
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. PP, NO. 99, MONTH 2017 1

Joint Optimal Pricing and Task Scheduling in
Mobile Cloud Computing Systems

Hamed Shah-Mansouri, Member, IEEE, Vincent W.S. Wong, Fellow, IEEE, and Robert Schober, Fellow, IEEE

Abstract—The evolving mobile cloud computing (MCC)
paradigm enables mobile users to offload their computing tasks
to cloud servers. In this paper, we study the following problems
in MCC systems: (i) which tasks should be offloaded to cloud
servers? (ii) and what is the optimal price of cloud services?
We jointly address these issues by formulating two levels of
optimization problems. On the mobile users side, we formulate a
utility maximization problem that takes the energy consumption,
delay, and price of cloud services into account and obtain the
optimal scheduling for both delay-sensitive and delay-tolerant
applications. On the cloud service provider (CSP) side, we
determine the optimal pricing strategy by formulating a profit
maximization problem, which is non-convex in general. We
further propose an algorithm using convexification and primal-
dual methods to mitigate the non-convexity. Through numerical
studies, we investigate the mobile users’ behavior and the CSP’s
pricing strategy. Our results reveal that the proposed scheduler
effectively balances the tradeoff between the energy consumption
and delay in comparison with different schedulers proposed in
the literature. Furthermore, we show that with the proposed
pricing algorithm, the CSP can improve its profit by up to 25%
compared to static and dynamic pricing strategies.

Index Terms—Dynamic task scheduler, delay-sensitive applica-
tions, optimal pricing strategy, mobile cloud computing.

I. INTRODUCTION

MOBILE cloud computing (MCC) reduces the compu-
tational burden of mobile devices by extending the

concept of cloud computing to the mobile environment.
Computation-intensive applications are rapidly developing,
while the processing power of mobile devices is often lim-
ited. To overcome this problem, computational tasks can be
executed remotely on cloud computing servers on behalf of
mobile devices. By utilizing cloud computing services, mobile
devices can benefit from powerful computing resources, save
their battery power, and expedite the task execution [1]–[6]. To
enable mobile computation offloading, several cloud-assisted
mobile platforms have been proposed including ThinkAir [7],
MAUI [8], CloneCloud [9], and cloudlets [10]. Cisco forecasts
that mobile cloud traffic will grow tremendously and cloud

Manuscript received on Oct. 28, 2016; revised on Mar. 21, 2017; accepted
on May 8, 2017. This work was supported by the Natural Sciences and
Engineering Research Council (NSERC) of Canada. The review of this paper
was coordinated by Prof. Shaowei Wang.

H. Shah-Mansouri and V. W.S. Wong are with the Department of Electrical
and Computer Engineering, the University of British Columbia, Vancouver,
BC, V6T 1Z4, Canada (e-mail:{hshahmansour, vincentw}@ece.ubc.ca).

R. Schober is with the Institute for Digital Communications,
Friedrich-Alexander University of Erlangen–Nuremberg, Germany (email:
robert.schober@fau.de)

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier xx.xxxx/TWC.2017.xxxxxxx

applications will account for 90% of total mobile data traffic
by 2019 [11]. Nonetheless, the decision about whether a task
should be performed locally on the mobile devices or offloaded
to cloud servers is still a challenging problem.

The module making the offloading decision in each mo-
bile device is called the task scheduler. The task scheduler
dynamically makes an offloading decision upon arrival of a
task. It takes into account the energy saving obtained from
task offloading, the delay each task experiences, and the price
charged by the cloud service provider (CSP) to arrive at the
optimal decision. On the other hand, the CSP requires an
optimal pricing scheme for its computing services so as to
maximize its own profit, as a static pricing strategy cannot
capture the dynamic MCC environment. The pricing strategy
of the CSP depends on the workload of its servers, whereas
the offloading demands of mobile users depend on the price of
cloud services. Thus, the optimal decisions of task schedulers
and the CSP’s pricing strategy are coupled together, which
complicates the design of the optimal pricing strategy.

Recently, there have been several works studying task
offloading for the MCC environment. Odessa [12] is a run-
time system that enables task offloading to cloud servers
for different mobile applications. Although it has a low
complexity, its offloading strategy is sub-optimal and may
degrade the benefits obtained from task offloading. An energy
optimal scheduler for mobile users was proposed in [13]. The
scheduler makes the offloading decision by comparing the
energy consumed for executing the tasks locally and the energy
required for dispatching the tasks to the cloud servers. In [14],
the authors considered the case of simultaneously arriving
tasks and designed an optimal task scheduler by minimizing
the total energy consumption in mobile devices. The offloading
strategy proposed in [15] minimizes the completion time of the
tasks on mobile devices, when cloud services are available. A
centralized task scheduler was proposed in [16], where the au-
thors assumed the MCC system has a controller. The controller
monitors the offloading requests of the mobile users as well
as the available computing resources in the cloud servers and
assigns computing resources to the mobile devices with the
objective to minimize their total energy consumption. Another
offloading strategy proposed in [17] considers a sequence of
tasks of a mobile user and aims to minimize the energy
consumption when the user collaborates with the cloud servers.
In [18], the authors studied energy-efficient task execution in
an MCC system. They determined the offloading decision for
each task in order to minimize the energy consumption on a
mobile device while meeting a latency deadline. A dynamic
resource and task allocation scheme was proposed in [19]

2 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. PP, NO. 99, MONTH 2017

that minimizes the energy consumption of the mobile users.
In [20], the authors studied a dynamic MCC system and
proposed an offloading mechanism for cost minimization for
both mobile users and the CSP by taking the price of the CSP
into account. Although the proposed mechanism addresses
the energy-delay tradeoff, all computing tasks face the same
tradeoff between energy consumption and delay regardless
of their different sensitivity to delay1. In [21], the authors
considered an MCC system and optimized the mobile users’
offloading decisions in order to minimize the overall cost.
They assumed that the mobile users share the same wireless
channel while offloading their tasks to the cloud servers.
In [21], a centralized controller hosted by the cloud servers
decides whether to offload the tasks. A distributed offloading
algorithm was proposed in [22] that aims to minimize the
total energy consumption of mobile devices. An application-
aware computation offloading mechanism was proposed in
[23] that balances the tradeoff between energy efficiency
and responsiveness of mobile applications. In [24], the au-
thors studied energy-efficient computation offloading under
a completion time deadline constraint. Given the increasing
attention on mobile cloud computing in recent years, there
exist several cloud services for mobile users such as AppATP
[25] and eTrain [26] that leverage the tradeoff between energy
consumption and delay. AppATP defers data offloading of
delay-tolerant applications during poor network connectivity
in order to minimize the energy consumption. In [26], the
proposed eTrain mechanism also trades the delay for energy
consumption for instant messaging applications.

The aforementioned offloading mechanisms demonstrate the
benefits of using cloud services. However, the existing works
do not take into account two important characteristics of MCC
environments. In particular, they do not consider the het-
erogeneous latency requirements of different delay-sensitive
applications. Moreover, the existing works (e.g., [12]–[17],
[21]–[24]) do not consider the monetary cost (i.e., service
price) that the CSP charges for providing cloud services.
Different latency requirements of tasks and the price of cloud
services may affect the task offloading decisions, even if
offloading is beneficial in terms of energy efficiency.

Besides, the CSP is interested in maximizing its profit
obtained from providing cloud services. This implies that the
CSP’s pricing scheme should be designed so as to admit as
many service requests as the CSP can serve in order to increase
the profit. Hence, a dynamic pricing strategy can significantly
enhance the profit of the CSP, whereas a static approach cannot
model the dynamic behavior of the MCC properly.

Dynamic pricing in mobile networks [27]–[31] as well
as cloud computing systems [32]–[38] has received much
attention in recent years. Several dynamic pricing schemes
have been proposed for cloud computing services [32]–[38].
Among these existing works, the authors of [32] proposed a

1In [19], [20], the authors assumed that the computing tasks can be
partitioned in a flexible way. The computing job arrivals are modeled as
streams of bits and the offloading decisions are made for the bits arrived
in fixed time slots. In practice, however, the computational tasks cannot be
divided into smaller ones in an arbitrary manner [8], [14] and each indivisible
computing task should either be served entirely by the local CPU of the mobile
device or be offloaded to the cloud servers.

socially optimal pricing strategy to optimize the social welfare,
which is the sum of the users’ utilities minus the CSP’s
expenses. Moreover, several auction based pricing mechanisms
have been proposed in [33]–[36], which aim to optimize the
social cost/welfare. These works assumed that the users submit
their bids to lease the virtual machines for the time period
they need. In [37], the authors studied an MCC market, where
multiple brokers compete to reserve computing resources from
public and local clouds. The design objective in [37] is to
find the allocation strategy for all brokers that minimizes
the average social cost of all mobile users. However, in
practice, the CSP is only interested in maximizing its own
profit. In addition, users do not concern about the CSP’s
profit and other users’ behaviors. Thus, the aforementioned
existing mechanisms (e.g., [33]–[37]) that aim to optimize
the social welfare/cost can neither model the optimal pricing
strategy of the CSP nor the strategic behaviors of users. A
pricing strategy to maximize the CSP’s profit was proposed
in [38] assuming that the users lease the virtual machines
in cloud servers for a certain period of time. However, such
pricing mechanism can be used in either Platform as a Service
(PaaS) or Infrastructure as a Service (IaaS) deployments for
stationary users (e.g., personal desktop computer users or
small and large enterprises), while it may not be applicable
in MCC systems. Mobile users make an offloading decision
upon arrival of each task and lease the cloud services during
the task execution. Hence, mobile users are not interested in
leasing the computing services for a certain period of time.

In this paper, we address the following technical and eco-
nomical challenges in MCC system design:

1) How does the task scheduler make the offloading decision
upon arrival of each task?

2) What is the optimal pricing strategy of the CSP?

To address these challenges, we jointly optimize the task
scheduler for the mobile users and the pricing strategy for
the CSP in a dynamic MCC market. Our design is motivated
by two insights: First, the task offloading decision should not
only depend on the energy consumption saving obtained by
using the cloud computing services, but also be affected by
the service prices. Second, a static pricing strategy can neither
model a dynamic MCC market nor properly encourage mobile
users to use the cloud services. An optimal strategy should take
into account the dynamic workload of computing tasks which
may vary due to different energy savings in mobile devices
and heterogeneous delay requirements as well as the price of
cloud services.

The key contributions of our work are as follows:

• Dynamic task scheduler: To design the task scheduler, we
formulate a utility maximization problem, which takes the
energy consumption, delay, and price of cloud services
into account. We consider the stochastic arrival of tasks
and provide a queuing analysis to address the latency
requirements of both delay-sensitive and delay-tolerant
applications.

