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Abstract—Fog computing, which provides low–latency comput-
ing services at the network edge, is an enabler for the emerging
Internet of Things (IoT) systems. In this paper, we study the
allocation of fog computing resources to the IoT users in a
hierarchical computing paradigm including fog and remote cloud
computing services. We formulate a computation offloading game
to model the competition between IoT users and allocate the
limited processing power of fog nodes efficiently. Each user aims
to maximize its own quality of experience (QoE), which reflects its
satisfaction of using computing services in terms of the reduction
in computation energy and delay. Utilizing a potential game
approach, we prove the existence of a pure Nash equilibrium and
provide an upper bound for the price of anarchy. Since the time
complexity to reach the equilibrium increases exponentially in the
number of users, we further propose a near–optimal resource
allocation mechanism and prove that in a system with N IoT
users, it can achieve an ε-Nash equilibrium in O(N/ε) time.
Through numerical studies, we evaluate the users’ QoE as well
as the equilibrium efficiency. Our results reveal that by utilizing
the proposed mechanism, more users benefit from computing
services in comparison to an existing offloading mechanism. We
further show that our proposed mechanism significantly reduces
the computation delay and enables low–latency fog computing
services for delay–sensitive IoT applications.

Index Terms—Computation offloading, fog computing, Internet
of Things, potential games.

I. INTRODUCTION

A. Background and Related Work
Fog computing provides cloud services at the edge of the

network where data is generated [1]. Fog computing services
are promising to alleviate the challenges that Internet of Things
(IoT) systems face due to the tremendous growth of IoT
devices and applications [2], [3]. Fog computing not only
reduces the backbone traffic to be sent to the cloud, but
also improves the latency for delay–sensitive IoT applica-
tions by reducing the relatively long delay of remote cloud
computing. These result in enhanced user–experience [4], [5].
Nonetheless, efficient allocation of fog computing resources is
challenging due to the limited processing power of fog nodes
and rapid development of computation–intensive applications.

Powerful computing resources are required to support the
growing demand of IoT applications with heterogeneous qual-
ity of service (QoS) requirements [6]. However, the IoT
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devices usually suffer from limited processing power. Task
offloading to either fog nodes or remote cloud servers can
alleviate this issue. IoT devices equipped with multi–radio
access technology (multi–RAT) can connect to different fog
nodes or remote cloud servers. Each IoT device may select a
different fog node or remote cloud server to offload its tasks
while guaranteeing the QoS requirement of its applications.
To enable fog computing in IoT systems, a resource allocation
mechanism is crucial to efficiently allocate the fog computing
resources to the IoT devices.

Task offloading in fog computing has received much at-
tention in recent years due to the growing development of
IoT systems. Optimal allocation of offloaded workload in fog-
cloud computing is studied in [7]. The objective is to minimize
the power consumption of fog nodes and cloud servers when
meeting the delay constraints of different IoT applications. An
online job dispatching and scheduling mechanism is proposed
in [8] that aims to minimize the total weighted response time
over all the jobs. The weight is set based on the latency
sensitivity of each job. A distributed mechanism for the
allocation of fog computing resources is proposed in [9] that
aims to minimize the response time of fog nodes under a given
power efficiency constraint. This mechanism determines the
portion of the computation workload of each fog node that
should be offloaded to the remote cloud servers. To provide fog
computing services, the formation of fog networks is studied
in [10]. An online framework that enables the fog nodes to
form a network of computing resources is proposed with the
goal of minimizing the maximum delay of all computation
tasks generated by all users within the network. A latency-
constrained resource allocation mechanism is proposed in [11]
when a fog network provides computing services and is able
to cache the popular computation tasks. The objective of the
proposed mechanism is to minimize the aggregate delay of
all tasks. A hybrid computation task offloading mechanism
is proposed in [12], where the users’ devices form the fog
network. Each device may offload its computation tasks to
nearby devices through device–to–device communication. The
proposed mechanism aims to minimize the overall cost of
all users using a centralized graph matching technique. A
framework to enable developers and users to manage an IoT
infrastructure is developed in [13]. This framework realizes the
applications of IoT in smart cities. In [14], we also studied
the computation task offloading in mobile cloud computing
systems where only the remote cloud computing services
are available. We proposed a joint optimal pricing and task
scheduling algorithm for mobile devices with the objective of
maximizing the utility of the users and the profit of the cloud
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service operator.
Similar to fog computing, mobile edge computing (MEC)

enables the computing services at the edge of wireless cellular
networks and is promising for the fifth generation (5G) wire-
less systems [15]. In MEC, the computing servers are located
within the radio access networks of cellular systems. Hence,
unlike fog computing, the computation offloading is managed
and controlled by the network operators. Computation task
offloading in MEC has also been widely studied in recent
years. Optimal offloading decisions of computation tasks are
obtained in [16] by jointly allocating communication and
computing resources. The objective is to minimize the overall
cost of energy, computation, and delay for all mobile users.
An efficient multi–user computation offloading mechanism
is proposed in [17] that aims to minimize the cost of each
mobile user individually. The mechanism allocates a wireless
channel to each offloaded computation task assuming that
there are sufficient computing resources at the network edge.
The offloading decisions are made by a centralized controller
located in the cellular base station.

B. Motivation and Contributions

The existing works [7]–[12] studied the computation task
offloading in fog computing by considering different ob-
jectives. However, they focused on optimizing the overall
performance of the system (e.g., minimizing the total cost of
the IoT system as in [7], [12] or minimizing the aggregate
delay as in [8]–[11]). Nevertheless, selfish IoT users are
interested in optimizing their own quality of experience (QoE)
individually, which reflects their level of satisfactions of using
computing services. They may not follow the strategies that
aim to optimize the overall system performance and compete
against each other for the limited fog computing resources.
Thus, it is important to consider this competition in order to
enable fog computing in real–world IoT systems.

