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Abstract— Radio frequency identification (RFID) is an emerg-
ing technology for automatic object identification. An RFID
system consists of a set of readers and several objects, with
each object equipped with a small chip, called a tag. In
this paper, we consider the anonymous cardinality estimation
problem in an RFID system consisting of several readers. To
achieve complete system coverage and increase the accuracyof
measurement, multiple readers with overlapping interrogation
zones are deployed. We study the problem under two different
circumstances. First, we assume that the readers cannot perform
interrogations synchronously. This models the case when the
readers are not equipped with accurate clocks or synchronization
imposes a high overhead. Under such condition, we propose an
asynchronous exclusive estimator to estimate the number oftags
that are exclusively located in the zone of a selected reader.
By using this estimator, we propose an asynchronous multiple-
reader cardinality estimation (A-MRCE) algorithm. In the s econd
scenario, we assume that readers can perform interrogations syn-
chronously. We propose a synchronous exclusive estimator and
a synchronous multiple-reader cardinality estimation (S-MRCE)
algorithm to estimate the total number of tags. For the exclusive
estimators, we show that they are asymptotically unbiased and
we derive upper bounds on the variance of error. We validate
our analytical model via simulations. Results show that although
the A-MRCE algorithm enjoys the asynchronous operation of
the readers, it performs worse than the S-MRCE algorithm in
terms of estimation error. Compared to the enhanced zero-based
(EZB) and lottery frame (LoF) algorithms, the variance of the
estimation error for both A-MRCE and S-MRCE algorithms
increases linearly with the number of readers, while it increases
exponentially for EZB and LoF algorithms.

Keywords: RFID systems, cardinality estimation, multiple reader.

I. I NTRODUCTION

Radio frequency identification (RFID) systems are increasingly
being deployed as automated identification systems. These systems
are expected to play an important role in various applications such
as warehouse and supply chain management, object tracking,and
patients’ monitoring in health care facilities [1]–[3]. AnRFID sys-
tem consists of a set ofreaders and several objects. Each object
is equipped with a small computer chip, calledtag. Using these
inexpensive tags, every object can be uniquely identified. RFID tags
can be categorized intopassive and active tags. A passive tag uses
backscatter modulation, and its transmission power is derived from
the signal of the interrogating reader [2], [4]. Passive tags can operate
in different frequency bands. Low-frequency tags operate in the 124-
135 kHz band and have an operating range of up to 0.5 m. Ultra
high frequency tags, which operate at either 860-960 MHz or 2.45
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GHz, have a range in the order of 10 m. Active tags require a power
source (e.g., a battery) for data transmission and have a larger range
(> 100 m).

In an RFID system, packet collisions may occur during the
interrogation of a reader. This type of packet collision is called
a tag-to-tag collision. Tree-walking and ALOHA-based protocols
are two kinds of tag-to-tag anti-collision protocols proposed in the
literature [5]–[12]. For RFID systems with multiple readers, other
types of collisions (e.g., reader-to-tag and reader-to-reader collisions)
may occur during the interrogations of various readers [13]. Several
anti-collision interrogation techniques have been proposed for RFID
systems with multiple readers in the literature [14]–[17].A framed-
slotted ALOHA-based tag anti-collision scheme has also been stan-
dardized by EPCglobal in [18]. This allows each tag to randomly
select a time slot and transmit its ID. The performance of this scheme
has been studied extensively recently [19], [20].

Tag estimation is widely used as a preliminary phase in ALOHA-
based interrogation techniques [21]–[23]. Readers can adjust the
frame size based on the estimation of tag population. Another
application of tag estimation techniques, which has recently received
attention, is the anonymous tracking of objects [24], [25].In order to
preserve the privacy and anonymity of the tag users, it may not be
necessary to identify each individual user in some RFID applications.
Instead, the goal is to estimate the total number of tags (or users) in
the system. This is called thecardinality estimation (or tag population
estimation) problem in RFID systems. The potential applications
include estimating the number of attendants in large exhibitions and
conferences when each attendant is equipped with an RFID tag, and
urban traffic monitoring at streets and intersections when cars are
equipped with RFID tags.

In [24], Kodialam et al. proposed the zero-based and collision-
based tag estimation techniques using a framed-slotted ALOHA
model with a single reader. In [25], they extended their work
by introducing the enhanced-zero based (EZB) estimator, which
is an asymptotically unbiased estimator. Using this technique, the
mean and variance of the estimation error approach zero whenthe
estimation process is repeated multiple times. Although the EZB
algorithm can also be used for RFID systems with multiple readers,
the variance of estimation error increases exponentially with the
number of readers. In [22], Qianet al. proposed the lottery frame
(LoF) scheme, which is a replicate-insensitive estimationprotocol.
LoF applies the hash functions with geometric distributionto tag IDs
to select the time slots for transmission.

For large scale RFID systems, it is necessary to deploy multiple
readers with overlapped interrogation zones to fully coverthe area
and achieve a high accuracy in the estimation. Consequently, a tag
can be within the interrogation zone of several readers simultaneously.
For tracking applications, which require privacy and anonymity of the
users, each tag only transmits a portion of its ID to the reader when it
is being queried. Thus, readers cannot identify uniquely the individual
tags. Thus, those tags which are within the range of multiplereaders
may be counted multiple times. We call this problem themultiple
counting problem. This motivates us to propose estimation algorithms
which are capable of estimating the number of tags in such systems.
We study the problem in two different conditions. First, we assume
that readers cannot perform interrogation synchronously.We develop
an asynchronous multiple-reader cardinality estimation (A-MRCE)
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algorithm under this condition. Then, we study the problem where
the readers can be synchronized for interrogations, and we develop a
synchronous multiple-reader cardinality estimation (S-MRCE) algo-
rithm. The contributions of this paper are as follows:

• We propose two maximum likelihood (ML) estimators, namely
asynchronous and synchronous exclusive estimators to estimate
the number of tags, which are exclusively within the interroga-
tion zone of a reader.

• We show that the error for these estimators is asymptotically
normal and the estimators are asymptotically unbiased. We
derive the upper bounds on the variance of the estimation error.
The accuracy of these bounds is validated via simulations.

• We develop two estimation algorithms namely, A-MRCE and
S-MRCE algorithms using asynchronous and synchronous ex-
clusive estimators, respectively.