• Optimal pricing via profit maximization: We determine
the optimal pricing strategy of the CSP in a dynamic
MCC market. We formulate a profit maximization prob-

SHAH-MANSOURI et al.: JOINT OPTIMAL PRICING AND TASK SCHEDULING IN MOBILE CLOUD COMPUTING SYSTEMS 3

lem which takes into account both the price charged to
the mobile users and the electricity price of the CSP.
We model the workload of the CSP (i.e., the offloading
demand arriving from the mobile users) as a function of
its price to determine the CSP’s profit and to reveal the
interaction between the CSP and the mobile users.

• Algorithm design: We show that the CSP’s profit max-
imization problem is non-convex in general. We then
develop a pricing algorithm using Convexification and
Primal-dual methods, namely CoPe, to cope with the non-
convexity issue.

• Numerical studies: We investigate the performance of the
proposed task scheduler for different types of tasks and
show that the scheduler outperforms ThinkAir [7] and
MAUI [8] in terms of energy and delay for delay-sensitive
tasks, while it consumes the same amount of energy as
ThinkAir for delay-tolerant tasks. We also evaluate the
effect of the price on the offloading decision of the mobile
users. Our results show that the mobile users may prefer
local execution of a task if the price of the CSP is too high
even if task offloading is beneficial in terms of energy
consumption or delay. We further study the CSP’s optimal
pricing strategy and the CoPe algorithm and show that the
CSP can obtain a significantly higher profit by employing
either the optimal strategy or CoPe in comparison with
static and dynamic pricing strategies.

This paper is organized as follows. In Section II, we develop
the dynamic task scheduler to determine the optimal offloading
strategy of the mobile users. In Section III, the optimal pricing
strategy of the CSP is obtained based on a profit maximization
framework and the sub-optimal pricing algorithm CoPe is
developed. In Section IV, we investigate the effect of CSP’s
prices on the mobile users’ behavior as well as the CSP’s
profit. Conclusions are drawn in Section V.

II. DYNAMIC TASK SCHEDULER

Consider an MCC environment, which includes the CSP and
mobile devices. The set of mobile devices is denoted as M.
Each mobile device uses a task scheduler that decides whether
to offload a task to the cloud servers or execute it locally in
its centralized processing unit (CPU). Mobile users choose
their optimal strategy (i.e., offloading decision) individually
based on the price announced by the CSP so as to maximize
their own utilities. In this section, we first introduce the task
scheduler model as well as the offloading decision of the
mobile users. We then design the task scheduler using a utility
maximization framework and obtain the optimal offloading
strategy of the mobile users.

A. Task Scheduler Model

We model the task scheduler in each mobile device2 by a
queuing system, as illustrated in Fig. 1. We assume that in each
mobile device there are two servers, namely, the CPU and the
wireless interface (e.g., WiFi, Long-Term Evolution (LTE)).

2In the remainder of this paper, we use the terms “mobile device” and
“mobile user” interchangeably.

Fig. 1: The task scheduler and queuing system for mobile user i. The queuing
system includes two disjoint queues served by two different servers, namely
the local CPU and the wireless interface. We categorize the tasks into three
types: CPU workload, offloadable computing tasks, and network traffic. The
scheduler decides whether or not to offload the offloadable tasks.

The former server is used to model the local execution of the
tasks in the mobile device. The latter is required for offloading
the tasks to the cloud servers.

We classify the mobile user’s workload into three categories:
CPU workload, offloadable computing tasks, and network
traffic. The CPU workload represents the tasks that have to
be processed locally by the mobile device’s CPU, whereas the
offloadable computing tasks can either be processed by the
local CPU or be offloaded to the cloud servers. The network
traffic has to be transmitted over the wireless interface. For
example, mobile applications such as virus scanners [39]
can either be run on the local CPU or be offloaded to the
cloud servers. However, there are some tasks which must
be performed locally by the CPU and cannot be offloaded.
Examples include but are not limited to the display control
and memory and cache management.

We assume that the CPU workload, offloadable computing
tasks, and network traffic independently arrive at mobile user
i ∈ M according to Poisson processes with rate λc

i , λ
o
i , and

λnt
i , respectively. The size of each task z (in bits) follows a

probability density function (pdf) fZ(z). We further denote the
processing density as γ (in cycles/bit), which is the number of
CPU cycles required to process a unit bit of data. The value of
γ depends on the application type. We model γ as a random
variable that follows pdf fΓ(γ). We assume that the task size z
and the processing density γ are finite. In our queuing analysis,
the size of each task and the required number of CPU cycles
reflect the service time that the corresponding server needs
to complete the task. The service time to perform a task of
size z with processing density γ in the local CPU of mobile
device i is γz/Ci, where Ci is the CPU processing capacity (in
cycles/time unit)3. The same model for the CPU processing
capacity and service time was used in [15], [23], [24]. The
service time in the wireless interface server corresponds to the
transmission time required to submit the computing tasks to
the cloud servers. For a task of size z, the service time is z/µ,
where µ (in bits/sec) is the data rate of the wireless interface.
We consider a slow flat fading wireless channel model and
assume that the data rate of the wireless interface at each
device i remains constant during the transmission of each task.
However, µ is a random variable and follows a pdf fMi

(µ).

3CPUs in existing smartphones employ a dynamic voltage and frequency
scaling method to adjust the CPU clock frequency so as to optimize the
energy-speed tradeoff [13], [19]. However, for the sake of tractability of
analysis, here we assume a constant clock frequency which results in a
constant processing power for each CPU.

4 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. PP, NO. 99, MONTH 2017

We further assume that the data rate, hence the service time,
is independent of the arrival processes and is known to the
user upon arrival of tasks.

The task scheduler makes the offloading decision for both
delay-sensitive and delay-tolerant applications. To model the
delay-sensitivity, we characterize each task by a parameter θ
representing a specific application type as inspired by [27].
The value of θ varies across different types of applications,
but is known to users and follows pdf fΘ(θ). A large value
of θ represents applications with stringent delay requirements,
whereas applications with θ = 0 are tolerable to delay.

B. Offloading Decision

To design the task scheduler, we first introduce the offload-
ing decision indicator and offloading probability. As illustrated
in Fig. 1, each mobile device is modeled by two queues
served by two different servers. For mobile user i ∈ M,
let δi(z, γ, θ, µ) ∈ {0, 1} indicate whether or not a task of
size z with processing density γ and delay parameter θ is
offloaded, where µ is the data rate of the wireless interface and
δi(z, γ, θ, µ) = 1 indicates that the task is offloaded. Notice
that the task scheduler makes its decision based on the values
of z, γ, θ, and µ which are known upon arrival of the task.
We further denote the probability that a task of size z with
processing density γ and delay parameter θ at mobile user
i with wireless data rate µ is offloaded to the cloud servers
by πi(z, γ, θ, µ) ∈ [0, 1]. Therefore, δi(z, γ, θ, µ) = 1 with
probability πi(z, γ, θ, µ). Given {πi(z, γ, θ, µ), z ≥ 0, γ ≥
0, θ ≥ 0, µ ≥ 0}, the probability that a task from mobile
user i is offloaded to the CSP is

πi =

∫
R4

+

πi(z, γ, θ, µ)dFZ,Γ,Θ,Mi
(z, γ, θ, µ), (1)

where FZ,Γ,Θ,Mi(z, γ, θ, µ) is the joint cumulative distribution
function (cdf) of random variables z, γ, θ, and µ. We refer to
πi as the offloading probability of device i ∈ M. To design
the scheduler and determine the offloading probability, we first
require a model for the utility of the users as the task scheduler
evaluates the users’ utility to make the offloading decisions.

C. Users’ Utility

The utility reflects the benefit of mobile users from offload-
ing the task to the cloud servers. The utility depends on the
energy consumption and the delay improvement obtained by
offloading the task as well as the price charged by the CSP.

To introduce the utility of user i ∈ M, we first define the
energy consumption saving obtained from task offloading as
the energy consumed in the local CPU to execute the task
minus the transmission energy required to submit the task to
the cloud servers. The energy consumption in mobile user i’s
CPU for executing a task of size z requiring γ CPU cycles
per bit can be modeled as follows [40]–[42]:

(κi (Ci)
ϕi + %i)

γz

Ci
, (2)

where κi, ϕi, and %i are user-dependent constants that depend
on the CPU model. Moreover, γz/Ci is the time required

to process the task. The energy consumption in the wireless
interface is βiz/µ, where z/µ is the time required to transmit
the task to the cloud servers and βi depends on the type
of interface and is different for WiFi and LTE. The same
model for the energy consumption in the CPU and the wireless
interface was used in [19], [20]. Therefore, when the data rate
is µ, the energy consumption saving obtained from offloading
a task of size z with processing density γ to the cloud servers,
denoted by hi(z, γ, µ), is as follows:

hi(z, γ, µ) = (κi (Ci)
ϕi + %i)

γz

Ci
− βi

z

µ
. (3)

Furthermore, we define the delay improvement obtained by
using the cloud services as the difference between the time
required to complete the task locally and the time spent to
process the task remotely in the cloud servers. It should be
noted that if offloading the task to the cloud servers imposes
a longer delay than local execution, the delay improvement is
negative. To determine the delay improvement, we first focus
on the delay that each task experiences if it is offloaded to
the cloud servers. We consider the time that the task spends
in the wireless interface queue of the mobile device as well
as the time the cloud servers need to perform the task. In
particular, the delay for a task executed remotely by the cloud
servers consists of four terms: the waiting time in the wireless
interface queue of the user, the service time of the wireless
interface to submit the task to the cloud servers, the processing
time of the cloud servers to complete the task, and the time
required to retrieve the results from the cloud servers4. Since
the downlink rate of the mobile users is usually much higher
than the uplink rate, the latter time is negligible in comparison
with the time required to submit the task to the cloud servers.

From Fig. 1, the arrivals at the wireless interface queue
consist of the offloaded computing tasks and the network
traffic. Given the offloading probability πi, the offloaded
computing tasks arriving at this queue follow a Poisson process
with arrival rate πiλo

i . Notice that thinning a Poisson process
with a fixed probability results in a new Poisson process [43].
Moreover, combining the Poisson processes of the offloaded
tasks and the network traffic forms another Poisson process
[43] as they are independent. Thus, the wireless interface
queue can be modeled as an M /G/1 queuing system with
arrival rate πiλ

o
i + λnt

i , when πi is a given constant. We
define wi,R(πi) and si,R(z, µ) = z/µ as the waiting time
and the service time in the wireless interface queue of user
i, respectively. We further denote the mean service time as
E[si,R], where E[·] denotes the expected value of a variable.
Given πi, the extended-value mean waiting time in this queue
as obtained from the Pollaczek-Khinchin formula [43] is

E[wi,R(πi)] ={
(πiλ

o
i+λ

nt
i)E[s2i,R]

2(1−(πiλo
i+λ

nt
i)E[si,R])

, if πiλo
i + λnt

i <
1

E[si,R]

∞, otherwise.
(4)

4Similar to [15], [16], [19], [20], [24], we assume that the cloud servers
are located in close proximity of the mobile devices such that the roundtrip
delay between a mobile device and the cloud servers is negligible.