In this paper, we propose an allocation mechanism for fog
computing resources in IoT systems. Our goal is to determine
the offloading decision for each task arriving to the IoT users,
where each user is interested in maximizing its own QoE. Each
user equipped with multi-RAT is able to offload its tasks to
either different fog nodes or remote cloud servers. The limited
processing power of each fog node results in competition
among the IoT users when they intend to offload their tasks to
a fog node. We first use a processor sharing method to allocate
the computing resources of fog nodes and manage their limited
resources. We then adopt a game theoretic approach to model
the competition among IoT users.

In summary, the key contributions of this paper are as
follows:
• QoE maximization framework: We formulate a QoE max-

imization problem for each user to determine its compu-
tation offloading decision. The QoE is the reduction1 in
the computation energy and delay obtained by offloading

1Note that the computation energy or delay may increase when offloading
the computation tasks. In the case that both computation energy and time
are reduced, the users offload their tasks to the computing servers. The users
perform their tasks locally if they are both increased.

the task to the fog nodes or remote cloud servers. Hence,
it reflects the satisfaction of using computing services.

• Game formulation: We model the competition among IoT
users as a potential game to determine the computation
offloading decisions of all users. We analyze the proper-
ties of the formulated game and show the existence of a
pure Nash equilibrium (NE). We further prove that the
NE can be obtained in finite time. However, the time
complexity to reach the NE may increase exponentially
with the number of IoT users.

• Equilibrium efficiency: We prove that the price of anarchy
(PoA), which reflects the equilibrium efficiency loss, is
bounded. Thus, the degradation of the social cost due
to the strategic behavior of players is no worse than
a constant. We also investigate the efficiency of the
equilibrium through numerical experiments and show that
the proposed algorithm is able to achieve a close-to-
optimal social cost.

• Near–optimal resource allocation: To address the time
complexity of determining the equilibrium, we propose
a near–optimal resource allocation algorithm. We also
prove that for an IoT system with N users, the proposed
algorithm can achieve an ε-Nash equilibrium in O(N/ε)
steps, which is polynomial in N .

• Performance evaluation: We investigate the performance
of the proposed resource allocation algorithm through
extensive numerical experiments. We first study the users’
QoE obtained at the equilibrium. Our results show that
by utilizing the proposed algorithm, the IoT users can
obtain a higher QoE. In particular, for delay-sensitive
applications, the existence of fog nodes in the close
proximity of users reduces the computation time by up to
70%. We further compare our algorithm with an existing
job dispatching and allocation mechanism proposed in
[8]. Results show that up to 20% more IoT users benefit
from computing services when our proposed algorithm is
used in comparison to that of [8].

This paper is organized as follows. In Section II, we
introduce the system model. We formulate the potential game
in Section III, prove the existence of an equilibrium, and
develop an algorithm that can achieve the NE. We also provide
an upper bound for the PoA. In Section IV, we extend our
framework and propose a near–optimal resource allocation
mechanism and prove that it achieves an ε-Nash equilibrium.
We evaluate the performance of our framework through exten-
sive simulations in Section V. Finally, we conclude in Section
VI.

II. SYSTEM MODEL

We consider an IoT system with a hierarchical computing
structure and a set of IoT users. Each IoT user may either
perform its tasks locally or offload them to the computing
servers. The computing servers include a set of fog nodes and
the remote cloud servers. Fog nodes can provide computing
services to the IoT users in their close proximity. Fig. 1
illustrates an instant of such IoT system.
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Fig. 1. An IoT system consists of IoT users, fog nodes, and the remote
cloud servers. The IoT users may offload their computation tasks to either
fog nodes which are located in close proximity or remote cloud servers via
access points.

A. Hierarchical Computing Structure

We assume that there are S fog nodes in the system
where {1, . . . , S} denotes the set of these fog nodes. We
further denote the set of all computing servers available in
the hierarchical computing structure as S = {0, 1, . . . , S},
where 0 represents the remote cloud servers and is used to
model all remote cloud servers that IoT users can use for their
computation task offloading. We assume that the remote cloud
servers have sufficient computing resources. We model each
cloud server as a virtual machine with dedicated processing
power f0, which denotes the processing capacity of the server
in cycles per time unit. Without loss of generality, we assume
that all remote cloud servers have the same processing power.

Unlike the remote cloud servers, fog nodes have limited
processing power. We model the computing resource of each
fog node s = 1, . . . , S as a virtual machine with processing
power fs. The processing power of each fog node is equally
shared among the applications of IoT users offloaded to the fog
node. Notice that the fog nodes cannot prioritize applications
of an IoT user as all users are selfish and only follow the
strategic behaviors that maximize their own QoE.

B. IoT Users and Computation Task Models

We consider that there are N IoT users denoted by the set
N = {1, . . . , N}.2 Each IoT user n ∈ N has a computation
task Tn = (zn, γn), where zn is the size of task in bits.
Furthermore, γn is the processing density in cycles per bit,
which is the number of cycles required to process a unit bit
of data. The processing density of each task depends on the
application type and is known to the user upon arrival of the
task. Each IoT user may perform its task locally or offload it to
the computing servers. The computing server can either be one
of the fog nodes in close proximity or belong to the remote
cloud. Although each IoT user is equipped with multi-RAT
and may have access to more than one computing server, each
computation task should either be served entirely by the IoT

2We assume that IoT users are static. To support the mobility of users,
a handover mechanism is required to manage the connections between IoT
devices and fog nodes as well as data migration between fog nodes. We leave
this extension as future work.

device of the user or be offloaded to one computing server. We
define the offloading indicator an,s ∈ {0, 1} for each IoT user
n ∈ N and computing server s ∈ S, where an,s = 1 indicates
that the task Tn from IoT user n is offloaded to the server s.
Otherwise, if an,s = 0 for all s ∈ S, then task Tn is performed
locally by the user. We also define the offloading vector of
user n ∈ N as an = (an,0, . . . , an,S). Since each task n can
be offloaded to at most one server, we have

∑
s∈S an,s ≤ 1.