• We validate the analytical models, investigate the performance
of our proposed estimators, and compare our proposed A-
MRCE and S-MRCE algorithms with the EZB [25] and LoF
[22] algorithms. Although all these algorithms are asymptoti-
cally unbiased, the variance of the estimation error for A-MRCE
and S-MRCE algorithms increaseslinearly with the number
of readers, while it increasesexponentially for EZB and LoF
algorithms.

To the best of our knowledge, there is no prior work specifically
considering the problem of tag population estimation for RFID
systems with multiple readers. Although EZB and LoF algorithms
can be used in RFID systems with multiple readers, since theyare
not designed for such systems, they can have poor performance under
some scenarios as shown in Section V. On the contrary, both A-
MRCE and S-MRCE algorithms can be used in large scale RFID
systems. Since S-MRCE algorithm needs synchronous operation of
readers, this algorithm is suitable for systems where readers can
operate synchronously.

In our previous work [26], we proposed a multiple-reader tag
estimation (MRTE) algorithm, which is similar to the A-MRCE
algorithm in this paper. However, in this paper, we present amore
accurate model to determine the estimation error of the exclusive
estimator. In other words, the error model for the A-MRCE algorithm
is more accurate than the one in [26].

The rest of this paper is organized as follows: The system model
is presented in Section II. In Section III, we first propose an
asynchronous exclusive estimator. Then, we propose an A-MRCE
algorithm to estimate the total number of tags in the RFID system.
In Section IV, we propose a synchronous exclusive estimatorand
an S-MRCE algorithm. Performance evaluation and comparison are
presented in Section V. Conclusions are given in Section VI.

II. SYSTEM MODEL AND PROBLEM STATEMENT

A. Notations and Model

Consider an RFID system with multiple readers. Readers use
framed-slotted ALOHA protocol for interrogations. This isthe model
proposed in EPCglobal Gen2 standard [18]. We consider a fixed
frame size for an interrogation process. Each reader broadcasts a
query message, which includes information such as the framesizef ,
persistence probabilityp, and a random seedq at the beginning of
the interrogation process. Each tag decides whether or not to transmit
in the current frame based on the persistence probabilityp. If a
tag decides to transmit, it selects a time slot based on a uniform
distribution related to its ID, the persistence probability p, and the
random seedq. Note that given the specific values of the frame
size f , the random seedq, and persistence probabilityp, the tag
selects exactly the same slot in a frame of sizef , regardless of how
many times it has received the query message. To perform different
interrogations, readers can alter the seedq. The interrogation results
are independent whenever a different seedq is being used. Multiple
interrogations are used to improve the accuracy of the estimation
process. To preserve the anonymity and privacy of the users,each
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Fig. 1. An RFID system with two readersr1 and r2. nr1 = 6, nr2 = 7,
N = 11, f = 10, andp = 1.

tag only transmits part of its ID to the reader in the reply message.
Therefore, the reader cannot individually identify the tags.

We now introduce some of the notations. LetN and R denote
the number of tags and the set of readers in the system, respectively.
Let Tr denote the set of tags within the zone of readerr ∈ R. Let
nr denote the number of tags in the interrogation zone of reader
r ∈ R (i.e., nr = |Tr|). We usenW to denote the number of tags
within the range of a set of readersW (i.e., nW = | ∩w∈W Tw|).
Two readers are called neighboring readers if there is a tag which is
in the interrogation range of both of the readers. LetHr denote the
set of other readers which are neighbors of readerr. For readerr,
let vr = (v1r , . . . , v

f
r ) denote the vector created after performing an

interrogation process, wherevlr (with l = 1, . . . , f ) indicates whether
thelth time slot is empty (i.e.,vlr = 0) or has at least one transmission
(i.e., vlr = 1). The number of elements of vectorvr is equal to the
frame sizef . We call vectorvr as theinterrogation vector of reader
r. Assume readerr performsM interrogations usingM different
seed values. We use vectorsv

1
r , . . . ,v

M
r to denote these interrogation

vectors. Fig. 1 shows a two-reader RFID system with overlapped
interrogation zones and the interrogation vectors.

B. Multiple Counting Problem
For an RFID system with multiple readers, by adding up the

number of tags within the zone of all readers, one can obtain an
estimator for the number of tags. Since some tags may appear in the
zone of several readers, they are counted multiple times by different
readers. Therefore, the estimation may not be accurate especially for
dense RFID systems. To obtain an accurate estimate for the number
of tags, the number of tags in the overlapped areas of neighboring
readers is required in addition to the number of tags within the zone
of each reader. In the estimation process, once a tag is counted by a
reader, other readers should exclude that tag from their estimations.
The total number of tags is the summation of the number of tags
estimated by all the readers, while each reader excludes thetags
that have already been counted by other readers. In general,for |R|
readersr1, . . . , r|R| ∈ R with overlapping interrogation zones, the
total number of tagsN in the system is

N = |Tr1 |+ |Tr2\Tr1 |+ · · ·+ |Tr|R|
\{Tr1 ∪ · · · ∪ Tr|R|−1

}|. (1)

Note that the order chosen to calculateN has no effect on the
final result. Moreover, if readerrj ∈ R shares no tags with readers
r1, . . . , rj−1, thenTrj \{Tr1 ∪ · · · ∪ Trj−1

} = Trj . As (1) suggests,
in order to estimateN , the number of tags within the zone of
a reader needs to be estimated. We call such an estimatorsingle
reader estimator. Moreover, we need to estimate the number of tags
which are only within the zone of a reader but are not in the zone
of some other readers (e.g.,|Tr2\Tr1 |). To estimate the number of
tags which are exclusively located within the zone of a reader, we
propose two estimators in the next sections, namely asynchronous
exclusive and synchronous exclusive estimators. For the single reader
estimator, we use the estimator proposed in [25]. Assume that reader
r has performedM interrogations usingM different seed values, the
we havev1

r , . . . ,v
M
r . Let tm denote the number of empty slots in
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v
m
r , m = 1, . . . ,M . Using the EZB algorithm, the number of tags

within the zone of readerr can be estimated as [25]:

ñr = −f/p ln
(

M
∑

m=1

tm/Mf

)

. (2)

It is shown in [25] and [27] that the estimation error is asymptoti-
cally normal and unbiased. The variance of the estimation error is
σ2
nr

= f
(

exp(pnr/f) − (1 + p2nr/f)
)

/(Mp2). We will use this
estimator in both A-MRCE and S-MRCE algorithms.

