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Abstract—In the future smart grid, both users and power
companies can potentially benefit from the economical and
environmental advantages of smart pricing methods to more
effectively reflect the fluctuations of the wholesale price into the
customer side. In addition, smart pricing can be used to seek
social benefits and to implementsocial objectives. To achieve
social objectives, the utility company may need to collect various
information about users and their energy consumption behavior,
which can be challenging. In this paper, we propose an efficient
pricing method to tackle this problem. We assume that each
user is equipped with anenergy consumption controller(ECC) as
part of its smart meter. All smart meters are connected to not
only the power grid but also a communication infrastructure.
This allows two-way communication among smart meters and the
utility company. We analytically model each user’s preferences
and energy consumption patterns in form of autility function .
Based on this model, we propose a Vickrey-Clarke-Groves (VCG)
mechanism which aims to maximize thesocial welfare, i.e., the
aggregate utility functions of all users minus the total energy cost.
Our design requires that each user provides some information
about its energy demand. In return, the energy provider will
determine each user’s electricity bill payment. Finally, we verify
some important properties of our proposed VCG mechanism for
demand side management such asefficiency, user truthfulness,
and nonnegative transfer. Simulation results confirm that the
proposed pricing method can benefit both users and utility
companies.

Keywords: Demand side management, VCG mechanism design,
energy consumption control, smart grid.

I. I NTRODUCTION

To achieve the high reliability required in power systems,
utility companies need to design the grid for thepeak de-
mand rather than the average demand. This may result in an
under-utilized system. With the increasing expectations of the
customers both in quantity and quality [1], the limited energy
resources, and the lengthy and expensive process of exploiting
new resources, there is an essential need to improve utilization
in power grids. In addition, the emergence of new types
of loads such as plug-in hybrid electric vehicles (PHEVs),
which can potentially double the average residential load,has
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further increased the need for development of new methods
for demand side management(DSM).

There is a high concern regarding various environmental
issues in the current power systems. The inefficient use of
power in most buildings (e.g., due to poor thermal insulation)
results in wasting a large amount of natural resources, since
most of the electricity consumption occurs in buildings [2]. On
the other hand, in some countries such as in the US, where oil
and coal fired power plants are widely used to meet the peak
demands, a large amount ofSO2, CO2, and other greenhouse
gases are emitted which could potentially be avoided with an
efficient DSM program in place.

DSM has been practiced since the early 1980s [3]–[5]. It
can be used as a tool for load shaping, where the electricity
demand is re-distributed over a certain period of time (e.g.,
time-of-day, day-of-week). Among different techniques con-
sidered for DSM (e.g., voluntary load management programs
[6]–[8] or direct load control [9]),smart pricing is one of
the most effective tools that can encourage users to consume
wisely and more efficiently. Given the recent increases in price
of energy, users are now more willing to participate in DSM
programs and try to shift the energy consumption schedule
of their high-load household appliances to off-peak hours to
reduce their energy expenses.

Wholesale prices (i.e., the prices set by the generators to
regional electricity retailers through a bidding process)vary
drastically between the low-demand times of a day and the
high demand periods. In particular, the electricity pricesare
lower at low demand hours and higher at high demand hours.
However, these changes in the wholesale prices are currently
unnoticed by end users in most regions. That is, users are
usually charged with some average prices, and thus, there is
no incentive for them to change their power consumption to
utilize the available generation capacity efficiently. Mapping
the wholesale electricity prices to the retail users can mit-
igate this problem and encourage users to conserve energy
at high demand hours or shift the operation of their high
load appliances from peak hours to off-peak hours. Several
pricing methods have already been proposed in the literature
(e.g., flat pricing, peak load pricing, adaptive pricing, etc.
[10]–[13]). Considering the enhancement of the current power
transmission and distribution systems with communication
facilities and information technologies, real-time and adaptive
pricing attract more attention. Adaptive pricing and peak load
pricing have been practiced for many years [10]–[13]. In peak
load pricing, the operating cycle is divided into several periods
and a distinct price is determined for each period. The prices



2

are then announced ahead of time at the beginning of the
operation cycle [12]. However, in adaptive pricing, the exact
price for each period is selected inreal-timeand is announced
only at the beginning of each time period, not at the beginning
of the whole operation cycle.