We further introduce constant bn,s ∈ {0, 1} for each n ∈ N
and s ∈ S, which represents the connectivity of user n to
computing server s. If bn,s = 1, then user n is able to offload
its task to the server s. Otherwise, if user n is not in close
proximity of fog node s and cannot connect to it, we have
bn,s = 0 to exclude s from the feasible strategy space of user
n. We restrict the offloading indicator to take the connectivity
model into account and ensure that an,s ≤ bn,s for all n ∈ N
and s ∈ S.

We now introduce the QoE of IoT users when performing
the computation tasks. The QoE reflects the benefits an IoT
user received by offloading its tasks to the computing servers.
We define the QoE as the cost reduction achieved from
computation offloading, where the cost of performing a task
consists of the computation energy and computation delay. We
first determine the cost of performing a task in both local and
fog–cloud computing cases.

Case 1. Local Computing: The computation energy for per-
forming a task of size zn and processing density γn locally in
IoT device n is αnznγn/fn, where fn denotes the processing
power of IoT device n and αn is a user–dependent constant.
The constant αn depends on the type of CPU. The same model
of energy consumption is used in [18]–[20]. Furthermore, the
time required to process the task is znγn/fn. We define the
cost of performing the task Tn = (zn, γn) locally as follows:

cL
n , λ

E
nαn

znγn
fn

+ λT
n

znγn
fn

, (1)

where λE
n, λ

T
n denote the constant weights of computation

energy and computation time, respectively. We assume that
λE
n ∈ [0, 1], while λT

n ∈ (0, 1] to avoid the case that a task
experiences a huge delay. These parameters depend on the IoT
users and the type of application. For example, for a delay–
sensitive application, the IoT users may set λT

n = 1, λE
n = 0.

Case 2. Fog–Cloud Computing: In this case, an IoT user
offloads its computation task to either a fog node in close
proximity or the remote cloud server. The task will be sub-
mitted to the computing server via the user’s wireless interface.
We assume that for each user n and computing server s, at
most one wireless interface is used as indicated by constant
bn,s. For IoT user n, we denote the energy required to offload
the task to computing server s as βn,szn/rn,s, where rn,s is
the data rate of the wireless interface transmitting the task to
the computing server s and constant βn,s depends on the type
of the wireless interface. Similar to [8], [17], we assume that
the transmission rate can be obtained by measurement and is
known to the user. For an offloaded task, the delay consists
of the time to dispatch the task to the allocated computing
server and the computation time required to complete the task
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on the server. The former includes the transmission time of
the wireless interface, which is zn/rn,s, and the roundtrip
delay between the IoT device and the server. The roundtrip
delay to access fog nodes may be negligible as we assume
that the IoT users are directly connected to the fog nodes,
while dispatching the tasks to the remote cloud servers may
impose a long roundtrip delay. We denote the roundtrip delay
between IoT device n and computing server s as drt

n,s.
We now determine the computation time each offloaded task

spends in the computing servers. Let matrix A−n denote the
offloading strategies of all IoT users excluding user n. Each
row of A−n represents the offloading vector of a user. We
define dc

n,s (A−n) as the computation time required to process
task Tn in server s, when the task is being offloaded. Similar
to other existing works (e.g., [7], [9], [16], [17]), we focus on
a particular time instant and allocate the computing services
to the jobs arrived at the system.3 We further assume that the
processing power of fog nodes is equally shared among the
workload that is arrived from IoT users and is under processing
in the fog nodes. We now determine the computation time each
task Tn spends in fog nodes. For fog node s ∈ S\{0} and task
Tn, n ∈ N , if it is the only task in the server (i.e., am,s = 0
for all m ∈ N \{n}), the processing power of the fog node is
assigned to this task and it takes dc

n,s = znγn/fs to process
the task. The computation time may increase when other IoT
users are allocated to this server. If there are more tasks other
than Tn arrived at the fog node, the processing power of the fog
node is equally shared among them. The number of these tasks
including task Tn is 1 +

∑
m∈N\{n} am,s. Let us assume task

Tn is the smallest task, i.e., znγn < zmγm for all m ∈ N\{n}.
In this case, the computation time required to process this task
is:

znγn
fs

1 +
∑

m∈N\{n}

am,s

 ,

as the processing power of the fog node is equally shared
among the offloaded tasks. However, smaller tasks depart the
server sooner as they require less processing power. Once a
task leaves the server, we reassign the processing power to
other tasks which are still under processing. Therefore, the
computation time of task Tn offloaded to fog node s ∈ S\{0}
is

dc
n,s (A−n) =

znγn
fs

1 +
∑

m∈N\{n}

min

{
zmγm
znγn

, 1

}
am,s

 .

(2)
Notice that min{zmγm/znγn, 1} = 1 when zmγm > znγn.
Otherwise, this term is equal to zmγm/znγn < 1, which states
that task Tm leaves the fog node earlier than task Tn. Given
A−n as the offloading strategies of IoT users except user n,
the second term of dc

n,s (A−n) determines how the other tasks
offloaded to server s prolong the computation time of task Tn.

3An online mechanism design can address the arbitrary arrival of jobs and
we will leave this extension as future work.

The computation time spent in the remote cloud servers can
also be determined as follows as we assume that they have
sufficient processing power.

dc
n,0 (A−n) =

znγn
f0

. (3)

The cost imposed to IoT user n when offloading the task
Tn is:

cC
n (an,A−n) , λE

n

∑
s∈S

an,s
βn,szn
rn,s

+ λT
n

∑
s∈S

an,s

(
zn
rn,s

+ drt
n,s + dc

n,s (A−n)

)
.

