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Abstract The 4th generation wireless communication sys-
tems aim to provide users with the convenience of seamless
roaming among heterogeneous wireless access networks. To
achieve this goal, the support of vertical handoff is impor-
tant in mobility management. This paper focuses on the ver-
tical handoff decision algorithm, which determines the cri-
teria under which vertical handoff should be performed. The
problem is formulated as a constrained Markov decision pro-
cess. The objective is to maximize the expected total re-
ward of a connection subject to the expected total access
cost constraint. In our model, a benefit function is used to
assess the quality of the connection, and a penalty function
is used to model the signaling incurred and call dropping.
The user’s velocity and location information are also con-
sidered when making handoff decisions. The policy itera-
tion and Q-learning algorithms are employed to determine
the optimal policy. Structural results on the optimal vertical
handoff policy are derived by using the concept of super-
modularity. We show that the optimal policy is a threshold
policy in bandwidth, delay, and velocity. Numerical results
show that our proposed vertical handoff decision algorithm
outperforms other decision schemes in a wide range of con-
ditions such as variations on connection duration, user’s ve-
locity, user’s budget, traffic type, signaling cost, and mone-
tary access cost.
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1 Introduction

The goal of the 4th Generation (4G) wireless communica-
tion systems is to utilize the different wireless access tech-
nologies in order to provide multimedia services to users
on ananytime, anywherebasis. Currently, the standardiza-
tion bodies such as the 3rd Generation Partnership Project
(3GPP) [1], 3GPP2 [2], and the IEEE 802.21 Media Inde-
pendent Handover (MIH) working group [3] are working
towards this vision. In 4G communication systems, users
will have a variety of choices on the selection of wireless
networks to send and/or receive their data. They can either
choose to use Long Term Evolution (LTE) to benefit from
good quality of service (QoS), Worldwide Interoperability
for Microwave Access (WiMAX) to achieve a high data rate,
or wireless local area network (WLAN) to enjoy a moderate
access cost. As a result, the users in the 4G communication
systems should be able to switch to whichever wireless net-
work they want to use at any time, in a seamless manner. In
other words, seamless mobility must be properly managed
to achieve the goal of the 4G wireless systems.

Vertical handoffis responsible for service continuity when
a connection needs to migrate across heterogeneous wire-
less access networks. It generally involves three phases [4],
[5]: system discovery, vertical handoff decision, andverti-
cal handoff execution. During the system discovery phase,
the mobile terminal (MT) with multiple radio interfaces re-
ceives advertised information from different wireless access
networks. The information may include the access costs and
current QoS parameters for different services. In vertical
handoff decision phase, the MT determines whether the cur-
rent connection should continue to use the same network or
be switched to another one. The decision is based on the
information that the MT received during the system discov-
ery phase, as well as the conditions of its current state (e.g.,
MT’s current location, velocity, and battery status). In the
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vertical handoff execution phase, the connections are seam-
lessly migrated from the existing network to another. This
process involves authentication, authorization, and alsothe
transfer of context information.

We now summarize some of the recent work on verti-
cal handoff decision algorithms in heterogeneous wireless
networks. In [6], a fuzzy logic-based vertical handoff de-
cision algorithm is proposed. Network parameters such as
the current received signal strength (RSS), predicted RSS,
user’s velocity, and the available bandwidth are considered
when making the decision. In [7], a middleware solution
called vertical handoff manager is implemented to address
the vertical handoff decision problem. The architecture of
the vertical handoff manager consists of three components:
network handling manager, feature collector, and artificial
neural networks selector. In [8], the vertical handoff decision
is based on the cost function of each candidate network. A
cost function consists of three aspects such as the access net-
work capacity, signalling cost, and the load balancing factor.
The chosen network is the one with the least cost function
value. In [9], the WLAN is selected as the preferred network
for the MT. The objective of the handoff decision algorithm
is to maximize the time during which the MT is served by
the WLAN, while satisfying the QoS requirements as well
as the call dropping probability and the average number of
ping-pong events constraints.

In [10], the vertical handoff decision is formulated as
a fuzzy multiple attribute decision making (MADM) prob-
lem. Two MADM methods are proposed: SAW (Simple Ad-
ditive Weighting) and TOPSIS (Technique for Order Pref-
erence by Similarity to Ideal Solution). In SAW, the overall
score of a candidate network is determined by the weighted
sum of all attribute values. In TOPSIS, the selected candi-
date network is the one which is the closest to the ideal net-
work, where the property of the ideal network is obtained
by using the best values for each metric considered. In [11],
a vertical handoff decision scheme based on ELECTRE is
proposed. ELECTRE is an MADM algorithm, which per-
forms pair-wise comparisons among the alternatives. The
attributes considered in [11] include the bandwidth, delay,
packet jitter, packet loss, utilization, and network cost.

In [12], a vertical handoff decision algorithm which uses
the received signal to interference and noise ratio (SINR)
from various access networks as the handoff criterion is pro-
posed. It has the ability to make handoff decision with mul-
timedia QoS consideration, such as to offer the user maxi-
mum downlink throughput from the integrated network, or
to guarantee the minimum user required data rate during ver-
tical handoff. In [13], a handoff management system which
includes several modules and procedures is proposed. It de-
termines the destination network based on the sojourn time
of the MT in the candidate networks and the QoS estima-
tion of these networks, including RSS, channel utilization,

and link delay/jitter. Based on the output of the handoff de-
cision module, the system will choose to either enter a hand-
off routine or keep the current connection. In [14], an RSS-
based handoff decision scheme is implemented. By applying
the auto-regressive integrated moving average model, the fu-
ture RSS values can be predicted. The handoff decision can
then be made according to these RSS predictions. In [15],
a utility-based network selection strategy is presented. Sev-
eral utility functions are examined which explore different
users’ preferences on their current applications.

In [16], a vertical handoff decision algorithm based on
dynamic programming is proposed. Since the enhancement
of a user’s satisfaction by a vertical handoff depends on the
user’s sojourn time in the wireless network (e.g., WLAN),
the algorithm takes the user’s location and mobility infor-
mation into consideration. The user’s velocity and moving
patterns are also considered in the vertical handoff decision
algorithms in [17] and [18]. Moreover, in [19], a framework
is proposed to evaluate different vertical handoff decision
algorithms, in which the MT’s mobility is modeled by a
Markov chain.

In [20], a Markov decision process (MDP) approach for
vertical handoff decision making problem is proposed. This
MDP approach takes into account multiple factors such as
user’s preference, network conditions, and device capability.
In [21], the vertical handoff decision problem is formulated
as an MDP model. The model considers the available band-
width and delay of the candidate networks. The model in
this paper is an extension of the one proposed in [21], such
that it not only considers the QoS of the candidate networks,
but also takes the user’s mobility and location information
into account. Moreover, this model addresses a practical is-
sue that users have monetary budgets for their connections.

Although there have been various vertical handoff de-
cision algorithms proposed in the literature, most of them
only make decisions based on the current system state (e.g.,
current QoS of the networks and current MT’s conditions).
Handoff decision should also consider the probabilistic out-
comes of the future system states as a result of the current
decision. Some work (e.g., [16], [20], and [21]) follows this
approach; however those algorithms do not take the user’s
monetary budget into consideration. In our work, the vertical
handoff decision algorithm considers the following aspects:

1. The state of the wireless access networks. This includes
the available bandwidth, delay, switching cost, and ac-
cess cost information of the overlaying networks.

2. The state of the user and MT. This includes the user’s
velocity and location information.

3. The preference of the user.
4. The current condition of the system as well as its future

possible evolutions.
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5. User’s monetary budget. For example, a user may agree
to spend at most $3 for a multimedia session with an
average duration of 30 minutes.

Considering these aspects, we propose a vertical hand-
off decision algorithm for 4G wireless networks based on
the constrained MDP (CMDP) model. The objective of the
problem is to determine the policy which maximizes the ex-
pected total reward per connection, while the expected total
access cost associated with this connection does not exceed
the user’s budget for it. The main contributions of this paper
are as follows [22] [23]:

– Our CMDP-based vertical handoff decision algorithm
takes into account the resources available in different
networks (e.g., QoS, switching costs, access costs), and
the MT’s information (e.g., location, velocity). A benefit
function is used to model the available bandwidth and
delay of the connection. A penalty function is used to
model the signaling incurred and the call dropping prob-
ability. For each connection, an access cost function is
used to capture the access cost of using a specific net-
work.

– We determine the optimal vertical handoff policy for de-
cision making via the use of policy iteration and Q-learning
algorithms.

– We derive structural results regarding the optimal verti-
cal handoff policy, and show that the optimal policy is a
threshold policy in available bandwidth, delay, and ve-
locity.

– We evaluate the performance of our proposed algorithm
under different criteria. Numerical results show that our
vertical handoff decision algorithm outperforms other
decision schemes (e.g., SAW [10], ELECTRE [11]) in
a wide range of conditions such as variations on connec-
tion duration, user’s velocity, user’s budget, traffic type,
signaling cost, and monetary access cost.