SHAH-MANSOURI et al.: JOINT OPTIMAL PRICING AND TASK SCHEDULING IN MOBILE CLOUD COMPUTING SYSTEMS 5

The queue is stable if πiλo
i + λnt

i < 1/E[si,R] holds. We further
denote the processing time for the computing task of user i in
the cloud servers as si,C(z, γ) = γz/CR, where CR denotes the
processing capacity (in cycles/unit time) of each cloud server.
Thus, the delay caused by performing the task remotely in the
cloud servers given offloading probability πi is5

E[wi,R(πi)] + si,R(z, µ) + si,C(z, γ).

We now study the CPU queue to determine the delay
induced by performing the task locally. Similar to the wireless
interface, when πi is given, the CPU can be modeled as an
M /G/1 queuing system with arrival rate (1− πi)λo

i + λc
i . For

this queuing system, we define wi,L(πi) and si,L(z, γ) as the
waiting time and the service time, respectively. According to
the Pollaczek-Khinchin formula [43], given πi, the extended-
value mean waiting time in the M /G/1 queuing system of the
local CPU with mean arrival rate (1 − πi)λo

i + λc
i and mean

service time E[si,L] is

E[wi,L(πi)] ={
((1−πi)λ

o
i+λ

c
i)E[s2i,L]

2(1−((1−πi)λo
i+λ

c
i)E[si,L])

, if (1− πi)λo
i + λc

i <
1

E[si,L]

∞, otherwise.
(5)

The condition (1 − πi)λo
i + λc

i < 1/E[si,L] guarantees queue
stability. Furthermore, we have si,L(z, γ) = γz/Ci as the
service time for a task of size z with processing density γ.
Note that the service time does not depend on probability πi.
The delay introduced by performing the task locally in user
i’s CPU given offloading probability πi is

E[wi,L(πi)] + si,L(z, γ).

As mentioned earlier, the delay improvement is the time
required to complete the task locally minus the time spent
to process the task remotely in the cloud servers. Given
offloading probability πi, the delay improvement, denoted by
τi(z, γ, µ, πi), is as follows:

τi(z, γ, µ, πi) = E[wi,L(πi)] + si,L(z, γ)− (E[wi,R(πi)]

+ si,R(z, µ) + si,C(z, γ)). (6)

In the following lemma, we show that the delay improvement
τi(z, γ, µ, πi) is decreasing in πi. We will use this property in
Section II-E to determine the offloading probability.

Lemma 1. The delay improvement τi(z, γ, µ, πi) is decreasing
in πi.

Proof. From (4) and (5), we observe that E[wi,R(πi)] is
increasing in πi, while E[wi,L(πi)] decreases as πi increases.
Since the other terms in (6) do not depend on πi, τi(z, γ, µ, πi)
is decreasing. �

In addition to the energy consumption saving and the delay
improvement, the scheduler takes also the price that the mobile
user has to pay for using the cloud services into account. This

5To determine the delay improvement for each task, we use the actual
service time and mean waiting time experienced by the task for the sake
of tractability of analysis. This approach has widely been used for queueing
system analysis, e.g., [27].

payment will reduce the willingness of users to offload their
tasks, since it affects their utilities. The amount of payment is
proportional to the computing resources required to perform
the task. The CSP charges the mobile users for offloading a
task of size z with processing density γ by pγz (in $), where
p in $/Giga cycle (Gcycle)6 denotes the unit price announced
by the CSP.

We now model the utility of user i by considering the energy
consumption saving, delay improvement, and price. Given πi,
user i’s utility obtained from offloading a task of size z with
processing density γ and delay parameter θ to the cloud servers
when data rate is µ is as follows7:

uπi
i (z, γ, θ, µ) = hi(z, γ, µ) + θτi(z, γ, µ, πi)− αipγz, (7)

where hi(z, γ, µ) and τi(z, γ, µ, πi) are given by (3) and (6),
respectively. In addition, αi in (Joule (J)/$) is a constant trade-
off parameter between the payment and the energy consumed
in the device of mobile user i. The value of θ reflects the
application type and its sensitivity to delay. As an example,
for delay-tolerant applications, θ is set to 0 to ignore the effect
of delay in the utility function. A higher value of θ implies a
higher sensitivity of an application to delay.

Notice that both the energy consumption saving and the
delay improvement may be less than zero. Indeed, poor
wireless channel conditions may introduce a large delay in
dispatching the tasks to the cloud servers, which degrades the
benefit of task offloading. Similarly, if the energy consumed in
the local CPU is less than the energy required for transmitting
the task to the cloud servers due to poor wireless channel
conditions, then the energy saving is less than zero.

D. Utility Maximization Framework

Upon arrival of each task, the scheduler aims to maximize
the utility of the user. The utility function given in (7) reflects
the benefit of mobile user i from offloading the task. Notice
that if a task is performed locally (i.e., δi(z, γ, θ, µ) = 0), the
utility is zero. Thus, the offloading decision to maximize the
utility for a task of size z with processing density γ and delay
parameter θ is obtained from the following problem:

maximize
δi(z,γ,θ,µ)∈{0,1}

δi(z, γ, θ, µ)uπi
i (z, γ, θ, µ). (8)

Note that problem (8) is solved upon arrival of each task.
However, for the sake of clarity of problem formulation, we
have removed the index of the tasks. The optimal offloading
decision indicator, denoted as δ∗i (z, γ, θ, µ), can be obtained
by solving problem (8) as follows:

δ∗i (z, γ, θ, µ) =

{
1, if uπi

i (z, γ, θ, µ) ≥ 0
0, otherwise. (9)

This offloading decision rule can be interpreted as follows.
When the utility obtained from offloading a task is greater than
zero, that task is executed in the cloud servers. Otherwise, the
user has no incentive to offload the task and the task will be

6This unit is commonly used for the prices in MCC systems [19], [20].
7Similar to [15], [16], [19], [20], we assume that the charge for transmitting

data over LTE does not affect the utility obtained by offloading the tasks as
data is typically included in mobile users’ plans.

6 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. PP, NO. 99, MONTH 2017

0 0.5 1
0

1

2

3

4

5

z (MB)

θ
p = 0

0 0.5 1
0

1

2

3

4

5

z (MB)

p = 0.01 ($/Gcycle)

0 0.5 1
0

1

2

3

4

5

z (MB)

p = 0.02 ($/Gcycle)

(a) (b) (c)

Fig. 2: Offloading region Oi of user i as shown in the shaded areas. A higher
price set by the CSP makes user i’s offloading region smaller. Here, we fixed
γ = 2 × 103 and µ = 6 Mbps. The simulation parameters are Ci = 1.4
GHz, λo

i = 0.03, λc
i = 0.08, λnt

i = 0.01, αi = 100 J/$, κi = 0.33, ϕi = 3,
%i = 0.1, and βi = 2605 mJ/sec [19], [20].

performed locally. According to this rule, given z, γ, θ, and
µ, the expected utility with respect to πi(z, γ, θ, µ) is

πi(z, γ, θ, µ)uπi
i (z, γ, θ, µ). (10)

Notice that with probability 1 − πi(z, γ, θ, µ), the task will
not be offloaded and the utility is zero. We now obtain
πi(z, γ, θ, µ) through the following proposition which can be
proved based on (8).

Proposition 1. A task of size z with processing density γ and
delay parameter θ when the wireless data rate is µ is offloaded
from user i to the CSP (i.e, δi(z, γ, θ, µ) = 1) with probability

• πi(z, γ, θ, µ) = 1, if uπi
i (z, γ, θ, µ) ≥ 0, which happens

for those values of (z, γ, θ, µ) that belong to the following
set:

Oi = {(z, γ, θ, µ) ∈ R4
+ | u

πi
i (z, γ, θ, µ) ≥ 0}.

• πi(z, γ, θ, µ) = 0, otherwise.

We refer to Oi as the offloading region of mobile user i. The
shaded areas in Fig. 2 illustrate Oi for fixed values of γ and
µ and different prices announced by the CSP. When the cloud
services are free (i.e., p = 0), mobile user i evaluates only
the energy consumption saving and the delay improvement
upon arrival of each task. If task offloading is beneficial for
the mobile user, then it submits the task to the cloud servers.
Otherwise, the task will be performed locally. Therefore, even
if the cloud services are free, the user may not offload the task
to the CSP due to energy consumption or delay requirement
issues. The offloading region shrinks as the CSP increases its
price, and becomes an empty region eventually.

E. Optimal Offloading Probability

We now obtain the optimal offloading probability, denoted
by π∗i , from which we will determine the arrival rate of com-
puting tasks from user i to the cloud servers. By substituting
πi(z, γ, θ, µ) from Proposition 1 into (1), we have

πi =

∫
R4

+

πi(z, γ, θ, µ)dFZ,Γ,Θ,Mi
(z, γ, θ, µ)

=

∫
Oi

dFZ,Γ,Θ,Mi(z, γ, θ, µ). (11)

The offloading probability can be obtained by solving equa-
tion (11). The following theorem shows that the offloading
probability of user i, given price p, can be uniquely obtained.

Theorem 1. Given the price p ≥ 0, the optimal offloading
probability of user i ∈M is unique and can be obtained from

π∗i (p) = Gi(π
∗
i (p)), (12)

where
Gi(πi) ,

∫
Oi

dFZ,Γ,Θ,Mi
(z, γ, θ, µ).

Proof. We first form the function Fi(πi) = πi − Gi(πi) for
user i ∈ M and investigate its roots. Since Fi(0) ≤ 0 and
Fi(1) ≥ 0, to show the uniqueness of the root, we need to
show that Fi(πi) is strictly increasing. This is equivalent to
showing that function Gi(πi) is non-increasing. Assume that
π

(2)
i > π

(1)
i . We rewrite the offloading region by using the

utility function given in (7) as follows:

O(2)
i = {(z, γ, θ, µ) ∈ R4

+ |
hi(z, γ, µ) + θτi(z, γ, µ, π

(2)
i)− αipγz ≥ 0}

(a)

⊆ {(z, γ, θ, µ) ∈ R4
+ |

hi(z, γ, µ) + θτi(z, γ, µ, π
(1)
i)− αipγz ≥ 0}

= O(1)
i ,

where (a) is due to the fact that τi(z, γ, µ, πi) decreases when
πi becomes larger according to Lemma 1. Therefore, regionOi
becomes smaller when we increase πi, which reduces Gi(πi)
as well. Thus, Gi(π

(2)
i) ≤ Gi(π(1)

i) for any π(2)
i > π

(1)
i . As a

result, Fi(πi) is strictly increasing while we know that Fi(0) ≤
0 and Fi(1) ≥ 0. Thus, Fi(πi) has a unique root. �

We now study the properties of the optimal offloading
probability to reveal the effect of the CSP’s price on the
offloading decision in mobile devices. These properties will
later be used in Section III to obtain the optimal pricing
strategy of the CSP. In the following lemma, we show that
for each mobile user i ∈M, the offloading probability π∗i (p)
is non-increasing in p and approaches 0 when p→∞.