(4)

We further define the QoE as the amount of cost re-
duction achieved by the user when offloading its task. Let
qn (an,A−n) denote the user n’s QoE given offloading vector
an and matrix A−n. We have

qn (an,A−n) =

{
cL
n − cC

n (an,A−n) , if
∑
s∈S an,s = 1

0, otherwise,
(5)

where cL
n and cC

n (an,A−n) are given in (1) and (4), respec-
tively. Note that when

∑
s∈S an,s = 1, the task is offloaded

and the user’s QoE is the cost of local computing minus the
cost imposed by offloading the task. Otherwise, the QoE is
zero as the task is performed locally.

III. COMPUTATION OFFLOADING GAME

In this section, we formulate the interactions between the
IoT users as a strategic game and propose an algorithm that
can obtain the NE. We further analyze the PoA for this game.

A. Game Formulation

We formally define game G ,
(
N ,
∏
n∈N An, {qn}n∈N

)
,

where N is the set of players and An is the feasible strategy
space of player n such that an ∈ An. Furthermore, qn is the
player n’s QoE, which represents its payoff achieved from
using computing services.

Each IoT user aims to maximize its own QoE in response
to the other users’ strategies. To obtain the strategies of all IoT
users, we first introduce the concept of best response strategy.

Definition 1 (Best Response Strategy [21]). Given A−n as
the strategies of all players excluding player n, player n’s best
response strategy is:

a∗n = arg max
an

qn (an,A−n) (6a)

subject to
∑
s∈S

an,s ≤ 1, (6b)

an,s ≤ bn,s, ∀s ∈ S, (6c)
an,s ∈ {0, 1}, ∀s ∈ S, (6d)

which represents the choice of an that maximizes the player
n’s QoE.

In QoE maximization problem (6), constraint (6b) is intro-
duced to guarantee that each task can be offloaded to at most
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one computing server. Constraint (6c) ensures that offloading
to computing server s is possible if there is a wireless link
connecting user n to server s. The feasible region of problem
(6) represents the feasible strategy space of player n, which
is denoted as An.

Utilizing Definition 1, we now introduce the NE as follows.

Definition 2 (Nash Equilibrium [21]). An offloading strategy
profile {a∗n}n∈N is an NE of Game G if it is a fixed point of
best responses, i.e., for all a′n ∈ An, n ∈ N

qn
(
a∗n,A

∗
−n
)
≥ qn

(
a′n,A

∗
−n
)
.

According to Definition 2, no player has an incentive to
deviate unilaterally from the NE as the player cannot further
improve its QoE by following a different strategy than the
equilibrium.

We now show that there exists an NE for Game G. To obtain
the NE, we use the potential games [22], [23] and introduce
the weighted potential game as follows.

Definition 3 (Weighted Potential Game). Let w = (wn)n∈N
denote a vector of positive numbers. A game is called a
weighted potential game if it admits a w–potential function
P such that for every player n ∈ N and offloading vectors
an,a

′
n ∈ An,

qn (an,A−n)− qn (a′n,A−n) =

wn (P (an,A−n)− P (a′n,A−n)) .

In a weighted potential game, each player n is associated
with a positive weight as denoted by wn. To formulate the
potential game, we first define the function Q (A) as the
weighted aggregate QoE of all users.

Q (A) ,
∑
n∈N

1

λT
n

qn (an,A−n) , (7)

where A = (an,A−n). We further define the function Q̄ (A)
as the weighted aggregate QoE of all users if each user is
alone in the game.

Q̄ (A) ,
∑
n∈N

1

λT
n

qn (an,0) , (8)

where 0 = (0)(N−1)×|S| is an all zero (N − 1)× |S| matrix.
In the following theorem, we introduce a w–potential function
and show that it satisfies the condition of Definition 3.

Theorem 1. Given vector w =
(
λT
n

)
n∈N , the following

function is a w–potential function and game G is a weighted
potential game.

P (A) ,
Q (A) + Q̄ (A)

2
. (9)

Proof. We prove Theorem 1 when we show that the potential
function introduced in this theorem is a w–weighted potential
function satisfying the condition of Definition 3. To facilitate
the analysis, we define ρn,s,m ,

znγn
fs

min
{
zmγm
znγn

, 1
}

. We
first form

P (an, A−n)− P (a′n,A−n)

=
Q (an,A−n)−Q (a′n,A−n)

2
+
Q̄ (an,0)− Q̄ (a′n,0)

2

=
∑
n∈N

1

2λT
n

(qn (an,A−n)− qn (a′n,A−n))

+
1

2λT
n

(qn (an,0)− qn (a′n,0))

= −
∑
s∈S

(an,s − a′n,s)
λE
n

λT
n

βn,szn
rn,s

−
∑
s∈S

(an,s − a′n,s)
(
znγn
fs

+
zn
rn,s

+ drt
n,s

)
− 1

2

∑
m∈N\{n}

∑
s∈S

(an,s − a′n,s)am,sρn,s,m

− 1

2

∑
m∈N\{n}

∑
s∈S

am,s(an,s − a′n,s)ρm,s,n

(a)
= − λE

n

λT
n

∑
s∈S

(an,s − a′n,s)
βn,szn
rn,s

−
∑
s∈S

(an,s − a′n,s)
(
zn
rn,s

+ drt
n,s + dc

n,s (A−n)

)
=

1

λT
n

(qn (an,A−n)− qn (a′n,A−n)) ,

where (a) is obtained based on the fact that ρn,s,m = ρm,s,n
for all n,m ∈ N and s ∈ S. Notice that

znγn
fs

min

{
zmγm
znγn

, 1

}
=
zmγm
fs

min

{
znγn
zmγm

, 1

}
.

Therefore, the introduced function is a w–potential function
with weights wn = λT

n for all n ∈ N . Accordingly, we
conclude that Game G is a weighted potential game. �

In the following lemma, we now show that there exists a
pure NE in Game G.

