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Abstract—In the future smart grid, both users and power
companies can potentially benefit from the economical and
environmental advantages of smart pricing methods to more
effectively reflect the fluctuations of the wholesale pricento the
customer side. In addition, smart pricing can be used to seek
social benefits and to implementsocial objectives To achieve
social objectives, the utility company may need to collectarious
information about users and their energy consumption behaior,
which can be challenging. In this paper, we propose an efficn
pricing method to tackle this problem. We assume that each
user is equipped with anenergy consumption controlle(ECC) as
part of its smart meter. All smart meters are connected to not
only the power grid but also a communication infrastructure.
This allows two-way communication among smart meters and ta
utility company. We analytically model each user’s preferaces
and energy consumption patterns in form of autility function.
Based on this model, we propose a Vickrey-Clarke-Groves (VG)
mechanism which aims to maximize thesocial welfare i.e., the
aggregate utility functions of all users minus the total enegy cost.
Our design requires that each user provides some informatio
about its energy demand. In return, the energy provider will
determine each user’s electricity bill payment. Finally, we verify
some important properties of our proposed VCG mechanism for
demand side management such asfficiency, user truthfulness
and nonnegative transfer Simulation results confirm that the
proposed pricing method can benefit both users and utility
companies.

Keywords Demand side management, VCG mechanism design,

energy consumption control, smart grid.

|. INTRODUCTION

To achieve the high reliability required in power system

utility companies need to design the grid for theak de-
mandrather than the average demand. This may result in
under-utilized system. With the increasing expectatidnhe

customers both in quantity and quality [1], the limited eyyer

resources, and the lengthy and expensive process of éngloitt
new resources, there is an essential need to improve tibliza .
in power grids. In addition, the emergence of new typé
of loads such as plug-in hybrid electric vehicles (PHEVs

which can potentially double the average residential |ded,
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further increased the need for development of new methods
for demand side managemdiiSM).

There is a high concern regarding various environmental
issues in the current power systems. The inefficient use of
power in most buildings (e.g., due to poor thermal insutgtio
results in wasting a large amount of natural resourcesgsinc
most of the electricity consumption occurs in buildings @h
the other hand, in some countries such as in the US, where oil
and coal fired power plants are widely used to meet the peak
demands, a large amount 0., CO,, and other greenhouse
gases are emitted which could potentially be avoided with an
efficient DSM program in place.

DSM has been practiced since the early 1980s [3]-[5]. It
can be used as a tool for load shaping, where the electricity
demand is re-distributed over a certain period of time (e.g.
time-of-day, day-of-week). Among different techniquesico
sidered for DSM (e.g., voluntary load management programs
[6]-[8] or direct load control [9]),smart pricingis one of
the most effective tools that can encourage users to consume
wisely and more efficiently. Given the recent increases icepr
of energy, users are now more willing to participate in DSM
programs and try to shift the energy consumption schedule
of their high-load household appliances to off-peak houors t
reduce their energy expenses.

Wholesale prices (i.e., the prices set by the generators to
regional electricity retailers through a bidding procegaly
drastically between the low-demand times of a day and the
high demand periods. In particular, the electricity priees
ower at low demand hours and higher at high demand hours.
jowever, these changes in the wholesale prices are cuyrrentl
%noticed by end users in most regions. That is, users are
usually charged with some average prices, and thus, there is
no incentive for them to change their power consumption to
utilize the available generation capacity efficiently. NMayy
he wholesale electricity prices to the retail users can mit
gate this problem and encourage users to conserve energy
t high demand hours or shift the operation of their high
Oad appliances from peak hours to off-peak hours. Several
pricing methods have already been proposed in the litexatur
(e.g., flat pricing, peak load pricing, adaptive pricinge.et
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transmission and distribution systems with communication
facilities and information technologies, real-time ancjaiive
pricing attract more attention. Adaptive pricing and peadd
pricing have been practiced for many years [10]-[13]. Inkpea
load pricing, the operating cycle is divided into severaiqus
and a distinct price is determined for each period. The price



are then announced ahead of time at the beginning of tteedeclare their local information truthfully. We note thhe
operation cycle [12]. However, in adaptive pricing, the @xaVCG pricing mechanism has already been applied to resource
price for each period is selectedngal-timeand is announced management problems, e.g., in computer and communication
only at the beginning of each time period, not at the begignimetworks [21]. However, since we consider a different peabl
of the whole operation cycle. formulation in the context of smart grid, many of the exigtin