In real-time pricing, random events and the reaction of the
users to the previous prices will influence the price to be setin
the upcoming operation periods [10]. However, given thetwo-
way communication capabilities of smart grid, it has become
possible to add new functionalities to the current power
system, adopt more effective pricing methods, and provide
users with improved customer services [14]–[17]. The level
of success for different pricing methods depends on various
factors such as the amount of information being provided to
each user, the effectiveness of the mapping of the wholesale
prices to the retail prices, and the knowledge and abilitiesof
users to respond to price information. Another factor is the
effectiveness of the home automation systems. For example,
it is important whether the decisions about the schedule and
the amount of power consumption are made automatically or
manually. Some examples showing the limitations of manual
control can be found in [14].

In this paper, we focus on developing a novel pricing
method for DSM to encourage efficient energy consumption
among users to achieve certainsocial objectives. However, it
is difficult because of its computational complexity to achieve
these social objectives, if all appliances of all users are to be
jointly scheduled. To tackle this problem, atop-downcontrol
approach is devised. That is, first, the total power consumption
of each user in each time slot is determined. This is referred
to as user level control. Then, each user tries to schedule the
operation of its own appliances to meet the desired power
consumption level. This is referred to as appliance level control
[18], [19]. In this study, we consider the problem of scheduling
the total power consumption of each user at different time
slots. We show that achieving social objectives is challenging
even in user level control and requires collecting various infor-
mation about the energy consumption behavior of the users,
the price elasticity of the users, and the benefit that each user
obtains by consuming a certain amount of energy. However,
in general, users are not willing to reveal such information,
unless there is an incentive for them to do so. Therefore,
elaborate design rules (mechanisms) are needed such that it
is in each user’s self interest to reveal its local information.
This problem has already been considered for smart grid [20]
and in other contexts such as in telecommunication networks
[21]–[23]. However, the prior works assumed that users are
price taker who accept the prices as fixed parameters. That
is, they do not consider the possibility that their actions may
affect the price. For systems with built-in automated control
units, this assumption may no longer be valid. Therefore, here,
we consider the case where users cananticipatethe impact of
their actions on price values.

Vickrey-Clarke-Groves (VCG) mechanism is a pricing
method to elicit local information from rational users. For
determining the price charged to each user, users are asked
to declare their energy demand information. The payments of
the users are then structured such that the users have incentive

to declare their local information truthfully. We note thatthe
VCG pricing mechanism has already been applied to resource
management problems, e.g., in computer and communication
networks [21]. However, since we consider a different problem
formulation in the context of smart grid, many of the existing
results, e.g., in [21] and [24], are not directly applicableand
need to be revised as will be explained throughout this paper.
The contributions of this paper are summarized as follows:

• We propose a VCG mechanism for DSM programs to
encourage efficient energy consumption among users. In
our system model, each user reveals its demand infor-
mation to the energy provider. By running a centralized
mechanism, the energy provider computes the optimal
energy consumption level for each user, and advertises a
specific electricity payment for each user.

• We formulate an optimization problem to maximize the
aggregate utility of all users while minimizing the total
cost imposed on the energy provider.

• We investigate some of the desired properties of our
problem formulation. First,truthfulnessandefficiencyof
the proposed mechanism are proved. Then, for our model,
we show the property ofnonnegative transferwhich
means that the users always makenonnegative payments.

• We compare our efficient VCG DSM method with the
case where users are price taker. We study the differences
of these two systems, especially from the user payment
perspective, and show that for the VCG mechanism users
have to pay less.

• Simulation results confirm that both the users and the
energy provider will benefit from the proposed scheme.

The rest of this paper is organized as follows. The system
model and problem formulation are presented in Section II.
The VCG mechanism and its different properties are discussed
in Section III. In Section IV, we provide a performance
evaluation of the proposed pricing scheme, and conclusions
are drawn in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Power System

As in [15]–[17], we consider a smart power system with a
single energy provider and several load subscribers or users
as part of the general wholesale electricity market as shown
in Fig. 1. For each user, we assume that there is anenergy
consumption controller(ECC) unit which is embedded in the
user’s smart meter. The role of the ECC is to control the
user’s power consumption, and to coordinate each user with
the energy provider. All ECC units are connected to the energy
provider through a communication infrastructure such as a
local area network.