III. A SYNCHRONOUSMULTIPLE READER CARDINALITY

ESTIMATION

In some practical cases, it may not be possible for the readers
to perform interrogations in a synchronous manner. This models
the case when the readers are not equipped with accurate clocks
or synchronization imposes a high overhead. Under such condition,
we develop an asynchronous multiple reader cardinality estimation
(A-MRCE) algorithm. The A-MRCE algorithm is used to estimate
the total number of tags while readers perform interrogations inde-
pendently and forward the information to a central controller. The
A-MRCE algorithm implements (1) using asynchronous exclusive
estimator described in the following subsection.

A. Asynchronous Exclusive Estimator

The asynchronous exclusive estimator is used to estimate the
number of tags within the zone of a particular reader excluding
the tags shared with some other readers, while readers perform
interrogations independently. It facilitates implementation of equation
(1). Consider readerr and a set of readersW ⊆ Hr. Letnr\W denote
the number of tags within the zone of readerr that do not belong
to any of the readers in setW (i.e., |Tr\ ∪w∈W Tw|). Given the
number of tags within the zone of readers inW, nW , we propose
an asynchronous exclusive estimator to estimatenr\W .

Consider a time slot which is non-empty in vectorvr. This
indicates that one or more tags within the range of readerr has chosen
that time slot. If this time slot is empty invw for any w ∈ W, it
ensures that none of the tags within the range of readers inW has
chosen that slot. Let variableZ denote the number of time slots which
are nonempty invr and empty invw,∀ w ∈ W. That is, given reader
r ∈ R and setW, we haveZ =

∑f
l=1 v

l
r

∏

w∈W (1−vlw). The time
slots, which are non-empty invr and empty invw, are chosen by
a subset of tags in the set{Tr\{∪w∈WTw}}. This suggests that the
variableZ can be used to estimatenr\W . The following theorem
characterizes the distribution of variableZ.

Theorem 1: The random variableZ has a normal distribution with
meanµz and varianceσ2

z for large values off , nr\W andnW :

µz = f
(

1− exp
(

− pnr\W

f

))

exp
(

− pnW
f

)

. (3)

σ2
z = µz

(

1− µz/f

(

1 +
p2nW

f

))

− p2nr\W exp

(

−2p

f
(nr\W + nW)

)

. (4)

The proof of Theorem 1 is given in Appendix A. By using the
interrogation vectorsv1

r , . . . ,v
M
r , and v

1
w, . . . ,v

M
w , ∀ w ∈ W,

one can obtainM samples of the random variableZ, namely
z1, . . . , zM . Let z denote a vector composed of all the samples (i.e.,
z =

(

z1, . . . , zM
)

). From Theorem 1, the likelihood function ofz
given nr\W andnW is

L
(

z;nr\W , nW

)

=

M
∏

m=1

1√
2πσ2

z

exp

(

− (zm − µz)
2

2σ2
z

)

. (5)

Algorithm 1 A-MRCE Algorithm executed at readerr ∈ R.
1: Upon receiving parametersp,q, and f from the controller,

readerr performsM interrogation processes
using seed valuesq.

2: Readerr sends its location info and the interrogation vectors
v
1
r, . . . ,v

M
r to the controller.

The maximum likelihood (ML) estimate ofnr\W is the value that
maximizes the log-likelihood function as follows:

ñM
r\W = argmax

nr\W

lnL
(

z;nr\W , nW

)

= argmax
nr\W

{

−M
2

ln
(

σ2
z

)

−
M
∑

m=1

(zm − µz)
2

2σ2
z

}

. (6)

In practice,nW is not given and an estimation should be used
instead. Let̃nM

W denote the estimation ofnW usingM interrogation
vectors. By taking the derivative of (6) and equating it to zero, we
can find the closed form expression for the ML estimator. For large
values ofM (e.g.,M > 10) and f (e.g., f > 100), the exclusive
estimator in (6) can be approximated as

ñM
r\W ≈

{

nr\W

∣

∣

∣

∣

∣

µz − 1

M

M
∑

m=1

zm = 0

}

= −f
p
ln

(

1−
∑M

m=1 z
m

Mf
exp

(

pñM
W

f

)

)

. (7)

Eq. (7) is the asynchronous exclusive estimator. In the nextsub-
section, we explain hownW can be estimated. The inaccuracy in
estimation ofnr\W comes from the random nature of samples taken
from the system and also the error in estimation ofnW . The following
theorem characterizes the error of the estimator in (7).

Theorem 2: Given the error in estimation ofnW follows a normal
distribution, for large values ofM andf , the error in estimation of
nr\W using (7) has a normal distribution. Moreover, this estimator
is asymptotically unbiased if the mean of error in estimation of nW

approaches zero for large values ofM . The variance of error is
bounded by

σ2
nr\W

(M) ≤ 1

p2
exp

(

2p
(

nr\W + nW

)

f

)

σ2
z

M

+

(

exp

(

pnr\W

f

)

− 1

)2

σ2
nW

(M), (8)

where σ2
nr\W

(M) and σ2
nW

(M) are the variance of errors in
estimation ofnr\W andnW usingM independent set of interrogation
vectors, respectively.

The proof of Theorem 2 is given in Appendix B. We will compare
σ2
nr\W

(M) and its upper bound in Section V.

B. A-MRCE Algorithm
We now present the A-MRCE algorithm to estimate the total

number of tags in an RFID system with multiple readers. The A-
MRCE algorithm is a centralized algorithm. The controller is a cen-
tralized unit which is responsible to estimate the total number of tags
in the system. Each reader performs interrogations individually and
transmits its interrogation vectors to the controller. Thecontroller uses
these vectors to estimate the number of tags. The A-MRCE algorithm,
which is shown in Algorithms 1 and 2, implements equation (1)
using the single reader and the asynchronous exclusive estimators.
Algorithm 1 shows part of the A-MRCE algorithm performed by a
readerr ∈ R. Algorithm 2 shows part of the A-MRCE algorithm
performed by the controller. When the algorithm is invoked,the
controller informs the persistence probabilityp, frame sizef , and
a set ofM random seedsq (i.e., |q| = M ) to all the readers.



4

Algorithm 2 A-MRCE Algorithm executed at the controller.
1: Input: Set of readersR, neighboring set of readerr, Hr, and

the interrogation vectors of readerr, ∀r ∈ R.
2: Initialization: Set Ñ := 0, andΓ := {}
3: while Γ 6= R
4: Select a readerr randomly from the setR\Γ.
5: SetW := Γ ∩Hr.
6: if W = {}
7: Calculateñr using (2).
8: Set Ñ := Ñ + ñr.
9: else

10: CalculateñW using (2) if |W| = 1 or using A-MRCE
algorithm if |W| > 1.

