3(1) = 4.69, ρ3(1) = 17.4, β3(2) = 5.81, ρ3(2) = 9.39,
β3(3) = 20.23, ρ3(3) = 7.34. Thus, px3

= 7.34.

Hence, p1 = px1 = 5.45, p2 = px3 = 7.34, p3 = px2 =
3.79, and p4 = 0. Notice that p1 + p2 + p3 + p4 < G.



V. MECHANISM ANALYSIS

In this section, we first prove that ABSee satisfies all of the
properties introduced in Section III. Then, we calculate the
approximation ratio of ABSee.

A. Properties of ABSee

Theorem 1. ABSee is computationally efficient.

Proof. Finding the user with the maximum marginal contri-
bution per bid takes O(N2M) time since calculating V (S)
takes O(NM) time. Both the winner selection rule F and the
payment determination rule P have nested loops. The while
loop in F takes O(N3M) time because the maximum number
of the winners is N . Moreover, the do-while loop runs at
most N times to update θ(t). Thus, the running time of F
is O(N4M). Similar to F , the running time of the payment
determination rule P is also O(N4M). �

Note that the running time shown above is conservative.
In practice, the number of winners is much less than N . The
above complexity analysis is provided for one round of auction
as the platform does not need to run multiple rounds at the
same time. However, the number of auctions will increase in
a long run to update the quality indicator of users.

Theorem 2. ABSee is truthful.

Proof. It is required to show that ABSee satisfies the My-
erson’s characteristics. In the greedy approach in F , since a
lower bid can only put the user in the same or a prior position,
the monotonicity is guaranteed. Notice that the monotonicity
is not influenced by the value of θ̃. The iteration in the
winner selection rule F cannot change the monotonicity of
the greedy approach. Thus, we only need to show that the
winners receive the threshold payments. The proof follows the
approach presented in [26]. Consider winner xi. From (15),
let r ≤ w′ + 1 be the index such that

pxi
= max
k∈{1,...,w′+1}

{min(βi(k), ρi(k))}=min{βi(r), ρi(r)}.

Recall w′ from (14). We show that user xi wins the auction
by bidding bxi

≤ pxi
, and loses the auction if bxi

> pxi
.

If bxi
≤ pxi

, we have bxi
≤ βi(r). User xi can be placed in

the first w′ + 1 positions in the sorted list given by (13). We
also have bxi ≤ ρi(r). Thus, it will be chosen as a winner.

If bxi
> pxi

, we have two cases.
Case 1: βi(r)≤ ρi(r), i.e., pxi

= βi(r). In this case, xi will
be placed after the rth position in the sorted list. If βi(r) =
maxk∈{1,...,w′+1}βi(k), xi cannot be a winner. Otherwise, if
βi(r)<βi(k) for some k ∈ {1, . . . , w′ + 1}, we have ρi(k) <
βi(r) = pxi < bxi . Thus, xi cannot be placed at the kth position
to be selected as a winner.

Case 2: βi(r) > ρi(r), i.e., pxi
= ρi(r). If ρi(r) =

maxk∈{1,...,w′+1}ρi(k), xi cannot be a winner. Otherwise,
if ρi(r) < ρi(k) for some k ∈ {1, . . . , w′ + 1}, we have
βi(k) < ρi(r) = pxi < bxi . Thus, xi cannot be a winner.

Since the winner selection rule F is monotone and each
winner receives the threshold payment, we conclude that
ABSee is truthful. �

Theorem 3. ABSee is individually rational.

Proof. If a user is not a winner, its utility is zero as shown
in (1). Consider a winner xi, whose payment pxi

is obtained
from (15). Since ABSee is truthful, we have bxi

= cxi
for

a winner xi. If there exists k from 1 to w′ + 1 such that
bxi
≤ min{βi(k), ρi(k)}, we have bxi

≤ pxi
. Then, we can

obtain uxi = pxi − cxi ≥ 0. For winner xi, the payment
determination rule P implies that Qk = Sk, for k < i, thus
Vxi

(Si−1) = Vxi
(Qi−1). Recall that user xi is sorted in the

ith position in (8) among users N and user ik is sorted in the
kth position in (13) among users N \ {xi}. Consider the case
of k = i, we have

bxi ≤ θ̃G
Vxi

(Si−1)

V (Si−1 ∪ {xi})
= θ̃G

Vxi(Qk−1)

V (Qk−1 ∪ {xi})
= ρi(k).

