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Abstract— Radio frequency identification (RFID) is an emerg-
ing technology for automatic object identification. An RFID

GHz, have a range in the order of 10 m. Active tags require aepow
source (e.g., a battery) for data transmission and havegarlaange

system consists of a set of readers and several objects, with(> 100 m).

each object equipped with a small chip, called a tag. In
this paper, we consider the anonymous cardinality estimatin
problem in an RFID system consisting of several readers. To
achieve complete system coverage and increase the accuramy
measurement, multiple readers with overlapping interrogdion
zones are deployed. We study the problem under two different
circumstances. First, we assume that the readers cannot gflerm
interrogations synchronously. This models the case when ¢
readers are not equipped with accurate clocks or synchronation

In an RFID system, packet collisions may occur during the
interrogation of a reader. This type of packet collision &lled
a tag-to-tag collision. Tree-walking and ALOHA-based prals
are two kinds of tag-to-tag anti-collision protocols prepd in the
literature [5]-[12]. For RFID systems with multiple reasleother
types of collisions (e.g., reader-to-tag and reader-talee collisions)
may occur during the interrogations of various readers.[S&)eral
anti-collision interrogation techniques have been predder RFID
systems with multiple readers in the literature [14]-[1X]framed-

imposes a high overhead. Under such condition, we propose anslotted ALOHA-based tag anti-collision scheme has alsastan-

asynchronous exclusive estimator to estimate the number afgs

dardized by EPCglobal in [18]. This allows each tag to ranigom

that are exclusively located in the zone of a selected reader select a time slot and transmit its ID. The performance af cheme

By using this estimator, we propose an asynchronous multigt
reader cardinality estimation (A-MRCE) algorithm. In the s econd
scenario, we assume that readers can perform interrogatiagsyn-
chronously. We propose a synchronous exclusive estimatomd
a synchronous multiple-reader cardinality estimation (SMRCE)
algorithm to estimate the total number of tags. For the exclsive
estimators, we show that they are asymptotically unbiased ral
we derive upper bounds on the variance of error. We validate
our analytical model via simulations. Results show that aliough
the A-MRCE algorithm enjoys the asynchronous operation of
the readers, it performs worse than the S-MRCE algorithm in
terms of estimation error. Compared to the enhanced zero-bsed
(EZB) and lottery frame (LoF) algorithms, the variance of the
estimation error for both A-MRCE and S-MRCE algorithms
increases linearly with the number of readers, while it inceases
exponentially for EZB and LoF algorithms.
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|. INTRODUCTION

Radio frequency identification (RFID) systems are increglgi
being deployed as automated identification systems. Thesterss
are expected to play an important role in various applicatisuch
as warehouse and supply chain management, object traciny,
patients’ monitoring in health care facilities [1]-[3]. ARFID sys-

has been studied extensively recently [19], [20].

Tag estimation is widely used as a preliminary phase in ALOHA
based interrogation techniques [21]-[23]. Readers camsadhe
frame size based on the estimation of tag population. Amothe
application of tag estimation techniques, which has régeateived
attention, is the anonymous tracking of objects [24], [258]order to
preserve the privacy and anonymity of the tag users, it maybao
necessary to identify each individual user in some RFIDiappbns.
Instead, the goal is to estimate the total number of tags gersji in
the system. This is called tlwardinality estimation (or tag population
estimation) problem in RFID systems. The potential apfilice
include estimating the number of attendants in large etibits and
conferences when each attendant is equipped with an RF|Catal
urban traffic monitoring at streets and intersections whars @re
equipped with RFID tags.

In [24], Kodialam et al. proposed the zero-based and collision-
based tag estimation techniques using a framed-slotted H¥L.O
model with a single reader. In [25], they extended their work
by introducing the enhanced-zero based (EZB) estimatoichwh
is an asymptotically unbiased estimator. Using this tegphei the
mean and variance of the estimation error approach zero when
estimation process is repeated multiple times. Although BYB
algorithm can also be used for RFID systems with multipledees,
the variance of estimation error increases exponentialith \the
number of readers. In [22], Qiaet al. proposed the lottery frame

tem consists of a set afeaders and several objects. Each objec{LoF) scheme, which is a replicate-insensitive estimagootocol.

is equipped with a small computer chip, calléahy. Using these
inexpensive tags, every object can be uniquely identifidelDRags

can be categorized intpassive and active tags. A passive tag uses

backscatter modulation, and its transmission power isvel@rfrom
the signal of the interrogating reader [2], [4]. Passiveste@n operate
in different frequency bands. Low-frequency tags openatié 124-

LoF applies the hash functions with geometric distributiotiag 1Ds
to select the time slots for transmission.

For large scale RFID systems, it is necessary to deploy pheilti
readers with overlapped interrogation zones to fully caver area
and achieve a high accuracy in the estimation. Consequentigg
can be within the interrogation zone of several readerslsameously.

135 kHz band and have an operating range of up to 0.5 m. Ul tracking applications, which require privacy and anmity of the
high frequency tags, which operate at either 860-960 MHz.45 2 ysers, each tag only transmits a portion of its ID to the readien it
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is being queried. Thus, readers cannot identify uniquedyinidividual
tags. Thus, those tags which are within the range of multgdelers
may be counted multiple times. We call this problem theltiple
counting problem. This motivates us to propose estimation algorithms
which are capable of estimating the number of tags in suctes\s
We study the problem in two different conditions. First, wesame
that readers cannot perform interrogation synchronoifgé/develop

an asynchronous multiple-reader cardinality estimati@AMRCE)



algorithm under this condition. Then, we study the problehere Vi V2
the readers can be synchronized for interrogations, andewelap a [1Jo]1[1]o]1JoJofo]t] [t]t]oft]ol1][t][o]0]1]
synchronous multiple-reader cardinality estimation (RGE) algo- Y~ A ™ » 4 4avae v v « ~
rithm. The contributions of this paper are as follows: T o '

o We propose two maximum likelihood (ML) estimators, namely
asynchronous and synchronous exclusive estimators toasti
the number of tags, which are exclusively within the intgero
tion zone of a reader.

o We show that the error for these estimators is asymptoyicall ry . r;
normal and the estimators are asymptotically unbiased. We Interrogation zones
derive the upper bounds on the variance of the estimatiam.err_ )

The accuracy of these bounds is validated via simulations. Fig- 1. An RFID system with two readers andrz. nr; = 6, nr, =T,

« We develop two estimation algorithms namely, A-MRCE and’ = 11. f = 10, andp = 1.