11: Calculateñr\W using asynchronous exclusive estimator
(7).

12: Set Ñ := Ñ + ñr\W .
13: end if
14: SetΓ := Γ ∪ {r}.
15: end while

Each readerr ∈ R then performsM interrogation processes and
sends the interrogation vectors(v1

r , . . . ,v
M
r ) to the controller. The

readers also inform the controller about their location by sending the
location information to the controller.Hr is the set of readers whose
interrogation vectors overlap with the interrogation zoneof reader
r. Based on the interrogation range of each reader and its location,
Hr, which is the set of neighboring readers of readerr can also be
determined. The readers may encounter reader-to-tag and reader-to-
reader collision during their interrogations. To avoid thecollision,
several techniques have been proposed in the literature [13]–[17] for
RFID systems with multiple readers. However, it is not the focus
of this paper and we assume that the readers employ one of these
techniques to perform interrogations.

After receiving the required information (interrogation vectors and
location information) from all the readers, the controllerestimates
the total number of tags using asynchronous exclusive estimator by
invoking Algorithm 2. Algorithm 2 is equivalent to applyingequation
(1) iteratively to estimate the total number of tags. Steps 4− 14
denote one iteration of the algorithm. At each iteration, the algorithm
selects a readerr randomly from the readers which have not been
selected yet (i.e.,R\Γ). Then, the controller calculates the number
of tags within the range of the selected reader which have notalready
been counted and adds it tõN . The setW denotes the set of neighbors
of readerr which has been selected by the algorithm in the previous
iterations (i.e., the tags within the range of the readers inthe setW
have been counted till now). If this set is empty, the algorithm uses
the single reader estimator in (2) to calculateñr and adds this number
to the current estimation of the total number of tagsÑ (Steps 6−9).
If the setW is non-empty, then the algorithm uses the asynchronous
exclusive estimator to calculatẽnr\W . To do so, the asynchronous
exclusive estimator requires the value ofñW . If the setW has only
one member, theñnW can be calculated using single reader estimator
in (2). Otherwise, the controller invokes the A-MRCE algorithm
(Algorithm 2) again to estimate the number of tags within therange
of readers in the setW. This shows arecursive operation of the A-
MRCE algorithm. We notice that since the controller alreadyhas the
interrogation vectors of all the readers including those insetW, it
does not need to ask the readers to perform interrogations again.

C. Estimation Error and Discussion
To estimateñr\W , the asynchronous exclusive estimator uses

the estimation ofnW . Therefore, the A-MRCE algorithm needs to
calculateñW . If the setW has one element, then the single reader
estimator can be used and the estimation error in estimatingnW has a
normal distribution with zero mean. If the setW has more than one
reader, the algorithm is invoked again to estimatenW . This gives
a recursive operation of the A-MRCE algorithm. In the recursive

procedure, the first level of the estimation is obtained by using the
asynchronous exclusive estimator which has an error with normal
distribution and zero mean. Based on Theorem 2, the next levels
have also an estimation error with normal distribution and zero mean.
Consequently, the estimation ofnW has a normal distribution with
zero mean.

We now describe how to determine the estimation error for the
A-MRCE algorithm. The value ofÑ obtained by the A-MRCE
algorithm is composed of several estimations from the single reader
and the asynchronous exclusive estimators. All the readerscontribute
to the estimation ofÑ . Since different terms forÑ are from
either single reader or asynchronous exclusive estimators, they have
asymptotically normal distributions with zero mean. Therefore, Ñ
has asymptotically normal distribution with zero mean. In general,
different terms ofÑ are not independent. However, the summation
of the variance of error of these terms can give an upper boundfor
the variance of the error for A-MRCE algorithm. The summation of
the variances depends on the order that readers are selectedin the
algorithm (Step 4 of algorithm 2).

For pure random selection of the readers (Step 4 of Algorithm
2), we calculate the expected value of the summation of variances
over different runs of the algorithm. For readerr ∈ R with |Hr|
neighbors, letQr denote the power set ofHr. The power set of a set
is the set of all subsets of that set. In different runs of the A-MRCE
algorithm, the number of tags within the zone of readerr may appear
in various forms inÑ . For example, it can be either̃N := Ñ+ ñr or
Ñ := Ñ + ñr\W for anyW ∈ Qr. For setW ∈ Qr, the probability
that Ñ containsñr\W is equal to the probability that only readers in
setW from the neighbors ofr are selected before readerr within the
algorithm run. Assuming that the reader selection is purelyrandom,
this probability is equal to the probability that among reader r and
its neighbors (i.e.,Hr), readers in setW are selected before reader
r. The probability that any subset of neighbors ofr with cardinality
|W| are selected by the algorithm before readerr is 1/(|H1| + 1)
and the number of such subsets is

(

|Hr|
|W|

)

. Let Pnr\W
denote the

probability thatnr\W appears inÑ . This probability can be written
as

Pnr\W
=

1

(|Hr|+ 1)
(

|Hr|
|W|

) . (9)

Therefore, when the readerr is selected within the algorithm run,
with probability Pnr\W

we haveW = Γ ∩ Hr, ∀ W ∈ Qr. The
expected value for the summation of variances of errors inÑ gives
an upper bound on the variance of estimation errorσ2

asyn:

σ2
asyn≤

∑

r∈R

∑

W∈Qr

Pnr\W
σ2
nr\W

. (10)

IV. SYNCHRONOUSMULTIPLE READER CARDINALITY

ESTIMATION (S-MRCE)
We proposed the A-MRCE algorithm in the previous section

based on the assumption that readers cannot be synchronizedfor
interrogations. In this section, we consider the case that readers
have the ability to be synchronized for interrogations (e.g., they are
equipped with accurate clocks). We develop a synchronous multiple
reader cardinality estimation (S-MRCE) algorithm, which is suitable
for RFID systems with multiple synchronized readers. The readers
operate synchronously in a sense that they start interrogation at certain
times and perform interrogations periodically one after another. We
first propose a synchronous exclusive estimator, which is a building
block of the S-MRCE algorithm.