In real-time pricing, random events and the reaction of thesults, e.g., in [21] and [24], are not directly applicabled
users to the previous prices will influence the price to bersetneed to be revised as will be explained throughout this paper
the upcoming operation periods [10]. However, giventitlie- The contributions of this paper are summarized as follows:
way communication capabilities of smart grid, it has become , \ve propose a VCG mechanism for DSM programs to
possible to add new functionalities to the current power encourage efficient energy consumption among users. In
system, adopt more effective pricing methods, and provide oy system model, each user reveals its demand infor-
users with improved customer services [14]-[17]. The level mation to the energy provider. By running a centralized
of success for different pricing methods depends on various mechanism, the energy provider computes the optimal
factors such as the amount of information being provided to  energy consumption level for each user, and advertises a
each user, the effectiveness of the mapping of the wholesale gpecific electricity payment for each user.
prices to the retail prices, and the knowledge and abilttles , e formulate an optimization problem to maximize the
users to respond to price information. Another factor is the agqgregate utility of all users while minimizing the total
effectiveness of the home automation systems. For example, cost imposed on the energy provider.
it is important whether the decisions about the schedule and, e investigate some of the desired properties of our
the amount of power consumption are made automatically or  hroplem formulation. Firstiruthfulnessand efficiencyof
manually. Some examples showing the limitations of manual  the proposed mechanism are proved. Then, for our model,
control can be found in [14]. we show the property ohonnegative transfemwhich

In this paper, we focus on developing a novel pricing  means that the users always malkenegative payments
method for DSM to encourage efficient energy consumption, we compare our efficient VCG DSM method with the

among users to achieve certaacial objectivesHowever, it case where users are price taker. We study the differences
is difficult because of its computational complexity to st of these two systems, especially from the user payment
these social objectives, if all appliances of all users arbet perspective, and show that for the VCG mechanism users
jointly scheduled. To tackle this problem t@p-downcontrol have to pay less.

approach is devised. That s, first, the total power consiompt  , sjmulation results confirm that both the users and the
of each user in each time slot is determined. This is referred  energy provider will benefit from the proposed scheme.

to as user level control. Then, each user tries to schedale th . . .
: . . . The rest of this paper is organized as follows. The system
operation of its own appliances to meet the desired power

: L . model and problem formulation are presented in Section Il.
consumption level. This is referred to as appliance levatrco The VCG mechanism and its different properties are disclisse
[18], [19]. In this study, we consider the problem of schéuyl rop

the total power consumption of each user at different time Section Il In Section IV, we provide a performance

slots. We show that achieving social objectives is chaileng evaluation .Of the -proposed pricing scheme, and conclusions
. . . . -~ are drawn in Section V.

even in user level control and requires collecting variofisr

mation about the energy consumption behavior of the users,

the price elasticity of the users, and the benefit that eaeh us 1l. SYSTEM MODEL AND PROBLEM FORMULATION

obtains by consuming a certain amount of energy. Howev%r,

in general, users are not willing to reveal such information™

unless there is an incentive for them to do so. Therefore,As in [15]-[17], we consider a smart power system with a

elaborate design rulesngchanisnmjsare needed such that itsingle energy provider and several load subscribers orsuser

is in each user’s self interest to reveal its local informati as part of the general wholesale electricity market as shown

This problem has already been considered for smart grid [20]Fig. 1. For each user, we assume that there i®rergy

and in other contexts such as in telecommunication networg@nsumption controlle(ECC) unit which is embedded in the

[21]-[23]. However, the prior works assumed that users auser's smart meter. The role of the ECC is to control the

price takerwho acceptthe prices as fixed parameters. Thatser's power consumption, and to coordinate each user with

is, they do not consider the possibility that their actiorsym the energy provider. All ECC units are connected to the gnerg

affect the price. For systems with built-in automated cointrprovider through a communication infrastructure such as a

units, this assumption may no longer be valid. Thereforeg helocal area network.

we consider the case where users aaticipatethe impact of ~ The intended time cycle for the system’s operation is didide

their actions on price values. into K time slots, whereK = |K|, and K is the set of
Vickrey-Clarke-Groves (VCG) mechanism is a pricingll time slots. This division can be based on the behavior

method to elicit local information from rational users. Foof the users and their power demand pattern: on-peak time

determining the price charged to each user, users are askledis, off-peak time slots, and mid-peak time slots. IAét

to declare their energy demand information. The paymentsdgnote the set of all users amd £ |N]. In each time

the users are then structured such that the users haveiugcersiot, we classify the load demand into two types,st-run
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Fig. 1. Anillustration of the regional energy providersye®l users, and multiple power generators as parts of thergewholesale energy market.

loads andcontrollable loads [25]. Must-run loads are price-depends on the type of the users. Residential users may have
inelastic. For example, a refrigeratatways needs to beon different responsedo the same price than industrial users.
during the day. On the other hand, controllable loads can Been users within the same category may not be identical.
stopped, adjusted, or shifted to other time slots and irclu@he different responses of different users to various price
the demand for services such as charging PHEVs. In eadenarios can be modeled by usinglity functions from

time slot k, we useM* and m” to denote the maximum microeconomics [29]. In fact, we can model the behavior
and minimum power level for each user respectively. We of different users through their different choices of tyili

useM, = (M},....MEX) andm, = (ml,...,mE) to functions [7]. For each user, we represent the corresponding