S-MRCE algorithms using asynchronous and synchronous ex-
clusive estimators, respectively.

« We validate the analytical models, investigate the peréotoe tag only transmits part of its ID to the reader in the reply sage.
of our proposed estimators, and compare our proposed Aherefore, the reader cannot individually identify thestag
MRCE and S-MRCE algorithms with the EZB [25] and LoF We now introduce some of the notations. Li§t and R denote
[22] algorithms. Although all these algorithms are asyrtipto the number of tags and the set of readers in the system, teshec
cally unbiased, the variance of the estimation error for RGE Let 7,. denote the set of tags within the zone of readet R. Let
and S-MRCE algorithms increaséiearly with the number n, denote the number of tags in the interrogation zone of reader
of readers, while it increasesxponentially for EZB and LoF r € R (i.e., n, = |7r|). We usenyy to denote the number of tags
algorithms. within the range of a set of readeW (i.e., nyw = | Nwew Twl).

To the best of our knowledge, there is no prior work specifical TWO readers are called neighboring readers if there is a taghis

considering the problem of tag population estimation forlIRF in the interrogation range of both of the readers. Hst denote the
systems with multiple readers. Although EZB and LoF algonis S€t of other readers which are neighbors of readefor readerr,

can be used in RFID systems with multiple readers, since #ey '€t v = (v;,...,v/) denote the vector created after performing an
not designed for such systems, they can have poor perfosmarter  interrogation process, where (with [ = 1,..., f) indicates whether

some scenarios as shown in Section V. On the contrary, both ke!" time slot is empty (i-ew, = 0) or has atleast one transmission
MRCE and S-MRCE algorithms can be used in large scale RFfb€-; v» = 1). The number of elements of vecter. is equal to the
systems. Since S-MRCE algorithm needs synchronous operafi frame sizef. We call vectorv, as theinterrogation vector of reader
readers, this algorithm is suitable for systems where rsaden 7 Assume reader performs M interrogations using\/ different
operate synchronously. seed values. We use vectars, ..., v} to denote these interrogation

In our previous work [26], we proposed a multiple-reader tayectors. Fig. 1 shows a two-reader RFID system with oveddpp
estimation (MRTE) algorithm, which is similar to the A-MRCENterrogation zones and the interrogation vectors.
algorithm in this paper. However, in this paper, we presenmaie
accurate model to determine the estimation error of theusk@ B Multiple Counting Problem
estimator. In other words, the error model for the A-MRCEoaifithm
is more accurate than the one in [26].

The rest of this paper is organized as follows: The systemerlnod;
is presented in Section Il. In Section Ill, we first propose ap
asynchronous exclusive estimator. Then, we propose an SRR
algorithm to estimate the total number of tags in the RFIDtesys
In Section IV, we propose a synchronous exclusive estimataf
an S-MRCE algorithm. Performance evaluation and comparise
presented in Section V. Conclusions are given in Section VI.

For an RFID system with multiple readers, by adding up the
umber of tags within the zone of all readers, one can obtain a
stimator for the number of tags. Since some tags may appehe i
one of several readers, they are counted multiple timesffgreht
readers. Therefore, the estimation may not be accurateiapdor
dense RFID systems. To obtain an accurate estimate for tmdemu
of tags, the number of tags in the overlapped areas of neigtgho
readers is required in addition to the number of tags withnzone
of each reader. In the estimation process, once a tag isembinyt a
reader, other readers should exclude that tag from themasobns.

II. SYSTEM MODEL AND PROBLEM STATEMENT The total number of tags is the summation of the number of tags
) estimated by all the readers, while each reader excludegatie
A. Notations and Model that have already been counted by other readers. In geferdl|
Consider an RFID system with multiple readers. Readers u&adersri,...,riz € R with overlapping interrogation zones, the

framed-slotted ALOHA protocol for interrogations. Thistie model total number of tagsV in the system is

proposed in EPCglobal Gen2 standard [18]. We consider a fixed; _

frame size for an interrogation process. Each reader bastsla W= T+ T \Tou |+ + T MTrs U U Ty i (D)
query message, which includes information such as the fisaneef, Note that the order chosen to calculdte has no effect on the
persistence probability, and a random seeg at the beginning of final result. Moreover, if reader; € R shares no tags with readers
the interrogation process. Each tag decides whether ooricatismit = 71, ...,7;-1, then T, \{7;, U---UT-,_, } = T+,. As (1) suggests,
in the current frame based on the persistence probahilityf a in order to estimateN, the number of tags within the zone of
tag decides to transmit, it selects a time slot based on ammif a reader needs to be estimated. We call such an estirsaigie
distribution related to its ID, the persistence probapilit and the reader estimator. Moreover, we need to estimate the number of tags
random seed;. Note that given the specific values of the frameavhich are only within the zone of a reader but are not in theezon
size f, the random seed, and persistence probability, the tag of some other readers (e.47.,\7-,|). To estimate the number of
selects exactly the same slot in a frame of sfzeegardless of how tags which are exclusively located within the zone of a reade
many times it has received the query message. To perforrareiiff propose two estimators in the next sections, namely asgnohs
interrogations, readers can alter the sge@he interrogation results exclusive and synchronous exclusive estimators. For titggesreader
are independent whenever a different sgad being used. Multiple estimator, we use the estimator proposed in [25]. Assunter¢laaler
interrogations are used to improve the accuracy of the afom r has performedV/ interrogations using/ different seed values, the
process. To preserve the anonymity and privacy of the usach we havev;,...,v}. Let t™ denote the number of empty slots in



v™, m =1,..., M. Using the EZB algorithm, the number of tag”lgorithm 1~ A-MRCE Algorithm executed at readere R.

within the zone of reader can be estimated as [25]: 1: Upon receiving parameters, q, and f from the controller,
readerr performsM interrogation processes

M R
. m using seed valueq.
iy = —f/pln (Z ¢ /Mf> : (2) 2. Readerr sends its location info and the interrogation vectors
m=1 vi, ..., v to the controller.