The rest of the paper is organized as follows. The system
model is described in Section 2. The CMDP formulation and
optimality equations are presented in Section 3. Section 4 in-
vestigates the structure of the optimal vertical handoff pol-
icy. Section 5 presents the numerical results and discussions.
Conclusions are given in Section 6.

2 System Model

In this section, we describe how the vertical handoff decision
problem can be formulated as a finite state, infinite horizon
CMDP. A CMDP model can be characterized by six ele-
ments:decision epochs, states, actions, transition probabil-
ities, rewards,andcosts[24]. At each decision epoch, the
MT has to choose an action (i.e., select a network) based on
the current system state (e.g., QoS that can be provided by

each candidate network, velocity and location of the MT).
With this state and action, the system then evolves to a new
state according to a transition probability function. Thisnew
state lasts for a period of time until the next decision epoch
comes, and then the MT makes a new decision again (i.e.,
selects a network again). For any action that the MT chooses
at each state, there is a reward and a cost associated with it.
The goal of each MT is to maximize the expected total re-
ward that it can obtain during the connection, subject to a
constraint on its expected total access cost.

2.1 States, Actions, and Transition Probabilities

We represent the decision epochs byT = {1,2, . . . ,N}, where
the random variableN indicates the time that the connection
terminates. We denote the state space of the MT byS, and
we only consider a finite number of states that the system
can possibly be in. The state of the system contains infor-
mation such as the current network that the MT connects
to, the available bandwidth and delay that the candidate net-
works can offer, and the velocity and location information
of the MT. Specifically, the state space can be expressed as

S= M ×B1×D1×·· ·×B|M |×D|M |×V ×L ,

where× denotes the Cartesian product,M represents the set
of available network IDs that the MT can connect to.Bm

andDm denote the set of available bandwidth and delay of
networkm∈ M , respectively.V denotes the set of possible
velocity values of the MT, andL denotes the set of location
types that the MT can possibly reside in.

In order to reduce the size of the state space, we consider
a finite countablestate space in this paper. The bandwidth
and delay can be quantized into multiples of unit bandwidth
and unit delay, respectively [24]. Specifically, the set of avail-
able bandwidth of networkm is

Bm = {1,2, . . . ,bm
max} , m∈ M ,

wherebm
max denotes the maximum bandwidth available to

a connection from networkm. For example, the unit band-
width of WLAN and the LTE network can be 500kbpsand
16kbps, respectively.

Similarly, the set of packet delay of networkm is

Dm = {1,2, . . . ,dm
max} , m∈ M ,

wheredm
max denotes the maximum delay provided to a con-

nection by networkm. For example, the unit delay of WLAN
and the LTE network can be 50msand 20ms, respectively.

The velocity of the MT is also quantized as multiples of
unit velocity. The set of possible velocity values is

V = {1,2, . . . ,vmax} ,
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wherevmax denotes the maximum velocity that an MT can
travel at. For example, the unit of velocity can be 10km/h.

For the set of location types that the MT can possibly
reside in, we have

L = {1,2, . . . , lmax} ,

where lmax denotes the total number of different location
types in the area of interest. Location types are differenti-
ated by the number of networks they are covered by.

Let vectors= [i,b1,d1, . . . ,b|M |,d|M |,v, l ] denote the cur-
rent state of the MT, wherei denotes the current network
used by the connection,bm anddm denote the current band-
width and delay of networkm, respectively,v denotes the
current velocity of the MT, andl denotes the current loca-
tion type that the MT resides in. At each decision epoch,
based on the current states, the action of the MT is to de-
cide whether to remain connected to the existing network
or to switch to another network. LetAs ⊂ M denote the ac-
tion set, which consists of the ID of the networks that the
MT can potentially switch to given the current states. Thus,
the actiona ∈ As is to select one of the available networks
from the setAs. In other words, the chosen actiona corre-
sponds to the selected network. Given the current state iss
and the chosen action isa, the probability that the next state
becomess′ = [ j,b′1,d

′
1, . . . ,b

′
|M |,d

′
|M |,v

′, l ′] is

P[s′ | s,a] =

{
P[v′ | v]P[l ′ | l ] ∏

m∈M
P[b′m,d

′
m | bm,dm], j = a,

0, j 6= a,

(1)

whereP[v′ | v] is the transition probability of the MT’s veloc-
ity, P[l ′ | l ] is the transition probability of the MT’s location
type, andP[b′m,d

′
m | bm,dm] is the joint transition probability

of the bandwidth and delay of networkm. We now explain
how we obtain these transition probabilities. The transition
probability of the MT’s velocity is obtained based on the
Gauss-Markov mobility model from [25]. In this mobility
model, an MT’s velocity is assumed to be correlated in time
and can be modeled by a discrete Gauss-Markov random
process. The following recursive realization is used to cal-
culate the transition probability of the MT’s velocity

v′ = αv+(1−α)µ +σ
√

1−α2ζ , (2)

wherev is the MT’s velocity at the current decision epoch,
v′ is the MT’s velocity at the next decision epoch,α is the
memory level (i.e., 0≤ α ≤ 1), µ andσ are the mean and
standard deviation of the velocity, respectively, andζ is an
uncorrelated Gaussian process with zero mean and unit vari-
ance. By varyingv and counting the number of different out-
comes ofv′ according to (2), the MT’s velocity transition
probability function (i.e.,P[v′ | v]) can be determined.

For the transition probability of the MT’s location type,
we assume that a wireless access network which has a smaller
coverage area (e.g., WLAN) always lies within another ac-
cess network which has a larger coverage area (e.g., WiMAX).
Although this assumption may not hold for the cases when
|M | is large, it is reasonable as long as the number of differ-
ent network types does not exceed three, which is a typical
case in today’s wireless communication systems.

We define location typel ∈ L as follows. Location type 1
is the area covered only by the LTE network. Location type
2 is the area covered by LTE and WiMAX, but not WLAN.
Location type 3 is the area covered by all three networks
(i.e., LTE, WiMAX, and WLAN). Let Θl denote the total
area of location typel andρl denote the user density of lo-
cation typel . The effective area of location typel is defined
as

Θ̂l =Θl ρl , l ∈ L . (3)

In practice, the user density in areas covered by different ac-
cess networks (e.g., WLAN and the LTE network) is usually
not the same [26], [27]. For example, the area covered by
both WLAN and the LTE network usually has more active
connections than the area only covered by the LTE network.
As a result, the density index of each location type is con-
sidered in order to achieve a more realistic model.

We assume that an MT currently at location typel can
only move to its neighboring location types (i.e., eitherl +
1 or l − 1) or stay atl at the next decision epoch. This is
because the duration of each decision epoch is too short for
the MT to traverse more than one location type area1. Thus,
the probability that an MT’s next location type isl ′ given its
current location type isl is assumed to be proportional to the
effective area ofl ′. Specifically, the transition probability of
an MT’s location type, denoted asP[l ′ | l ]

=







Θ̂l ′

∑
ξ=l ,l+1

Θ̂ξ
, l = 1, l ′ = 1,2,

Θ̂l ′

∑
ξ=l−1,l ,l+1

Θ̂ξ
, l = 2, . . . , lmax−1, l ′ = l −1, l , l +1,

Θ̂l ′

∑
ξ=l−1,l

Θ̂ξ
, l = lmax, l ′ = lmax−1, lmax.

(4)

For the joint transition probabilities of the bandwidth
and delay of each network, we use the following approach to
estimate them. For the cellular network, the values of band-
width and delay are assumed to be guaranteed for the dura-
tion of the connection (i.e.,P[b′1 = b1,d′

1 = d1 | b1,d1] = 1).

1 The time between two successive decision epochs is on the order
of seconds.
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For WiMAX and WLAN, we estimate such probabilities in
a simulation-based manner. In ns-2 simulator [28], typical
IEEE 802.16 WiMAX [29] and IEEE 802.11b WLAN are
simulated in which the users arrive and depart from the net-
works according to Poisson processes. The resulting avail-
able bandwidth and delay are rounded according to the pre-
defined units, and then the counting of transitions among
states is performed to estimate the state transition proba-
bilities of WiMAX and WLAN (i.e., P[b′2,d

′
2 | b2,d2] and

P[b′3,d
′
3 | b3,d3], respectively).

2.2 Rewards

When an MT in states= [i,b1,d1, . . . ,b|M |,d|M |,v, l ] chooses
an actiona, it receives an immediate rewardr(s,a). This
reward function is composed of a benefit function and a
penalty function, which are explained in detail below.

For the benefit function of the MT, two aspects are con-
sidered: bandwidth and delay. Let thebandwidth benefit func-
tion represent the benefit that an MT can gain (in terms of
bandwidth) by selecting actiona in states (recall thati de-
notes the ID of the current network)

fb(s,a) =







ba−bi
max
k∈M

{bk−bi}
, if ba > bi ,

0, if ba = bi ,

− ba−bi
min
k∈M

{bk−bi}
, if ba < bi .