n’
denote the vectors of the maximum and minimum powetility function asU, (3", o z%) £ U(X .k 2F,wn), where
levels of usem in all time slots, respectively. We also definer” is the power consumption level of usetin time slotk and
M £ (My,...,My) andm £ (m;,...,my). We denote w, is a parameter, which may vary among users, representing
the minimum total energy requirements of useas F,, and the value of electricity for each user. For each user, thiyuti

the vector of the minimum total energy requirements of allinction represents thievel of satisfactiorobtained by the

users as£ £ (Ey,..., Ex), where for each uset, we have user as a function of its total power consumption throughout
E, > > ,cxcmk. For the users, it is difficult to determinethe operation peridd
their required demand information, i.e., the minimum arel th For all the users, we define = (w1,...,wn). We assume

maximum power requirement in each time slot, the minimuthat the utility functiond’/ (z,w) satisfy the following proper-
total energy requirement, and the benefit obtained by consuities:
ing a certain amount of energy. Howevemachine learning  property 1: Utility functions arenon-decreasingThis im-

andstochastic signal processirtgchniques can be adopted irpjies that themarginal benefiis nonnegative:
each user's ECC unit to help the user determine its required U (2, w)
€T, w

demand information. The normal pattern of the users’ power

consumption can be fed into appropriate machine learning Oz
algorithms to extract the demand information of the users. | Property 2: The marginal benefit of users is a non-
order to provide the required energy for each usewithin increasing function. That is,

> 0. ®)

the operation cycle, it is required that 02U (2, w) 4 "
> @h > En, D) 02 =
kex In other words, the utility functions areoncave While the
wherez* is the power consumption level of userin time class of utility functions that satisfy (3) and (4) is veryda,
slot k. Furthermore, we defin&, 2 (z1,...,zK) as the ItiS convenientto have a linear marginal benefit [6], [7].
vector of energy consumption of user The feasibleenergy Property 3: For a fixed consumption levet, a largerw
consumption controlling set of useris defined as gives a largelU (x,w), which can be expressed as
oU (z,
Xnﬁ{xn\zxﬁzm, mk < 2k < MF, VkelC}. W) g, (5)
kek Ow
(2) Property 4: When the consumption level is zero,
Our key assumption is that users harece-elasticload. That
is, they may shift or change their energy consumption in U(0,w) =0, Vw>0. (6)

response to price values [26]_[28]' 1The value of electricity for the users may also vary at défertimes of a

day. Large loads that participate in wholesale electrinigrkets discriminate
g ; the value of electricity in different time slots through ithéifferent choices of
B. User Preference and Utlllty Function utility functions at different times of a day [30], [31]. Csidering the advances

Each user is assumed to be an independent decision makemwrme automation systems, it is conceivable that in the fitare, instead

: f specifying only the value of their total power consumpticesidential users
The energy demand of each user may vary based on dlﬁer\%me able to determine the value of electricity for eactméi slot. In that

parameters. For example, we can take into account the eimgise, the utility function of each usercan be replaced by, . UF (})
conditions and the price of electricity. The energy demdsd a whereU% () is the utility function of usem in time slotk.



15 Assumption 2:The cost functions arstrictly convex

—e— Utility Fu li‘ (w=1) . . . .
-o—uql;typu:;;:(gzo_s) Assumption 3:There exists a differentiable, convex, non-
Nt Bt Faneon (@< 0 decreasing functiopy(q) over ¢ > 0 for eachk € K, with
g pr(0) > 0 andpy(q) — oo asq — oo, such that forg > 0
‘
e Cula) = [ mulz)az. @)
2 0
go.s— . . .
3 ) Note thatquadratic functionsare among several practical
examples for cost functions that satisfy Assumptions 1r8, a
# VY are considered throughout this paper [15], [32]:
0 Oimount of Powerjflonsumption (k\l\]/-)-5 2 Ck (Lk) - akLi + bkLk + Ck, (9)
Fig. 2. Sample utility functions for power users & 0.3). whereay, > 0, b, > 0, andc;, > 0 are fixed parameters.

We note that the operation of each individual appliance is ) . _
meant to achieve goal or to finish atask For example, D. Problem Formulation and Efficient Allocations
the air conditioning system is used to keep the temperaturen this section, we consider the problem of power consump-
in a predetermined range. Thus, the total power consumptigen level selection. From a social fairness point of viesi
of each user can be considered as the aggregate power essirable to utilize the available generated power pravioie
sumption required to complete different tasks. In this papene energy provider in such a way that the sum of the utility
since we define the utility functions for treggregate loadf functions ofall users is maximized and the cost imposed on the
different tasks, rather than for the power consumption eheaenergy provider is minimized. If centralized control is Side
individual appliance, the utility functions do not decreashis and we can collect all information about the users’ utility
is because users can complete more tasks if they consifiiections, an efficient energy consumption schedule can be
more power. Furthermore, it is reasonable to assume tid@kracterized as the solution of the following problem:
users prioritize their tasks. Therefore, as the pricesemse,

they tend to ignore some less important tasks or switch to a

- k k
different mode of operation with lower power consumption. xfbneaxxrm'esz Un ( Z In) - Z Cr (Z xn) ’
This implies a decreasing marginal benefit and a concave and neNT Tkek hek neN (10)

increasing utility function for the total power consumptiof \\herex, is the vector of power consumptions of useil/,, (-)
dlffer_ent tasks. In addition, we assume that users are able_ig as in (7), and’y(-) is defined in (9). The objective function
specify how much they value energy through the proper choige proplem (10) is the sum of all utility functionsiinusthe

of parametet, i.e., a highetw implies a higher utility value. 4ta| energy cost in the system.