It is shown in [25] and [27] that the estimation error is asyotip
cally normal and unbiased. The variance of the estimatioor és
on, = [ (exp(pn./f) — (L4 p°ne/f)) /(Mp*). We will use this

esfimator in both A-MRCE and S-MRCE algorithms. The maximum likelihood (ML) estimate af,.)y is the value that

maximizes the log-likelihood function as follows:

~ M
n,. = argmaxlIn L (z;n,\w,nw
[1l. A SYNCHRONOUSMULTIPLE READER CARDINALITY W n ( ) )
ESTIMATION M , M (™ — p1a)?
In some practical cases, it may not be possible for the reader = 8 {I;fx -3 o (02) - 221 %02 (- (6)
" m=

to perform interrogations in a synchronous manner. This etsod
the case when the readers are not equipped with accuratescloc In practice,nyy is not given and an estimation should be used
or synchronization imposes a high overhead. Under suchittmmd instead. Letijy, denote the estimation ofyy using M interrogation
we develop an asynchronous multiple reader cardinalitynesion vectors. By taking the derivative of (6) and equating it teozeve
(A-MRCE) algorithm. The A-MRCE algorithm is used to estimat can find the closed form expression for the ML estimator. Goge
the total number of tags while readers perform interrogatimde- values of M (e.g., M > 10) and f (e.g., f > 100), the exclusive
pendently and forward the information to a central congrollThe estimator in (6) can be approximated as

A-MRCE algorithm implements (1) using asynchronous exec&is

M
. . 3 : X ) 1 .
estimator described in the following subsection. "Kw ~ {m-\w e =1 Z LM 0}
m=1
. . M ~
A. Asynchronous Exclusive Estimator I <1  Yme 2 exp <pn%)> e
The asynchronous exclusive estimator is used to estimae th Mf f

number of tags within the zone of a particular reader exalydi Eq. (7) is the asynchronous exclusive estimator. In the ekt

the tags shared with some other readers, while readersnmerfcgection, we explain howyy can be estimated. The inaccuracy in

interrogations independently. It facilitates implemeiata of equation  gstimation ofn,»y comes from the random nature of samples taken

(1). Consider readerand a set of readeds’ C 7. Letn,.,y denote  from the system and also the error in estimationaf. The following

the number of tags within the zone of readethat do not belong theorem characterizes the error of the estimator in (7).

to any of the readers in sev (i.e., [7-\ Uwew Twl). Given the  Theorem 2: Given the error in estimation ofyy follows a normal

number of tags within the zone of readersWv, nyv, we propose gjstribution, for large values ol/ and £, the error in estimation of

an asynchronous exclusive estimator to estimatgy . _ mmw using (7) has a normal distribution. Moreover, this estimat
Consider a time slot which is non-empty in vector.. This s asymptotically unbiased if the mean of error in estimati nyy

indicates that one or more tags within the range of read@s chosen approaches zero for |arge values bf. The variance of error is
that time slot. If this time slot is empty ir., for anyw € W, it pounded by
ensures that none of the tags within the range of readel¥ ihas
chosen that slot. Let variablé denote the number of time slots which 9 1 2p (nmw +nw) \ o2
are nonempty irv, and empty inv,,,V w € W. That is, given reader Tnw (M) < P2 € - f M
r € R and setV, we haveZ = 3/, vl [T,y (1 —2l,). The time )
slots, which are non-empty in, and empty inv,,, are chosen by I <ex (Zmr\w) _ 1) o2 (M), (8)
a subset of tags in the sé7,\{UwecwTw}}. This suggests that the P f “w ’
variable Z can be used to estimate.\,y. The following theorem ) ) ] )
characterizes the distribution of variabe where o7, | (M) and oy, (M) are the variance of errors in
Theorem 1: The random variabl& has a normal distribution with estimation ofn,.\,y andnyy usingM independent set of interrogation

meany. and variancer? for large values off, n,\y andnyy: vectors, respectively. S . .

The proof of Theorem 2 is given in Appendix B. We will compare

e = f (1 — exp (_pnr%)) exp (_%) . 3) U?LT\W(M) and its upper bound in Section V.

B. A-MRCE Algorithm

o2 = u (1 ) f <1+ pznw)) We now present the A-MRCE algorithm to estimate the total
z i i f number of tags in an RFID system with multiple readers. The A-
5 2p MRCE algorithm is a centralized algorithm. The controllgrai cen-

— P N\ exXp <—7(m\w + nw)) . (4) tralized unit which is responsible to estimate the total banof tags

The proof of Theorem 1 is given in Appendix A. By using thétn the $t3/s.ttem't Each ?eader Ft’erfotmt'ﬁ lnter:ogliatlo_réz I?dl?llld and
interrogation vectorsv!,...,vM, andvl,...,.vM v w € )y, Uansmits itsinterrogation vectors to the controller. Thatroller uses

one can obtainM/ samples of the random variabl&, namely the.se vectors to estimate Fhe number of tags. The A"\"RCE'“‘.Q“
2',.... 2™ Letz denote a vector composed of all the samples (i.&¥hich is shown in Algorithms 1 and 2, implements equation (1)
y = (217 y .7ZAI)). From Theorem 1, the likelihood function af USiNg the single reader and the asynchronoqs exclusiveastis.
given n,\,y andnyy is Algorithm 1 shows part of the A-MRCE algorithm performed_ by a
readerr € R. Algorithm 2 shows part of the A-MRCE algorithm
M 1 (zm )2 performed by the controller. When the algorithm is invokéle
. — _\E T e ) controller informs the persistence probability frame sizef, and
L (= nrw, o) El V2702 eXp( ) ®) a set of M random seedsy (i.e., || = M) to all the readers.