(5)

The benefit is being assessed as follows. Given that the
MT is currently connecting to networki, if the actiona leads
to a network with a higher bandwidth, then the benefit func-
tion value is represented by a fraction, in which the numera-
tor is the MT’s actual increase of bandwidth by choosing ac-
tion a in states, and the denominator is the MT’s maximum
possible increase of bandwidth. As a result, the benefit func-
tion value is a positive number between 0 and 1. Similarly,
if the action leads to a network with a lower bandwidth, the
benefit function value becomes a negative number between
−1 and 0. Finally, if the MT chooses to remain at the same
network, then the benefit function value is 0.

Similarly, adelay benefit functionis used to represent the
benefit that an MT can gain (in terms of delay) by choosing
actiona in states:

fd(s,a) =







di−da
max
k∈M

{di−dk}
, if da < di ,

0, if da = di ,

− di−da
min
k∈M

{di−dk}
, if da > di .

(6)

As a result, the totalbenefit functionis given by

f (s,a) = ω fb(s,a)+ (1−ω) fd(s,a), s∈ S, a∈ As, (7)

wherefb(s,a) and fd(s,a) are both normalized (i.e., between
0 and 1), andω is the weight given to the bandwidth aspect
with 0≤ω ≤ 1. This weight can be set differently for differ-
ent types of applications (e.g., constant bit rate (CBR) voice
traffic, file transfer protocol (FTP) data traffic).

We consider two factors for the penalty of the MT. First,
theswitching cost penalty functionis represented by

gswitch(s,a) =
{

Ki,a, if i 6= a,
0, if i = a,

(8)

whereKi,a is the normalized switching cost from network
i to networka. This penalty function captures the process-
ing and signaling load incurred when the connection is mi-
grated from one network to another. Second, we define the
call dropping penalty functionas

gdrop(s,a) =







0, if i = a,

0, if i 6= a, 0≤ v≤Vmin,

v−Vmin
Vmax−Vmin

, if i 6= a, Vmin < v<Vmax,

1, if i 6= a, v≥Vmax,

(9)

whereVmaxandVmin denote the maximum and minimum ve-
locity thresholds, respectively. When the MT moves faster,
the probability that the connection will be dropped during
the vertical handoff process increases. For example, if an
MT moves out of a WLAN with a high speed, it may enter
the area covered only by the LTE network (hence lose the
WLAN signal) before the WLAN-to-LTE vertical handoff
procedure is completed. As a result, the MT’s connection
may be dropped.

Consequently, the totalpenalty functionof an MT is given
by

g(s,a)= φgswitch(s,a)+(1−φ)κgdrop(s,a), s∈S, a∈As,

(10)

whereφ is the weight given to the switching cost factor with
0≤ φ ≤ 1, andκ ∈ [0,1] is the user’s preference on vertical
handoff. Some users would allow vertical handoffs in order
to obtain better QoS although there is a risk that the con-
nection may be dropped during handoff. Other users may
refrain from switching whenever a risk is present.

Finally, thereward functionbetween two successive ver-
tical handoff decision epochs is

r(s,a) = f (s,a)−g(s,a), s∈ S, a∈ As, (11)
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and is normalized within the range from 0 to 1. Recall this
reward function considers the bandwidth and delay of all
candidate networks, the signaling cost incurred when switch-
ing occurs, the call dropping probability, and the user’s pref-
erence.

2.3 Costs

For each period of time that the MT uses a network, it will
incur the following access cost (in monetary units per unit
time):

c(s,a) =
ba Ca

max
m∈M

{bm Cm}
, s∈ S, a∈ As, (12)

wherebm is the available bandwidth inbpsandCm is the
access cost of networkm in monetary units per bit. This ac-
cess cost is normalized such that its value is between 0 and
1. The user has a budget such that it is willing to spend up
to Cmax monetary units per connection.

3 CMDP Formulation and Optimality Equations

In this section, we present the problem formulation and de-
scribe how to obtain the optimal policy. First, some concepts
need to be clarified. Adecision rulespecifies the action se-
lection for each state at a particular decision epoch. It can
be expressed asδt : S→ A, whereδt represents the decision
rule at decision epocht. A policy π = (δ1,δ2, . . . ,δN) is a
set of sequential decision rules to be used at allN decision
epochs.

Let vπ(s) denote theexpected total rewardbetween the
first decision epoch and the connection termination, given
that policyπ is used with initial states. We can represent
vπ(s) as

vπ(s) = Eπ
s

[

EN

{
N

∑
t=1

r(st ,at)

}]

, s∈ S, (13)

whereEπ
s denotes the expectation with respect to the vari-

ables given policyπ and initial states, andEN denotes the
expectation with respect to the random variableN. The ran-
dom variableN, which denotes theconnection termination
time, is assumed to be geometrically distributed with mean
1/(1−λ ). Equation (13) can be re-written as

vπ(s) = Eπ
s

{
∞

∑
t=1

λ t−1 r(st ,at)

}

, s∈ S, (14)

whereλ can also be interpreted as thediscount factorof the
model (i.e., 0≤ λ < 1). We define a policyπ∗ = (δ ∗

1 ,δ
∗
2 , · · ·)

to beoptimal in Π if vπ∗
(s) ≥ vπ(s) for all π ∈ Π , where

Π is the set of all possible policies. A policy is said to be

stationaryif δt = δ for all t. A stationary policy has the form
π = (δ ,δ , · · ·), and for convenience we denoteπ simply by
δ . A policy is said to bedeterministicif it chooses an action
with certainty at each decision epoch. We refer to stationary
deterministic policies aspurepolicies [30, pp. 22].

Since our objective is to maximize theexpected discounted
total reward(i.e.,vπ(s)) subject to an access cost constraint,
we can state the CMDP optimization problem as

maximize vπ(s) = Eπ
s

{
∞

∑
t=1

λ t−1 r(st ,at)

}

subject toCπ(s) = Eπ
s

{
∞

∑
t=1

λ t−1 c(st ,at)

}

≤Cmax,

(15)

whereCπ(s) denotes theexpected discounted total access
costwith respect to the variables given policyπ and initial
states∈ S.

To solve (15) without the constraint on the expected dis-
counted total access cost, we can use the Policy Iteration
Algorithm (PIA) [30, 31] to solve the followingoptimality
equations

v(s) = max
a∈As

{

r(s,a)+ ∑
s′∈ S

λ P[s′ | s,a] v(s′)

}

, s∈ S,

(16)

and the corresponding optimal policy is given as

δ ∗(s) = arg max
a∈As

{

r(s,a)+ ∑
s′∈ S

λ P[s′ | s,a] v(s′)

}

, s∈S.

(17)

However, since (15) has a constraint in it, we cannot use
the PIA directly. We need to first use theLagrangian ap-
proach[24, 32] to convert the CMDP problem to an uncon-
strained MDP problem. By including the Lagrange multi-
plier β with β > 0, we have

r(s,a;β ) = r(s,a)−βc(s,a), s∈ S, a∈ As, (18)

wherer(s,a;β ) is theLagrangian reward function.
After the Lagrangian approach, the newoptimality equa-

tionsare given by

vβ (s)=max
a∈As

{

r(s,a;β )+ ∑
s′∈ S

λ P[s′ | s,a] vβ (s
′)

}

, s∈S,

(19)

which can be solved by using the PIA with a fixed value
of β . The procedures of the PIA algorithm are described in

Algorithm 1. We denote the vectorsvk
β =

(

vk
β (s), s∈ S

)

,

rβ =
(

r
(

s,δ k
β (s);β

)

, s∈ S
)

. We denote the matrixP =
(

P[s′ | s,δ k
β (s)], s∈ S,s′ ∈ S

)

.
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Algorithm 1 - The Policy Iteration Algorithm (PIA)
1: Setk = 0, and select an arbitrary decision ruleδ 0

β (s) ∈ As for all
s∈ S.

2: (Policy evaluation) Obtainvk
β (s) for all s∈ S by solving

(I −λ P) vk
β = rβ ,

whereI is an identity matrix of size|S|.
3: (Policy improvement) Chooseδ k+1

β (s) which satisfy

δ k+1
β (s) = arg max

a∈As

{

r(s,a;β )+ ∑
s′∈ S

λ P[s′ | s,a] vk
β (s

′)

}

,

for all s∈ S.
4: If δ k+1

β (s) = δ k
β (s) for all s∈ S, stop and setδ ∗

β (s) = δ k
β (s). Other-

wise, incrementk by 1 and return to step 2.

The solutions of (19) correspond to the maximum ex-
pected discounted total rewardvβ (s) and the pure policy
δ ∗

β (s) which satisfies

δ ∗
β (s)= arg max

a∈As

{

r(s,a;β )+∑
s′∈ S

λP[s′ | s,a]vβ (s
′)

}

, s∈S.