The intended time cycle for the system’s operation is divided
into K time slots, whereK , |K|, and K is the set of
all time slots. This division can be based on the behavior
of the users and their power demand pattern: on-peak time
slots, off-peak time slots, and mid-peak time slots. LetN
denote the set of all users andN , |N |. In each time
slot, we classify the load demand into two types,must-run
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Fig. 1. An illustration of the regional energy providers, several users, and multiple power generators as parts of the general wholesale energy market.

loads andcontrollable loads [25]. Must-run loads are price-
inelastic. For example, a refrigeratoralways needs to beon
during the day. On the other hand, controllable loads can be
stopped, adjusted, or shifted to other time slots and include
the demand for services such as charging PHEVs. In each
time slot k, we useMk

n and mk
n to denote the maximum

and minimum power level for each usern, respectively. We
use Mn , (M1

n, . . . ,M
K
n ) and mn , (m1

n, . . . ,m
K
n ) to

denote the vectors of the maximum and minimum power
levels of usern in all time slots, respectively. We also define
M , (M1, . . . ,MN ) andm , (m1, . . . ,mN). We denote
the minimum total energy requirements of usern asEn and
the vector of the minimum total energy requirements of all
users asE , (E1, . . . , EN ), where for each usern, we have
En ≥

∑

k∈K
mk

n. For the users, it is difficult to determine
their required demand information, i.e., the minimum and the
maximum power requirement in each time slot, the minimum
total energy requirement, and the benefit obtained by consum-
ing a certain amount of energy. However,machine learning
andstochastic signal processingtechniques can be adopted in
each user’s ECC unit to help the user determine its required
demand information. The normal pattern of the users’ power
consumption can be fed into appropriate machine learning
algorithms to extract the demand information of the users. In
order to provide the required energy for each usern within
the operation cycle, it is required that

∑

k∈K

xk
n ≥ En, (1)

wherexk
n is the power consumption level of usern in time

slot k. Furthermore, we definexn , (x1
n, . . . , x

K
n ) as the

vector of energy consumption of usern. The feasibleenergy
consumption controlling set of usern is defined as

Xn ,

{

xn
∣

∣

∑

k∈K

xk
n ≥ En, mk

n ≤ xk
n ≤ Mk

n , ∀ k ∈ K

}

.

(2)
Our key assumption is that users haveprice-elasticload. That
is, they may shift or change their energy consumption in
response to price values [26]–[28].

B. User Preference and Utility Function

Each user is assumed to be an independent decision maker.
The energy demand of each user may vary based on different
parameters. For example, we can take into account the climate
conditions and the price of electricity. The energy demand also

depends on the type of the users. Residential users may have
different responsesto the same price than industrial users.
Even users within the same category may not be identical.
The different responses of different users to various price
scenarios can be modeled by usingutility functions from
microeconomics [29]. In fact, we can model the behavior
of different users through their different choices of utility
functions [7]. For each usern, we represent the corresponding
utility function asUn(

∑

k∈K
xk
n) , U(

∑

k∈K
xk
n, ωn), where

xk
n is the power consumption level of usern in time slotk and

ωn is a parameter, which may vary among users, representing
the value of electricity for each user. For each user, the utility
function represents thelevel of satisfactionobtained by the
user as a function of its total power consumption throughout
the operation period1.

For all the users, we defineω , (ω1, . . . , ωN ). We assume
that the utility functionsU(x, ω) satisfy the following proper-
ties:

Property 1: Utility functions arenon-decreasing. This im-
plies that themarginal benefitis nonnegative:

∂U(x, ω)

∂x
≥ 0. (3)

Property 2: The marginal benefit of users is a non-
increasing function. That is,

∂2U(x, ω)

∂x2
≤ 0. (4)

In other words, the utility functions areconcave. While the
class of utility functions that satisfy (3) and (4) is very large,
it is convenient to have a linear marginal benefit [6], [7].

Property 3: For a fixed consumption levelx, a largerω
gives a largerU(x, ω), which can be expressed as

∂U(x, ω)

∂ω
> 0. (5)

Property 4: When the consumption level is zero,

U(0, ω) = 0, ∀ω > 0. (6)

1The value of electricity for the users may also vary at different times of a
day. Large loads that participate in wholesale electricitymarkets discriminate
the value of electricity in different time slots through their different choices of
utility functions at different times of a day [30], [31]. Considering the advances
in home automation systems, it is conceivable that in the near future, instead
of specifying only the value of their total power consumption, residential users
will be able to determine the value of electricity for each time slot. In that
case, the utility function of each usern can be replaced by

∑
k∈K

Ũ
k
n(x

k
n),

whereŨk
n(·) is the utility function of usern in time slotk.
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Fig. 2. Sample utility functions for power users (α = 0.3).