Algorithm 2 A-MRCE Algorithm executed at the controller. procedure, the first level of the estimation is obtained bipgishe
1. Input: Set of reader®, neighboring set of reader, #,,, and asynchronous exclusive estimator which has an error wittmab

the interrogation vectors of reader Vr € R. distribution and zero mean. Based on Theorem 2, the nexisleve
2. Initialization: SetN := 0, andT := {} have also an estimation error with normal distribution aebznean.
3: whileT"#R Consequently, the estimation efy has a normal distribution with
4 Select a reader randomly from the seR\TI. zero mean.
5 SetW =T NH,. We now describe how to determine the estimation error for the
6 it W= {} A-MRCE algorithm. The value ofN obtained by the A-MRCE
7 Calculaten, using (2). algorithm is composed of several estimations from the simgader
8: SetN := N + ii,. and the asynchronous exclusive estimators. All the reamtersibute
9 else to the estimation of N. Since different terms forN are from
10: Calculatefyy using (2) if [WW| = 1 or using A-MRCE either single reader or asynchronous exclusive estimatoey have
algorithm if [W| > 1. asymptotically normal distributions with zero mean. Tliere, N
11: Calculaten,\y, using asynchronous exclusive estimatohas asymptotically normal distribution with zero mean. neral,
(7). _ _ different terms of N are not independent. However, the summation
12: SetN := N + i\ w. of the variance of error of these terms can give an upper béond
13: end if the variance of the error for A-MRCE algorithm. The summatas
14: Setl' :=TU{r}. the variances depends on the order that readers are seiectieel
15: end while algorithm (Step 4 of algorithm 2).

For pure random selection of the readers (Step 4 of Algorithm
2), we calculate the expected value of the summation of veeis
. . over different runs of the algorithm. For readerc R with |7,
Each readgrr ER t.hen perforrPsM |nte1rrogat|0n processes amdneighbors, le©Q,. denote the power set 6{,.. The power set of a set
sends the interrogation vectofs,.,...., v, ) to the controller. The s’y ot of a1l subsets of that set. In different runs of thMIRCE

readers also inform the controller about their location égding the : e
e ) h algorithm, the number of tags within the zone of readeray appear
location information to the controlle?,. is the set of readers whose; gort g o ay app

. . ; ; ; in various forms inN. For example, it can be eithé¥ := N +7,. or
interrogation vectors overlap with the interrogation zafereader N P t

r. Based on the interrogation range of each reader and it§daca fx :t:NN+:”.\W~for apyW GI%T.tr:: or segV\élle.t Qt?] tthe ;l)robazlllty .
H,, which is the set of neighboring readers of readeran also be 13tV containsn,yy IS équal to the probability that only readers in

determined. The readers may encounter reader-to-tag acereeo- set)V from the neighbors of are selected before readewithin the
reader collision during their interrogations. To avoid talision, ?rl‘gorlthr;: LL'jlr']t. Assumlnlgtthflht the rgag.ﬂ sg:e(t:tlon IS pural‘)don:j,
several techniques have been proposed in the literatuje[l73 for . IS probability IS equal to the probabiiity that among ®ad an
RFID systems with multiple readers. However, it is not theut its neighbors (i.e.#,), readers in seYV are selected before reader

. The probability that any subset of neighborsrofvith cardinality
of this paper and we assume that the readers employ one & th ; ;
techniqﬁeg to perform interrogations. ploy | are selected by the algorithm before reades 1/(|H1| + 1)

After receiving the required information (interrogatioactors and @nd the number of such subsets (i%f\;‘\)_ Let P,,,,, denote the
location information) from all the readers, the controlistimates probability thatn,.,, appears inV. This probability can be written
the total number of tags using asynchronous exclusive atimby as
invoking Algorithm 2. Algorithm 2 is equivalent to applyirgguation 1
(1) iteratively to estimate the total number of tags. Steps 44 Po = YR ©)
denote one iteration of the algorithm. At each iteratioe, dfgorithm (IHe[+1) (\W\)
selects a reader randomly from the readers which have not beefrherefore, when the readeris selected within the algorithm run,
selected yet (i.eR\I'). Then, the controller calcu_lates the numbeyyith probability Pa,,y, We haveW = TN #H,, ¥ W € Q,. The
of tags within the range of the selected reader which havelneady expected value for the summation of variances of errord igives
been counted and adds itA. The se?V denotes the set of nelghborsan upper bound on the variance of estimation esy,:
of readerr which has been selected by the algorithm in the previous i
iterations (i.e., the tags within the range of the readerthénset\V 2 2
have been counted till now). If this set is empty, the algonituses Tasyn < Z Z Py e (10)
the single reader estimator in (2) to calculateand adds this number
to the current estimation of the total number of taggSteps 6-9). IV. SYNCHRONOUSMULTIPLE READER CARDINALITY
If the setW is non-empty, then the algorithm uses the asynchronous E S-MRCE
exclusive estimator to calculate.,y. To do so, the asynchronous STIMATION (S- )
exclusive estimator requires the valuergf,. If the setWW has only We proposed the A-MRCE algorithm in the previous section
one member, thefiyy can be calculated using single reader estimat®ased on the assumption that readers cannot be synchrofuzed
in (2). Otherwise, the controller invokes the A-MRCE algiomh interrogations. In this section, we consider the case tkatlers
(Algorithm 2) again to estimate the number of tags within thege have the ability to be synchronized for interrogations .(etliey are
of readers in the setV. This shows aecursive operation of the A- equipped with accurate clocks). We develop a synchronousipteu
MRCE algorithm. We notice that since the controller alrehdg the reader cardinality estimation (S-MRCE) algorithm, whishsiitable
interrogation vectors of all the readers including thosesén)V, it for RFID systems with multiple synchronized readers. Thedegs

does not need to ask the readers to perform interrogaticmis.ag  operate synchronously in a sense that they start intefovgat certain
times and perform interrogations periodically one afteothar. We