(20)

Note the pure policyδ ∗
β (s) specifies the network to choose

in each statessuch that the expected discounted total reward
is maximized.

When the CMDP problem is converted to an unconstrained
MDP problem by a Lagrange multiplierβ in (18), there is
a relationship between the constraint (i.e., the user’s bud-
getCmax) and the Lagrange multiplier (i.e.,β ). In this paper,
we use the Q-learning algorithm (see Algorithm 2) proposed
in [33] to determine the properβ (i.e., β ∗) for a feasible
Cmax.

Onceβ ∗ has been obtained, we follow the procedures
in [32] [33] to find the optimal policy for the CMDP prob-
lem. As discussed in [33], the optimal policy for a CMDP
with single constraint is a mixed policy of two pure policies.
First, we perturbβ ∗ by some∆β to obtainβ− = β ∗−∆β
and β+ = β ∗ + ∆β . Then, we calculate the pure policies
δ− andδ+ in (20) (usingβ− andβ+, respectively) via PIA
and their corresponding average expected discounted total
access costs̄C− andC̄+ in (24) (usingδ− andδ+, respec-
tively). Next, we define a parameterq such thatqC̄−+(1−
q)C̄+ = Cmax. Thus, theoptimal policyδ ∗ of the CMDP
problem is arandomizedmixture of two policies (i.e.,δ−

andδ+), such that at each decision epoch, the first policy
δ− is chosen with probabilityq and the second policyδ+

is chosen with probability 1−q. In other words, the optimal
policy can be obtained as follows:

δ ∗(s) = qδ−(s)+ (1−q)δ+(s), s∈ S. (21)

Algorithm 2 - The Q-learning Algorithm
1: Setβ1 to an arbitrary number greater than zero, and setn= 1.
2: Solve forδ ∗

βn
(s) in (20) via PIA for alls∈ S.

3: DetermineCδ∗
βn (s) from the following equation

Cδ∗
βn (s) = c(s,δ ∗

βn
(s))+ ∑

s′∈ S

λ P[s′ | s,δ ∗
βn
(s)]Cδ∗

βn (s′), (22)

for all s∈ S.
4: Update the Lagrange multiplier by

βn+1 = βn+
1
n

(

C̄δ∗
βn −Cmax

)

, (23)

where

C̄δ∗
βn =

1
|S| ∑

s∈ S
Cδ∗

βn (s). (24)

5: If |βn+1−βn| ≤ ε , stop and setβ ∗ = βn+1. Otherwise, increment
n by 1 and return to step 2.

4 Monotone Optimal Vertical Handoff Policy

Given the proper selection of the Lagrange multiplierβ (i.e.,
β ∗), the unconstrained MDP in (19) has a stationary opti-
mal policy. It can be shown that for a scenario with two
wireless access networks, the unconstrained MDP and the
CMDP optimal vertical handoff policies are monotone in
the available bandwidth, delay, and velocity. Monotonicity
and the existence of two actionsAs= {1,2} define athresh-
old policy. The threshold policies are optimal policies with a
special structure that facilitates computation and implemen-
tation [30].

4.1 Threshold Structure of Unconstrained MDP

Since two wireless access networks are considered (i.e.,M =

{1,2}), the current system states= [i,b1,d1,b2,d2,v, l ], where
i denotes the current network used by the MT,b1 andb2 de-
note the current available bandwidth in network 1 and 2,
respectively,d1 andd2 denote the current delay in network 1
and 2, respectively,v denotes the current velocity of the MT,
and l denotes the current location type that the MT resides
in.

Recall that the unconstrained MDP can be solved by us-
ing PIA. From Algorithm 1, in each iterationk∈{0,1,2, . . .},
we have

vk+1
β (s) = max

a∈As

{

r(s,a;β )+ ∑
s′∈ S

λ P[s′ | s,a] vk
β (s

′)

}

, (25)

and

Qk+1
β (s,a) = r(s,a;β )+ ∑

s′∈ S

λ P[s′ | s,a] vk
β (s

′), (26)
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where we refervk
β (s) as thevalue functionandQk

β (s,a) as
the state-action reward function. For any initial states of
vβ (s), the sequencevk

β (s) generated by the PIA converges
to the optimal expected discounted total reward for alls∈ S
[30]. To establish the monotone structure of the optimal pol-
icy for any discount factor 0≤ λ < 1, the concept ofsuper-
modularityneeds to be introduced.

Definition 1. A functionF(x,y) : X ×Y → R is supermod-
ular in (x,y) if F(x1,y1)+F(x2,y2) ≥ F(x1,y2)+F(x2,y1)
for all x1,x2 ∈ X, y1,y2 ∈ Y, x1 > x2, y1 > y2. If the inequal-
ity is reversed, then the functionF(x,y) is submodular.

If the state-action reward functionQβ (s,a) is supermod-
ular (or submodular) in actiona and another variable in the
states (e.g.,b2), then the optimal vertical handoff policy is
monotone in that variable (i.e.,b2). In fact, supermodular-
ity is a sufficient condition for optimality of monotone poli-
cies [30], [34]. Based on Definition 1, ifF(x,y) is supermod-
ular (submodular) in(x,y), theny(x) = arg maxy F(x,y) is
monotonically non-decreasing (non-increasing) in variable
x [34].

By supermodularity, we can see that the state-action re-
ward functionQβ (s,a) being submodular in(b2,a), and su-
permodular in(d2,a) and(v,a) implies that the optimal ver-
tical handoff policyδ ∗

β (s) is monotonically non-increasing
in the available bandwidth, and non-decreasing in the delay
and velocity, respectively.

The methodology of proving the threshold structure of
the optimal policy consists of the following steps:

1. Proof on the monotonicity of the value function (Lemma
1);

2. Proof on the supermodularity/submodularityof the state-
action reward function (Theorems 1, 2, and 3).

Then, the threshold structure of the optimal vertical handoff
policy follows.

Lemma 1. For any discount factor0 ≤ λ < 1, the opti-
mal expected discounted total reward (i.e., the value func-
tion vβ (s)) is monotonically non-decreasing in the available
bandwidth, and non-increasing in the delay and velocity.

The proof of Lemma 1 is given in Appendix A.

In the following theorems, with loss of generality, we
assume the current network in use is network 2 (i.e.,i = 2).

Theorem 1. For any discount factor0≤ λ < 1, if the value
function vβ (s) is a monotonically non-decreasing function of
the available bandwidth, and the state-action reward func-
tion Qβ (s,a) is submodular in(b2,a), that is,

Qβc(i,b1,d1,b2,d2,v, l ,2)−Qβc(i,b1,d1,b2,d2,v, l ,1)

≥ Qβc(i,b1,d1,b2+1,d2,v, l ,2)

−Qβc(i,b1,d1,b2+1,d2,v, l ,1), (27)

then the optimal policy is deterministic and monotonically
non-increasing in the available bandwidth component of the
states. Consequently,δ ∗

β (i,b1,d1,b2,d2,v, l)

=

{
a 6= i, if 0≤ b2 ≤ τb(i,b1,d1,d2,v, l),
a= i, if b2 > τb(i,b1,d1,d2,v, l),

(28)

whereτb(i,b1,d1,d2,v, l) defines the threshold for the rest of
the elements of the states for a given Lagrange multiplier
β .

The proof of Theorem 1 is given in Appendix B.

Theorem 2. For any discount factor0≤ λ < 1, if the value
function vβ (s) is a monotonically non-increasing function
of the delay, and the state-action reward function Qβ (s,a) is
supermodular in(d2,a), that is,

Qβ (i,b1,d1,b2,d2,v, l ,2)−Qβ (i,b1,d1,b2,d2,v, l ,1)

≤ Qβ (i,b1,d1,b2,d2+1,v, l ,2)

− Qβ (i,b1,d1,b2,d2+1,v, l ,1), (29)

then the optimal policy is deterministic and monotonically
non-decreasing in the delay component of the states. Con-
sequently,δ ∗

β (i,b1,d1,b2,d2,v, l)

=

{
a= i, if 0≤ d2 ≤ τd(i,b1,d1,b2,v, l),
a 6= i, if d2 > τd(i,b1,d1,b2,v, l),

(30)

whereτd(i,b1,d1,b2,v, l) defines the threshold for the rest of
the elements of the states for a given Lagrange multiplier
β .

The proof of Theorem 2 is given in Appendix C.

Theorem 3. For any discount factor0≤ λ < 1, if the value
function vβ (s) is a monotonically non-increasing function of
the velocity, and the state-action reward function Qβ (s,a) is
supermodular in(v,a), that is,

Qβ (i,b1,d1,b2,d2,v, l ,2)−Qβ (i,b1,d1,b2,d2,v, l ,1)

≤ Qβ (i,b1,d1,b2,d2,v+1, l ,2)

− Qβ (i,b1,d1,b2,d2,v+1, l ,1), (31)

then the optimal policy is deterministic and monotonically
non-decreasing in the velocity component of the states. Con-
sequently,δ ∗

β (i,b1,d1,b2,d2,v, l)

=

{
a= i, if 0≤ v≤ τv(i,b1,d1,b2,d2, l),
a 6= i, if v > τv(i,b1,d1,b2,d2, l),

(32)

whereτv(i,b1,d1,b2,d2, l) defines the threshold for the rest
of the elements of the states for a given Lagrange multiplier
β .