(16)
From (7), we have Vxi

(Si−1)

bxi
≥ Vik

(Si−1)

bik
. We can obtain that

bxi
≤ Vxi

(Si−1)bik
Vik(Si−1)

=
Vxi

(Qk−1)bik
Vik(Qk−1)

= βi(k). (17)

From (16) and (17), we have bxi
≤ min{βi(k), ρi(k)} when

k = i. This results in bxi
≤ pxi

and completes the proof. �

To prove the budget feasibility of ABSee, we use the
following lemma.

Lemma 2. The payment pxi for each winner xi satisfies pxi ≤
θ̃G

Vxi
(Si−1)

V (Qw′ )
.

Proof. The proof can be found in Appendix B. �

By utilizing Lemma 2, we now prove the budget feasibility.

Theorem 4. ABSee is budget feasible.

Proof. Since the proof of budget feasibly is similar to [27]
when θ̃ = 1

2 (i.e., θ < 1
2 ), we only focus on the case that

θ̃ = θ ≥ 1
2 . To prove

∑
n∈N pn ≤ G, it is equivalent to prove

that
∑
xi∈S pxi

≤ G. According to the payment determination
rule P , we have V (S)− V (Qw′) ≤ maxj∈N V ({j}). Thus,

1− V (Qw′)
V (S)

=
V (S)− V (Qw′)

V (S)
≤ maxj∈N V ({j})

V (S)
.

Then,
V (Qw′)
V (S)

≥ 1− maxj∈N V ({j})
V (S)

= θ.

Thus, V (Qw′)≥θV (S). From Lemma 2, for each winner xi,

pxi
≤ θGVxi

(Si−1)

V (Qw′)
≤ θGVxi

(Si−1)

θV (S)
=
Vxi

(Si−1)G

V (S)
.

According to (6) and S = {x1, x2, . . . , xw}, we have∑
xi∈S

Vxi(Si−1) = Vx1(∅) + Vx2(S1) + · · ·+ Vxw(Sw−1)

= V (S).

Thus,
∑
xi∈S pxi

≤
∑
xi∈S Vxi

(Si−1) G
V (S) = G. �

B. Crowd Factor

We now analyze the crowd factor θ. For a successful mobile
crowdsensing application, there are usually a large number



of participating users and the platform selects many winners.
Thus, V (S) is much larger than V max (i.e., V (S) � V max)
and θ approaches 1. We study the following scenario as an
example to analyze the behavior of θ. Consider each user has
the same quality indicator, i.e., qn = q, n ∈ N . The number
of tasks each user can perform is also the same, i.e., |Γn| =
Υ, n ∈ N . The subsets of tasks each user can perform are
pairwise disjoint, i.e., Γn∩Γn′ = ∅, n, n′ ∈ N . All tasks have
the same weight, i.e., µk = µ, τk ∈ Γ. The bid bn is equal to
b. Then, for winner xi, we have

Vxi
(Si−1) =

∑
τk∈Γxi

µk log

(
1 +

1

q

)
= Υµ log

(
1 +

1

q

)
,

which is denoted by V . Thus, we obtain

V (S) =
∑
xi∈S

Vxi
(Si−1) = |S|V, (18)

and V max = V . From the inequalities (8) and (12), the largest
index of winners (i.e., w) satisfies V

b ≥
wV
θ̃G

. When θ ≥ 1
2 , we

have θ̃ = θ. Thus, we obtain w =
⌊
θG
b

⌋
. When G

b is large,
the number of winners |S| = w ≈ θG

b . From (9), we have

θ = 1− V max

V (S)
= 1− V

wV
= 1− 1

w
≈ 1− b

θG
.

Notice that according to (18), we have V (S) = |S|V = wV .
We now solve the equation θ = 1 − b

θG to obtain the value

of θ. When 4b
G < 1, we have θ = 1

2

(
1 +

√
1− 4b

G

)
. For

w ≈ θG
b , the number of winners should be at least θG

b , i.e.,
the number of users should be at least θGb . Thus, when 4b

G � 1
and N > G

b , i.e., N � 4, the crowd factor θ approaches 1.
Since the conditions 4b

G � 1 and N � 4 can easily be satisfied
in a practical mobile crowdsensing system, θ is close to 1 with
high probability. Note that the bid of users (i.e., b) is usually
much less than the total budget G.