Lemma 1. Every finite potential game possesses a pure-
strategy NE and has the finite improvement property.

The proof of Lemma 1 can be found in [22]. Lemma 1
states that there exists an NE for every potential game with
finite strategy space of players. This further implies that any
algorithm that updates the players’ strategies and improves
their QoE is guaranteed to reach an NE in finite time. Utilizing
this lemma, we now propose a best response algorithm as
illustrated in Algorithm 1.

In Algorithm 1, we update the best response strategy of
IoT user n in an iterative manner. In each iteration, the
user determines its best strategy in response to other users’
strategies by solving problem (6). Note that user n only needs
to know the value of computation delay dn,s (A−n) for fog
nodes s in close proximity. Each fog node can measure this
delay and reports to the IoT users in its close proximity.
According to Definition 2, the fixed point of best response
strategies of all users is the NE of Game G if the best response
algorithm converges. Let aNE

n denote the equilibrium strategy
of user n. Algorithm 1 converges to aNE

n in finite time as stated
in Lemma 1. However, the time of convergence increases
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Algorithm 1: Best Response Adaptation for an IoT
user n.

1 initialization: t← 0, and a
∗(0)
n

2 do
3 t← t+ 1
4 User n collects dn,s (A−n) from fog nodes.
5 User n updates its best response strategy

a∗(t)n ← argmax
an

qn (an,A−n)

subject to (6b)− (6d),

and submits it to the neighboring fog nodes.
while a

∗(t)
n 6= a

∗(t−1)
n

6 output: aNE
n ← a

∗(t)
n

exponentially with the number of IoT users N and is O(2NS)
in the worst case.

B. Price of Anarchy (PoA)

We have so far shown that Game G possesses at least an
NE, which can be obtained using Algorithm 1. We now study
an important performance metric of strategic games to answer
the following question. How far is the overall performance
of an NE from the socially optimal allocation? We use the
PoA to quantify this difference. In a strategic game, the PoA
illustrates how the social cost degrades due to players’ selfish
behaviors. To facilitate the analysis of PoA, we resort to the
IoT users’ cost minimization framework as it admits the same
equilibrium as the QoE maximization framework. We define
the cost of user n ∈ N as

cn (an,A−n) =

{
cC
n (an,A−n) , if

∑
s∈S an,s = 1

cL
n, otherwise.

(10)
The PoA is defined as the ratio between the worst social cost
obtained in an NE and the optimal centralized solution of the
social cost minimization problem. In a strategic game, the PoA
illustrates how the social cost increases due to players’ selfish
behaviors.

The social cost is defined as the aggregate cost of all IoT
users as follows.

Φ (A) ,
∑
n∈N

cn (an,A−n) . (11)

The PoA can then be obtained as

PoA =
maxA∈ANE Φ (A)

minimize
A∈A

Φ (A)
, (12)

where A =
∏
n∈N An is the strategy space of all users and

ANE is the set of all equilibria.
In the following theorem, we provide an upper bound for

the PoA of the NE in Game G and show that it is no worse
than a constant.

Theorem 2. The PoA of the computation offloading game G
is no worse than

min

{
Ns,

∑
n∈N c

L
n∑

n∈N minan∈An
cn (an,0)

}
,

where Ns denotes the maximum number of IoT users allocated
to a fog node and 0 is an all zero (N − 1)× |S| matrix.

Proof. We first show that PoA is no larger than Ns, which is
the maximum number of IoT users allocated to a fog node.
Notice that Ns is much less than the number of users and
hence it is a tight bound for the PoA. From Definition 2, we
know that for any user n ∈ N at the equilibrium, we have

cn
(
aNE
n ,ANE

−n
)
≤ cn

(
aS
n,A

NE
−n
)
, (13)

where aS
n denotes the socially optimal strategy of user n. For

the user n’s strategy, we consider two cases of local task
execution and offloading. For the case of task offloading, we
have

cn
(
aS
n,A

NE
−n
)

= cC
n

(
aS
n,A

NE
−n
)

= λE
n

∑
s∈S

aS
n,s

βn,szn
rn,s

+ λT
n

∑
s∈S

aS
n,s

(
zn
rn,s

+ drt
n,s

)
+ λT

n

∑
s∈S

aS
n,sd

c
n,s

(
ANE
−n
)
.

Notice that in cC
n

(
aS
n,A

NE
−n
)
, only the last term depends on the

strategies of other players (i.e., ANE
−n). If other users change

their strategies from ANE
−n to the socially optimal strategy

AS
−n, dc

n,s

(
ANE
−n
)

will be increased by at most Ns times.
Therefore, for the last term of cC

n

(
aS
n,A

NE
−n
)
, we have∑

s∈S
aS
n,sd

c
n,s

(
ANE
−n
)
≤ Ns

∑
s∈S

aS
n,sd

c
n,s

(
AS
−n
)
. (14)

Hence, in this case,

cn
(
aS
n,A

NE
−n
)
≤ Nscn

(
aS
n,A

S
−n
)
.

We also know that the above inequality holds for the case of
local computing as cL

n ≤ Nsc
L
n. Thus, for any NE strategy

including the worst equilibrium, we have

cn
(
aNE
n ,ANE

−n
)
≤ Nscn

(
aS
n,A

S
−n
)
, ∀n ∈ N .

We now conclude that PoA is always less than or equal to Ns.
We further show that the PoA is also no larger than the

second term presented in Theorem 2. We show that if all users
choose local task execution in an NE, that equilibrium is the
worst one. In other words, that equilibrium results in a higher
social cost than all other equilibria. In this case, the maximum
social cost is

∑
n∈N c

L
n. By contradiction, we assume that

there exists an NE in which the social cost is higher than∑
n∈N c

L
n. Therefore, there should be at least one user n such

that cn
(
aNE
n ,ANE

−n
)
> cL

n. However, according to Definition 2,
this user has a positive incentive to move from the equilibrium
and choose the local execution as it imposes less cost. Thus, if
there is an NE in which all users choose the local execution,
it is the worst equilibrium and we can conclude that

max
A∈ANE

Φ (A) ≤
∑
n∈N

cL
n.