A. Synchronous Exclusive Estimator
The synchronous exclusive estimator is developed to estimate

nr\W for W ⊆ Hr using interrogation vectors obtained from
synchronous operation of the readers. The main idea behind the
operation of the synchronous exclusive estimator is the useof
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different seed values for different tags in one interrogation. In fact,
the reader performs interrogation while the shared tags (i.e., the tags
in Tr∩{∪w∈WTw}) and the tags which are exclusively located within
the range of the reader have different seed values. Considerreader
r, the set of readersW ⊆ Hr, and the vectorvr obtained from
the interrogation of tags within the range ofr using seed valueq.
Also, consider vectorur obtained from the interrogation of tags in
Tr while the tags inTr\{∪w∈WTw}) use seed valueq and the tags
in Tr∩{∪w∈WTw} use seed valueq′. Since the tags select the same
slot whenever they are interrogated with the same seed value, vectors
vr and ur have common information aboutnr\W . The difference
between these two vectors comes from the shared tags, which have
been interrogated with different seed values. The number ofslots with
at least one transmission in eithervr or ur represents the existence
of a tag in setTr while the tags inTr ∩ {∪w∈WTw} are counted
twice. Let Y denote the number of time slots which are nonempty
either invr or ur. That is, given readerr ∈ R and setW, we have
Y =

∑f
l=1

(

vlr + ul
r − vlru

l
r

)

. The samples of random variableY
can be used to estimate the value ofnr\W . The following theorem
characterizes the distribution of variableY .

Theorem 3: The random variableY has a normal distribution with
meanµy and varianceσ2

y for large values off , nr, andnr\W as:

µy = f (1− exp (−pν/f)) , (11)

σ2
y = f exp (−pν/f)

(

1− (1 + p2ν) exp (−pν/f)
)

, (12)
whereν = (2nr − nr\W).

The proof is similar to the proof given in [28] for the occu-
pancy problem and we omit it due to the lack of space. UsingM
different pairs of seed values for the tags inTr\{∪w∈WTw} and
Tr ∩{∪w∈WTw}, M different samples of random variableY can be
obtained, namelyy1, . . . , yM . Let y denote the vector of all samples
(i.e.,y =

(

y1, . . . , yM
)

). The likelihood function ofnr\W usingy is
similar to that obtained in (5) if the mean and variance of variableZ is
replaced by variableY . The ML estimate ofnr\W with M different
samples can be obtained by taking derivative from the likelihood
function and equating it to zero similar to the approach usedfor (6).
For large values ofM (e.g.,M > 10) and f (e.g., f > 100), the
synchronous exclusive estimator can be approximated as

n̂M
r\W ≈

{

nr\W

∣

∣

∣

∣

∣

µy − 1

M

M
∑

m=1

ym = 0

}

= 2nr +
f

p
ln

(

1−
∑M

m=1 y
m

Mf

)

, (13)

wheren̂M
r\W denotes the estimation ofnr\W using the synchronous

exclusive estimator withM samples. When using the synchronous
exclusive estimator, we use an estimation ofnr. This estimation is
obtained using the single reader estimator which is asymptotically
unbiased. For large values ofM ,

∑

m ym/M converges toµy and
ln
(

1−∑m ym/(Mf)
)

converges to−p/fν. Since the error in
the estimation ofnr approaches zero, the synchronous exclusive
estimator is asymptotically unbiased. Since it is an ML estimator,
the error distribution is asymptotically normal [29]. The error in the
estimation ofnr is also asymptotically normal and is added to the
error generated from the random samples taken from the system.
Assume that there is no error in estimation ofnr. In this case, the
error in n̂M

r\W originates from the second term in (13). Since the
synchronous exclusive estimator is an ML estimator, the variance of
error can be approximated using the Cramer-Rao bound [29]. The
Fisher information for this exclusive estimator can be written as

Isyn(nr\W) = Ey|nr\W

{

(

∂
∂nr\W

lnL(y;nr\W)
)2
}

= Ey|nr\W

{

(

∂
∂nr\W

ln
∏M

m=1
1√
2πσ2

y

exp

(

− (ym−µy)
2

2σ2
y

))2
}

.

(14)

Algorithm 3 S-MRCE Algorithm to calculate the total
number of tags in the system.

1: The controller sends the parametersp, f , vectorq, and random
slot numbers{s1, . . . , s|R|} to all readers.

2: for k = 0, . . . , |R| − 1
3: if sr = k,
4: Readerr starts periodic interrogation process using seed

vectorq.
5: end if
6: end for
7: for r ∈ R
8: Readerr calculates̃nr using (2) and calculates̃nr\W using

synchronous exclusive estimator (13).
9: Readerr sends the estimated valuẽnr\W to the controller.

10: end for
11: The controller sums up the received value from all readers to

find the estimation ofN .

Equation (14) can be approximated as

Isyn(nr\W) ≈
(

µ′
y

)2

σ2
z

=
p2

f (1− (1 + p2ν) exp (−pν/f)) , (15)

whereµ′
y denotes the derivative ofµy with respect tonr\W . Now,

we consider the error in estimation ofnr. Similar to the estimation
error of asynchronous exclusive estimator, the error generated from
inaccurate estimation ofnr and the error from the random samples
have different signs. Therefore, the summation of the variance of
these two errors gives an upper bound on the variance of estimation
error for synchronous exclusive estimator. Since the termnr in (13)
has coefficient two, its variance has coefficient four in the summation
of variances:

σ2
nr\W

(M) ≤
(

MIsyn(nr\W)
)−1

+ 4σ2
nr
. (16)

B. S-MRCE Algorithm
We now present the S-MRCE algorithm to estimate the total

number of tags in a system covered by multiple readers. On contrary
to the A-MRCE algorithm, the S-MRCE algorithm is a distributed
approach while readers perform interrogation and estimatethe num-
ber of tags individually. Then, they transmit their estimation to the
controller. The controller just sums up those numbers to obtain the
estimation of the total number of tags. The computation loadof
estimation is at the reader’s side. The S-MRCE algorithm implements
(1) using the synchronous exclusive estimator. Algorithm 3shows the
S-MRCE algorithm. In this algorithm, all the readers are assumed to
be synchronized with a central clock.