The proof of Theorem 3 is given in Appendix D.
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4.2 Threshold Structure of Constrained MDP

Having shown the threshold structure of the unconstrained
MDP optimal policy and based on the results described in
Section 3 and [33], we can state that the constrained optimal
vertical handoff policy is a randomized mixture between two
threshold policies.

Corollary 1 . There exists a stationary vertical handoff pol-
icy δ ∗ that is the optimal solution of the CMDP equivalent
to the one given in (15) such thatδ ∗ is a randomized mixture
of two threshold vertical handoff policies as follows:

δ ∗(s) = qδ ∗
β−(s)+ (1−q)δ ∗

β+(s), s∈ S, (33)

whereδ ∗
β− andδ ∗

β+ are two unconstrained optimal policies

with Lagrange multipliersβ− andβ+ that are of the form
(28) for the available bandwidth, (30) for the delay, or (32)
for the velocity.

Proof. These results follow directly from Theorems 1, 2, 3,
and [33, Theorem 4.3].

The existence of the monotone policy with a structure
allows the use of more efficient algorithms which exploit
features such as the structured policy iteration and the struc-
tured modified policy iteration (cf. [30]). These algorithms
seek the optimal policyδ ∗ only in the subset of policies
with certain structure (e.g.,Πδ ⊂Π ). Consequently, compu-
tational effort will be considerably reduced by using struc-
tured algorithms.

Structured algorithms also facilitate implementation be-
cause they can be used to find the threshold values for the
optimal policy. As an example, the monotone policy itera-
tion algorithm [30, pp. 259] can be used. When an optimal
policy is strictly increasing, the action setAs decreases in
size with increasings (e.g.,b2) and hence reduces the num-
ber of actions which need to be evaluated by the algorithm.
If at some state, saȳb2 = τb(i,b1,d1,d2,v, l), the action set
As contains only one element (i.e.,a∗), then no further max-
imization is required because the action will be optimal for
all b2 ≥ b̄2. Thus, the threshold value is̄b2 and the optimal
action isa∗ for all b2 ≥ b̄2.

5 Numerical Results and Discussions

We compare the performance of our proposed CMDP-based
vertical handoff decision algorithm with two other schemes.
The first one is the SAW algorithm [10]. The second one is
ELECTRE [11], which is an MADM algorithm for network
selection. The performance metric is theexpected total re-
ward per connection. Two applications are considered: con-
stant bit rate (CBR) voice traffic over user datagram proto-
col (UDP), and file transfer protocol (FTP) data traffic over
transmission control protocol (TCP).

Fig. 1 Coverage areas of different networks.

Table 1 Summary of simulation parameters.

Parameter Value
b1

max, b2
max, b3

max 3, 4, 5 units
C1, C2, C3 2, 1.5, 1.2

d1
max, d2

max, d3
max 3, 3, 3 units

Ki,a 0.5
|M | 3

Vmin, Vmax 1, 3 units
vmax 3 units

α 0.5
Θ1, Θ2, Θ3 50%, 25%, 25%

κ 0.5
µ 1 unit

ρ1 : ρ2 : ρ3 1:1:8
σ 0.1 unit
φ 0.5

We consider the scenario depicted in Fig. 1. There are
three networks in the system: network 1 is a cellular net-
work, network 2 is a WiMAX network, and network 3 is
a WLAN. For the simulation parameters, the unit of band-
width is 16 kbps, the unit of delay is 60ms, and the unit of
the MT’s velocity is 8km/hr. The time between two succes-
sive decision epochs is 15sec. The bandwidth importance
weightω is 0.25 for CBR traffic and 0.9 for FTP traffic. The
reason is that CBR traffic is more sensitive to delay, while
FTP traffic is elastic. Other simulation parameters are sum-
marized in Table 1.

For the SAW and ELECTRE algorithms, the available
bandwidth, delay, switching cost, and the MT’s velocity are
considered when calculating the policy. The importance weights
for these parameters are consistent with those used in the
CMDP model. Once the corresponding vertical handoff poli-
cies are calculated by the SAW and ELECTRE algorithms,
the PIA is used to obtain the expected total reward achieved
by each decision algorithm.

The probabilityq that determines the randomized opti-
mal policy in (21) is calculated for different discount factors
(i.e., different average connection durations). Specifically,
for λ equal to [0.9, 0.95, 0.966, 0.975, 0.98], the correspond-
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Fig. 2 Performance comparison between the results obtained from the
analytical and simulation models.

ing probabilitiesq are [0.61, 0.42, 0.53, 0.86, 0.46]. More-
over, the user’s budget on the expected total access cost is
also predefined for different discount factors. Specifically,
for λ equal to [0.9, 0.95, 0.966, 0.975, 0.98], the predefined
constraintsCmax are [2, 4, 6, 8, 10].

5.1 Results for CBR Voice Traffic over UDP

For analytical model validation, a discrete event driven net-
work simulator is created using C++. Simulations results are
then compared with the results obtained from the analytical
model. The simulation results are averaged over 100 simu-
lation runs. The simulation time for each run is 250mins.
Fig. 2 compares the analytical and simulation results for the
expected total reward obtained from the CMDP algorithm
versus different discount factors (λ ). Fig. 2 shows that the
analytical results matched closely with the simulation re-
sults.

The expected total reward of a user under different dis-
count factors for CBR traffic is shown in Fig. 3. For all
the three schemes considered here, the expected total re-
ward increases asλ becomes larger. This is because the
largerλ is, the longer the average duration of the connec-
tion becomes. With the same constraint on the expected total
access cost, the CMDP algorithm achieves the highest ex-
pected total reward among the four schemes. For example,
whenλ equals to 0.975, (i.e., the average duration of con-
nection is 10mins), for which the predefined constraint is 8
monetary units, the expected total reward from CMDP algo-
rithm is 8.9. The expected total reward is obtained from the
PIA and Q-learning algorithms (i.e., Algorithms 1 and 2), as
well as equation (21). The CMDP algorithm achieves 93%
higher expected total reward than the SAW scheme, and
199% higher expected total reward than the ELECTRE algo-
rithm. SAW and ELECTRE algorithms achieve a lower re-
ward than the CMDP scheme because they neither consider
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199%

Fig. 3 Expected total reward under different discount factorλ for CBR
traffic.
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Fig. 4 Expected total reward under different mean of user’s velocity µ
for CBR traffic.

the user’s budget for the connection, nor the long term effect
of the action. In other words, SAW and ELECTRE choose
actions only based on the instantaneous reward rather than
the expected total reward.

Fig. 4 shows the expected total reward of a user versus
the mean of its velocity under a budget of 8 monetary units
for CBR traffic. As the user moves faster, the expected to-
tal reward of the CMDP algorithm decreases slightly. This
is because the CMDP algorithm effectively avoids dropped
calls by taking the user’s velocity into consideration. Forex-
ample, handoffs are only performed when the user’s velocity
is not likely to cause a dropped call. The SAW and ELEC-
TRE algorithms still achieve a lower expected total reward.

The expected total reward a user can obtain versus its
budget on the expected total access cost for CBR traffic is
shown in Fig. 5. As the user’s budget increases, the expected
total reward becomes larger. This occurs because the more
money that a user can spend on a connection, the more re-
ward it will obtain. For the same budget, the CMDP al-



A Constrained MDP-based Vertical Handoff Decision Algorithm for 4G Heterogeneous Wireless Networks 11

3 4 5 6 7 8 9 10 11 12 13
0

5

10

15

User’s Budget on Expected Total Access Cost ( C
max

 )

E
xp

ec
te

d 
T

ot
al

 R
ew

ar
d

Constrained MDP
Simple Additive Weighting
ELECTRE

Fig. 5 Expected total reward under different user’s budget on expected
total access costCmax for CBR traffic.
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Fig. 6 Expected total reward under different switching costKi,a for
CBR traffic.

gorithm always achieves higher reward than the SAW and
ELECTRE schemes. The reason is that the CMDP algorithm
can fully utilize the user’s budget and avoid dropped calls to
achieve the optimal reward, while the total reward obtained
by the SAW and ELECTRE schemes are reduced because of
the dropped connections.

Fig. 6 shows the expected total reward of users under dif-
ferent switching cost for CBR traffic. The budget used here
is 8 monetary units. As we can see from the graph, when the
switching cost (i.e,Ki,a) increases, the expected total reward
of all three schemes decreases. For the same constraint on
the expected total access cost, the CMDP scheme achieves
better expected total reward than the SAW and ELECTRE
schemes.