Lemma 2. The offloading probability π∗i (p) of user i ∈ M
is a non-increasing function of p. Moreover, there exists a
constant threshold pth

i ≥ 0 such that π∗i (p) = 0 for any price
p ≥ pth

i .

Proof. To prove that π∗i (p) is non-increasing in price p, we
show that for any p(2) > p(1), we have π∗i (p(2)) ≤ π∗i (p(1)).
By contradiction, we assume that π∗i (p(2)) > π∗i (p(1)). Ac-
cording to (11), we have

π∗i (p(2)) =

∫
O(2)

i

dFZ,Γ,Θ,Mi
(z, γ, θ, µ), (13)

where

O(2)
i = {(z, γ, θ, µ) ∈ R4

+ |
hi(z, γ, µ) + θτi(z, γ, µ, π

∗
i (p(2)))− αip(2)γz ≥ 0}

(a)

⊆{(z, γ, θ, µ) ∈ R4
+ |

SHAH-MANSOURI et al.: JOINT OPTIMAL PRICING AND TASK SCHEDULING IN MOBILE CLOUD COMPUTING SYSTEMS 7

hi(z, γ, µ) + θτi(z, γ, µ, π
∗
i (p(2)))− αip(1)γz ≥ 0}

(b)

⊆{(z, γ, θ, µ) ∈ R4
+ |

hi(z, γ, µ) + θτi(z, γ, µ, π
∗
i (p(1)))− αip(1)γz ≥ 0}

= O(1)
i .

Note that (a) is due to αip
(2)γz > αip

(1)γz since
p(2) > p(1). Moreover, (b) is obtained from the contradic-
tion assumption π∗i (p(2)) > π∗i (p(1)), which implies that
τi(z, γ, µ, π

∗
i (p(1))) > τi(z, γ, µ, π

∗
i (p(2))) due to Lemma 1.

Since O(2)
i ⊆ O

(1)
i ,

π∗i (p(2)) =

∫
O(2)

i

dFZ,Γ,Θ,Mi(z, γ, θ, µ)

≤
∫
O(1)

i

dFZ,Γ,Θ,Mi(z, γ, θ, µ) = π∗i (p(1)), (14)

which contradicts the assumption. Therefore, π∗i (p), which can
be obtained from (12), is non-increasing in price p. For a given
price p, we know

Oi
(c)

⊆ {(z, γ,θ, µ) ∈ R4
+ |

hi(z, γ, µ) + θτi(z, γ, µ, πi = 0)− αipγz ≥ 0},

where (c) is due to the fact that τi(z, γ, µ, πi) is decreasing in
πi as stated in Lemma 1. Since hi(z, γ, µ) and τi(z, γ, µ, 0)
do not depend on p, the above set becomes empty for a high
price p. Thus, there exists a pth

i ≥ 0 such that Oi becomes an
empty set for any p ≥ pth

i , which completes the proof. �

We will later show that the offloading probability is neither
convex nor concave in p, which makes the design of an optimal
pricing strategy in Section III very challenging.

III. PRICING STRATEGY OF CSP

In this section, we analyze a monopoly market when a
CSP is providing cloud services to the mobile users. We first
formulate a profit maximization problem to obtain the CSP’s
optimal pricing strategy. We then propose a pricing algorithm,
which we refer to as CoPe, to cope with the non-convexity of
the formulated problem. The CSP consists of multiple cloud
servers which can provide computing services to the mobile
users. Upon arrival of each task, the CSP assigns the task to
a cloud server for processing. We refer the cloud server as a
virtual machine with dedicated processing power, which can
perform one task at a time. The computing service of the CSP
is specified by the pair (p, CR). Recall that p is the unit price
(in $/Gcycle) and CR is the processing capacity (in cycles/unit
time) of each server. We assume that all cloud servers have the
same processing capacity. The CSP announces the unit price p
to the mobile users, according to which their task schedulers
decide whether or not to offload the tasks.

A. Profit Maximization Problem

The CSP’s optimal pricing strategy is determined via a
profit maximization framework. We assume that the CSP has
sufficient computing resources similar to [32]. As a result,
the system can be viewed as a G/G/∞ queuing system with

infinite number of queues, each of which is stable. Note that
the task arrivals to the cloud servers are not memoryless and
cannot be modeled as a Poisson process. According to this
G/G/∞ model, the average delay spent in the cloud is the
average processing time since there is no waiting delay.

The CSP’s profit is the payment received from the users
minus the electricity price8. Let N(p) denote the number of
offloaded tasks being processed in the servers in a time unit
given the announced price p. The CSP’s profit is

J(p) = pE[CRN(p)]− bϑE[CRN(p)]

= (p− bϑ)CRE[N(p)], (15)

where ϑ (in kWh/processing capacity cycle) is the energy
consumption coefficient of the servers and b is the electricity
price (in $/kWh) that the CSP has to pay for its active servers.
The electricity cost is proportional to the number of active
cloud servers that are processing the assigned tasks. A lower
price set by the CSP encourages more mobile users to offload
their tasks and increases N(p). However, it may reduce the
profit of the CSP as the computation jobs offloaded to the
cloud servers incur a cost to the CSP. Similarly, less users
are interested in the cloud services when the CSP sets a high
price. Therefore, the CSP should optimize its pricing strategy,
as a static pricing strategy degrades its profit.

To obtain the CSP’s profit, we first need to determine the
average number of tasks being processed in the system. To do
so, we use the sample-path version of Little’s law [43]. The
long-term average number of customers in service in a queuing
system is the product of arrival rate and sojourn time9. The
arrival rate of tasks offloaded to the cloud servers, which can
be determined using the offloading probability of the mobile
users, is as follows: ∑

i∈M
π∗i (p)λo

i . (16)

In addition, the sojourn time equals the processing time that
the tasks spend in the cloud servers, since there is no waiting
time in the G/G/∞ system. The expected processing time of
the tasks arriving from mobile user i is

E[zC
i (p)γC

i (p)]

CR
, (17)

where zC
i (p) denotes the size of the tasks arriving at the

cloud servers from user i and γC
i (p) is the corresponding

processing density. Although in mobile users, the size of the
tasks, denoted by z, follows the pdf fZ(z), the offloaded tasks
have a different size. The mobile users may perform tasks with
small sizes locally, while they may offload large computational
tasks to the cloud servers. Therefore, zC

i (p) in user i does not
follow the same distribution as z. Moreover, the price p also
affects zC

i (p). The same statement is valid for γC
i (p). To obtain

the expected processing time for the tasks of user i arriving

8Similar to [20], [37], [38], we only consider the electricity price as the
other costs such as maintenance cost are constant and do not vary with the
CSP’s workload.

9We assume that the CSP can observe and measure the arrival rate and
sojourn time.

8 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. PP, NO. 99, MONTH 2017

at the cloud servers, we use the analysis provided in Section
II. We have

E[zC
i (p)γC

i (p)] =

∫
R4

+

zγdFC
Z,Γ,Θ,Mi

(z, γ, θ, µ), (18)

where FC
Z,Γ,Θ,Mi

(z, γ, θ, µ) is the conditional cdf of variables
z, γ, θ, and µ given that the task with parameters (z, γ, θ, µ)
is offloaded from user i to the cloud servers. Thus,

E[zC
i (p)γC

i (p)] =

∫
R4

+

zγ
πi(z, γ, θ, µ)

π∗i (p)
dFZ,Γ,Θ,Mi(z, γ, θ, µ)

=
1

π∗i (p)

∫
Oi(p)

zγdFZ,Γ,Θ,Mi
(z, γ, θ, µ).

(19)

Therefore, the average sojourn time of the offloaded tasks in
the cloud servers is [43]∑

i∈M

π∗i (p)λo
i∑

i∈M π∗i (p)λo
i

E[zC
i (p)γC

i (p)]

CR
. (20)

According to the Little’s law, the average number of tasks
being processed in the system is

E[N(p)] =
∑
i∈M

π∗i (p)λo
i

E[zC
i (p)γC

i (p)]

CR
. (21)

We now determine the profit of the CSP by substituting (21)
into (15). The CSP’s profit is

J(p) = (p− bϑ)
∑
i∈M

π∗i (p)λo
iE[zC

i (p)γC
i (p)]. (22)

The optimal price can be obtained from the following problem:

p∗ = arg max
p≥0

J(p), (23)

which is not a concave maximization problem and cannot be
solved directly using standard optimization techniques. We
first study the existence of a local solution for problem (23).

Theorem 2. There exists a local optimal solution for problem
(23).

Proof. Due to Lemma 2, we know that there exists a pth =
maxi∈M pth

i such that π∗i = 0 for all i ∈M. Thus, J(p) = 0
for p ≥ pth, while we know J(p) ≤ 0 when p ≤ bϑ. If
J(p) is zero for any p ≥ bϑ, then the CSP will not offer any
computing services. Otherwise, there exists at least one local
maximum point within the interval [bϑ, pth]. �

To obtain the global optimal solution of problem (23),
the CSP can conduct an exhaustive search. To overcome
the complexity of the exhaustive search, we proceed with a
sub-optimal approach and develop a corresponding pricing
algorithm. We note that the proposed algorithm achieves the
global optimal solution of problem (23) under the settings that
we will evaluate in Section IV.

B. Pricing Algorithm using Convexification and Primal-dual
Methods

To mitigate the non-convexity of problem (23), we derive
the pricing algorithm CoPe by utilizing the convexification
method introduced in [44]. We first convexify and transform
problem (23) into a new problem which can be solved using
primal-dual methods. Since problem (23) is non-convex, using
the primal-dual method makes the obtained solution sub-
optimal. To convexify problem (23), we introduce pi as the
price set for user i and transform problem (23) into the
following equivalent problem:

P: maximize
p, p≥0

J(p) =
∑
i∈M

(pi − bϑ)π∗i (pi)λ
o
iE[zC

i (pi)γ
C
i (pi)]

subject to pi − p = 0, ∀i ∈M, (24)

where p = (p1, . . . , p|M|). We now consider the following
problem by introducing a penalty term:

maximize
p, p≥0, q

J(p)− ρ

2
||q− p||22

subject to pi − p = 0, ∀i ∈M, (25)

where ρ is a fixed scalar and q = (q1, . . . , q|M|) represents a
vector of additional variables. Clearly, a vector p∗ is a local
optimum of the original problem (24) if and only if (p∗, q∗ =
p∗) is a local optimum of problem (25). We now formulate
the dual problem of problem (24) as:

D: maximize
q

φρ(q), (26)

where

φρ(q) = sup
pi−p=0,i∈M

p≥0

J(p)− ρ

2
||q− p||22, (27)

is the dual function. For ρ sufficiently large, problem (27) has
a convex structure. Through the following lemma, we show
that there exists a finite ρ that makes problems (25) and (27)
concave maximization problems. This guarantees the existence
of a dual function which can be obtained from (27).