Finally, as utility functions quantify the level of satistéon of Problem (10) is a concave maximization problem and can
the users, intuitively zero power consumption should tesul 1o soived in a centralized fashion usicanvex programming

a zero utility value. Recent reports indicate that the bmavte_chniques such as the interior point method (IPM) [33]c8in
of power users can indeed be accurately modeled by certgify sssumed that parameters, m,,, M,,, and E,, for each

utility functions [6]. In this paper, we consideguadratic ser,, are local information, the energy provider may not
utility functions corresponding tmearly decreasing marginal ,5ve sufficient information to solve problem (10). Each user

benefit[8]: aims to optimize its local objective. To align these indivadi
wr — %x{ if 0<z<¥, objectives with the social objective, some elaboratelygiesi

Uz,w) = (7) Pricing scheme is needed. In general, users may have differe

%’ if r>e approaches in responding to the price values set by the energ

provider. This can lead to different equilibriums amongrase
wherea is a pre-determined parameter. A few example utilitf\e are interested in analyzingpmpetitive equilibriumand
functions from this class are shown in Fig. 2. The poinyash equilibrium In competitive equilibrium, each user acts
where the utility function gets saturated and does not chang aprice taker That is, it does not consider the effect of
corresponds to the maximum power requirement of the Usgjs actions on the price. However, in Nash equilibrium, we
assume that users are price anticipator, i.e., they cangide
C. Energy Cost Model effect of their actions on the price set by the energy pravide
1) Price Taking Users:If users are price taker, i.e., they

providing Ly, units of energy offered by the energy provideljo not consider the effect of tr_u_eir actio_n_s on the price, then
we need to analyze theompetitive equilibriumamong the

in each time slot. We make the following assumptions: - ) '
A tion 1-Th ¢ funct ) . th users and the energy provider. Given a price veXok
ssumption 1.Ine cost functions arecreasingwith re- (M1, ..., k), where )\, is the price in time slotk, a user

spect to the total offered energy capacity. who consumes:® kW electricity in time slotk is charged

We consider aost functionCy(Ly) indicating the cost of



Axzk dollars for that time slot. Since users treat the prices asFrom (13), the payoff of each user depends on its power
fixed values, theayoff function for each usen becomes consumption as well as the power consumptions of other users

i i Hence, we have the following game among the users:
Po(xn) = U, ( Z xn) - Z AT (11) . Players: Registered users in 96t
kek kex « Strategies: Each usere A selects its energy consump-

where the first term represents the utility of usexs a function tion levelx,, € X,, to maximize its payoff.

of its power consumption, and the second term represents its Payoffs:Q,,(x,,;x_,) for each usen € N as in (13).
payment to the energy provider. A Nash equilibriumof the game defined b§Q1, ..., Qx)

We call a pair &, A), wherex = (xi,...,Xy), & COM- s 3 vectorx such that for alln € A,
petitive equilibriumif each usem maximizes its own payoff
function defined in (11) for a given price vectr i.e., Qn(Xn;X—n) > Qn(Xn;X—n), Xnp€ X,  (14)

N N It can be shown that a Nash equilibrium exists for this game,
Po(xn) 2 Pa(Xn),  Xn € Xn, n €N, (12)  and the results are summarized in the following proposition

where vectorx is the solution to the problem defined in (10)However, the details of the proof can be found in [35].

It has been shown that under Properties 1-4 and Assumptions

1-3, a competitive equilibrium always exists [20], [34],dan Proposition 2: Suppos_e that Properti_e_s _1'4 and Assump-
the results are summarized in the following proposition. ~ t1oNns 1-3 hold. There exists a Nash equilibrinnfor the game

defined by(Q1,...,Qn).

Proposition 1: There exists a competitive equilibrium I _
(x, \), wherex is an optimal solution to problem (10) In general, the Nash equilibrium of a resource allocation

The assumption that users are price taker is usually c@Me may not be optimal [35], [36]. That is, the energy
sidered when the number of users is large, the amount GSumption profile obtained at the Nash equilibrium in a
information provided to each user is limited, and the coraputdiStributed pricing scenario may not necessarily be theesasm
programs running the decentralized algorithm are embeatded® OPtimal solution of the optimization problem in (10).{tle
the computer operating system and are not tampered with \gg_lnvestlgate how the price values can be set carefully by th
the vast majority of the users. However, as some individudiility company such that the system performance becomes
users such as large industrial users may have a significaf:?f'm""I at the aforementioned Nash equilibrium.
impact on the power system, or some parts of the power system
may act autonomously as in microgrids for household users in ~ !ll. APPLYING THE VICKREY-CLARKE-GROVES
which the number of users is much lower than the number of MECHANISM
users in the whole grid, the price taking assumption may notin the previous section, we considered a method (mecha-
always be valid. When the price taking assumption is vialatenism) which uses only a single price in each time slot for all
the model changes into a game, and the assumptions requirsers to allocate the provided power. Despite its simplitite
for the validity of Proposition 1 do not hold. We investigaténtroduced mechanism suffers from a loss in efficiency ifrsise
this scenario in the next sub-section. are indeed price anticipator, and evaluate the effect af the