We divide the system time into several time periods and each
reader is assigned a period number. Each reader performs an inter-
rogation within the assigned period. To prevent collision between
neighboring readers, we use a scheduling algorithm based ongraph
coloring [30]. We assign different colors to various readers such
that two neighboring readers are not assigned the same color. The
chromatic number of the system is the minimum number of colors
needed to color all the readers. LetC denote the chromatic number
of our system. The colors are interpreted as different time periods of
the system. This provides a time division multiple access method for
interrogation of all the readers. There areC interrogation periods
assigned to the readers. Letsr denote the period number which
is assigned to the readerr. Each period is long enough for an
interrogation process. At the beginning, the controller informs the
persistence probabilityp, frame sizef , the random seed vector
q = (q1, . . . , qM ), where qi 6= qj ,∀ i, j, and the slot number to
all the readers (Step 1). We call theC slots together an interrogation
round. Within an interrogation round, all the readers perform the
interrogation once. To estimate the number of tags, all the readers
perform interrogation twice in two consecutive rounds. In the first
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Fig. 2. Network topologies: (a) Three readers, and (b) Ten readers.

round, all the readers announce their seed value and then perform
interrogation. In the second round, however, the readers just perform
the interrogation and do not announce the seed value. For thereader
r, the first interrogation results in measuring interrogation vectorvr
while all the tags within range of readerr are interrogated with the
same seed value. In the second interrogation, the readerr measures
vector ur while the tags in the range of readerr which are in the
range of other readers have different seed value compared tothose
exclusively in the range of readerr. To make sure that neighboring
readers are not using the same seed value, reader with slot number
sr used thesr-th seed value. We assume that the chromatic number
C is less that the number of samplesM . To obtainM samples,
the interrogation rounds are repeatedM times with different seed
values. We call this synchronous process performed by everyreader
the periodic interrogation process (Step 4).

After performing the interrogations by all the readers, each reader
r uses the vectors obtained by announcing the seed value to estimate
nr. Readerr calculates the estimated value ofnr\W using the
estimation ofnr and also two sets of interrogation vectorsvr andur

(Step 8). Readerr sends the estimation ofnr\W to the controller
(Step 9). The controller can calculate the estimation of thetotal
number of tags by adding up all values received from the readers
(Step 11).

Since the error of synchronous exclusive estimator has normal
distribution with zero mean, the estimation ofN obtained by
using the S-MRCE algorithm has normal error distribution which
is asymptotically unbiased. The upper bound for the variance of
estimation error for the S-MRCE algorithm can be calculatedusing a
similar approach employed to calculate the variance of the A-MRCE
algorithm. The upper bound can be written as:

σ2
syn ≤

∑

r∈R

∑

W∈Qr

Pnr\W
σ2
nr\W

, (17)

whereσ2
nr\W

is derived in (16). Compared to the A-MRCE algo-
rithm, the S-MRCE algorithm provides better performance interms
of the estimation of error. The probability of error of asynchronous
exclusive estimator increases exponentially withnW . When the
number of neighboring readers increases, the probability of error
for asynchronous exclusive estimator increases rapidly. However, the
error of synchronous exclusive estimator depends on the number of
tags within the zone of the reader, but not the neighboring readers.
The cost which is paid to achieve this better performance is the need
of the synchronous operation of readers.

The estimation error of A-MRCE and S-MRCE algorithms de-
pends on the choice of design parametersf andp. To choose these
parameters appropriately, the controller requires to knowthe number
of tags in the system. In case that the controller does not have a priori
information about the number of tags in the system, the controller
can choose predetermined values forf andp and perform a round of
interrogations. Then, based on the estimation of the numberof tags,
the controller choosesf andp for the next round of interrogation.
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Fig. 3. Mean of estimation error for different number of interrogationsM , (a)
asynchronous exclusive estimator, and (b) synchronous exclusive estimator.

V. PERFORMANCEEVALUATION

We used MATLAB and developed a discrete-event RFID simulator
to validate the analytical models and to evaluate the performance of
the exclusive estimators and the MRCE algorithms.

A. Performance Evaluation for Exclusive Estimators
In this section, we investigate the performance of the exclusive

estimators, validate the models, and compare them in terms of the
mean and variance of the estimation error. We first consider the
topology given in Fig. 2 (a). The interrogation zone of each reader
is 15 m. The tags are randomly deployed within the zone of readers.
The number of tags within the zone of all readers is equal. The
average number of tags shared between any two of readers is 15%
of nr. Also, 5% of the tags are shared among three of them. We
use asynchronous and synchronous exclusive estimators to estimate
nr3\W whereW = {r1, r2}. The estimation ofnW , is obtained as
ñW = ñr1 + ñr2\r1 , whereñr1 and ñr2\r1 are obtained by using
(2) and (5), respectively. We notice thatnr\W = 0.75nr .

First, we investigate the performance of the models by varying
the number of interrogationsM from 1 to 50. We set the frame size
f to 500 and the persistence probabilityp to 1. We measure the
mean and variance of the estimation error for both asynchronous and
synchronous exclusive estimators. These errors contain the errors in
estimation ofñW and ñ3 as well. Figs. 3 (a) and (b) show that both
estimators are asymptotically unbiased and the mean of the error
approaches zero rapidly whenM increases in the system. Figs. 4
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Fig. 4. Standard deviation of estimation error for different number of
interrogationsM when using anasynchronous exclusive estimator.
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Fig. 5. Standard deviation of estimation error for different number of
interrogationsM when using thesynchronous exclusive estimator.

and 5 show the standard deviation of error obtained from simulations
and compare these values with analytical upper bounds obtained in
equations (8) and (16). For both estimators, the variance oferror
approaches zero for large values ofM . As shown in Figs. 4 and 5,
the upper bounds are tight when the number of tags within the zone
of readers is small.

Next, we investigate the behavior of these estimators for different
number of tags within the range of readers. We use the notion
of operational range for comparison. The operational rangeof the
estimators is defined as the the range ofnr such that the mean of
estimation error is within a certain threshold of the actualvalue. We
use±1% as the threshold. The lower bound of the range is always
zero and the upper bound depends on frame sizef and persistence
probabilityp. Lowering the persistence probabilityp can decrease the
effective number of tags transmitting in an interrogation process and
it can increase the operational range. The analytical models for the
estimators are valid as long asnr is within the operational range. We
vary the number of tags within the zone of each reader from 100to
10,000 by steps of 50. Fig. 6 shows the mean of estimated valuefor
asynchronous and synchronous exclusive estimators for twovalues of
persistence probability,p = 1 andp = 0.5. The mean of estimation
for the asynchronous exclusive estimator is within the±1% of the
actual value ofn3\W for values ofn3 less than 1,100 and 2,200
for p = 1 andp = 0.5, respectively. These indicated the operational
range of the estimators. The values beyond these thresholdsare out of

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Number of Tags,  n
r

M
e
a
n

o
f
e
s
t
im

a
t
io

n
o
f
n

r
\
W

 

 

Actual number of tags
Syn. Exclusive Estimator −  p = 0.5
Syn. Exclusive Estimator −  p = 1
Asyn. Exclusive Estimator −  p = 0.5
Asyn. Exclusive Estimator −  p = 1
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Fig. 7. Operational range of asynchronous and synchronous exclusive
estimators for varying persistence probabilities.

the operational range of the estimator. These values for synchronous
exclusive estimator are 2,600 and 5,500 forp = 1 and p = 0.5,
respectively.