Lemma 3. There exists a finite value of ρ such that problem
(27) is a concave maximization problem.

Proof. Please refer to the Appendix. �

According to Lemma 3, problem (27) has a convex structure
and, thus, dual function φρ(q) can be obtained by means of the
gradient method [45]. However, this may not result in a local
solution of primal problem (24), if the duality gap is not zero.
The duality gap refers to the gap between the optimal value of
primal problem (24) and dual problem (26). According to [44],
if the second-order condition of concavity is satisfied around
a locally optimal solution of problem (24), then strong duality
holds. We now propose the pricing algorithm CoPe by solving
the primal and dual problems as shown in Algorithm 1. In
this algorithm, σ > 0 is a constant step size. CoPe iteratively
updates the dual variables q until convergence (Lines 4–7) and
obtains price p by solving problem (25) (Line 8). Lemma 3
guarantees the convergence of Algorithm 1 as it states that the
dual function exists. Notice that the dual problem is always a

SHAH-MANSOURI et al.: JOINT OPTIMAL PRICING AND TASK SCHEDULING IN MOBILE CLOUD COMPUTING SYSTEMS 9

Algorithm 1: Pricing Algorithm using Convexification and
Primal-dual Methods (CoPe).

1 Input: J(p), ε, ρ, and σ
2 Initialization: Randomly initialize q(0)

3 Initialization: k ← 0
4 do
/* Dual Update */

5 q(k+1) ← q(k) + σ∇φρ(q(k))
6 k ← k + 1

7 while ||q(k) − q(k−1)||1 > ε
/* Primal Update */

8 p← argmaxpi=p,i∈M
p≥0

J(p)− ρ
2
||q(k) − p||22

9 Output: p

concave maximization problem. The price p can be obtained
by solving problem (25) using the gradient method as this
problem is also a concave maximization problem, when ρ is
sufficiently large.

IV. PERFORMANCE EVALUATION

In this section, we first study the offloading strategy of the
mobile users by evaluating the performance of the proposed
dynamic task scheduler in comparison with ThinkAir [7] and
MAUI [8]. We have chosen these two mechanisms since they
also take the energy consumption and delay into account and
make the offloading decision upon arrival of each task. We
then evaluate the profit of the CSP under different workloads.
We further study the performance of the CSP’s optimal pricing
strategy and CoPe, respectively, and compare them to that of
static and dynamic pricing strategies.

We consider a CSP that owns cloud computing servers and
offers cloud services to mobile users. We assume that the
computing power of each cloud server is CR = 4 GHz [46].
We further assume that the electricity price is b = 0.039 $/kWh
[47], while the energy consumption coefficient is ϑ = 0.05
kWh/Gcycle [48]. We assume that mobile users employ the
dynamic task scheduler proposed in Section II to make the
offloading decisions. Without loss of generality, we assume
that each mobile device i ∈ M has a CPU with clock speed
Ci = 1.4 GHz [19], [20]. According to the measurement
results provided by [20], we set κi = 0.33, ϕi = 3, %i = 0.1,
and βi = 2605 mJ/sec to determine the energy consumption
saving and delay improvement. We further set αi = 100
J/$. Since the average uplink data rate measured in [19] is
5.85 Mbps, we assume that µ follows a uniform distribution
in [4.85, 6.85] Mbps. To generate computing jobs, unless
stated otherwise, we assume that the task sizes are uniformly
distributed in [100 B, 1 MB], while the processing density γ
is uniformly distributed in the interval [100, 3000] cycles/bit.
Processing densities of different applications are reported in
[7]–[9]. Notice that the proposed task scheduler can be applied
to any pdfs of task sizes and processing densities and any data
rate distributions of the wireless interfaces. We further assume
that jobs arrive at the mobile users according to independent
Poisson processes with rates λo

i = 0.04, λc
i = 0.08, and

λnt
i = 0.02, for all i ∈M, unless otherwise stated.

0

0.2

0.4

0.6

0.8

1

0

1

2

3

4

5

0

0.2

0.4

0.6

0.8

1

z (Mbit)θ

O
ffl
o
a
d
in
g
P
ro
b
a
b
il
it
y
π
∗ i

Fig. 3: The optimal offloading probability π∗i of user i versus task size z and
delay parameter θ. Tasks with a larger size z or a higher value of θ will be
offloaded to the cloud servers with a higher probability.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

O
ffl
o
a
d
in
g
P
ro
b
a
b
il
it
y
π
∗ i

z (MB)

θ = 5

θ = 4

θ = 3

Fig. 4: The optimal offloading probability π∗i of user i versus task size z.
Here, we fixed the value of θ and evaluate the offloading probability for
θ = 3, 4, and 5.

A. Dynamic Scheduler

We first study the dynamic scheduler and its offloading
probability for a mobile user. Fig. 3 illustrates the offloading
probability π∗i for tasks with different sizes and different
values of θ, when the CSP has set a price of p = 0.03
$/Gcycle. For small values of task size z and delay parameter
θ, the mobile user prefers to run the application locally.
However, for larger tasks, the mobile user is more willing to
offload the tasks to the cloud servers to save energy. Moreover,
for larger θ, a task is less tolerable to delay. Thus, the mobile
user offloads the task to the cloud servers to expedite the
execution of the task. The offloading probability eventually
approaches 1 in these cases.

To further study how the tasks size affects the offloading
decision, we evaluate the offloading probability of a mobile
user as a function of z. Fig. 4 shows the offloading probability
versus task size z for different values of θ. We assume that
p = 0.03 $/Gcycle and fix the value of θ for each experiment.
Similar to Fig. 3, the mobile user is not interested in offloading
tasks having small sizes. Moreover, the offloading probability
increases when the size of the tasks becomes larger. The
offloading probability grows faster in z for tasks that are
more sensitive to delay (i.e., for larger values of θ). This is
because for delay-sensitive tasks, the offloading decision is

10 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. PP, NO. 99, MONTH 2017

0.02 0.04 0.06 0.08
2

4

6

8

10

12

14

16

A
v
er
a
g
e
D
el
a
y
p
er

T
a
sk

(s
ec
)

Arrival Rate λ
o
i
(task/sec)

ThinkAir–E

ThinkAir–ED

MAUI

Proposed Scheduler

ThinkAir–D 80%

40%

(a)

0.02 0.04 0.06 0.08
2

3

4

5

6

7

8

9

10

A
v
er
a
g
e
E
n
er
g
y
C
o
n
su

m
p
ti
o
n
p
er

T
a
sk

(J
)

Arrival Rate λ
o
i
(task/sec)

ThinkAir–E
ThinkAir–ED
MAUI
Proposed Scheduler

ThinkAir–D

17%

7%

(b)

Fig. 5: Comparing the proposed task scheduler in mobile user i with the mechanisms proposed in [7] and [8]. Here, we fixed µ = 2 Mbps and assumed that
θ is uniformly distributed in [0, 5]. (a) The average delay per task versus different arrival rates of the computing tasks. (b) The corresponding average energy
consumption per task.

mainly affected by the delay improvement, whereas the energy
consumption saving contributes less to the user’s utility.

We now compare the performance between our proposed
task scheduler and three task scheduling policies proposed in
[7] as well as an energy-delay aware mechanism proposed
in [8], which is referred as MAUI. In [7], the first policy
prioritizes energy conservation when offloading and offloads
the tasks if the energy consumption is expected to improve. We
refer this policy as ThinkAir–E. The second policy, referred
as ThinkAir–D, optimizes the offloading decision in order
to expedite the execution of the tasks. The third policy is
based on an energy-delay aware offloading mechanism. The
computing tasks will be offloaded only if both the energy
consumption and the execution time are expected to improve.
We refer this policy as ThinkAir–ED. We further compare our
proposed task scheduler with MAUI. To make an offloading
decision, the MAUI solver aims to minimize the mobile
device’s energy consumption subject to a latency constraint.
The solver ensures that the total delay experienced by each
task does not exceed an application-dependent constant delay,
denoted by L. In order to compare our proposed scheduler
with MAUI and study the tradeoff between the average delay
and average energy consumption, we set L = 1/θ for each
application. We also assume that the cloud services are free
(i.e., p = 0) in order to compare our proposed scheduler
with ThinkAir and MAUI in a fair manner. Figs. 5(a) and
5(b) illustrate the average delay per task for different schemes
and the corresponding average energy consumption per task.
As can be observed, ThinkAir–E results in a low energy
consumption but long delays for the execution of tasks. On the
other hand, ThinkAir–D can achieve the fastest task execution,
while consuming a large amount of energy. ThinkAir–ED
performs similar to ThinkAir–E as the delay improvement
is positive in this setting. However, both our proposed task
scheduler and MAUI address the tradeoff between delay and
energy consumption for different types of tasks. The proposed
scheduler consumes slightly more energy to address the delay
requirements of delay-sensitive applications. From Fig. 5, we
can see that our proposed scheduler reduces the delay by 80%

5 5.5 6 6.5 7 7.5 8 8.5
4

4.5

5

5.5

6

6.5

7

A
v
er
a
g
e
E
n
er
g
y
C
o
n
su

m
p
ti
o
n
p
er

T
a
sk

(J
)

Average Delay per Task (sec)

ThinkAir–D
Proposed Scheduler

ThinkAir–E

θ = 0

θ = 10

θ = 102
θ = 103

Fig. 6: The tradeoff between the energy consumption and delay in the
proposed scheduler in comparison with different scheduling policies proposed
in [7]. We vary θ from 0 to 103 to study different types of applications.

and 40% compared to ThinkAir–E and MAUI, while it only
consumes 17% and 7% more energy, respectively.

We further investigate the tradeoff between the energy
consumption and delay for different delay requirements of
applications. We compare the proposed task scheduler and
ThinkAir for price p = 0. Fig. 6 shows the average energy
consumption per task and the corresponding average delay
when we vary the delay parameter θ from 0 to 103. A
higher delay-sensitivity of tasks (i.e., a larger θ) increases the
energy consumption to expedite the execution of the tasks.
On the other hand, the proposed task scheduler trades delay
for the sake of energy saving for delay-tolerant applications.
The proposed scheduler achieves the same performance as
ThinkAir–E for delay-tolerant tasks (i.e., θ = 0). Notice
that when θ = 0, the proposed task scheduler makes the
offloading decision by evaluating only the energy consumption
saving. Moreover, the proposed scheduler behaves similar to
ThinkAir–D when θ is very large.