2) Price Anticipating Users:If users are price anticipator, actions on the price function. As mentioned before, the main
i.e., they do consider the effect of their actions on theericobstacle in solving problem (10) is the lack of information
then we need to analyze the Nash equilibrium of ¢aene about the utility functions of the users and their feasil#é s
which is played among multiple users who compete for thsf power consumptions. However, if we remove the restrictio
available power provided by the energy provider. In this ganthat the mechanism only chooses a single price, we can elicit
theoretic model [35], the strategies of the users reprdbeirt the local information of the users. One possible approach to
power consumption level. We consider the following pricingonvince users to declare their utility functions and ciist
scheme for resource allocation. Given= (xi,...,xy), the parameters truthfully is the VCG mechanism [37].
energy provider sets a single prigg (x) = pr(>,cpn 2F)
for time slotk. Usern then payseypk (Y ,en r) for that A vea Mechanism
time slot. We use the notatiat_,, to denote the vector of all

consumption powers chosen by users other than useée.,
Xop = (X1, Xn—1,Xn+1,---,XN). Then, givenx_,,, the
payoff of each usen is obtained as

In the VCG class of mechanisms, each user is asked to
specify its feasible set of power consumption and its wtilit
function, which in case of the utility functions in (7) redisc
to revealing a utility parametes,,. For each usen, we use

k k k U, CCZ £ U xﬁ,wn and Un ZCZ £
@n(Xn; Xn) = Un ( > mn) -2 mn“( > |- U(%Z%Q,Z@n) to éezngféc s e deél::lzrgalcutiligy func-
hek hek meN (13) tion and&’,, and X,, to denote the true and declared feasible

The payoff functionQ,, is similar to P,, defined for price- set of power consumptions, respectively. We define
taking users in (11). The only difference is that while the a
payoff function P, takes the price\; as a fixed parameter, L = {wn, M, min, B} (15)
price anticipating users realize that the price is set afingr and
t0 pi(3,en %), and adjust their payoffs accordingly. I, 2 {&n, M, 1, E,} (16)



to denote the true and declared demand parameters, respéthe proposed VCG mechanism for the new scenario. To this
tively, wherew,,, M,,, m,,, andF,, are the declared values forend, we make the following proposition.

wn, M, m,, and E,,, respectively. For notational simplicity,
we also define

14 {w,M m, E} @a7)

and

12 {& M, E}, (18)
wherew, M, m, andE are the declared values for vector
w, M, m, andE, respectively. If usen has a consumption
vectorx,,, but has to pay,,, then the payoff function of user

nis
Un(foL) —ty.

keKx

(19)

On the other hand, the social objective is in the form of

Un(zzij> +>° Um(zz;) > 0k<n%z;> :

ke meN_, ke ke
(20)

where NV_,, is the set of all users except user For a
given vector of declared demand informatidn the VCG
mechanism chooses the energy consumption allocat{@h

as an optimal solution to problem (10) and calculates optima

energy consumption vectors as
neN keKx
(21)
and the payments are structured such that
tn() == Un (Zx’;@) - Cx (Zm) + ha(I_,),
meN_,, “keK kel meN
(22)

where h,, is an arbitrary function offl_,, i.e., the declared
demand information of the users with userexcluded from

_ ch

ke

x(I) = argmax
Xn € X, nEN

e
neN

Proposition 3: If the VCG mechanism defined in (21) and
(22) is used to select electricity payment values, thenadlieg
I,, =1, is a dominant strategy for each userand following
this strategy results in an efficient allocation.

The proof of Proposition 3 is given in Appendix A. Propo-
sition 3 highlights two main features of the proposed VCG

fnechanism. First, the payment of each user is structured

such that regardless of other users’ strategies, the iatend
user cannot do better than truthfully declaring its demand
information. This feature significantly reduces the comimun
cation requirements of the method and eliminates the need
for interaction among users. Second, if all users declagi th
demand truthfully, the proposed VCG system results in an
efficient system, i.e., the utilities of all users are maxieai
and the cost imposed on the energy provider is minimized. For
the following, we need to determine functidn, introduced
in (22). Here, we will use a popular choice for this function
which is referred to as Clarke tax [37],