. . . : first propose a synchronous exclusive estimator, which igilaibg

C. Edtimation Error and Discussion block of the S-MRCE algorithm.

To estimaten,.y, the asynchronous exclusive estimator uses
the estimation ofnyy. Therefore, the A-MRCE algorithm needs to . .
calculatenyy. If the setW has one element, then the single readef™ Synchronous Exclusive Estimator
estimator can be used and the estimation error in estimatiydpas a The synchronous exclusive estimator is developed to ettima
normal distribution with zero mean. If the s has more than one n,\,y, for W C #H, using interrogation vectors obtained from
reader, the algorithm is invoked again to estimatg. This gives synchronous operation of the readers. The main idea belriad t
a recursive operation of the A-MRCE algorithm. In the retuers operation of the synchronous exclusive estimator is the afse

reERWeQ,



different seed values for different tags in one interragatiin fact, Algorithm 3 S-MRCE Algorithm to calculate the total
the reader performs interrogation while the shared tags the tags number of tags in the system.

in 7-N{Uwew T }) and the tags which are exclusively located within1. " The controller sends the parametgrsf, vectorq, and random

the range of the reader have different seed values. Conssdeler slot numbers{si, ..., sz} to all readers.

r, the set of reader$y C H,, and the vectorv, obtained from 5. for p=0,..., IR| -1

the interrogation of tags within the range ofusing seed value. 3: if s =k,

Also, consider vectou, obtained from the interrogation of tags in 4. Readerr starts periodic interrogation process using seed
T while the tags in7-\{Uwew Tw }) use seed valug and the tags vector q.

in 7. N{Uwew Tw } Use seed valug'. Since the tags select the same 5. end if

slot whenever they are interrogated with the same seed,v&o®rs . end for
v, and u, have common information about,\,y. The difference 7. for r ¢ R

between these two vectors comes from the shared tags, whigh h g. Readerr calculatesii, using (2) and calculates, , , using
been interrogated with different seed values. The numbsiots with synchronous exclusive estimator (13).
at least one transmission in either or u, represents the existence g. Readen- sends the estimated valdg, y to the controller.

of a tag in set7, while the tags in7, N {UwewTw} are counted 1g. end for
twice. LetY” denote the number of time slots which are nonempty;: The controller sums up the received value from all readers to
either inv,. or u,. That is, given reader € R and setVV, we have find the estimation ofV.
Y = 3/, (vh+ul —vlul). The samples of random variablé
can be used to estimate the valuergf,y. The following theorem
characterizes the distribution of variatie

Theorem 3: The random variablé” has a normal distribution with Equation (14) can be approximated as
meanyu, and variancerf, for large values off, n,, andn,\,y as:

7\ 2 2
(1) D
7. - & = , (15
= (1~ exp (~pv/ 1)), ay Bt = = i e )
02 = fexp(—pr/f) (1= (1 + p*v) exp (—pv/f)) (12) wherey, denotes the derivative gf, with respect ton,)y. Now,
wherev = (2n, — n\w). we consider the error in estimation of.. Similar to the estimation

The proof is similar to the proof given in [28] for the occu-€rror of asynchronous exclusive estimator, the error geedrfrom
pancy problem and we omit it due to the lack of space. Usifig inaccurate estimation af,- and the error from the random samples
different pairs of seed values for the tagsTn\{Uwew 7w} and have different signs. Therefore, the summation of the wasaof

TN {Uwew T }, M different samples of random variabte can be these two errors gives an upper bound on the variance of &sim
obtained, namely’, ..., y™. Lety denote the vector of all samples€'Tor for synchronous exclusive estimator. Since the tenin (13)

ey = (v',...,4™)). The likeihood function of,.\,y usingy is has coefficient two, its variance has coefficient four in thesation
similar to that obtained in (5) if the mean and variance ofalde 7 is ~ ©f variances:

replaced by variablé”. The ML estimate of,\,y with M different 2 < -1 2

samples can be obtained by taking derivative from the hiceldl T (M) < (MIgn(n\w)) 4o, (16)

function and equating it to zero similar to the approach Used6).
For large values ofV/ (e.g.,M > 10) and f (e.g., f > 100), the B. SMRCE Algorithm

synchronous exclusive estimator can be approximated as We now present the S-MRCE algorithm to estimate the total
number of tags in a system covered by multiple readers. Otraogn

M
A M ~ L ™ _ to the A-MRCE algorithm, the S-MRCE algorithm is a distriedt
nr\W nr\W Hy Y . . . .
M ~—~ approach while readers perform interrogation and estirtteteum-
M om ber of tags individually. Then, they transmit their estiioatto the
= 2n, + ! n(1- 2m=1 Y 7 (13) controller. The controller just sums up those numbers taiobthe
p Mf estimation of the total number of tags. The computation lo&ad

estimation is at the reader’s side. The S-MRCE algorithmements
whereﬁf{w denotes the estimation @f,.\,, using the synchronous (1) using the synchronous exclusive estimator. Algorithen8ws the
exclusive estimator with\/ samples. When using the synchronou$s-MRCE algorithm. In this algorithm, all the readers areuassd to
exclusive estimator, we use an estimationngf This estimation is be synchronized with a central clock.
obtained using the single reader estimator which is asytcptly We divide the system time into several time periods and each
unbiased. For large values af/, >~ 4™ /M converges tqu, and reader is assigned a period number. Each reader performstean i
In (1 - y'"/(Mf)) converges to—p/fv. Since the error in rogation within the assigned period. To prevent collisicgtvieen
the estimation ofn, approaches zero, the synchronous exclusiveeighboring readers, we use a scheduling algorithm basegtaph
estimator is asymptotically unbiased. Since it is an MLraator, coloring [30]. We assign different colors to various readsuch
the error distribution is asymptotically normal [29]. Thea in the that two neighboring readers are not assigned the same. ddler
estimation ofn,. is also asymptotically normal and is added to thehromatic number of the system is the minimum number of solor
error generated from the random samples taken from the rsysteeeded to color all the readers. L&tdenote the chromatic number
Assume that there is no error in estimationsof. In this case, the of our system. The colors are interpreted as different tiergops of
error in nKW originates from the second term in (13). Since théhe system. This provides a time division multiple accesthoefor
synchronous exclusive estimator is an ML estimator, theéamae of interrogation of all the readers. There ateinterrogation periods
error can be approximated using the Cramer-Rao bound [28}. Tassigned to the readers. Let denote the period number which