The operational range of the exclusive estimators is a function
of the persistence probability. Fig. 7 shows the operational range of
the asynchronous and synchronous exclusive estimators forvarious
values ofp. The operational range is extended when the probability
is decreased. Although decreasingp can increase the operational
range, it may increase the estimation error under some circumstances,
especially for the systems with a low number of tags. Figs. 8 (a) and
(b) show the behavior of the standard deviation of the error versus
the persistence probability for the asynchronous and synchronous
exclusive estimators, respectively. We notice thatnr equals to1000
and 2000 are not in the operational range of the asynchronous
exclusive estimator. Therefore, Fig. 8 (a) does not includethe curves
for 1000 and 2000 nodes. Both estimators have similar behavior in
terms of variance of error. For the systems with a small number of
tags compared to the frame size, the variance of the estimation error
increases whenp decreases. It means,p = 1 is a suitable choice. On
the other hand, for large values ofnr compared to the frame size,
decreasing the persistence probability can improve the error to some
extent. However, for very small persistence probabilities, the error
start increasing again. There is a trade off between the operational
range and the variance of error in choosing the design parameter p.
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Fig. 8. Standard deviation of error for varying persistenceprobabilities: (a)
asynchronous exclusive estimator, (b) synchronous exclusive estimator.

B. Performance Evaluation for A-MRCE and S-MRCE Algo-
rithms

In this section, we first investigate the performance of the A-MRCE
and S-MRCE algorithms for a system with ten readers shown in Fig. 2
(b). The interrogation zone of each reader has a range equal to 15 m.
The tags are randomly deployed within the interrogation zone of the
readers. We set the frame sizef to be 500 time slots, the persistence
probabilityp to 1, andM to 50. Then, we increase the total number of
tags in the system from 500 to 5000 with steps of 500. These numbers
are chosen such that the single reader and exclusive estimators work
in their operational range (i.e., the mean of estimation error is zero).
Fig. 9 shows the standard deviation of error for the A-MRCE and
S-MRCE algorithms and compares the analytical results obtained in
(10) and (17) with the simulation results. The simulation results are
averaged over 1000 iterations. As we expect, the analyticalvalues
provide upper bounds on the simulation results for both algorithms.
In the worst case, the analytical results are 40% and 30% higher
than the simulation results. As Fig. 9 shows, the standard deviation
of error is negligible compared to the actual number of tags in the
system, which proves the accuracy of the algorithms. Moreover, it
can be seen that the S-MRCE algorithm outperforms the A-MRCE
algorithm substantially in terms of estimation error. However, we
notice that S-MRCE is not suitable for cases when readers cannot
perform synchronously in the system.

Next, we compare the A-MRCE and S-MRCE algorithms with
two other algorithms: the lottery frame (LoF) [22] and EZB [25]
algorithms. Both EZB and LoF algorithms can also be extended
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Fig. 9. Comparison of A-MRCE and S-MRCE in terms of standard deviation
of error.

to estimate the number of tags for systems with multiple readers.
To achieve that, the interrogation vectors of all the readers in the
system are merged using slot-wise and operator. The resulting vector
is similar to a vector obtained by a single reader interrogating all the
tags in the system. Therefore, this vector can be used as an input
for the EZB or LoF algorithm to estimate the total number of tags
in the system. We compare these algorithms for a system with three
readers and ten readers separately.

First, we compare the mean and variance of estimation error of A-
MRCE, S-MRCE, LoF, and EZB algorithms for various interrogation
times for an RFID system with three readers shown in Fig 2 (a).The
number of tags within the range of each reader is 750. Figs. 10(a)
and (b) show the mean and standard deviation of error in estimating
the total number of tags versus the interrogation time, respectively.
The interrogation time is defined as the number of time slots that each
reader requires to perform interrogation. The frame size for A-MRCE,
S-MRCE, and EZB algorithms is set to 500 while it is set to 16 for
LoF. We vary the number of interrogations for various algorithms
(changeM and the number of hash functions) and determine the
mean and variance of estimation error. Fig. 10 (a) shows thatLoF
algorithm has a lower mean of estimation error compared to other
algorithms for the same interrogation times. Then, LoF has awider
operational range compared to other schemes. However, as Fig. 10 (b)
shows, the variance of estimation error is higher in LoF compared to
other algorithms.

Next, we consider the system in Fig. 2 (b). The number of
tags within the zone of different readers isnr = 500. The frame
size f is set to 500 time slots for A-MRCE, S-MRCE, and EZB
algorithms while the frame size of the LoF is set to 16. The number
of interrogationsM is set to 20 for A-MRCE and EZB algorithms
and it is set to 10 for S-MRCE algorithm. We use 600 various hash
functions for the LoF algorithm. We notice that under this setting,
the readers in all the algorithms have the same interrogation time.
We also mention that the mean of estimation error is close to zero
for all the estimators under this setting. At the beginning,we only
consider reader 1 for the simulations. Then, we add the reader one by
one to the system and investigate the performance of the algorithms
in the presence of different number of readers. Fig. 11 showsthe
standard deviation of the estimation error for the total number of
tags for various number of readers. It can be seen that the standard
deviation of error in the A-MRCE and S-MRCE algorithms grows
linearly with the number of readers while it increasesexponentially
in LoF and EZB algorithms. In the presence of multiple readers, EZB
and LoF algorithms merge the interrogation vectors of several readers
to obtain one interrogation vector. For a fixed number of tagswithin
the range of the readers, increasing the number of readers would
linearly increase the total number of tags in the system. Since both
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Fig. 10. Comparing different algorithms in terms of interrogation time
(number of time slots), (a) mean of estimation error, and (b)standard deviation
of estimation error.

algorithms use the merged interrogation vector for estimation and the
variance of the estimation error for either EZB and LoF algorithms
increases exponentially with the number of tags, the variance of
EZB and LoF algorithms increases exponentially as the number of
readers linearly increases. However, for the A-MRCE and S-MRCE
algorithms, whenever a reader is added to the system, only the error
of the exclusive estimator which is used to estimate the tagswithin
range of that reader is added to the total error. Therefore, the increase
in the error is linear as the number of readers increases linearly.