)) )

hn( ) => U <szn(in)) -y G <
(23)

meN_, “kek kek
wherex(ifn) is the VCG allocation choice in (21), but when
usern is excluded from the system. Thus, the payment of user
nis

tn(@) == > Un

Z Ifn (ifn

mE./\/fn,

(zx:;m) i yyer (Zx:; (i))

meN_,, “kek keK meN
| S0 (Sehin)-Soe (X ahidon)|
meN_,, “keK kex meN_,,

(24)

The payment of uset is the difference in the social welfare

the system. The true demand information of the users ottdrthe other users with and without the presence of user

thann is denoted byi_,,. The definition of the payments in

(22) aligns user objectives with the social planner’s ofdjec

Remark 1:We note that the information in (15) is similar

to the type of information submitted by large purchasers
electricity in a wholesale electricity market. Each pussran

a wholesale electricity market makes a day-ahead bid ba

on its demand curve. However, in contrast to (21) and (2

the power share of each purchaser and the price of elegtrici
in day-ahead markets are determined by clearing the dem&y
against the supply offers. The dispatch of the power is th

balanced in real-time on the day of dispatch [30], [31]. As

result, the proposed schemes in this paper can find integes

applications also in the wholesale electricity market.

B. VCG Mechanism and Nonnegative Transfer

of In general, if users can serve as a source of electricity at
some time instances during the day, e.g., because they have

é(é%al generation capability or they can transfer the power
%?red in their local batteries back to the grid, then such

ers may receive payments from the grid. Such payments
also be interpreted as negative payments made by the
Jsers. However, in the problem formulation considered is th
aper, since users are only electricity consumers, this cas
oesnot arise, and the users’ payments to the grid are always
nonnegative We will refer to this property asmonnegative

eltransfer In the following theorem, we show that for our

The cost terCy(-) in (20) couples the consumption powmproblem formulation the nonnegative transfer propertydbol

variables of all users. This term makes the whole proble

not only a utility maximization but also a cost minimization Theorem 2:Suppose Properties 1-4 and Assumptions 1-3

problem, and thus, theystem objectivas different from 514 Then, the VCG mechanism in (21) and (24) has the
the normal objective of VCG mechanisms studied in Oth%rroperty of nonnegative transfer.

contexts [21], [38], [39]. These changes in our problem

formulation require the verification of some desired préipsr  The proof of Theorem 2 is given in Appendix B.



C. VCG Mechanism and Market Clearing Price ‘ ___PLP Pricing Method

The following theorem shows that the electricity paymer
of each user in the proposed VCG mechanism is less than
payment in a system which has price taking users and u:
marginal cost pricing, i.e., tha term in Proposition 1.

Theorem 3:Suppose Properties 1-4 and Assumptions 1. Time (Houn)
hold. For the VCG mechanism in (21) and (24), the payme VCG Method
of each userig, < Y, Azl (I), whereX™ = (A}, ..., X}) ®
is the vector of market clearing prices for problem (10). *

< 40
g
3 30
©

The proof is based on the assumptions that the utility fun
tions are concave and the cost function is convex. Optignali o
conditions of the VCG allocation (21) are adopted to rela o

S 2

8 18 24

the VCG payment of each user to the market clearing pric ! Time (Hour)

The proof of Theorem 3 can be found in Appendix C. Fig. 3. Power consumption for the proposed VCG method andah joed
pricing (PLP) method.

IV. PERFORMANCEEVALUATION of reflecting the fluctuations of the wholesale price into the

In th|S Section, we present Simu|ati0n resu|tS a.nd assess éhstomer side is one of the main advantages of the proposed
performance of our proposed mechanism and the impact\@£G mechanism. This aspect becomes more important in
different system parameters. In our simulations, we assuf,ations where the cost imposed on the energy provider is
that all users have concave quadratic utility functions ggh. To have a baseline scheme to compare with, we consider
described in (7), where parameteris chosen as 0.5. We sety system which has price anticipating users and employs
the parameters of the cost function in (9) for each time slgiarginal cost pricing. It has been shown that in a system with
toa>0,b=0,andc=0. price taking users, marginal cost pricing not only maxirsize

the social welfare, but also maximizes the payoff of the gper
A. Performance Gains from Real-time Interaction with Usergrovider [20]. As an upper bound on the payoff of the energy