Fig. 7 shows the expected total reward of a user versus
the access cost of the cellular network under a budget of
8 monetary units for CBR traffic. AsC1 increases (whileC2

andC3 are fixed), the expected total reward becomes smaller
for all three algorithms. The reason is that in order to take
advantage of the cellular network, users need to pay more
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Fig. 7 Expected total reward under different access cost of the cellular
networkC1 for CBR traffic.
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Fig. 8 Switching and dropping probabilities under different meanof
user’s velocityµ for CBR traffic.

as the price of the cellular network increases. Thus, the ex-
pected total reward of the user decreases. For the same con-
straint on the expected total access cost, the CMDP scheme
achieves higher expected total reward than the SAW and
ELECTRE schemes.

In Fig. 8, we present the results for the switching and
dropping probabilities of the MT in the WLAN. The switch-
ing probability is the probability that a user in the WLAN
requests a vertical handoff at a decision epoch. The drop-
ping probability is defined as the probability that the handoff
request cannot be performed because of the high velocity of
the MT. When the mean of user’s velocityµ increases, the
cost from the call dropping penalty function in (9) also in-
creases. The MT will have a higher chance to remain in the
existing network. Thus, the switching probability decreases.
However, whenµ increases and the MT chooses to perform
vertical handoff, the probability that the vertical handoff can
be completed before the MT losses the connection with the
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Fig. 9 Expected total reward under different mean of user’s velocity µ
for FTP traffic.

existing network decreases. Thus, the call dropping proba-
bility increases.

5.2 Results for FTP Data Traffic over TCP

Fig. 9 shows the expected total reward of a user versus the
mean of its velocity under a budget of 8 monetary units for
FTP traffic. Note when the MT’s velocity is high (µ = 24
km/h), the expected total reward achieved by the CMDP al-
gorithm with FTP traffic is smaller than that achieved with
CBR traffic. The reason is when an MT moves faster, the
probability that it can switch from the cellular network to
WiMAX or WLAN is lower. As a result, it cannot take ad-
vantage of the high bandwidth in WiMAX and WLAN (which
is crucial for FTP traffic that relies on high bandwidth); hence
is not able to achieve a high expected total reward when it is
moving fast.

The expected total reward a user can obtain versus its
budget on the expected total access cost for FTP traffic is
shown in Fig. 10. Similar to the CBR traffic case, we can see
for the same budget, the CMDP algorithm always achieves
higher expected total reward than the SAW and ELECTRE
schemes. Note the expected total reward decreases dramat-
ically when the user’s budget is below 3.5 monetary units.
This also happens in Fig. 5, however for CBR traffic this
decrease is less noticeable.

5.3 Structure of the Optimal Policy

From Theorem 1, we showed that the optimal handoff policy
is monotonically non-increasing in the bandwidth compo-
nent of the current states. Fig. 11 shows the structure of the
unconstrained MDP optimal vertical handoff policy by vary-
ing the bandwidth of network 2 and network 3 (i.e., WiMAX
and WLAN, respectively). The condition of the current state
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Fig. 10 Expected total reward under different user’s budget on ex-
pected total access costCmax for FTP traffic.
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Fig. 11 Structure of the unconstrained MDP optimal vertical handoff
policy on the available bandwidth whens= [i = 3,b1 = 1,d1 = 3,d2 =
1,d3 = 3,v= 2, l = 3].

s is [i = 3,b1 = 1,d1 = 3,d2 = 1,d3 = 3,v= 2, l = 3]. We can
see for the threshold structure of the optimal policy, givena
fixed value ofb2 (e.g.,b2 = 3), the optimal policy chooses
network 3 whenb3 ≥ 3, and selects network 2 whenb3 < 3.
Thus, the thresholdτb(i = 3,b1 = 1,d1 = 3,d2 = 1,d3 =

3,v = 2, l = 3) in (28) is equal 3. Similarly, for a fixedb3

(e.g.,b3 = 2), the optimal policy chooses network 2 when
b2 ≥ 3, and selects network 3 whenb2 < 3.

From Theorem 2, we showed that the optimal handoff
policy is monotonically non-decreasing in the delay compo-
nent of the current states. Fig. 12 shows the structure of the
unconstrained MDP optimal vertical handoff policy by vary-
ing the delay of networks 1 and 2 (i.e., cellular network and
WiMAX, respectively). The condition of the current states
is [i = 2,b1 = 1,b2 = 4,b3 = 2,d3 = 3,v = 1, l = 3]. The
threshold structure of the optimal policy shows that, for a
fixed value ofd2 (e.g.,d2 = 3), the optimal policy chooses
network 2 whend1 ≥ 3, and selects network 1 whend1 < 3.
Thus, the thresholdτd(i = 2,b1 = 1,b2 = 4,b3 = 2,d3 =

3,v = 1, l = 3) in (30) is equal 3. Similarly, for a fixedd1
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Fig. 12 Structure of the unconstrained MDP optimal vertical handoff
policy on the packet delay whens= [i = 2,b1 = 1,b2 = 4,b3 = 2,d3 =
3,v= 1, l = 3].
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Fig. 13 Structure of the unconstrained MDP optimal vertical handoff
policy on the mean of user’s velocity whens= [i = 3,b1 = 3,d1 =
3,b2 = 4,d2 = 1,d3 = 3, l = 3].

(e.g.,d1 = 2), the optimal policy chooses network 1 when
d2 ≥ 3, and selects network 2 whend2 < 3. The network
and the MT only need to store the threshold values.

From Theorem 3, we showed that the optimal handoff
policy is monotonically non-decreasing in the velocity com-
ponent of the current states. Fig. 13 shows the structure
of the unconstrained MDP optimal vertical handoff policy
by varying the bandwidth of network 3 (i.e., WLAN) and
the mean value of the MT’s velocity. The current states is
[i = 3,b1 = 3,d1 = 3,b2 = 4,d2 = 1,d3 = 3, l = 3]. We can
see for the threshold structure of the optimal policy, givena
fixed value ofb3 (e.g.,b3 = 4), the optimal policy chooses
not to perform handoff whenv ≥ 2, and chooses to per-
form handoff whenv< 2. Thus, the thresholdτv(i = 3,b1 =
3,d1 = 3,b2 = 4,d2 = 1,d3 = 3, l = 3) in (32) is equal 2. If
b3 = 2, the optimal policy does not perform vertical handoff
whenv ≥ 3, and chooses to perform handoff whenv < 3.

The threshold policy simplifies the implementation of the
proposed algorithm. Instead of storing the optimal policy
of all possible states, only the threshold values need to be
stored. The vertical handoff decision can be performed by a
simple lookup table.

6 Conclusions

In this paper, we proposed a CMDP-based vertical handoff
decision algorithm for 4G heterogeneous wireless networks.
Our work considered the connection duration, the available
bandwidth and delay of the candidate networks, MT’s veloc-
ity and location information, signaling load incurred on the
network, network access cost, user’s preference, and user’s
monetary budget for the vertical handoff decision. The al-
gorithm is based on the CMDP formulation with the objec-
tive of maximizing the expected total reward of a connec-
tion. The constraint of the problem is that users have mon-
etary budgets for their connections. By using the PIA and
Q-learning algorithm, a stationary randomized policy is ob-
tained when the connection termination time is geometri-
cally distributed. Structural results on the optimal vertical
handoff policy are derived by using the concept of super-
modularity. We showed that the optimal policy is a threshold
policy in the available bandwidth, delay, and velocity. Nu-
merical results showed that the proposed CMDP-based ver-
tical handoff decision algorithm outperforms other decision
schemes in a wide range of conditions such as variations
on connection duration, user’s velocity, user’s budget, traf-
fic type, signaling cost, and monetary access cost. For future
work, we plan to consider other constraints in the problem
formulation.
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Appendix A. Proof of Lemma 1
We will provevβ (i,b1,d1,b2,d2,v, l ) is monotone in available band-

width, delay, and velocity. This consists of two steps:

1. To prove the reward functionr(s,a) is monotone in available band-
width, delay, and velocity;

2. To prove the sum of transition probabilities∑s′∈SP[s′ | s,a] is mono-
tone in available bandwidth, delay, and velocity.

We first note that the only part that relates to the bandwidth in the
reward function (i.e.,r(s,a)) is fb(s,a). Let b1

a andb2
a be two possible

bandwidth values, andb1
a ≥ b2

a. We denotefb(s1,a) as the value of
fb(s,a) whenba = b1

a, and fb(s2,a) as the value offb(s,a) whenba =
b2

a. Clearly from the definition offb(s,a), fb(s1,a) is greater than (or
equal to) fb(s2,a), since fb(s,a) is linearly proportional toba. As a
result, the reward functionr(s,a) is monotonically non-decreasing in
the available bandwidth.
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Similarly, the only part that relates to the delay in the reward func-
tion is fd(s,a). Letd1

a andd2
a be two possible delay values, andd1

a ≥ d2
a.