Fisher information for this exclusive estimator can be t&ritas is assigned to the reader Each period is long enough for an
) interrogation process. At the beginning, the controlldibims the

Toyn(nmw) = Eyjn.. {(LlnL YNy ) } persistence probabilityp, frame size f, the random seed vector
syn(Tr\ Yl w Oy (Y5 nrw) q = (q1,...,qu), Whereq; # ¢;,V 4,7, and the slot number to

My (v —ny)? 2 all the readers (Step 1). We call tligslots together an interrogation
=Ey, —2 _InJ[¥_ L_exp | -4 . round. Within an interrogation round, all the readers penfdhe
Yyin\w 6"L7~\W m=1 o2 2oy . . I
Y interrogation once. To estimate the number of tags, all dazlers
(14) perform interrogation twice in two consecutive rounds. te first
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Fig. 2. Network topologies: (a) Three readers, and (b) Tewless.

5 10 15 20 25 30 35 40 45 50
Number of interrogations M

round, all the readers announce their seed value and théormper
interrogation. In the second round, however, the readstsperform @)
the interrogation and do not announce the seed value. Foe#uer
r, the first interrogation results in measuring interrogatector v,
while all the tags within range of readerare interrogated with the
same seed value. In the second interrogation, the readerasures
vector u,» while the tags in the range of readerwhich are in the
range of other readers have different seed value comparéibse
exclusively in the range of reader To make sure that neighboring
readers are not using the same seed value, reader with stdienu
sy used thes,-th seed value. We assume that the chromatic number
C' is less that the number of sampldg. To obtain M samples,
the interrogation rounds are repeatgdl times with different seed
values. We call this synchronous process performed by eeager
the periodic interrogation process (Step 4).

After performing the interrogations by all the readers,hesgader
r uses the vectors obtained by announcing the seed valueintagst : i
n,. Readerr calculates the estimated value of.,, using the 5 10 15 20
estimation ofn,. and also two sets of interrogation vectersandw,
(Step 8). Reader sends the estimation of,.\,y, to the controller (b)
(Step 9). The controller can calculate the estimation of tibtal
number of tags by adding up all values received from the msadé-ig. 3. Mean of estimation error for different number of imtgjations)/, (a)
(Step 11). asynchronous exclusive estimator, and (b) synchronousisxe estimator.

Since the error of synchronous exclusive estimator has alorm
distribution with zero mean, the estimation @&f obtained by
using the S-MRCE algorithm has normal error distributionickih V. PERFORMANCEEVALUATION
is asymptotically unbiased. The upper bound for the vasant
estimation error for the S-MRCE algorithm can be calculatsitig a
similar approach employed to calculate the variance of tHdRCE
algorithm. The upper bound can be written as:

Mean of Estimation Error

I n
35 40 45 50
Number of interrogations M

i 1
25 30

We used MATLAB and developed a discrete-event RFID simulato
to validate the analytical models and to evaluate the perdoce of
the exclusive estimators and the MRCE algorithms.

oon< > > Pn,‘\wair\w, (17) A, Performance Evaluation for Exclusive Estimators

rTERWEQ, In this section, we investigate the performance of the eskadu
estimators, validate the models, and compare them in tefntiseo

where oy, is derived in (16). Compared to the A-MRCE algo-mean and variance of the estimation error. We first consitler t
rithm, the S-MRCE algorithm provides better performanceeiis topology given in Fig. 2 (a). The interrogation zone of eaehder
of the estimation of error. The probability of error of asgranous is 15 m. The tags are randomly deployed within the zone ofeesad
exclusive estimator increases exponentially withy. When the The number of tags within the zone of all readers is equal. The
number of neighboring readers increases, the probabifitgrmr average number of tags shared between any two of reader€4s 15
for asynchronous exclusive estimator increases rapidiyvéver, the of n,.. Also, 5% of the tags are shared among three of them. We
error of synchronous exclusive estimator depends on thebauwf use asynchronous and synchronous exclusive estimatoistitoate
tags within the zone of the reader, but not the neighboricglees. n,.\,, whereWW = {r1,r2}. The estimation ofy, is obtained as
The cost which is paid to achieve this better performanceésieed 7,y = 7, + 7.y, , Wheren,, andn,.,\,, are obtained by using
of the synchronous operation of readers. (2) and (5), respectively. We notice that,,y, = 0.75n,.

The estimation error of A-MRCE and S-MRCE algorithms de- First, we investigate the performance of the models by waryi
pends on the choice of design parametgrand p. To choose these the number of interrogationd/ from 1 to 50. We set the frame size
parameters appropriately, the controller requires to kttevnumber f to 500 and the persistence probabiljpyto 1. We measure the
of tags in the system. In case that the controller does na Agriori mean and variance of the estimation error for both asyncusmand
information about the number of tags in the system, the obletr synchronous exclusive estimators. These errors contairttors in
can choose predetermined values foandp and perform a round of estimation off.,, andns as well. Figs. 3 (a) and (b) show that both
interrogations. Then, based on the estimation of the nurab&ags, estimators are asymptotically unbiased and the mean of itoe e
the controller chooseg and p for the next round of interrogation. approaches zero rapidly whelW increases in the system. Figs. 4
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interrogationsM when using thesynchronous exclusive estimator. estimators for varying persistence probabilities.