Finally, we study the behavior of the dynamic scheduler
as a function of the price imposed by the cloud computing
services, when θ is uniformly distributed in [0, 5]. Fig. 7
illustrates the offloading probability versus price p set by the
CSP for different arrival rates of the computing tasks. As

SHAH-MANSOURI et al.: JOINT OPTIMAL PRICING AND TASK SCHEDULING IN MOBILE CLOUD COMPUTING SYSTEMS 11

0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1

O
ffl
o
a
d
in
g
P
ro
b
a
b
il
it
y
π
∗ i

p ($/Gcycle)

λ
o
i = 0.08

λ
o
i = 0.06

λ
o
i = 0.04

λ
o
i = 0.02

Fig. 7: The optimal offloading probability π∗i of user i versus price p for
different arrival rates of the computing tasks. The mobile user is more
interested in offloading the tasks, when its CPU is busy due to a higher
arrival rate of the computing tasks.

can be observed, the mobile user is more likely to offload its
computing tasks to the cloud servers when the CSP sets a low
price. Increasing the price reduces the interest of the mobile
user in offloading its tasks to the cloud servers. The offloading
probability approaches 0, when the CSP sets a high price as
stated in Lemma 2. This is because the offloading region, as
illustrated in Fig. 2, shrinks fast when p increases. Fig. 7 also
shows that for higher arrival rates of the computing tasks, the
user is more willing to offload its tasks to the cloud servers
to reduce the queuing delay of the CPU and to expedite the
execution of the tasks.

B. CSP’s Pricing Strategy

In this subsection, we focus on the CSP and study the CSP’s
profit obtained from providing cloud computing services. We
assume that the set M of mobile users have computing tasks
and may offload them to the cloud servers.

Fig. 8 illustrates the profit of the CSP, which is given by
max(J(p), 0) as a function of the price p. Obviously, for very
low prices, the payment received from the mobile users is less
than the cost incurred to the CSP. Therefore, the CSP’s profit
is zero as it does not accept any computing tasks for such low
prices. When price p > bϑ, the CSP can make a profit. As the
price increases, the total arrival rate of computing tasks at the
cloud servers (i.e., the workload of the cloud servers) reduces.
However, as can be observed from Fig. 8, the CSP’s profit
first increases, but eventually decreases again when the CSP
further increases the price. This confirms that by employing the
optimal pricing strategy, the CSP can achieve the maximum
possible profit. For example, when there are |M| = 500
mobile users in the system with λo

i = 0.05, the CSP’s profit is
maximized if it sets p = 0.02 $/Gcycle. Lower prices than the
optimal price encourage the mobile users to offload more tasks
to the cloud servers. Nevertheless, the CSP’s profit will be
decreased due to the lower payment received from the mobile
users. Similarly, prices higher than the optimal price reduce
the offloading demand and degrade the profit of the CSP.

We now investigate the CSP’s workload, which is the
amount of total computing tasks in Gcycles offloaded to the
cloud servers in a unit of time. Fig. 9 shows the CSP’s

0 0.02 0.04 0.06 0.08 0.1
0

50

100

150

200

250

300

C
S
P
’s

P
ro
fi
t
($
)

p ($/Gcycle)

|M| = 1000 , λo
i = 0 .07

|M| = 1000 , λo
i = 0 .05

|M| = 1000 , λo
i = 0 .03

|M| = 500 , λo
i = 0 .07

|M| = 500 , λo
i = 0 .05

|M| = 500 , λo
i = 0 .03

Fig. 8: The profit of the CSP obtained within a 1-minute interval versus price
p. The optimal pricing strategy is the price that maximizes the profit shown
in this figure.

0 0.02 0.04 0.06 0.08 0.1
0

100

200

300

400

500

C
S
P
’s

W
o
rk

lo
a
d
(G

cy
cl
e)

p ($/Gcycle)

|M| = 1000 , λo
i = 0 .07

|M| = 1000 , λo
i = 0 .05

|M| = 1000 , λo
i = 0 .03

|M| = 500 , λo
i = 0 .07

|M| = 500 , λo
i = 0 .05

|M| = 500 , λo
i = 0 .03

Fig. 9: The workload of the CSP (in Gcycles) versus price p. As expected,
fewer computing tasks arrive at the cloud servers, if the CSP sets a high price.

workload versus price p for different numbers of mobile users
and different computing task arrival rates. The cloud servers
receive a high workload of computing tasks when the price
of cloud services is low. The workload of the cloud servers
is reduced when the CSP sets a higher price. This reveals
a tradeoff between the price and the interest of the users in
offloading their tasks to the cloud servers.

To study the proposed pricing algorithm CoPe, we first eval-
uate its convergence for λo

i = 0.05, ε = 10−11, σ = 5×10−11,
and ρ = maxp≥0

d2J(p)
dp2 +1. Fig. 10 shows q(k)

i for 10 mobile
users in different iterations. When the algorithm converges,
each qi, i ∈M, is equal to p. Thus, the price p can be obtained
from q

(k)
i , when k approaches infinity. As shown in Fig. 10,

all q(k)
i quickly converge to the same value, which confirms

the fast convergence rate of CoPe.
Next, we evaluate the performance of the proposed optimal

pricing strategy and CoPe in comparison with static and
dynamic pricing strategies. We first consider an MCC system
with |M| = 500 mobile users with arrival rate λo

i = 0.01 and
obtain the optimal price that maximizes the CSP’s profit. We
consider this price as the price in the static approach. In the
dynamic pricing strategy, we assume that the price of cloud

12 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. PP, NO. 99, MONTH 2017

0 5 10 15
0.005

0.01

0.015

0.02

0.025

0.03

P
ri
ce

q
(k

)
($
/
G
cy

cl
e)

Iteration index k

Fig. 10: The price q(k)i obtained from CoPe in different iterations for 10
users. Results show that CoPe proposed in Algorithm 1 converges quickly.

0.01 0.03 0.05 0.07 0.09 0.11 0.13 0.15
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

P
ri
ce

($
/
G
cy

cl
e)

λ
o
i
(task/sec)

Optimal Pricing Strategy

CoPe
Dynamic Pricing Strategy

Static Pricing Strategy

Fig. 11: The price of the cloud services determined by the proposed optimal
pricing strategy and CoPe in comparison with static and dynamic pricing
strategies. Results show that a larger offloading demand arriving at the cloud
servers drives the price of cloud services up. Thus, a static pricing strategy is
not suitable for dynamic MCC systems.

0.01 0.03 0.05 0.07 0.09 0.11 0.13 0.15
0

50

100

150

200

250

300

350

400

C
S
P
’s

P
ro
fi
t
($
)

λ
o
i
(task/sec)

Optimal Pricing Strategy

CoPe
Dynamic Pricing Strategy

Static Pricing Strategy

20%

25%

Fig. 12: The profit of the CSP. The proposed pricing strategies outperform the
static and dynamic pricing strategies by up to 25% and 20%, respectively.

services changes proportional to the CSP’s workload. Fig. 11
illustrates the prices obtained from the optimal pricing strategy
and CoPe, respectively, and the prices set by the static and
dynamic pricing strategies. The optimal pricing strategy is the
price that maximizes the CSP’s profit and can be obtained from
problem (23). Results show that CoPe yields the same prices
as the optimal pricing strategy. This is due to the following

reason. The profit function, J(p), is not a concave function
in price p as shown in Fig. 8 and discussed in Section III.
However, from Fig. 8, we can see that there is an interval in
which the profit function is concave and the optimal price lies
in this interval. Thus, problem (23) admits a unique optimal
solution. Moreover, due to the concavity of J(p) at this point,
strong duality holds [44] and the proposed algorithm achieves
the global optimal solution of problem (23). Fig. 11 also shows
that a higher offloading demand of mobile users caused by
more resource hungry applications drives the price set by the
CSP up.

Fig. 12 illustrates the CSP’s profit obtained via the optimal
pricing strategy and CoPe in comparison with the static and
dynamic pricing strategies. The results show that the CSP’s
profit improves when the arrival rate of the computing tasks
increases. The proposed pricing strategies both outperform
the static and dynamic approaches by up to 25% and 20%,
respectively. This reveals that a static pricing strategy cannot
capture the dynamics of an MCC system. Furthermore, al-
though the dynamic pricing strategy chooses the prices based
on the CSP’s workload, it does not consider the effect of the
prices on the mobile users’ strategies. Notice that our proposed
strategies determine the price of cloud services by considering
how the prices affect the offloading strategies of mobile users.

V. CONCLUSION

In this paper, we studied an MCC market to design a
dynamic task scheduler for mobile devices and to obtain
the pricing strategy of the CSP. We first proposed a task
scheduler by taking the energy consumption, delay, and the
price of cloud services into account. A queuing delay analysis
allowed us to account for both delay-sensitive and delay-
tolerant applications. To obtain the CSP’s optimal pricing
strategy, we then formulated a profit maximization problem,
which is non-convex in general. To mitigate the non-convexity,
we further proposed the pricing algorithm CoPe. Through
numerical experiments, we showed that the proposed task
scheduler outperforms task scheduling policies proposed in
the literature in terms of energy consumption and delay. We
further evaluated the proposed optimal pricing strategy and
CoPe. Our results show that the CSP can obtain significantly
more profit by employing either the optimal pricing strategy or
CoPe in comparison with static and dynamic pricing strategies.
In future work, we will consider dynamic voltage scaling to
better utilize the computing resources of the mobile users’
CPUs. In addition, we will jointly consider the allocation of
computing services and wireless channel bandwidth in mobile-
edge computing systems where the network operators install
the cloud servers within their radio access networks. This is
promising for future fifth-generation wireless networks.

APPENDIX: PROOF OF LEMMA 3

To prove that there exists a finite value of ρ such that
problem (27) is a concave maximization problem, we first
rewrite the objective function as∑

i∈M
Ji(pi)−

ρ

2
(qi − pi)2, (28)

SHAH-MANSOURI et al.: JOINT OPTIMAL PRICING AND TASK SCHEDULING IN MOBILE CLOUD COMPUTING SYSTEMS 13

where

Ji(pi) , (pi − bϑ)π∗i (pi)λ
o
iE[γC

i (pi)z
C
i (pi)]

= (pi − bϑ)λo
i

∫
Oi(pi)

zγdFZ,Γ,Θ,Mi
(z, γ, θ, µ). (29)

It suffices to show that the second-order derivative of Ji(p)
is bounded above. In this case, for any ρ >

∑
i∈M

d2Ji
dp2 , the

primal problem (23) is convex. The second-order derivative of
Ji(p) is

d2Ji(p)

dp2
= 2λo

i

d

dp

∫
Oi(p)

zγdFZ,Γ,Θ,Mi
(z, γ, θ, µ)

+ (p− bϑ)λo
i

d2

dp2

∫
Oi(p)

zγdFZ,Γ,Θ,Mi
(z, γ, θ, µ).