VI. CONCLUSIONS

In this paper, we studied the problem of anonymous cardinality
estimation in RFID systems with multiple readers. We proposed
two ML estimators, namely an asynchronous exclusive estimator
and a synchronous exclusive estimator, to estimate the number of
tags which are exclusively located within the zone of a reader. We
showed that these estimators are asymptotically unbiased and we
derived upper bounds on the variance of estimation error. Wepro-
posed the A-MRCE and S-MRCE algorithms which can accurately
estimate the tag population anonymously using the query replies of
different readers and exclusive estimators. We derived theprobability
density function of the estimation error and showed that it can be
approximated as a normal distribution with zero mean. The accuracy
of the model and the approximations are validated via simulations.
For performance comparisons, results showed that the variance of
estimation error for A-MRCE and S-MRCE algorithms increase
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Fig. 11. Comparing the standard deviation of estimation error for A-MRCE,
S-MRCE, EZB [25], and LoF [22] algorithms.

linearly with the number of readers while it increases exponentially
for EZB [25] and LoF [22] algorithms. For future work, one can
study the problem of choosing the design parametersf andp based
on the initial estimation of the number of tags and study the trade
off between the variance of estimation error and interrogation time.

APPENDIX

A. Proof of Theorem 1
Let φz and ψz denote the event thatz predetermined slots are

nonempty invr and empty invw,∀ w ∈ W, respectively. Letθz
denote the event that both eventsφz andψz occur. We have P(θz) =
P(φz ∩ ψz) = P(φz | ψz)P(ψz), where

P(φz | ψz) =

nr\W
∑

t=0

(P(φz | t tags pick thesez slots)

×P ( t tags pick thesez slots | ψz)) .

The condition on observedψz affects the upper bound of the
summation. The probability thatz time slots are non-empty ift tags
choose them is as follows [31, p. 92]:

P(φz | t tags pick thesez slots) =
z
∑

k=0

(−1)k
(

z

k

)

(

1− z

f

)t

.

We also have

P ( t tags pick thesez slots | ψz)

=

(

nr\W

t

)

(

pz

f

)t(

1− pz

f

)(nr\W−t)

.

Hence, we have

P(φz) =

nr\W
∑

t=0

z
∑

k=0

(−1)k
(

z

k

)

(

1− k

f

)t
(

nr\W

t

)

(

pz

f

)t (

1− pz

f

)(nr\W−t)

=
z
∑

k=0

(−1)k
(

z

k

)

(

1− pk

f

)nr\W

.

Therefore, we can write P(θz) as

P(θz) =

(

1− pz

f

)nw z
∑

k=0

(−1)k
(

z

k

)

(

1− pk

f

)nr\W

.
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Let Sz denote the summation of probability of all possible occur-
rences ofz events in a frame. This is equal toSz =

(

f
z

)

P (θz). Let
Pz denote the probability of having exactlyz slots nonempty invr

and empty invw,∀ w ∈ W. This probability can be calculated using
[31, p. 96] as follows:

Pz =

f
∑

m=z

(−1)m−z

(

m

z

)

Sm

=

f
∑

m=z

(−1)m−z

(

m

z

)(

f

m

)

P (θm). (18)

Equation (18) shows that this problem is similar to the occupancy
problem investigated in [27]. It is shown in [27], [28] that the
distribution for the occupancy problem is asymptotically normal.
Using a similar approach, we can show thatZ has a normal
distribution for large values off andnr. To calculate the mean and
variance ofZ, we use the approach presented in [28]. We define an
auxiliary random variableXi which takes values from{0, 1}. Xi is
equal to one if theith time slot is non-empty invr and empty in
vw, ∀w ∈ W. Therefore, we haveZ =

∑f
i=1Xi. The mean and

variance of variableZ can be obtained using this auxiliary variable
as follows:

µz = E[Z] = E
[

∑f
i=1Xi

]

= fP1

≈ f

(

1− exp

(

−pnr\W

f

))

exp

(

−pnW

f

)

.

σ2
z = E

[

(

∑f
i=1Xi

)2
]

− µ2
z

=
∑f

i=1E
[

X2
i

]

+ 2E
[

∑f
i=1

∑f
j=i+1XiXj

]

= fP1 + f(f − 1)P2 − µ2
z

≈ µz

(

1− µz

f

(

1 + p2nW
f

))

−p2nr\W exp

(

−2p

f
(nr\W + nW)

)

. �

B. Proof of Theorem 2

We replace
∑

m zm

M
andñW byµz+e

M
z andnW+eMn , respectively

while eMz and eMn are random variables. Since variableZ has a
normal distribution, variableeMz is a normal random variable with
zero mean and varianceσ2

z/M . Moreover, it is assumed that̃nW

is a normal random variable and the estimation is asymptotically
unbiased. Therefore,eMn is a normal random variable with zero mean.
For large values off andM , the variance ofeMz andeMn approaches
zero and we have

ñr\W

= −f
p
ln

(

1−
∑

m zm

Mf
exp

(

pñW

f

))

= − f
p
ln

(

1− (µz+eMz )
f

exp

(

p(nW+eMn )
f

))

≈ − f
p
ln

(

1− (µz+eMz )
f

(

1 + p/feMn
)

exp
(

pnW
f

)

)

≈ − f
p
ln
(

1− µz

f
exp

(

pnW
f

)

− eMz +µzp/fe
M
n

f
exp

(

pnW
f

))

≈ − f
p
ln
(

1− µz

f
exp

(

pnW
f

))

− eMz /p+µz/fe
M
n

1−µz/f exp
(

pnW
f

) exp
(

pnW
f

)

≈ nr\W − eMz
p

exp

(

p(nW+nr\W)
f

)

− eMn

(

exp
(

pnr\W

f

)

− 1
)

.

Since both variableseMz and eMn are normal random variables,
variable ñW is a normal random variable for large values ofM .
Moreover, the mean of error approaches zero for large valuesof M .
VariableseMz and eMn are dependent in general since they are both

derived from the same vectorsvr and vw. However, the error of
these two variables are not in the same direction. If the error of eMz
is positive, it means that in these vectors, the tags are spread such
that the number of empty slots in vectorsvw, which overlap with
non-empty slots, is higher than the expected value. In this case, the
estimate ofnW , which is obtained from those vectors, should be
less than its expected value. Therefore, the error ofeMn is positive.
In general, the summation of variances for these two terms gives an
upper bound for the variance of error as follows:

σ2
nr\W

=
1

p2
exp

(

2p
(

nr\W + nW

)

f

)

σ2
z

M

+

(

exp

(

pnr\W

f

)

− 1

)2

σ2
nW

. �
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