We denotefd(s1,a) as the value offd(s,a) whenda = d1
a, and fd(s2,a)

as the value offd(s,a) whenda = d2
a. Clearly from the definition of

fd(s,a), fd(s1,a) is smaller than (or equal to)fd(s2,a), since fd(s,a)
is linear inverse proportional toda. As a result, the reward function
r(s,a) is monotonically non-increasing in the delay.

For the velocity, the only part that relates to it in the reward func-
tion is−q(s,a). From the definition ofq(s,a) in (9), when the veloc-
ity v becomes larger, the value ofq(s,a) becomes larger or remains
the same, which means that−q(s,a) becomes smaller or stays the
same. Consequently, the reward functionr(s,a) is monotonically non-
increasing in velocity.

We assume that the transition probability functionP[s′ | s,a] satis-
fies thefirst order stochastic dominance condition. This implies when
the system is in a better state (e.g., larger bandwidth, lower delay), its
evolution will be in the region of better states with a higherprobability.
When the available bandwidth is considered, it implies thatthe sum
of transition probabilities (i.e.,∑s′∈SP[s′ | s,a]) is monotonically non-
decreasing in the available bandwidth. Similarly, the delay (velocity)
in the next decision epoch is stochastically decreasing with respect to
the delay (velocity) in the current decision epoch is the condition un-
der which the sum of transition probabilities (i.e.,∑s′∈SP[s′ | s,a]) is
monotonically non-increasing in the delay (velocity). �

Appendix B. Proof of Theorem 1
To show that the optimal policy is monotonically non-increasing in

the available bandwidth, we need to prove thatQβ (s,a) is submodular
in (b2,a). We will prove via mathematical induction that for a suitable
initialization,

Qk+1
β ([i,b1,d1,b2,d2,v, l ],2)−Qk+1

β ([i,b1,d1,b2,d2,v, l ],1)

= r([i,b1,d1,b2,d2,v, l ],2;β )− r([i,b1,d1,b2,d2,v, l ],1;β )
+ ∑

s′∈ S

λP[b′1,d
′
1 | b1,d1]P[b

′
2,d

′
2 | b2,d2]P[v

′ | v]P[l ′ | l ]

×
(

vk
β ( j ,b′1,d

′
1,b

′
2,d

′
2,v

′, l ′)−vk
β ( j ,b′1,d

′
1,b

′
2,d

′
2,v

′, l ′)
)

, (34)

is monotonically non-increasing in the available bandwidth b2. It holds
if vβ ( j ,b′1,d

′
1,b

′
2,d

′
2,v

′, l ′) has non-increasing difference inb2. Select
v0

β ( j ,b′1,d
′
1,b

′
2,d

′
2,v

′, l ′) with non-increasing difference inb2. Assume

thatvk
β ( j ,b′1,d

′
1,b

′
2,d

′
2,v

′, l ′) has non-increasing difference inb2, which

implies thatQk+1
β ([i,b1,d1,b2,d2,v, l ],a) is submodular in(b2,a). We

will now prove thatvk+1
β ( j ,b′1,d

′
1,b

′
2,d

′
2,v

′, l ′) also has non-increasing
difference inb2. That is,

vk+1
β (i,b1,d1,b2+1,d2,v, l )−vk+1

β (i,b1,d1,b2,d2,v, l )

≤ vk+1
β (i,b1,d1,b2,d2,v, l )−vk+1

β (i,b1,d1,b2−1,d2,v, l ),
(35)

or

vk+1
β (i,b1,d1,b2+1,d2,v, l )−vk+1

β (i,b1,d1,b2,d2,v, l )

−
(

vk+1
β (i,b1,d1,b2,d2,v, l )−vk+1

β (i,b1,d1,b2−1,d2,v, l )
)

≤ 0. (36)

We assume

vk+1
β (i,b1,d1,b2+1,d2,v, l ) = Qk+1

β ([i,b1,d1,b2+1,d2,v, l ],a2),

vk+1
β (i,b1,d1,b2,d2,v, l ) = Qk+1

β ([i,b1,d1,b2,d2,v, l ],a1),

and

vk+1
β (i,b1,d1,b2−1,d2,v, l ) = Qk+1

β ([i,b1,d1,b2−1,d2,v, l ],a0),

for some actionsa2,a1,a0 ∈ As. Thus, we can re-write (35) as

Qk+1
β ([i,b1,d1,b2+1,d2,v, l ],a2)−Qk+1

β ([i,b1,d1,b2,d2,v, l ],a1)

−

(

Qk+1
β ([i,b1,d1,b2,d2,v, l ],a1)−Qk+1

β ([i,b1,d1,b2−1,d2,v, l ],a0)

)

≤ 0, (37)

or

Qk+1
β ([i,b1,d1,b2+1,d2,v, l ],a2)−Qk+1

β ([i,b1,d1,b2,d2,v, l ],a2)
︸ ︷︷ ︸

W1

+Qk+1
β ([i,b1,d1,b2,d2,v, l ],a2)−Qk+1

β ([i,b1,d1,b2,d2,v, l ],a1)
︸ ︷︷ ︸

X1

−Qk+1
β ([i,b1,d1,b2,d2,v, l ],a1)+Qk+1

β ([i,b1,d1,b2,d2,v, l ],a0)
︸ ︷︷ ︸

Y1

−

(

Qk+1
β ([i,b1,d1,b2,d2,v, l ],a0)−Qk+1

β ([i,b1,d1,b2−1,d2,v, l ],a0
︸ ︷︷ ︸

)

)

Z1

≤ 0,

whereX1 ≤ 0 andY1 ≤ 0 by optimality. Note that inX1 andY1 the
optimal action isa1.

In addition, it follows from the induction hypothesis that

W1 = r([i,b1,d1,b2+1,d2,v, l ],a2;β )− r([i,b1,d1,b2,d2,v, l ],a2;β )

+ ∑
s′∈ S

λ
(

P[b′1,d
′
1 | b1,d1]P[b

′
2,d

′
2 | b2+1,d2]P[v

′ | v]P[l ′ | l ]

×vk
β ( j ,b′1,d

′
1, (b2+1)′,d′

2,v
′, l ′)−P[b′1,d

′
1 | b1,d1]

×P[b′2,d
′
2 | b2,d2]P[v

′ | v]P[l ′ | l ]vk
β ( j ,b′1,d

′
1,b

′
2,d

′
2,v

′, l ′)

)

≤ r([i,b1,d1,b2,d2,v, l ],a0;β )− r([i,b1,d1,b2−1,d2,v, l ],a0;β )

+ ∑
s′∈ S

λ
(

P[b′1,d
′
1 | b1,d1]P[b

′
2,d

′
2 | b2,d2]P[v

′ | v]P[l ′ | l ]

×vk
β ( j ,b′1,d

′
1,b

′
2,d

′
2,v

′, l ′)−P[b′1,d
′
1 | b1,d1]P[b

′
2,d

′
2 | b2−1,d2]

×P[v′ | v]P[l ′ | l ]vk
β ( j ,b′1,d

′
1, (b2−1)′,d′

2,v
′, l ′)

)

.

The right-hand side (RHS) of the inequality comes from the expan-
sion of Z1 which implies thatW1 ≤ Z1. Therefore, it is shown that
vk+1

β (i,b1,d1,b2,d2,v, l ) satisfies (35), which implies thatQβ (s,a) is

submodular in(b2,a). �

Appendix C. Proof of Theorem 2
To show that the optimal policy is monotonically non-decreasing

in the delay, we need to prove thatQβ (s,a) is supermodular in(d2,a).
We will prove via mathematical induction that, for a suitable initializa-
tion, (34) is monotonically non-decreasing in the delayd2. The above
holds if vβ ( j ,b′1,d

′
1,b

′
2,d

′
2,v

′, l ′) has non-increasing difference ind2.
Selectv0

β ( j ,b′1,d
′
1,b

′
2,d

′
2,v

′, l ′) with non-increasing difference ind2.