The first term of d2Ji(p)
dp2 is always non-positive since Oi(p)

shrinks when p increases. Thus, d2Ji(p)
dp2 is bounded above if

the second term is bounded. Since p ≤ pth
i due to Lemma 2,

we show that the integral term is bounded above. Given p, we
first rewrite the offloading region by using (3) and (6):

Oi(p) =
{

(z, γ, θ, µ) ∈ R4
+ | (hi,1 − αip+ θhi,2)zγ

− (βi + θ)
z

µ
+ θwi(πi) ≥ 0

}
,

where hi,1 and hi,2 are user-dependent constants. Moreover,
we define

wi(πi) , E[wi,L(πi)]− E[wi,R(πi)]

=
((1− πi)λo

i + λc
i)E[s2

i,L]

2 (1− ((1− πi)λo
i + λc

i)E[si,L])

−
(πiλ

o
i + λnt

i)E[s2
i,R]

2 (1− (πiλ
o
i + λnt

i)E[si,R])
.

We derive the second-order derivative of∫
Oi(p)

zγdFZ,Γ,Θ,Mi
(z, γ, θ, µ) utilizing the Reynolds

transport theorem [49].

Lemma 4 (Reynolds Transport Theorem [49]). Let g(x, t) be
a function such that the partial derivative of g with respect to
t exists, and is continuous over region Ω(t). Then,

d

dt

[∫
Ω(t)

g(x, t)dV

]
=

∫
Ω(t)

∂

∂t
g(x, t)dV

+

∫
∂Ω(t)

(
vb · n

)
g(x, t)dA,

where ∂Ω(t) is the region boundary and dV and dA are
volume and surface elements at x. In addition, vb(x, t) is
the velocity of the area element and n(x, t) is the outward-
pointing normal, where vb · n represents their inner product.

Utilizing the Reynolds transport theorem, we have

d

dp

∫
Oi(p)

zγdFZ,Γ,Θ,Mi(z, γ, θ, µ) =∫
∂Oi(p)

zγ
(
vb1 · n1

)
fΓ(γ)dFZ,Θ,Mi

(z, θ, µ). (30)

The boundary region ∂Oi is defined by

(hi,1 − αip+ θhi,2)γz − (βi + θ)
z

µ
+ θwi(πi) = 0, (31)

according to which we obtain

γ(z, θ, µ, p) =
(βi + θ) zµ − θwi(πi)
(hi,1 − αip+ θhi,2)z

, (32)

∂Oi(p) = {(z, θ, µ) ∈ R3
+ | γ(z, θ, µ, p) ≥ 0}. (33)

Moreover, we have

vb1 =
∂

∂p
(z, γ, θ, µ) =

(
0,
∂γ

∂p
, 0, 0

)
, (34)

n1 =
∂

∂z
(z, γ, θ, µ)× ∂

∂θ
(z, γ, θ, µ)

=

(
1,
∂γ

∂z
, 0, 0

)
×
(

0,
∂γ

∂θ
, 1, 0

)
, (35)

where × denotes the cross product. By substituting (33)–(35)
into (30), we have

d

dp

∫
Oi(p)

zγdFZ,Γ,Θ,Mi(z, γ, θ, µ) =∫
∂Oi(p)

−zγ ∂γ
∂p
fΓ(γ)dFZ,Θ,Mi

(z, θ, µ), (36)

where FZ,Θ,Mi(z, θ, µ) is the joint cdf of random variables
z, θ, and µ. By following the same approach, we obtain the
second-order derivative of

∫
Oi(p)

zγdFZ,Γ,Θ,Mi
(z, γ, θ, µ) as

follows.

−
∫
∂Oi(p)

z
∂

∂p

(
γ
∂γ

∂p
fΓ(γ)

)
dFZ,Θ,Mi

(z, θ, µ)

−
∫
∂∂Oi(p)

zγ
(
vb2 · n2

)
fΓ(γ)fZ(z)dFΘ,Mi(θ, µ), (37)

where FΘ,Mi
(θ, µ) is the joint cdf of random variables θ and

µ and ∂∂Oi(p) is the region where γ(z, θ, µ, p) = 0, which
is equivalent to

∂∂Oi(p) =

{
(θ, µ) ∈ R2

+ | z(θ, µ, p) =
θµwi(πi)

βi + θ
≥ 0

}
.

(38)
In addition,

vb2 · n2 =

(
∂z

∂p
, 0, 0

)
·
(
∂z

∂θ
, 1, 0

)
=
∂z

∂p

∂z

∂θ
. (39)

According to (38), ∂z
∂θ > 0. Moreover, ∂z

∂p ≥ 0 since
∂wi

∂p = ∂wi

∂πi

∂πi

∂p ≥ 0. Therefore, the second term of (37) is
non-positive. In order to show that (37) is bounded above, it
is sufficient to prove that its first term is bounded above. We
rewrite the first term of (37) as follows.

−
∫
∂Oi(p)

zγ

(
γ
∂2γ

∂p2
fΓ(γ) + γ

∂γ

∂p
f ′Γ(γ)

)
dFZ,Θ,Mi(z, θ, µ)

−
∫
∂Oi(p)

z

(
∂γ

∂p

)2

fΓ(γ)dFZ,Θ,Mi
(z, θ, µ). (40)

We know that γ, ∂γ∂p , and ∂2γ
∂p2 approach infinity if the denom-

inator on the right hand side of (32) tends to 0. However, in

14 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. PP, NO. 99, MONTH 2017

this case, fΓ(γ) and f ′Γ(γ) are zero for infinite values of γ.
Moreover, since we assume that both the CPU and the wireless
interface queues are stable, dwi

dp = dwi

dπi

dπi

dp is bounded. Thus,
(40) is bounded above, which completes the proof.

REFERENCES

[1] K. Kumar and Y. H. Lu, “Cloud computing for mobile users: Can
offloading computation save energy?” Computer, vol. 43, no. 4, pp. 51–
56, Apr. 2010.

[2] C. Yong, X. Ma, H. Wan, and I. Stojmenovic, “A survey of energy effi-
cient wireless transmission and modeling in mobile cloud computing,”
Mobile Networks and Applications, vol. 18, no. 1, pp. 148–155, Apr.
2013.

[3] Y. Xu and S. Mao, “A survey of mobile cloud computing for rich media
applications,” IEEE Wireless Commun., vol. 20, no. 3, pp. 46–53, Jun.
2013.

[4] Z. Sanaei, S. Abolfazli, A. Gani, and R. Buyya, “Heterogeneity in mobile
cloud computing: Taxonomy and open challenges,” IEEE Communica-
tions Surveys & Tutorials, vol. 16, no. 1, pp. 369–392, First Quarter
2014.

[5] A. Khan, M. Othman, S. Madani, and S. Khan, “A survey of mobile
cloud computing application models,” IEEE Communications Surveys &
Tutorials, vol. 16, no. 1, pp. 393–413, First Quarter 2014.

[6] H. Flores, P. Hui, S. Tarkoma, Y. Li, S. Srirama, and R. Buyya, “Mobile
code offloading: From concept to practice and beyond,” IEEE Commun.
Mag., vol. 53, no. 3, pp. 80–88, Mar. 2015.

[7] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, “ThinkAir:
Dynamic resource allocation and parallel execution in the cloud for
mobile code offloading,” in Proc. of IEEE INFOCOM, Orlando, FL,
Mar. 2012.

[8] E. Cuervo, A. Balasubramanian, D.-K. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “MAUI: Making smartphones last longer
with code offload,” in Proc. of ACM Int’l Conf. on Mobile Systems,
Applications, and Services (MobiSys), San Francisco, CA, Jun. 2010.

[9] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “CloneCloud:
Elastic execution between mobile device and cloud,” in Proc. of ACM
Conf. on Computer Systems (EuroSys), Salzburg, Austria, Apr. 2011.

[10] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for
VM-based cloudlets in mobile computing,” IEEE Pervasive Computing,
vol. 8, no. 4, pp. 14–23, Oct. 2009.

[11] Cisco, “Cisco visual networking index (VNI) mobile forecast projects
nearly 10-fold global mobile data traffic growth over next five years,”
Feb. 2015. [Online]. Available: https://newsroom.cisco.com/press-
release-content?articleId=1578507

[12] M.-R. Ra, A. Sheth, L. Mummert, P. Pillai, D. Wetherall, and R. Govin-
dan, “Odessa: Enabling interactive perception applications on mobile
devices,” in Proc. of ACM MobiSys, Bethesda, ML, Jun. 2011.

[13] W. Zhang, Y. Wen, K. Guan, D. Kilper, H. Luo, and D. Wu, “Energy-
optimal mobile cloud computing under stochastic wireless channel,”
IEEE Trans. Wireless Commun., vol. 12, no. 9, pp. 4569–4581, Sept.
2013.

[14] S. Chen, Y. Wang, and M. Pedram, “A semi-Markovian decision process
based control method for offloading tasks from mobile devices to the
cloud,” in Proc. of IEEE GLOBECOM, Atlanta, GA, Dec. 2013.

[15] M. Jia, J. Cao, and L. Yang, “Heuristic offloading of concurrent tasks
for computation-intensive applications in mobile cloud computing,” in
Proc. of IEEE INFOCOM, Toronto, Canada, Apr. 2014.

[16] M. Nir, A. Matrawy, and M. St-Hilaire, “An energy optimizing scheduler
for mobile cloud computing environments,” in Proc. of IEEE INFO-
COM, Toronto, Canada, Apr. 2014.

[17] W. Zhang, Y. Wen, and D. O. Wu, “Collaborative task execution in
mobile cloud computing under a stochastic wireless channel,” IEEE
Trans. Wireless Comm., vol. 14, no. 1, pp. 81–93, Jan. 2015.

[18] W. Zhang and Y. Wen, “Energy-efficient task execution for application as
a general topology in mobile cloud computing,” accepted for publication
in IEEE Trans. Cloud Computing, 2015.

[19] J. Kwak, Y. Kim, J. Lee, and S. Chong, “DREAM: Dynamic resource
and task allocation for energy minimization in mobile cloud systems,”
IEEE J. Sel. Areas Commun., vol. 33, no. 12, pp. 2510–2523, Dec. 2015.

[20] Y. Kim, J. Kwak, and S. Chong, “Dual-side dynamic controls for cost
minimization in mobile cloud computing systems,” in Proc. of WiOpt,
Mumbai, India, May 2015.

[21] M.-H. Chen, B. Liang, and M. Dong, “Joint offloading decision and
resource allocation for multi-user multi-task mobile cloud,” in Proc. of
IEEE ICC, Kuala Lumpur, Malaysia, May 2016.