In general, according to the definition of crowd factor θ,
i.e., θ , 1− V max

V (S) , it depends on V max and V (S). Since V max

is fixed given a set of users, θ is mainly determined by V (S).
The value of V (S) becomes larger, when many users win the
auction and perform the tasks. In this case, θ will be close
to 1. Moreover, a higher budget of the platform increases the
number of winners, which consequently increases V (S) and θ.
Although we analyzed the crowd factor for the above example,
in Section VI, we will show that θ is close to 1 under different
scenarios in a mobile crowdsensing system.

C. Approximation Ratio Analysis

A budget feasible mechanism is called α-approximate [26]
if it determines a subset S ⊆ N such that opt(N ) ≤ αV (S),
where opt(N ) is the optimal value of the following problem:

maximize
S⊆N

V (S)

subject to
∑
xi∈S

cxi ≤ G.
(19)

Problem (19) is a budgeted submodular function maximization
problem [40]. Similar to the Knapsack problem, problem (19)

is also an NP-hard problem.

To determine the approximation ratio of our proposed
mechanism, we first introduce a fractional greedy algorithm
[27] to solve problem (19). Similar to our proposed winner
selection rule F , we select winners with the highest marginal
contribution per bid until we cannot add more winners due
to budget limit. We assume that the contribution of a user
can be fractional. Let H be the largest index such that∑H
i=1 cxi

≤ G. We define CxH+1
, G −

∑H
i=1 cxi

and
V ′xH+1

(SH) , VxH+1
(SH)

CxH+1

cxH+1
. The valuation obtained by

adopting the fractional greedy algorithm can be defined as:

Ṽ (S) ,
H∑
i=1

Vxi
(Si−1) + V ′xH+1

(SH). (20)

We have the following lemma from [27]:

Lemma 3. The fractional greedy solution has an approxima-
tion ratio of e

e−1 for problem (19). That is,

opt(N ) ≤
(

e

e− 1

)
Ṽ (S),

where opt(N ) is the optimal value given user set N .

By utilizing Lemma 3, we have the following theorem:

Theorem 5. ABSee achieves an approximation ratio of
min

{
2e

θ(e−1) ,
(5−2θ)e
e−1

}
.

Proof. Recall that the winners S = {x1, x2, . . . , xw}. For any
i ∈ {w + 1, . . . ,H}, we have

cxi

Vxi
(Si−1)

≥
cxw+1

Vxw+1
(Sw+1)

>
θ̃G

V (Sw+1)
.

Notice that xi is no longer a winner when i > w. Thus,
according to the winner determination rule, we obtain

cxi
> θ̃G

Vxi
(Si−1)

V (Sw+1)
, CxH+1

> θ̃G
V ′xH+1

(SH)

V (Sw+1)
.

Then, we have

θ̃G

∑H
i=w+1Vxi(Si−1)+V ′xH+1

(SH)∑w+1
i=1 Vxi

(Si−1)
<

H∑
i=w+1

cxi
+CxH+1

≤G,

and
H∑

i=w+1

Vxi(Si−1) + V ′xH+1
(SH) <

∑w+1
i=1 Vxi

(Si−1)

θ̃
. (21)

From (20) and (21), we have

Ṽ (S) =

H∑
i=1

Vxi
(Si−1) + V ′xH+1

(SH)

=

w∑
i=1

Vxi(Si−1) +

H∑
i=w+1

Vxi(Si−1) + V ′xH+1
(SH)

<

w∑
i=1

Vxi(Si−1) +

∑w
i=1 Vxi

(Si−1) + Vxw+1
(Sw)

θ̃



≤ (1 +
1

θ̃
)

w∑
i=1

Vxi
(Si−1) +

V max

θ̃
. (22)

Recall that V (S) =
∑w
i=1 Vxi(Si−1). If θ ≥ 1

2 , we have θ̃ =
θ. Thus,

Ṽ (S) <
V (S) + V (S)− V max

V (S)− V max V (S) +
V (S)

V (S)− V maxV
max

=
2V (S)

V (S)− V maxV (S) =
2

θ
V (S).

From Lemma 3, we have opt(N ) ≤ e
e−1 Ṽ (S). Then,

opt(N )

V (S)
≤ e

e− 1

Ṽ (S)

V (S)
<

2e

θ(e− 1)
.