We now focus on the minimum social cost and derive a
lower bound. Let aS

n denote the strategy of user n when



SHAH-MANSOURI et al.: HIERARCHICAL FOG-CLOUD COMPUTING FOR IOT SYSTEMS: A COMPUTATION OFFLOADING GAME 7

Algorithm 2: ε-Better Response Adaptation for an IoT
user n.

1 input: ε
2 initialization: t← 0, Bn ← An, and a

(0)
n

3 while Bn 6= ∅
4 User n submits its better response strategy a

(t)
n to

the neighboring fog nodes.
5 User n collects dn,s (A−n) from fog nodes.
6 User n obtains a set of better response strategies

Bn ={
an ∈ An| qn (an,A−n)− qn

(
a
(t)
n ,A−n

)
> ε
}

7 User n chooses a
(t+1)
n from set Bn and updates its

strategy
8 t← t+ 1
9 end

10 output: aεn ← a
(t)
n

minimizing the social cost. A lower bound of the cost of each
user can be obtained when there is no competition with other
users. Therefore,

cn
(
aS
n,A

S
−n
)
≥ cn

(
aS
n,0
)

≥ min
an∈An

cn (an,0) ,

which completes the proof. �

IV. NEAR–OPTIMAL RESOURCE ALLOCATION
MECHANISM

To address the time complexity of the best response algo-
rithm presented in Section III, in this section, we propose a
near-optimal resource allocation algorithm that terminates in
polynomial time. We develop the algorithm by using a better
response approach and show that it can achieve a near NE
solution and approximately satisfies the NE condition. We first
define the concept of ε-Nash equilibrium.

Definition 4 (ε-Nash Equilibrium [21]). An offloading strat-
egy profile {aεn}n∈N is an ε-Nash equilibrium of Game G if
for all an ∈ An, n ∈ N

qn
(
aεn,A

ε
−n
)
≥ qn

(
an,A

ε
−n
)
− ε.

In an NE, no player has an incentive to change its strat-
egy. However, in an ε-Nash equilibrium, this requirement is
weakened to allow the possibility that a player may have a
small bounded incentive to deviate from NE. The player cannot
expect to increase its payoff (i.e., QoE) by more than ε.

We now develop an algorithm that can achieve an ε-Nash
equilibrium. In this algorithm, each player updates its strategy
to a better response strategy rather than its best response
strategy. Given a constant ε, if there exists a strategy which
improves the player’s QoE by more than ε, the player updates
its strategy to one such strategy. Otherwise, the player does not
change its strategy assuming that it has reached near an NE.
Algorithm 2 illustrates our proposed better response algorithm
for IoT user n.

In Algorithm 2, for each IoT user, we update its strategy
to a better one which improves the user’s QoE by more than

ε. Set Bn shows all feasible better strategies that user n can
follow. Once this set is empty, we terminate the algorithm as
there is no such strategy. In the following theorem, we show
that Algorithm 2 can achieve the ε-Nash equilibrium with a
polynomial time complexity.

Theorem 3. For any given ε > 0, the better response algo-
rithm illustrated in Algorithm 2 reaches the ε-Nash equilibrium
in O(N/ε) steps.

Proof. According to Definition 4, the equilibrium obtained by
Algorithm 2 is an ε-Nash equilibrium as the user incentive
obtained by deviating from the equilibrium is at most ε. We
now prove that the time complexity of the algorithm is at most
O(N/ε). In each iteration t, user n improves its QoE by at
least ε. Thus,

qn

(
a(t)n ,A−n

)
− qn

(
a(t−1)n ,A−n

)
> ε.

Since Game G is a weighted potential game as stated in
Theorem 1, we have

P
(
a(t)n ,A−n

)
− P

(
a(t−1)n ,A−n

)
>

ε

λT
n

.

As a result, each IoT user increases the potential function P by
at least ε/λT

n in each iteration. However, the potential function
P is bounded above and is always less than

∑
n∈N c

L
n/λ

T
n.

Therefore, the number of better response updates is at most

ΛT

ε

∑
n∈N

cL
n

λT
n

,

where ΛT = maxn∈N λ
T
n. We can conclude that the time

complexity of our proposed algorithm to determine the ε-Nash
equilibrium in all users is O(N/ε), which completes the proof.

�

V. PERFORMANCE EVALUATION

In this section, we investigate the performance of the
proposed algorithm by evaluating the IoT users’ QoE at the
equilibrium and that of socially optimum mechanism. We
further compare our proposed algorithm with an existing
algorithm proposed in [8].

A. Simulation Setup

For each IoT device, we assume that the CPU clock speed
is randomly and uniformly taken from [100 MHz, 1 GHz].4

To determine the energy consumption of the CPU, we follow
the model presented in [18]–[20]. For a task of size zn and
processing density γn, the energy consumed in the device n’s
CPU to perform the task is αnznγn/fn. The user-dependent
parameter αn is [18]–[20]:

αn = κnf
ϕn
n + %n,

where κn, ϕn, and %n are user-dependent constants that
depend on the CPU model. We use the measurement results

4For example, ARM Cortex–M3 processor which is widely used in IoT
devices has 100 MHz clock speed [24]. Moreover, smartphones are usually
powered with ARM Cortex–A8 processors with 1 GHz clock speed [25].
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Fig. 2. The average perceived QoE of IoT users at the NE and ε–Nash
equilibria with different values of ε.