Assume thatvk
β ( j ,b′1,d

′
1,b

′
2,d

′
2,v

′, l ′) has non-increasing difference in

d2, which implies thatQk+1
β ([i,b1,d1,b2,d2,v, l ],a) is supermodular in

(d2,a). We will now prove thatvk+1
β ( j ,b′1,d

′
1,b

′
2,d

′
2,v

′, l ′) also has non-
increasing difference ind2. That is,

vk+1
β (i,b1,d1,b2,d2+1,v, l )−vk+1

β (i,b1,d1,b2,d2,v, l )

≤ vk+1
β (i,b1,d1,b2,d2,v, l )−vk+1

β (i,b1,d1,b2,d2−1,v, l ),
(38)
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or

vk+1
β (i,b1,d1,b2,d2+1,v, l )−vk+1

β (i,b1,d1,b2,d2,v, l )

−
(

vk+1
β (i,b1,d1,b2,d2,v, l )−vk+1

β (i,b1,d1,b2,d2−1,v, l )
)

≤ 0. (39)

We assume

vk+1
β (i,b1,d1,b2,d2+1,v, l ) = Qk+1

β ([i,b1,d1,b2,d2+1,v, l ],a2),

vk+1
β (i,b1,d1,b2,d2,v, l ) = Qk+1

β ([i,b1,d1,b2,d2,v, l ],a1),

and

vk+1
β (i,b1,d1,b2,d2−1,v, l ) = Qk+1

β ([i,b1,d1,b2,d2−1,v, l ],a0),

for some actionsa2,a1,a0 ∈ As. Thus, we can re-write (38) as

Qk+1
β ([i,b1,d1,b2,d2+1,v, l ],a2)−Qk+1

β ([i,b1,d1,b2,d2,v, l ],a1)

−

(

Qk+1
β ([i,b1,d1,b2,d2,v, l ],a1)

−Qk+1
β ([i,b1,d1,b2,d2−1,v, l ],a0)

)

≤ 0, (40)

or

Qk+1
β ([i,b1,d1,b2,d2+1,v, l ],a2)−Qk+1

β ([i,b1,d1,b2,d2,v, l ],a2)
︸ ︷︷ ︸

W2

+Qk+1
β ([i,b1,d1,b2,d2,v, l ],a2)−Qk+1

β ([i,b1,d1,b2,d2,v, l ],a1)
︸ ︷︷ ︸

X2

−Qk+1
β ([i,b1,d1,b2,d2,v, l ],a1)+Qk+1

β ([i,b1,d1,b2,d2,v, l ],a0)
︸ ︷︷ ︸

Y2

−

(

Qk+1
β ([i,b1,d1,b2,d2,v, l ],a0)−Qk+1

β ([i,b1,d1,b2,d2−1,v, l ],a0
︸ ︷︷ ︸

)

)

Z2

≤ 0,

whereX2 ≤ 0 andY2 ≤ 0 by optimality. Note that inX2 andY2 the
optimal action isa1.

In addition, it follows from the induction hypothesis that

W2 = r([i,b1,d1,b2,d2+1,v, l ],a2;β )− r([i,b1,d1,b2,d2,v, l ],a2;β )

+ ∑
s′∈ S

λ
(

P[b′1,d
′
1 | b1,d1]P[b

′
2,d

′
2 | b2,d2+1]P[v′ | v]P[l ′ | l ]

×vk
β ( j ,b′1,d

′
1,b

′
2, (d2+1)′,v′, l ′)−P[b′1,d

′
1 | b1,d1]

×P[b′2,d
′
2 | b2,d2]P[v

′ | v]P[l ′ | l ]vk
β ( j ,b′1,d

′
1,b

′
2,d

′
2,v

′, l ′)

)

≤ r([i,b1,d1,b2,d2,v, l ],a0;β )− r([i,b1,d1,b2,d2−1,v, l ],a0;β )

+ ∑
s′∈ S

λ
(

P[b′1,d
′
1 | b1,d1]P[b

′
2,d

′
2 | b2,d2]P[v

′ | v]P[l ′ | l ]

×vk
β ( j ,b′1,d

′
1,b

′
2,d

′
2,v

′, l ′)−P[b′1,d
′
1 | b1,d1]

×P[b′2,d
′
2 | b2,d2−1]P[v′ | v]P[l ′ | l ]

×vk
β ( j ,b′1,d

′
1,b

′
2, (d2−1)′,v′, l ′)

)

.

The RHS of the inequality comes from the expansion ofZ2 which im-
plies thatW2 ≤ Z2. Therefore, it is shown thatvk+1

β (i,b1,d1,b2,d2,v, l )

satisfies (38), which implies thatQβ (s,a) is supermodular in(d2,a). �

Appendix D. Proof of Theorem 3

To show that the optimal policy is monotonically non-decreasing in
the velocity, we need to prove thatQβ (s,a) is supermodular in(v,a).
We will prove via mathematical induction that for a suitableinitializa-
tion, (34) is monotonically non-decreasing in the velocityv. It holds
if vβ ( j ,b′1,d

′
1,b

′
2,d

′
2,v

′, l ′) has non-increasing difference inv. Select
v0

β ( j ,b′1,d
′
1,b

′
2,d

′
2,v

′, l ′) with non-increasing difference inv. Assume

thatvk
β ( j ,b′1,d

′
1,b

′
2,d

′
2,v

′, l ′) has non-increasing difference inv, which

implies thatQk+1
β ([i,b1,d1,b2,d2,v, l ],a) is supermodular in(v,a). We

will now prove thatvk+1
β ( j ,b′1,d

′
1,b

′
2,d

′
2,v

′, l ′) also has non-increasing
difference inv. That is,

vk+1
β (i,b1,d1,b2,d2,v+1, l )−vk+1

β (i,b1,d1,b2,d2,v, l )

≤ vk+1
β (i,b1,d1,b2,d2,v, l )−vk+1

β (i,b1,d1,b2,d2,v−1, l ),
(41)

or

vk+1
β (i,b1,d1,b2,d2,v+1, l )−vk+1

β (i,b1,d1,b2,d2,v, l )

−
(

vk+1
β (i,b1,d1,b2,d2,v, l )−vk+1

β (i,b1,d1,b2,d2,v−1, l )
)

≤ 0. (42)

We assume

vk+1
β (i,b1,d1,b2,d2,v+1, l ) = Qk+1

β ([i,b1,d1,b2,d2,v+1, l ],a2),

vk+1
β (i,b1,d1,b2,d2,v, l ) = Qk+1

β ([i,b1,d1,b2,d2,v, l ],a1),

and

vk+1
β (i,b1,d1,b2,d2,v−1, l ) = Qk+1

β ([i,b1,d1,b2,d2,v−1, l ],a0),

for some actionsa2,a1,a0 ∈ As. Thus, we can re-write (41) as

Qk+1
β ([i,b1,d1,b2,d2,v+1, l ],a2)−Qk+1

β ([i,b1,d1,b2,d2,v, l ],a1)

−

(

Qk+1
β ([i,b1,d1,b2,d2,v, l ],a1)

−Qk+1
β ([i,b1,d1,b2,d2,v−1, l ],a0)

)

≤ 0, (43)

or

Qk+1
β ([i,b1,d1,b2,d2,v+1, l ],a2)−Qk+1

β ([i,b1,d1,b2,d2,v, l ],a2)
︸ ︷︷ ︸

W3

+Qk+1
β ([i,b1,d1,b2,d2,v, l ],a2)−Qk+1

β ([i,b1,d1,b2,d2,v, l ],a1)
︸ ︷︷ ︸

X3

−Qk+1
β ([i,b1,d1,b2,d2,v, l ],a1)+Qk+1

β ([i,b1,d1,b2,d2,v, l ],a0)
︸ ︷︷ ︸

Y3

−

(

Qk+1
β ([i,b1,d1,b2,d2,v, l ],a0)−Qk+1

β ([i,b1,d1,b2,d2,v−1, l ],a0
︸ ︷︷ ︸

)

)

Z3

≤ 0,

whereX3 ≤ 0 andY3 ≤ 0 by optimality. Note that inX3 andY3 the
optimal action isa1.
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In addition, it follows from the induction hypothesis that

W3 = r([i,b1,d1,b2,d2,v+1, l ],a2;β )− r([i,b1,d1,b2,d2,v, l ],a2;β )

+ ∑
s′∈ S

λ
(

P[b′1,d
′
1 | b1,d1]P[b

′
2,d

′
2 | b2,d2]P[v

′ | v+1]P[l ′ | l ]

×vk
β ( j ,b′1,d

′
1,b

′
2,d

′
2, (v+1)′, l ′)−P[b′1,d

′
1 | b1,d1]

×P[b′2,d
′
2 | b2,d2]P[v

′ | v]P[l ′ | l ]vk
β ( j ,b′1,d

′
1,b

′
2,d

′
2,v

′, l ′)

)

≤ r([i,b1,d1,b2,d2,v, l ],a0;β )− r([i,b1,d1,b2,d2,v−1, l ],a0;β )

+ ∑
s′∈ S

λ
(

P[b′1,d
′
1 | b1,d1]P[b

′
2,d

′
2 | b2,d2]P[v

′ | v]P[l ′ | l ]

×vk
β ( j ,b′1,d

′
1,b

′
2,d

′
2,v

′, l ′)−P[b′1,d
′
1 | b1,d1]P[b

′
2,d

′
2 | b2,d2]

×P[v′ | v−1]P[l ′ | l ]vk
β ( j ,b′1,d

′
1,b

′
2,d

′
2, (v−1)′, l ′)

)

.

The RHS of the inequality comes from the expansion ofZ3 which im-
plies thatW3 ≤ Z3. Therefore, it is shown thatvk+1

β (i,b1,d1,b2,d2,v, l )

satisfies (41), which implies thatQβ (s,a) is supermodular in(v,a). �
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