If θ < 1
2 , we set θ̃ = 1

2 in (22) and we have

Ṽ (S) ≤ 3V (S) + 2V max = V (S)

(
3 + 2

V max

V (S)

)
= V (S) (5− 2θ) .

Therefore,

opt(N ) <
(5− 2θ)e

(e− 1)
V (S).

Thus, ABSee achieves an approximation ratio of
min

{
2e

θ(e−1) ,
(5−2θ)e
e−1

}
. When θ is close to 1, the

approximation ratio approaches 2e
e−1 . �

VI. PERFORMANCE EVALUATION

In this section, we first evaluate the performance of the
approach for estimating the quality of sensing of each user.
We then compare the performance of ABSee with GREEDY-
SM and RANDOM-SM mechanisms proposed in [27], which
are budget feasible mechanisms and satisfy all the desirable
properties. We assume that tasks and users are randomly
distributed within a 1 km × 1 km region. A user can perform
a task if the distance between the user and the task is less than
50 m. The cost of user n (i.e., cn) is ηn|Γn|, in which ηn is
uniformly distributed over [1, 5]. The weight of task τk (i.e.,
µk) in (5) is uniformly distributed over [1, 10]. The results
are obtained by averaging over 100 instances.

The platform calculates and keeps a record of the quality
indicators of the participating users. To simulate this process,
consider the noise map application. We assume each task
corresponds to the noise level of a specific position. The real
noise level of task τk in the lth auction, denoted by δ

(l)
k ,

is uniformly distributed over [0, 5]. The sensing data δ̂
(l)
k,n

provided by user n is generated from a Gaussian distribution
N(δ

(l)
k , qn), where the quality indicator qn of each user is

uniformly distributed over [0, 1]. After collecting sensing
data for task τk, the platform calculates the estimated value
δ̂

(l)
k and updates the estimated quality indicator q̄(l)

n . At the
beginning, we assume that the estimated quality indicator q̄(0)

n

is uniformly distributed in [0, 1] for all n ∈ N . In the next
rounds of auction, we set the estimated quality indicator of
those users who have not won the auction in previous rounds
as the average of quality indicators of other users. The weight
γ in (3) is set to 0.5.
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Fig. 3. Estimation error versus the number of auctions l (M = 500, N =
1000, G = 5000). A more accurate estimation is obtained when the platform
runs more rounds of auction.

Through Fig. 3, we first evaluate the accuracy of estimation.
We use V (S) to denote the valuation that the platform can
obtain when the quality indicator qn of the users is known
by the platform. Similarly, the valuation that the platform
obtains according to the estimated quality indicator q̄(l)

n is
denoted by V̄ (S(l)). Then, the estimation error of the quality

of sensing can be calculated as |V (S)−V̄ (S(l))|
V (S) . Fig. 3 shows

the estimation error of the quality of sensing. Results show that
when the platform conducts more auctions, it obtains more
accurate estimation of the quality indicators and selects the
users more properly to perform the tasks. When the quality
estimation has errors, the set of winners may be different
from what obtained when the quality indicators are accurately
estimated. Thus, the valuation obtained by the platform is
affected by the estimation error. Since the platform aims to
achieve a high valuation, the estimation error is measured by

the relative deviation of the valuation, i.e., |V (S)−V̄ (S(l))|
V (S) .

We now evaluate our proposed budget feasible mechanism.
Figs. 4–6 show the valuation function V (S) obtained from
ABSee in comparison with GREEDY-SM and RANDOM-SM.
We can see that ABSee significantly improves the valuation
obtained by GREEDY-SM and RANDOM-SM. Notice that
from (12), when θ̃ increases, the number of winners will also
increase. Since more winners are selected, ABSee can provide
a higher valuation. In Fig. 4, the value of V (S) increases
when there are more tasks. According to (5), an increase in
the number of tasks can provide a higher valuation to the
platform. The platform can also obtain a higher valuation when
the number of users increases as shown in Fig. 5. In this
case, the number of users who can perform the tasks becomes
larger. Thus, those users with lower bids but higher quality of
sensing can be chosen. Fig. 6 confirms that the more budget the
platform has, the higher valuation it can obtain. This is because
it can select more winners to have the tasks performed.