reported in [26] and set κn = 0.33, ϕn = 3, %n = 0.1 for
all n ∈ N . We assume that each IoT device is equipped
with three wireless interfaces, which are Long Term Evolution
(LTE), WiFi, and Bluetooth interfaces. IoT users may use
their LTE interface to communicate with the remote cloud
servers, while they can use the WiFi and Bluetooth interfaces
to connect to at most two nearby fog nodes. Without loss
of generality, we assume that the energy parameter βn,s only
depends on the type of interface and does not vary in different
devices. According to [26], for the LTE interface of each
device n ∈ N , we set βn,0 = 2605 mJ/sec. We further
set βn,s = 1224.78 mJ/sec [27] if user n is connected to
fog node s via WiFi interface and βn,s = 84 mJ/sec if the
Bluetooth interface is used. The average transmission rate of
LTE and WiFi are 5.85 Mbps and 3.01 Mbps, respectively,
as measured in [27]. According to these measurements, we
assume that the transmission rate of LTE and WiFi interfaces
are uniformly and randomly distributed over [4.85, 6.85] Mbps
and [2.01, 4.01] Mbps, respectively. We further assume that
the transmission rate of Bluetooth is uniformly distributed in
[0.7, 2.1] Mbps. We also assume that the processing power
of fog nodes is uniformly distributed in [2, 3] GHz and the
processing power of each cloud server is 4 GHz [28]. Unless
stated otherwise, we assume that the roundtrip delay of remote
cloud servers (i.e., drt

n,0) is 200 msec [8], while the roundtrip
delay between IoT devices and fog nodes is negligible.

We consider different computing jobs with different task
sizes and processing densities arrive at IoT users to study
a wide range of IoT applications. We assume that the task
size and processing density are uniformly distributed in
[100 B, 0.5 MB] and [100, 600] cycles per bit, respectively.
To study the tradeoff between energy consumption and delay,
unless stated otherwise, we randomly choose λE

n and λT
n from

the intervals [0, 1] and [0.5, 1], respectively.

B. Computation Offloading Game

1) Average QoE: We first study the computation offloading
game by investigating the average QoE of users at different
equilibria obtained by Algorithm 1 (i.e., NE) and Algorithm
2 (i.e., ε–Nash equilibria). The QoE of each user n ∈ N
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Fig. 3. The average delay each task experienced to be processed when there
are N = 200 IoT users. We vary the roundtrip delay of remote cloud servers
to study the computation time of delay–sensitive applications. When S = 0,
the users can only offload their computation tasks to the cloud servers.
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Fig. 4. The average delay each task experienced to be processed versus the
number of IoT users N when there are S = 50 fog nodes. The average delay
significantly increases when there are more number of users. The users may
not choose the fog nodes in this case due to their long computation time.

is given in (5). Fig. 2 illustrates the average QoE perceived
by IoT users by utilizing the computing services. As can be
observed, for ε = 0.01, the QoE perceived at the ε–Nash
equilibrium is almost the same as what achieved at the NE.
This is because when ε is very small, the users may choose
the same strategy as the NE. However, as stated in Theorem
3, the convergence time of Algorithm 2 is guaranteed to be
polynomial. By increasing the value of ε, we trade the QoE
for reducing the computational complexity.

Fig. 2 further shows that the average QoE of users in an IoT
system with more fog nodes is higher than that of a system
with fewer fog nodes. The more number of fog nodes, hence
the more nearby computing resources, reduces the delay each
offloaded task experiences, which consequently improves the
QoE of users. However, when there are more IoT users, the
workload of each fog node increases. Thus, the average QoE
each user obtains reduces.

2) Average Delay: We further focus on delay–sensitive
applications and investigate the delay each task experienced to
either be processed locally or be offloaded. We set λE

n = 0 and
λT
n = 1 for all n ∈ N and vary the roundtrip delay between

IoT devices and the remote cloud servers. Fig. 3 shows the
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average delay when different number of fog nodes exist in the
system. We first investigate the case that there are no fog nodes
(i.e., S = 0) and the IoT users can only offload their compu-
tation tasks to the remote cloud servers. As can be observed,
each task experienced a huge delay when S = 0. However,
by increasing the number of fog nodes, the delay significantly
reduces as the users can offload their computation tasks to
their nearby fog nodes with low latency. This demonstrates
the ability of fog nodes in providing low–latency computing
services for delay–sensitive IoT applications.

Fig. 4 further shows the average delay of tasks when there
are S = 50 fog nodes in the system. We vary the number
of IoT users for different roundtrip delays of remote cloud
servers. A larger roundtrip delay to offload the tasks to the
remote cloud servers substantially increases the average delay
each task experiences. This is because the users are not
interested in the remote cloud servers anymore, while the
processing power of fog nodes is also limited.

We also investigate the computation time, communication
time, and the roundtrip delay that each task experiences. Fig.
5 shows the average of these metrics for different number
of fog nodes when there are N = 200 IoT users in the
system. As can be observed, the computation time reduces
when there are more fog nodes. This is because more IoT
users choose computation task offloading rather than local
computing, which consequently reduces the computation time.
Likewise, the roundtrip delay reduces in this case. However,
the communication time increases as the WiFi and Bluetooth
interfaces used for dispatching the tasks to the fog nodes have
usually a lower transmission rate than the LTE interface used
for transmitting the tasks to the remote cloud servers. Notice
that in local computing, the communication time is zero as the
tasks are performed locally.