To have a baseline scheme to compare with, we considpVvider, we consider a system which has price taking users
a peak load pricing(PLP) method in which the price value@nd employs marginal cost pricing. _We assume there are 50
for each time slot is calculated based on the average powdg's: and parameter of each user is selected from the set
consumption of the users in each time slot to maximize tHe525,30,40}. We assume that for each user parameter
payoff of the energy provider which is its revenue minusltotd’» Varies from10 !‘Wh to 15 kWh and for different time
energy cost. For the PLP method, we assume that the enetfFS: parameten;; is set on average t0.1 kW, 0.5 kW, and
provider has some prior information about the distributioh KW for off-peak, mid-peak, and on-peak hours, respectively
of parameterw of the users. Here, we assume a uniform Furthermore, we assume that parametef the cost func-
distribution. We assume there alé—=>50 users. We consider tion is constant in all three time slots. The payoffs of the
K =24 representing a 24-hour period. Parameteof each €nergy provider for the proposed VCG system, the system
user is selected from the sg%,6,. .., 15}. However, random With price anticipating users, and the system with pricénigk
events are modeled via a small perturbation in ¢healue Users for different values of parameteof the cost function
of each user. We set the parameteof the cost function areé presented in Fig. 4. We can see that, since the VCG
equal t00.02, 0.3, and0.5 for off-peak, mid-peak, and On_peakpayment (24) is structured to consider the cost |mpo§edn th
hours, respectively. We assume that each user has a mininf}f"9y provider, the payoff of the energy provider is higher
required energy in each operation peridd,, which varies compared to the system with price anticipating users. Nt t
from 9 kWh to 21 kWh. The minimum power requirementsthe_ proposed VCG _system and the price takmg system are both
of each user in each time sloi:, are set on average 1 efficient systems with the same power allocation. Hencsy, the
KW, 0.5 kW, and 1 kW for off-peak, mid-peak, and on-peakh@ve the same total power consumption.
hours, respectively.

As illustrated in Fig. 3, the proposed VCG mechanisig, Communication Requirements of the VCG System
improves the performance of the system not only by reducing
the power consumption of users but also by reducingtek-
to-average ratiofrom 1.51 to 1.21.

The communication requirements are among the main as-
pects considered for any pricing method. In this sectioa, th
number of messages exchanged between users and also the
) ) energy provider is considered as a measure to compare the pro
B. The Impact of Reflecting the Generating Cost posed VCG system with a system which has price anticipating
The proposed VCG mechanism is used to maximize thisers. In the VCG system, each user is asked to declare its
social welfare. Maximizing the aggregate utility of all use parametets and its feasible set of power consumption to the
while minimizing the cost imposed on the energy provider isnergy provider, and in return, the energy provider deteesni
beneficial for both users and energy provider. The oppdstunthe payment and the allocated power of each user. In practice
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Fig. 4. Payoff of the energy provider for the proposed VCGtays the Fig. 5. Power consumption of the first user and aggregate poweumption
system with price anticipating users, and the system wiltepiaking users. of other users whew of the first user is increased.

TABLE | the users and change it for the first user starting from 5 while
AVERAGE NUMBER OF EXCHANGED MESSAGES IN/CG SYSTEM AND k . h f d | f h h
SYSTEM WITH PRICE ANTICIPATING USERS eeping this parameter fixed equal to 20 for the other users.
We set parameter of the cost function equal t6.02 for all

Number of UsersV || Price Anticipating System| VCG System )
10 A2767 20 time slot. For each uset, parameterF,, selected to bd?2,
20 79624 40 and parametem” is set to zero for all time slots.
ig 1837:20980 gg The simulation results for the power consumption of the
0 145718 100 users are presented in Fig. 5. We notice that as we increase

the w of the first user, the power consumption of the other

it may be preferable for the users to communicate only witfrers decreases until they reach their minimum power re-

a trusted entity such as the energy provider. However, WhgHirements. Intuitively, as the first user values energyemor

users are price anticipator, they form a game and have t% Increasing |th valu_e, 'F has. a negative impact on the
exchange messages with each other. Communication requ%wer c_onsumpt|on of its rivals in the system. For the VCG
ments become an important feature specially in situatioH%eCh"’_m'sm’ the paymen_ts OT the users are close_ly related
where the cost imposed on the energy provider is low, ald their power consumption, i.e., as the first user increases
most of the users can compete in the power consumpti% w, the power consumption of the other users reduces as

game. In a system where users are price anticipator, we eél as their aggregate. paYrT‘e”t until they rgaCh the point
the myopic best-response algorithm [37, Ch. 6] to compu ere they consume their minimum power requirements. After

the Nash equilibrium. In this system, each user informs rothreeaChing this point, as they have a guaranteed amount ofrpowe

users whenever it changes its power consumption. Each fiffpnsumption, their aggregate payment increases.

one of the users updates its power consumption information,

amessagés sent. We set the parameteof the cost function E. Exploring the Truthfulness Property

equal t00.02, 0.3, and0.5 for off-peak, mid-peak, and on-peak Truthfulness in dominant strategy for the proposed VCG

hours, respectively. We assume that for each usgarameter mechanism means that regardless of other users’ strategy,

E,, varies from10 kWh to 20 kWh and for different time slots, the intended user cannot do better than truthfully declsre i

parametern” is set on average 0.1 kW, 0.5 kW, and1 kW  demand information. In this section, we consider a system

for off-peak, mid-peak, and on-peak hours, respectively.  where there aréV =10 users andk =3 time slots. We set
The average number of messages exchanged betweenpf@meter, of the cost function equal t6.02 for all time

various entities in the VCG system and the system with prigot. For each usen, parameter®,, is equal tol5 kWh and

anticipating users for’ = 24 is presented in Table I. As for different time slots, parameten” is set to zero for all

illustrated in Table I, the method used in the system witkeori time slots. We assume the true parameter of the users is

anticipating users requires much more message exchangegta [12,6,8, 8,10, 10,12, 12, 16, 20 and E; =15. We explore

converge than the VCG mechanism. the best response of the first user while other users declare
their demand information truthfully. As illustrated in Fi@,
D. Effect of Parametew the considered user (first user) with=12 and £; =15 cannot