Fig. 7 shows the number of winners |S| versus the num-
ber of users N in ABSee in comparison with GREEDY-
SM and RANDOM-SM. Our proposed mechanism slightly
selects more winners than GREEDY-SM and RANDOM-SM
to perform the tasks, while it still satisfies budget feasibility.
This is because we use the crowd factor and spend θ̃G portion
of the budget to determine the winners, while GREEDY-SM
and RANDOM-SM use a fixed budget. Fig. 7 also shows that
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Fig. 4. Valuation function V (S) versus M (N = 1000, G = 100).
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Fig. 5. Valuation function V (S) versus N (M = 100, G = 100).

the number of winners increases when more users participate
in the system. However, when the total number of users is very
large, there will not be significant increase on the number of
winners any more. When a large number of users participate,
the platform selects the users with high quality of sensing and
low bids to perform the tasks. However, due to the limited
budget of the platform, the number of winners grows slowly.

Through Fig. 8, we investigate whether ABSee is budget
feasible. Fig. 8 shows the total payment versus the number of
users for different amount of budget where there are M = 100
tasks. The total payment increases when more users participate
in the system. This is because the platform selects more
winners to perform the tasks. However, when the number of
users becomes very large, the number of winners does not
increase anymore. From Fig. 8, we can see that the total
payment is always less than the budget, which shows that
ABSee satisfies budget feasibility.

Fig. 9 shows the crowd factor θ versus the number of users
for different amount of budget. According to the definition of
crowd factor θ, when there are more users or more budget,
the number of winners increases, which result in a higher
valuation for the platform. Thus, the crowd factor becomes
larger, which captures a practical mobile crowdsensing system.
Fig. 10 further shows the cumulative distribution function
(CDF) of θ. Among 100 experiments, we can see that θ is
close to 1 with a high probability.

We now verify the approximation ratio of ABSee through
Fig. 11. Since problem (19) is an NP-hard problem, it is
time consuming to obtain the optimal value. Thus, we cannot
compare the optimal value and the value obtained from ABSee
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Fig. 6. Valuation function V (S) versus budget G (M = 100, N = 1000).
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Fig. 7. The number of winners |S| versus N (M = 100, G = 100).

directly. We circumvent this issue by comparing Ṽ (S) and
V (S). Recall that Ṽ (S) is the valuation obtained from a
fractional greedy algorithm. We know opt(B) ≤ e

e−1 Ṽ (S) <
2e

θ(e−1)V (S) from Section V. Notice that θ is always greater
than 1

2 according to the simulation results and we have θ̃ = θ.
Thus, we can validate the approximation ratio by showing
θ Ṽ (S)
V (S) < 2. Fig. 11 confirms that θ Ṽ (S)

V (S) is always smaller
than 2. Note that θ is close to 1 when the number of users
and budget are large. Thus, the approximation ratio opt(B)

V (S) is
always less than 2e

θ(e−1) , which approaches to 2e
e−1 .

In Fig. 12, we compare the running time of ABSee with
GREEDY-SM. ABSee is slightly slower than GREEDY-SM
since it needs to calculate the crowd factor θ using an iterative
algorithm. However, as shown in Figs. 4–6, it significantly
improves the platform’s valuation comparing to GREEDY-SM.

VII. CONCLUSION

In this paper, we considered quality of sensing of the
smartphone users in a mobile crowdsensing system. The
platform estimates the quality of sensing of the users and
keeps a historical record. It aims to maximize the valuation
of the performed tasks with a limited budget. We introduced
crowd factor and designed an auction-based budget feasible
mechanism called ABSee, which selects the winners and
determines the payment to the them. In addition to budget
feasibility, we proved that ABSee satisfies computational effi-
ciency, truthfulness, and individual rationality. We also showed
that the approximation ratio of ABSee approaches 2e

e−1 in
mobile crowdsensing systems. Simulation results showed that
the quality of sensing of the users can be estimated accurately.
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Furthermore, the platform can obtain a higher valuation when
it implements ABSee in comparison with GREEDY-SM and
RANDOM-SM proposed in [27].

In terms of future work, possible extensions are as follows.
First, there may exist several platforms providing sensing ser-
vices, all of which aim to maximize their valuations. We will
propose a double auction mechanism to manage such sensing
market. Second, we will further explore the mechanism design
when the platform aims to minimize the total payment to
the users. Third, privacy leakage is interesting to investigate
especially when the number of auctions is large.