3) Number of Beneficial Users: We now study the number
of beneficial users that offload their computation tasks as their
QoE is greater than zero. Figs. 6 and 7 show the number
of beneficial users for different number of fog nodes and
IoT users affected by the roundtrip delay of remote cloud
servers. As can be observed from Fig. 6, when there are no fog
nodes, the number of beneficial users substantially decreases
for long roundtrip delay of remote cloud servers. However, the
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greater than zero (N = 200).
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Fig. 7. The number of beneficial users affected by the roundtrip delay when
S = 50.

effect of roundtrip delay will be reduced when fog nodes are
available for computation task offloading. According to Fig. 7,
if there are more users in the system, a higher number of them
benefit from the computing services. However, the percentage
of beneficial users decreases as the workload of fog nodes
and cloud servers, hence the computation time to perform the
task, increases. For example, when there are 100 users and
the roundtrip delay is 200 msec, 70% of users offload their
tasks, while for a system with 200 users, only 58% of them
have non-zero QoE. Surprisingly, when N = 50, the effect of
different roundtrip delay is negligible. This is because there
are enough nearby computing resources in this case and the
IoT users do not offload their computation tasks to the remote
cloud servers.

Figs. 8 and 9 illustrate the number of beneficial users
categorized into the number of users offloading to the remote
cloud servers and fog nodes, respectively. As shown in Fig. 8,
the number of computation tasks offloaded to the remote cloud
servers significantly reduces when there are more fog nodes
offering the computing services. Furthermore, from Fig. 9, we
can also observe that more users offload their computation
tasks when we increase N . In this case, the increase in the
number of tasks offloaded to the remote cloud servers is more
significant comparing to that of fog nodes. This is because a
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50 100 150 200
0

20

40

60

80

100

120

N
u
m
b
er

o
f
B
en

efi
ci
a
l
U
se
rs

Number of IoT Users (N )

 

 

Offloaded to Remote Cloud Servers
Offloaded to Fog Nodes

Fig. 9. The number of beneficial users categorized into the number of users
offloading to the remote cloud servers and fog nodes, respectively (S = 50).

higher workload at the fog nodes imposed by more number
of offloaded tasks affects the interest of IoT users in utilizing
fog computing services.

We now compare the performance of our proposed mech-
anism with that of [8]5 when the roundtrip delay is 400
msec. We assume that λE

n = 0 for all n ∈ N , while λT
n

is randomly and uniformly distributed in [0.01, 1] in order
to compare in a fair manner. We consider λT

n for each task
n ∈ N as its priority when investigating the performance
of the offloading mechanism [8]. Figs. 10 and 11 illustrate
the number of IoT users that benefit from computing services
by utilizing our proposed computation offloading mechanism
in comparison to [8]. As can be observed from Fig. 10, our
proposed mechanism outperforms [8] by up to 20% in terms
of the number of beneficial users. We further vary the number
of fog nodes and investigate the performance of our proposed
mechanism. As shown in Fig. 11, 18% more users benefit
from computing services in comparision to the offloading
mechanism proposed in [8]. Furthermore, Fig. 11 shows that

5In [8], the authors proposed offline and online mechanisms. Since the
offline mechanism always outperforms the online one, we used the offline
mechanism for comparison. Notice that the offline mechanism in [8] aims to
minimize the total delay of all tasks by considering their priorities.
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Fig. 10. The number of beneficial users versus the number of IoT users. Our
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[8] by up to 20 % in terms of the number of beneficial users (S = 60).
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Fig. 11. The number of beneficial users versus the number of fog nodes
(N = 200). When S = 0, only the remote cloud services are available.

the number of beneficial users significantly decreases when
there is no fog node (i.e., S = 0) in the system.

C. Social Cost and PoA

In this subsection, we study the social cost of IoT users to
investigate the efficiency of the NE in Game G. The social cost
is the total cost of all users as given in (11). Fig. 12 shows
the total cost imposed to IoT users in different scenarios. The
local computing refers to the case when all tasks are performed
locally by users, while in the remote cloud computing case,
we assume that only remote cloud servers are available. The
cost of users in the computation offloading game is Φ

(
ANE

)
and the socially optimal cost is Φ

(
AS
)
. The socially optimal

cost is always less than the cost in the computation offloading
game due to the strategic behavior of IoT users. However, as
can be observed, the total cost in the computation offloading
game is close to optimal social cost. This shows that the PoA
of Game G is close to 1, which states that the degradation
of the social cost due to the strategic behavior of players is
negligible. This further validates Theorem 2 stating that the
PoA is no worse than a constant. Fig. 12 also illustrates that
if all users perform their computation tasks locally, a huge
amount of cost will be imposed to them. Thus, the proposed
hierarchical fog-cloud computing paradigm can significantly
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reduce the total cost of the IoT users and is promising for the
development of future IoT applications.

VI. CONCLUSION

In this paper, we studied the computing resource allo-
cation in a hierarchical fog-cloud computing paradigm. We
formulated a QoE maximization problem based on which
we proposed a computation offloading game to model the
competition between IoT users. We proved the existence of a
pure NE and developed an algorithm that can achieve the equi-
librium. We also provided an upper bound on the equilibrium
efficiency loss of the game. To mitigate the time complexity of
obtaining the NE, we further proposed a near–optimal resource
allocation algorithm and showed that it reaches an ε-Nash
equilibrium in polynomial time. We investigated the proposed
algorithm through numerical experiments. Our results show
that by utilizing the proposed algorithms, the IoT users can
obtain a higher QoE. Results also show that the computation
time of delay-sensitive IoT applications reduces significantly
when utilizing the computing resources of fog nodes. This
demonstrates the ability of fog nodes in providing low–latency
computing services in IoT systems. We further showed that the
number of users that find the computing services beneficial
increases by up to 20% when using the proposed mechanism
in comparison to an existing algorithm in the literature.

For future work, we will consider dynamic arrival of com-
putation tasks and develop an online mechanism to allocate
the computing resources. In addition, we will focus on mobile
edge computing, where the cloud servers are installed within
the radio access networks of cellular systems. We will jointly
allocate the wireless spectrum and computing resources to
enable mobile users to offload their computation tasks. This
is promising to realize low–latency edge network services of
future 5G wireless networks.
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