In this section, we explore the effect of parametepn 40 Petter than truthfully declare, =12 and £, =15.

different aspects of the power system f¥r = 50 users and

K = 3 time slots. In this regard, we mainly focus on the V. CONCLUSIONS

power consumption of the system and the payments of theln this paper, we proposed a VCG mechanism for DSM
users. To understand how changes in the parametef a in the future smart grid. The proposed mechanism aims to
single user can affect others, we consider the sanfer all maximize the aggregate utility of all users while minimigin



B. Proof of Theorem 2

In the equilibrium, all users declare their demand informa-
tion truthfully. Then, we can write the payment of usegs

tn() =~ > Un (fon(l))—z Ch (Zx,’; (1))

meN_,, “keK keK meN

Payoff (Cents)

+ ZUm(fon(I_n))—ZCk<Z wi“n(I_n)> ,

24 meN_,, “kek ke meN_,

wherex(I_, ) is the optimal solution for the social objective

16

D) o when usem is excluded from the system. So, we have
Yy, ¥
O’é; DO
7 0
S (S ahn) - Yo X han)
Fig. 6. The payoff of the first user for different values declareda; and meN_n kek ke meN_,

FE4 (thetrue wy is equal 12 and th&ue E; is equal 15). k K
DILAOIETI R AP AN

the total cost of power generation. We investigated someeof t meN_,  “keK kex meN_

main properties of the proposed mechanism such as truthful- (25)

ness, efficiency, and nonnegative transfer. Through stionla Fyrthermore, from Assumption 1(%(-) is an increasing
we showed that the proposed VCG mechanism improves #fg@ction. Therefore, we have

performance of the system by encouraging users to reduce
their power consumption and shift their loads to off-peak Z Um(zxfn(l_n)) - Z Ck( Z xfn(l_n)>
hours. The proposed VCG mechanism significantly reducesnen ., “kek kek meN_n,

the communication overhead. We also analyzed the impact

of some key parameters on our model through simulations. = Z Um(z xfn(l)> - Z Cr (fon(:[)>’ (26)
The simulations confirmed that by using our proposed VCG meN-_, “kek kek meN
mechanism, in addition to maximizing the social welfarg thand thus (24) is nonnegative. [
energy provider will benefit as well. The ideas developed in

this paper can be extended in several directions. For exam%' Proof of Theorem 3

a system with multiple energy providers can be considered.

The effect of malicious users can be explored as well In the equilibrium, all users declare their demand informa-

tion truthfully. So, the payment of user is

APPENDIX N N
A. Proof of Proposition 3 (@) == > Un <me(l))_z C (me (I)>
meN_, “kek kek meN
Given the payment in (22), since usercannot affect the
term h,, by changingl,,, it declaresl,, only to maximize I ZU’” <fofn(1—n))—zck <Z xfn(l—n)> .
N - - N A meN_, “kek ke meN_,
Wl (00,(0) = 0 (kD) + 0 (Sab®) _ _ | —
rek meN_., \kek Since x(I) is the optimal solution for the social objective

" problem, the optimality conditions of (21) imply that
-y o ek . o
k = Pk (ZnEN'rn( )) )

keK meN

However, the above expression is bounded above by

U, <Zxﬁ(l)) =\, if 2%(1) > mF andZ:zrfl(I) > E,,
maximize U, ( Z :vfl) +Z U, < Z xfn) kek kek

xneé’f:bé/)\cf:nfxma ke meN_, keK
U;Z <sz(1)) <Ap, f Ifl(j[) = mfl oerfL(I) =F,,
_ Z Ok< Z :z:fn> kek ek
(27)

R Fer ey wherepy,(-) has been introduced in (8), an\d is the market
Note thatx(l) satisfies (21), and uset can achieve the clearing price for the problem (10).
maximum payoff by truthfully declarind,, = I,, for solving By concavity ofU,, we have
(21). Since this optimal strategy does not depend on the ,
demand information declared by other users, it confirms the Un(2) 2 Uy (@),
result that for VCG mechanisms, truthful declaration is a (28)

. Un(x)=Un(
dominant strategy. [ ] W <xz-—y,



and by convexity ofCx, we have [16]
Ci(q1) < Cp(an)ar,
[17]
Cr(a1)—Cr(g2) (29)
k\91)—Ck(g2 _

C,/c(ql) Z s 2 [18]

Then, from (27)-(29), we have
N [Un (30 2 @) = Un (3 ah )| g

t, < Z ke kex
ke [20]
o3 ek ) - e (Sahm)]
Z meN_, meN 21]
- 1
kex pk( > Ifn(l))
meN
<> (D), [22]
ke
which completes the proof. B [23]
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