We note that the operation of each individual appliance is
meant to achieve agoal or to finish a task. For example,
the air conditioning system is used to keep the temperature
in a predetermined range. Thus, the total power consumption
of each user can be considered as the aggregate power con-
sumption required to complete different tasks. In this paper,
since we define the utility functions for theaggregate loadof
different tasks, rather than for the power consumption of each
individual appliance, the utility functions do not decrease. This
is because users can complete more tasks if they consume
more power. Furthermore, it is reasonable to assume that
users prioritize their tasks. Therefore, as the prices increase,
they tend to ignore some less important tasks or switch to a
different mode of operation with lower power consumption.
This implies a decreasing marginal benefit and a concave and
increasing utility function for the total power consumption of
different tasks. In addition, we assume that users are able to
specify how much they value energy through the proper choice
of parameterω, i.e., a higherω implies a higher utility value.
Finally, as utility functions quantify the level of satisfaction of
the users, intuitively zero power consumption should result in
a zero utility value. Recent reports indicate that the behavior
of power users can indeed be accurately modeled by certain
utility functions [6]. In this paper, we considerquadratic
utility functions corresponding tolinearly decreasing marginal
benefit[8]:

U(x, ω) =







ωx− α
2 x

2, if 0 ≤ x < ω
α
,

ω2

2α , if x ≥ ω
α
,

(7)

whereα is a pre-determined parameter. A few example utility
functions from this class are shown in Fig. 2. The point
where the utility function gets saturated and does not change
corresponds to the maximum power requirement of the user.

C. Energy Cost Model

We consider acost functionCk(Lk) indicating the cost of
providingLk units of energy offered by the energy provider
in each time slotk. We make the following assumptions:

Assumption 1:The cost functions areincreasingwith re-
spect to the total offered energy capacity.

Assumption 2:The cost functions arestrictly convex.

Assumption 3:There exists a differentiable, convex, non-
decreasing functionpk(q) over q ≥ 0 for eachk ∈ K, with
pk(0) ≥ 0 andpk(q) → ∞ asq → ∞, such that forq ≥ 0

Ck(q) =

∫ q

0

pk(z)dz. (8)

Note thatquadratic functionsare among several practical
examples for cost functions that satisfy Assumptions 1-3, and
are considered throughout this paper [15], [32]:

Ck(Lk) = akL
2
k + bkLk + ck, (9)

whereak > 0, bk ≥ 0, andck ≥ 0 are fixed parameters.

D. Problem Formulation and Efficient Allocations

In this section, we consider the problem of power consump-
tion level selection. From a social fairness point of view, it is
desirable to utilize the available generated power provided by
the energy provider in such a way that the sum of the utility
functions ofall users is maximized and the cost imposed on the
energy provider is minimized. If centralized control is feasible
and we can collect all information about the users’ utility
functions, an efficient energy consumption schedule can be
characterized as the solution of the following problem:

maximize
xn∈Xn, n∈N

∑

n∈N

Un

(

∑

k∈K

xk
n

)

−
∑

k∈K

Ck

(

∑

n∈N

xk
n

)

,

(10)
wherexn is the vector of power consumptions of usern, Un(·)
is as in (7), andCk(·) is defined in (9). The objective function
in problem (10) is the sum of all utility functionsminus the
total energy cost in the system.

Problem (10) is a concave maximization problem and can
be solved in a centralized fashion usingconvex programming
techniques such as the interior point method (IPM) [33]. Since
it is assumed that parametersωn, mn, Mn, andEn for each
user n are local information, the energy provider may not
have sufficient information to solve problem (10). Each user
aims to optimize its local objective. To align these individual
objectives with the social objective, some elaborately designed
pricing scheme is needed. In general, users may have different
approaches in responding to the price values set by the energy
provider. This can lead to different equilibriums among users.
We are interested in analyzingcompetitive equilibriumand
Nash equilibrium. In competitive equilibrium, each user acts
as aprice taker. That is, it does not consider the effect of
its actions on the price. However, in Nash equilibrium, we
assume that users are price anticipator, i.e., they consider the
effect of their actions on the price set by the energy provider.