and 5 show the standard deviation of error obtained from Isitions . )
and compare these values with analytical upper boundsnetan the op_eratlon_al range of the estimator. These values fahsgnous
equations (8) and (16). For both estimators, the variancerafr ~€xclusive estimator are 2,600 and 5,500 for= 1 andp = 0.5,
approaches zero for large values . As shown in Figs. 4 and 5, respectively.
the upper bounds are tight when the number of tags withindime z  The operational range of the exclusive estimators is a iomct
of readers is small. of the persistence probability. Fig. 7 shows the operatiosage of
Next, we investigate the behavior of these estimators fiferédint the asynchronous and synchronous exclusive estimatorgafayus
number of tags within the range of readers. We use the notigalues ofp. The operational range is extended when the probability
of operational range for comparison. The operational rasfgthe is decreased. Although decreasipgcan increase the operational
estimators is defined as the the rangenpfsuch that the mean of range, it may increase the estimation error under somerBstances,
estimation error is within a certain threshold of the acwadlie. We especially for the systems with a low number of tags. Figa)&aad
use+1% as the threshold. The lower bound of the range is alwayb) show the behavior of the standard deviation of the ersvsus
zero and the upper bound depends on frame gized persistence the persistence probability for the asynchronous and spnclus
probability p. Lowering the persistence probabiliycan decrease the exclusive estimators, respectively. We notice thatequals to1000
effective number of tags transmitting in an interrogatioagess and and 2000 are not in the operational range of the asynchronous
it can increase the operational range. The analytical nsoftelthe exclusive estimator. Therefore, Fig. 8 (a) does not inclimecurves
estimators are valid as long as is within the operational range. We for 1000 and 2000 nodes. Both estimators have similar behawi
vary the number of tags within the zone of each reader fromt&00 terms of variance of error. For the systems with a small nunafe
10,000 by steps of 50. Fig. 6 shows the mean of estimated ¥atue tags compared to the frame size, the variance of the estimatior
asynchronous and synchronous exclusive estimators fovalues of increases whep decreases. It means,= 1 is a suitable choice. On
persistence probabilityy = 1 andp = 0.5. The mean of estimation the other hand, for large values of compared to the frame size,
for the asynchronous exclusive estimator is within th&% of the decreasing the persistence probability can improve the& éorsome
actual value ofns\,y for values ofns less than 1,100 and 2,200extent. However, for very small persistence probabiljtig® error
for p =1 andp = 0.5, respectively. These indicated the operationatart increasing again. There is a trade off between theatipeal
range of the estimators. The values beyond these threshi@dsut of range and the variance of error in choosing the design paeame
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Fig. 9. Comparison of A-MRCE and S-MRCE in terms of standadation
40 of error.

L | —=— n=750 ] to estimate the number of tags for systems with multiple eead
—&— n =500 To achieve that, the interrogation vectors of all the readerthe
255 | % n =250 : E system are merged using slot-wise and operator. The negwéctor

\ ; is similar to a vector obtained by a single reader interriogall the
200 1 tags in the system. Therefore, this vector can be used aspan in
1 for the EZB or LoF algorithm to estimate the total number ajsta
15\ i in the system. We compare these algorithms for a system titet

- readers and ten readers separately.

First, we compare the mean and variance of estimation efrar o
MRCE, S-MRCE, LoF, and EZB algorithms for various interrtga
times for an RFID system with three readers shown in Fig 2Tlag.

‘ ‘ ‘ number of tags within the range of each reader is 750. FiggalO

Standard Deviation of Error

i i i
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Persistence Probability p and (b) show the mean and standard deviation of error in astig
(b) the total number of tags versus the interrogation time, aetbely.
The interrogation time is defined as the number of time slaiseach

Fig. 8. Standard deviation of error for varying persistepoebabilities: (a) reader requires to perform lnterr.ogatlon. The fl’ar.'ne.SI.Z@\fMRCE,
asynchronous exclusive estimator, (b) synchronous exelestimator. S-MRCE, and EZB algorithms is set to 500 while it is set to 16 fo
LoF. We vary the number of interrogations for various altjoris
(change M and the number of hash functions) and determine the
. mean and variance of estimation error. Fig. 10 (a) shows lthét
B," Performance Evaluation for A-MRCE and SMRCE Algo- algorithm has a lower mean of estimation error compared herot
rithms algorithms for the same interrogation times. Then, LoF hagdzer

In this section, we first investigate the performance of tRIRCE  operational range compared to other schemes. Howevergasd-{b)
and S-MRCE algorithms for a system with ten readers showiginZ= shows, the variance of estimation error is higher in LoF carag to
(b). The interrogation zone of each reader has a range emda m. other algorithms.
The tags are randomly deployed within the interrogationezohthe Next, we consider the system in Fig. 2 (b). The number of
readers. We set the frame sifeo be 500 time slots, the persistencaags within the zone of different readersns = 500. The frame
probabilityp to 1, andM to 50. Then, we increase the total number o$ize f is set to 500 time slots for A-MRCE, S-MRCE, and EZB
tags in the system from 500 to 5000 with steps of 500. Thesédatsn algorithms while the frame size of the LoF is set to 16. The bem
are chosen such that the single reader and exclusive estsnabrk of interrogations)M is set to 20 for A-MRCE and EZB algorithms
in their operational range (i.e., the mean of estimatioores zero). and it is set to 10 for S-MRCE algorithm. We use 600 varioushhas
Fig. 9 shows the standard deviation of error for the A-MRCH arfunctions for the LoF algorithm. We notice that under thigting,
S-MRCE algorithms and compares the analytical resultsimddain  the readers in all the algorithms have the same interragdtioe.
(10) and (17) with the simulation results. The simulatiosules are  We also mention that the mean of estimation error is closeeto z
averaged over 1000 iterations. As we expect, the analytighles for all the estimators under this setting. At the beginning, only
provide upper bounds on the simulation results for bothrittyms. consider reader 1 for the simulations. Then, we add the readeby
In the worst case, the analytical results are 40% and 30%ehiglone to the system and investigate the performance of theithligs
than the simulation results. As Fig. 9 shows, the standavihtien in the presence of different number of readers. Fig. 11 shihes
of error is negligible compared to the actual number of tagthe standard deviation of the estimation error for the total hamof
system, which proves the accuracy of the algorithms. Magot tags for various number of readers. It can be seen that thelath
can be seen that the S-MRCE algorithm outperforms the A-MRGfeviation of error in the A-MRCE and S-MRCE algorithms grows
algorithm substantially in terms of estimation error. Hoee we linearly with the number of readers while it increase@onentially
notice that S-MRCE is not suitable for cases when readersotanin LoF and EZB algorithms. In the presence of multiple readEZB
perform synchronously in the system. and LoF algorithms merge the interrogation vectors of sdveaders