APPENDIX

A. Proof of Lemma 1

From Definition 1, we need to show that

V (S ∪ {j})− V (S) ≥ V (Z ∪ {j})− V (Z),
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Ṽ
(S

)
V
(S

)

Fig. 11. θ
Ṽ (S)
V (S) versus the number of users N (M = 100, G = 100). We

have θ Ṽ (S)
V (S) ≤ 2, which validates the approximation ratio.
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for any S ⊆ Z ⊆ N and j ∈ N \ Z , where N is the set of
smartphone users. According to (4) and (5), we have

V (S) =
∑

τk∈∪s∈SΓs

µk log

(
1 +

∑
n∈S:τk∈Γn

ln

)
,

where ln = 1
qn

to simplify the expression.
Given sets S and Z , let sk =

∑
n∈S:τk∈Γn

ln and zk =∑
n∈Z:τk∈Γn

ln. We define

Φj,1 , Γj ∩ (∪n∈SΓn) ∩ (∪n∈ZΓn),

Φj,2 , (Γj ∩ (∪n∈ZΓn)) \ (∪n∈SΓn),

Φj,3 , Γj \ ((∪n∈ZΓn) ∪ (∪n∈SΓn)) .

We have Φj,1 ∪ Φj,2 ∪ Φj,3 = Γj while Φj,1 ∩ Φj,2 = Φj,2 ∩
Φj,3 = Φj,1 ∩ Φj,3 = ∅. Then,

V (S ∪ {j})− V (S) =
∑

τk∈Φj,1

µk log

(
1 +

ln
1 + sk

)
+
∑

τk∈Φj,2

µk log(1 + ln) +
∑

τk∈Φj,3

µk log(1 + ln),

V (Z ∪ {j})− V (Z) =
∑

τk∈Φj,1

µk log

(
1 +

ln
1 + zk

)
+
∑

τk∈Φj,2

µk log

(
1 +

ln
1 + zk

)
+
∑

τk∈Φj,3

µk log(1 + ln).

The reason for the difference between the second terms in
the above equations is that for any task τk ∈ Φj,2, it can



be performed by user j and the users in Z but it cannot be
performed by the users in S . Since S ⊆ Z and ln > 0 for
τk ∈ Γn, n ∈ N , we have 0 ≤ sk ≤ zk. Therefore,

V (S ∪ {j})− V (S) ≥ V (Z ∪ {j})− V (Z).

Since µk and qn are non-negative, V (S) is non-negative.
It can be observed that V (S) is also non-decreasing, which
completes the proof. �

B. Proof of Lemma 2

For a winner xi, from the submodularity of the valuation
function, we have

Vxi(Si−1) ≥ Vxi(Qk−1), ∀ k ≥ i. (23)

Let r be the index for which pxi = min{βi(r), ρi(r)}. We now
prove that r ≥ i. By contradiction, assume r < i, we have
xr = arg maxj∈N\Sr−1

Vj(Sr−1)
bj

from (7). Thus, Vxr (Sr−1)
bxr

>
Vxi

(Sr−1)

bxi
. We assume the strict inequality holds to simplify

the proof. The same results can be obtained if the equality is
considered. From the definition of βi(r), we have Vir (Qr−1)

bir
=

Vxi
(Qr−1)

βi(r)
. Since Qk = Sk and xk = ik for k < i, we have

Vxi
(Sr−1) = Vxi

(Qr−1), Vxr
(Sr−1) = Vir (Qr−1), and bxr

=
bir . According to these equalities, we conclude that pxi ≤
βi(r) < bxi , which is in contradiction with Theorem 3. Hence,
we have r ≥ i.

If r ≤ w′, then Vir (Qr−1)
bir

≥ Vi
w′

(Qw′−1)

bi
w′

. From (23), we
have

pxi ≤ βi(r) =
Vxi(Qr−1)bir
Vir (Qr−1)

≤
Vxi(Qr−1)biw′
Viw′ (Qw′−1)

≤ θ̃GVxi(Qr−1)

V (Qw′)
≤ θ̃GVxi(Si−1)

V (Qw′)
. (24)

If r = w′ + 1, we have

pxi ≤ ρi(r) ≤ θ̃G
Vxi

(Qw′)
V (Qw′ ∪ {xi})

≤ θ̃GVxi
(Si−1)

V (Qw′)
. (25)

From (24) and (25), we conclude that pxi
≤ θ̃G

Vxi
(Si−1)

V (Qw′ )
,

which completes the proof. �
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