[22] H. Al-Shatri, S. Muller, and A. Klein, “Distributed algorithm for energy
efficient multi-hop computation offloading,” in Proc. of IEEE ICC, Kuala
Lumpur, Malaysia, May 2016.

[23] L. Tong and W. Gao, “Application-aware traffic scheduling for work-
load offloading in mobile clouds,” in Proc. of IEEE INFOCOM, San
Francisco, CA, Apr. 2016.

[24] S. Guo, B. Xiao, Y. Yang, and Y. Yang, “Energy-efficient dynamic
offloading and resource scheduling in mobile cloud computing,” in Proc.
of IEEE INFOCOM, San Francisco, CA, Apr. 2016.

[25] F. Liu, P. Shu, and J. C. S. Lui, “AppATP: An energy conserving adaptive
mobile-cloud transmission protocol,” IEEE Trans. Computers, vol. 64,
no. 11, pp. 3051–3063, Nov. 2015.

[26] T. Zhang, X. Zhang, F. Liu, H. Leng, Q. Yu, and G. Liang, “eTrain:
Making wasted energy useful by utilizing heartbeats for mobile data
transmissions,” in Proc. of IEEE Int’l Conf. on Distributed Computing
Systems (ICDCS), Columbus, OH, Jun. 2015.

[27] N. Tran, C. S. Hong, Z. Han, and S. Lee, “Optimal pricing effect
on equilibrium behaviors of delay-sensitive users in cognitive radio
networks,” IEEE J. Select. Areas Commun., vol. 31, no. 11, pp. 2566–
2579, Nov. 2013.

[28] H. Shah-Mansouri and V. W.S. Wong, “Profit maximization in mobile
crowdsourcing: A truthful auction mechanism,” in Proc. of IEEE ICC,
London, UK, Jun. 2015.

[29] B. Song, H. Shah-Mansouri, and V. W.S. Wong, “Quality of sensing
aware budget feasible mechanism for mobile crowdsensing,” accepted
for publication in IEEE Trans. Wireless Commun., 2016.

[30] K. Wang, F. C. M. Lau, L. Chen, and R. Schober, “Pricing mobile
data offloading: A distributed market framework,” IEEE Trans. Wireless
Commun., vol. 15, no. 2, pp. 913–927, Feb. 2016.

[31] H. Shah-Mansouri, V. W.S. Wong, and J. Huang, “An incentive frame-
work for mobile data offloading market under price competition,”
accepted for publication in IEEE Trans. Mobile Computing, 2017.

[32] I. Menache, A. Ozdaglar, and N. Shimkin, “Socially optimal pricing of
cloud computing resources,” in Proc. of ACM ICST Conf. on Perfor-
mance Evaluation Methodologies and Tools, Paris, France, May 2011.

[33] L. Zhang, Z. Li, and C. Wu, “Dynamic resource provisioning in
cloud computing: A randomized auction approach,” in Proc. of IEEE
INFOCOM, Toronto, Canada, Apr. 2014.

[34] X. Wang, X. Wang, H. Che, K. Li, M. Huang, and C. Gao, “An intelligent
economic approach for dynamic resource allocation in cloud services,”
IEEE Trans. Cloud Computing, vol. 3, no. 3, pp. 275–289, Jul. 2015.

[35] W. Shi, L. Zhang, C. Wu, Z. Li, and F. C. M. Lau, “An online auction
framework for dynamic resource provisioning in cloud computing,”
IEEE/ACM Trans. Networking, vol. 24, no. 4, pp. 2060–2073, Aug.
2016.

[36] G. V. Prasad, A. S. Prasad, and S. Rao, “A combinatorial auction
mechanism for multiple resource procurement in cloud computing,”
accepted for publication in IEEE Trans. Cloud Computing, 2016.

[37] Z. Guan and T. Melodia, “The value of cooperation: Minimizing user
costs in multi-broker mobile cloud computing networks,” accepted for
publication in IEEE Trans. Cloud Computing, 2015.

[38] H. Xu and B. Li, “Dynamic cloud pricing for revenue maximization,”
IEEE Trans. Cloud Computing, vol. 1, no. 2, pp. 158–171, Jul. 2013.

[39] W. Zhang, Y. Wen, and X. Zhang, “Towards virus scanning as a service
in mobile cloud computing: Energy-efficient dispatching policy under N-
version protection,” accepted for publication in IEEE Trans. on Emerging
Topics in Computing, 2016.

[40] M.-R. Ra, J. Paek, A. B. Sharma, R. Govindan, M. H. Krieger, and M. J.
Neely, “Energy-delay tradeoffs in smartphone applications,” in Proc. of
ACM MobiSys, San Francisco, CA, Jun. 2010.

[41] M. Andrews, A. F. Anta, L. Zhang, and W. Zhao, “Routing for energy
minimization in the speed scaling model,” in Proc. of IEEE INFOCOM,
San Diego, CA, Mar. 2010.

[42] J. Kwak, O. Choi, S. Chong, and P. Mohapatra, “Dynamic speed scaling
for energy minimization in delay-tolerant smartphone applications,” in
Proc. of IEEE INFOCOM, Toronto, Canada, Apr. 2014.

[43] D. P. Bertsekas and R. G. Gallager, Data Networks, 2nd ed. Prentice-
Hall Inc., 1992.

[44] D. P. Bertsekas, “Convexification procedures and decomposition meth-
ods for nonconvex optimization problems,” Journal of Optimization
Theory and Applications, vol. 29, no. 2, pp. 169–197, Oct. 1979.

[45] S. Boyd, “Convex Optimization I,” Lecture Notes. [Online]. Available:
http://web.stanford.edu/class/ee364a/index.html

[46] Y. Wang, M. Sheng, X. Wang, L. Wang, and J. Li, “Mobile-edge com-
puting: Partial computation offloading using dynamic voltage scaling,”
IEEE Trans. Commun., vol. 64, no. 10, pp. 4268–4282, Oct. 2016.

SHAH-MANSOURI et al.: JOINT OPTIMAL PRICING AND TASK SCHEDULING IN MOBILE CLOUD COMPUTING SYSTEMS 15

[47] U.S. Energy Information Administration, “Wholesale electricity
and natural gas market data,” Aug. 2016. [Online]. Available:
http://www.eia.gov/electricity/wholesale/

[48] Z. Liu, A. Wierman, Y. Chen, B. Razon, and N. Chen, “Data center
demand response: Avoiding the coincident peak via workload shifting
and local generation,” in Proc. of ACM SIGMETRICS, Pittsburgh, PA,
Jun. 2013.

[49] H. Flanders, “Differentiation under the integral sign,” The American
Mathematical Monthly, vol. 80, no. 6, pp. 615–627, Jun. 1973.

Hamed Shah-Mansouri (S’06, M’14) received the
B.Sc., M.Sc., and Ph.D. degrees (Hons.) from Sharif
University of Technology, Tehran, Iran, in 2005,
2007, and 2012, respectively all in electrical engi-
neering. From 2012 to 2013, he was with Parman
Co., Tehran, Iran. Currently, Dr. Shah-Mansouri is a
Post-doctoral Research and Teaching Fellow at the
University of British Columbia, Vancouver, Canada.
His research interests are in the area of stochastic
analysis, optimization and game theory and their
applications in economics of cellular networks and

mobile cloud computing systems. He has served as the publication co-chair
for the IEEE Canadian Conference on Electrical and Computer Engineering
(CCECE) 2016 and as the technical program committee (TPC) member for
several conferences including the IEEE Globecom’15, IEEE VTC–Fall (’16,
’17), and IEEE PIMRC’17.

Vincent W.S. Wong (S’94, M’00, SM’07, F’16) re-
ceived the B.Sc. degree from the University of Man-
itoba, Winnipeg, MB, Canada, in 1994, the M.A.Sc.
degree from the University of Waterloo, Waterloo,
ON, Canada, in 1996, and the Ph.D. degree from the
University of British Columbia (UBC), Vancouver,
BC, Canada, in 2000. From 2000 to 2001, he worked
as a systems engineer at PMC-Sierra Inc. (now
Microsemi). He joined the Department of Electrical
and Computer Engineering at UBC in 2002 and
is currently a Professor. His research areas include

protocol design, optimization, and resource management of communication
networks, with applications to wireless networks, smart grid, mobile cloud
computing, and Internet of Things. Dr. Wong is an Editor of the IEEE
TRANSACTIONS ON COMMUNICATIONS. He has served as a Guest Editor
of IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS and IEEE
WIRELESS COMMUNICATIONS. He has also served on the editorial boards
of IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY and Journal of
Communications and Networks. He was a Technical Program Co-chair of
IEEE SmartGridComm’14, as well as a Symposium Co-chair of IEEE
SmartGridComm (’13, ’17) and IEEE Globecom’13. He is the Chair of
the IEEE Communications Society Emerging Technical Sub-Committee on
Smart Grid Communications and the IEEE Vancouver Joint Communications
Chapter. He received the 2014 UBC Killam Faculty Research Fellowship.

Robert Schober (S’98, M’01, SM’08, F’10) was
born in Neuendettelsau, Germany, in 1971. He re-
ceived the Diplom (Univ.) and the Ph.D. degrees
in electrical engineering from Friedrich-Alexander
Universität Erlangen-Nürnberg (FAU), Erlangen,
Germany, in 1997 and 2000, respectively. From
2001 to 2002, he was a Post-Doctoral Fellow with
the University of Toronto, Canada, sponsored by
the German Academic Exchange Service (DAAD).
From 2002 to 2011, he was a Professor and Canada
Research Chair with The University of British

Columbia (UBC), Vancouver, Canada. Since 2012, he has been an Alexander
von Humboldt Professor and the Chair for Digital Communication with the
FAU. His research interests include the broad areas of communication theory,
wireless communications, and statistical signal processing.

Dr. Schober is a fellow of the Canadian Academy of Engineering and
a fellow of the Engineering Institute of Canada. From 2012 to 2015, he
served as an Editor-in-Chief of the IEEE TRANSACTIONS ON COMMUNI-
CATIONS and since 2014, he is the Chair of the Steering Committee of the
IEEE TRANSACTIONS ON MOLECULAR, BIOLOGICAL, AND MULTISCALE
COMMUNICATIONS. Furthermore, he is a member-at-large of the Board of
Governors of the IEEE Communications Society. He has received several
awards for his work, including the 2002 Heinz MaierLeibnitz Award of
the German Science Foundation (DFG), the 2004 Innovations Award of the
Vodafone Foundation for Research in Mobile Communications, the 2006 UBC
Killam Research Prize, the 2007 Wilhelm Friedrich Bessel Research Award of
the Alexander von Humboldt Foundation, the 2008 Charles McDowell Award
for Excellence in Research from UBC, a 2011 Alexander von Humboldt
Professorship, and a 2012 NSERC E.W.R. Steacie Fellowship. In addition,
he has received several best paper awards for his research.