Next, we compare the A-MRCE and S-MRCE algorithms witlio obtain one interrogation vector. For a fixed number of tagkin
two other algorithms: the lottery frame (LoF) [22] and EZB5]2 the range of the readers, increasing the number of readeutdwo
algorithms. Both EZB and LoF algorithms can also be extenddidearly increase the total number of tags in the systemceShoth
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algorithms use the merged interrogation vector for estomaind the
variance of the estimation error for either EZB and LoF altfons
increases exponentially with the number of tags, the veeaof
EZB and LoF algorithms increases exponentially as the nurbe
readers linearly increases. However, for the A-MRCE and FSa&
algorithms, whenever a reader is added to the system, oalgriior
of the exclusive estimator which is used to estimate the wegsn
range of that reader is added to the total error. Therefbeeincrease
in the error is linear as the number of readers increasearline

VI. CONCLUSIONS

In this paper, we studied the problem of anonymous cardynal
estimation in RFID systems with multiple readers. We prepos
two ML estimators, namely an asynchronous exclusive estima
and a synchronous exclusive estimator, to estimate the aumib
tags which are exclusively located within the zone of a readée
showed that these estimators are asymptotically unbiasddwee
derived upper bounds on the variance of estimation error.pvide

posed the A-MRCE and S-MRCE algorithms which can accurately

estimate the tag population anonymously using the querjesepf
different readers and exclusive estimators. We derivegtbbability
density function of the estimation error and showed thatait be
approximated as a normal distribution with zero mean. Tloeiacy
of the model and the approximations are validated via sitimura.
For performance comparisons, results showed that theneariaf

estimation error for A-MRCE and S-MRCE algorithms increase
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Fig. 11. Comparing the standard deviation of estimationreor A-MRCE,
S-MRCE, EZB [25], and LoF [22] algorithms.

linearly with the number of readers while it increases exponentially
for EZB [25] and LoF [22] algorithms. For future work, one can
study the problem of choosing the design paramefeasid p based

on the initial estimation of the number of tags and study tiaele

off between the variance of estimation error and interiiogatime.

APPENDIX

A. Proof of Theorem 1

Let ¢, and 1. denote the event that predetermined slots are
nonempty inv, and empty inv,,,V w € W, respectively. Let.
denote the event that both evertsand. occur. We have @.) =
P(¢-N:) = P(¢: | 12)P(¢2), where

R\ W
> (P(¢- | t tags pick these sloty)
t=0

xP (t tags pick these slots| v.)) .

P(¢= | ¥2)

The condition on observed. affects the upper bound of the
summation. The probability that time slots are non-empty if tags
choose them is as follows [31, p. 92]:

)(nr\Wt)

P(¢- | t tags pick these sloty = "(—1)"

k=0

z
k

We also have

P (t tags pick these slots| ¢.)

() ()

IHence, we have

Nep\w
t

_ Pz
f

pz
f

P(g.) = i)z(_l)(k) (1 ;)t<mzw>
(5) (-5

)”Lr\W

Pz

f

= (5)"
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Let S, denote the summation of probability of all possible occurderived from the same vectoss. and v,,. However, the error of

rences ofz events in a frame. This is equal & = () P(0.). Let
P. denote the probability of having exactlyslots honempty inv,.

these two variables are not in the same direction. If therafa’!
is positive, it means that in these vectors, the tags areadpsach

and empty inv,,,V w € W. This probability can be calculated usingthat the number of empty slots in vectovs,, which overlap with

[31, p. 96] as follows:

non-empty slots, is higher than the expected value. In théecthe

estimate ofnyy, which is obtained from those vectors, should be

P,

(18)

m=z

Equation (18) shows that this problem is similar to the oetuy
problem investigated in [27]. It is shown in [27], [28] thatet
distribution for the occupancy problem is asymptoticallgrmal.
Using a similar approach, we can show thdt has a normal
distribution for large values of andn.. To calculate the mean and
variance ofZ, we use the approach presented in [28]. We define an
auxiliary random varlabIeX’ which takes values fronf0, 1}. X; is
equal to one if the™ time slot is non-empty inv,. and empty in
v, Yw € W. Therefore, we haveZ = 3>/ | X;. The mean and [1]
variance of variableZ can be obtained using this auxiliary variable
as follows: [

4. = E[Z] = E [2{21 Xi] — fP [3]

]
fl1—exp (_pn}\w)) exp (_pnTw) .
o2 = E [(z{zlxﬂ —
S B [X?) 428 [SL 5 X
fPi+ f(f—1)P: —
pe (1= 2 (1 252

2
—p*n.\w exp <—7p(m\w + nw)) .

%

(4

(5]

(6]

%

[8]
B. Proof of Theorem 2

We replacezm—fm andiyy by p.+e andnyy+e2, respectively
while ¢ and ¢} are random variables. Since variabe has a
normal distribution, variable: is a normal random variable with [10]
zero mean and variance: /M Moreover, it is assumed that,
is a normal random variable and the estimation is asymptibtic
unbiased. Therefore2! is a normal random variable with zero mean[11]

El

For large values of and M, the variance ot?! ande?! approaches
zero and we have

[12]
r\w
=L (1-Sew (1)) )
= im <1 — L) onp ( (7lw+e¥)))

P f f

[24]
~—LIn <1— ("”}f ) (1+p/fex") exp ”"W )

[15]
(1 o () - e ()
~_ 1 _ope pn M/PﬂL /feM ( ) 16
~ pln (1 7 exp( fw)) - p,z/fexp(pnw)exp [16]

M n n

R N — = exp (p( W+f T\W)) eM (exp( f\ ) - 1) [17]

Since both variables? and ¢} are normal random variables, /[18]

variable nyy is a normal random variable for large values ff.
Moreover, the mean of error approaches zero for large valfidg.
VariabIeSei” and e are dependent in general since they are both

2] S. Ahson and M.

less than its expected value. Therefore, the errae’6fis positive.
In general, the summation of variances for these two terwessgan
upper bound for the variance of error as follows:

2 1 2p (nmw +nw) \ o2
Onw p? Xp f M

— €

2
+ <exp (pn%) — 1) UZW.
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