1) Price Taking Users:If users are price taker, i.e., they
do not consider the effect of their actions on the price, then
we need to analyze thecompetitive equilibriumamong the
users and the energy provider. Given a price vectorλ =
(λ1, . . . , λK), whereλk is the price in time slotk, a user
who consumesxk

n kW electricity in time slotk is charged
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λkx
k
n dollars for that time slot. Since users treat the prices as

fixed values, thepayoff function for each usern becomes

Pn(xn) = Un

(

∑

k∈K

xk
n

)

−
∑

k∈K

λkx
k
n, (11)

where the first term represents the utility of usern as a function
of its power consumption, and the second term represents its
payment to the energy provider.

We call a pair (x,λ), wherex , (x1, . . . ,xN ), a com-
petitive equilibriumif each usern maximizes its own payoff
function defined in (11) for a given price vectorλ, i.e.,

Pn(xn) ≥ Pn(x̄n), x̄n ∈ Xn, n ∈ N , (12)

where vectorx is the solution to the problem defined in (10).
It has been shown that under Properties 1-4 and Assumptions
1-3, a competitive equilibrium always exists [20], [34], and
the results are summarized in the following proposition.

Proposition 1: There exists a competitive equilibrium
(x,λ), wherex is an optimal solution to problem (10).

The assumption that users are price taker is usually con-
sidered when the number of users is large, the amount of
information provided to each user is limited, and the computer
programs running the decentralized algorithm are embeddedin
the computer operating system and are not tampered with by
the vast majority of the users. However, as some individual
users such as large industrial users may have a significant
impact on the power system, or some parts of the power system
may act autonomously as in microgrids for household users in
which the number of users is much lower than the number of
users in the whole grid, the price taking assumption may not
always be valid. When the price taking assumption is violated,
the model changes into a game, and the assumptions required
for the validity of Proposition 1 do not hold. We investigate
this scenario in the next sub-section.

2) Price Anticipating Users:If users are price anticipator,
i.e., they do consider the effect of their actions on the price,
then we need to analyze the Nash equilibrium of thegame
which is played among multiple users who compete for the
available power provided by the energy provider. In this game
theoretic model [35], the strategies of the users representtheir
power consumption level. We consider the following pricing
scheme for resource allocation. Givenx = (x1, . . . ,xN ), the
energy provider sets a single priceµk(x) = pk(

∑

n∈N xk
n)

for time slot k. Usern then paysxk
npk(

∑

n∈N
xk
n) for that

time slot. We use the notationx−n to denote the vector of all
consumption powers chosen by users other than usern, i.e.,
x−n = (x1, . . . ,xn−1,xn+1, . . . ,xN ). Then, givenx−n, the
payoff of each usern is obtained as

Qn(xn;x−n) = Un

(

∑

k∈K

xk
n

)

−
∑

k∈K

xk
npk

(

∑

m∈N

xk
m

)

.

(13)
The payoff functionQn is similar toPn, defined for price-

taking users in (11). The only difference is that while the
payoff functionPn takes the priceλk as a fixed parameter,
price anticipating users realize that the price is set according
to pk(

∑

m∈N
xk
m), and adjust their payoffs accordingly.

From (13), the payoff of each user depends on its power
consumption as well as the power consumptions of other users.
Hence, we have the following game among the users:

• Players: Registered users in setN .
• Strategies: Each usern ∈ N selects its energy consump-

tion levelxn ∈ Xn to maximize its payoff.
• Payoffs:Qn(xn;x−n) for each usern ∈ N as in (13).
A Nash equilibriumof the game defined by(Q1, . . . , QN )

is a vectorx such that for alln ∈ N ,

Qn(xn;x−n) ≥ Qn(x̄n;x−n), x̄n ∈ Xn. (14)

It can be shown that a Nash equilibrium exists for this game,
and the results are summarized in the following proposition.
However, the details of the proof can be found in [35].

Proposition 2: Suppose that Properties 1-4 and Assump-
tions 1-3 hold. There exists a Nash equilibriumx for the game
defined by(Q1, . . . , QN ).

In general, the Nash equilibrium of a resource allocation
game may not be optimal [35], [36]. That is, the energy
consumption profile obtained at the Nash equilibrium in a
distributed pricing scenario may not necessarily be the same as
the optimal solution of the optimization problem in (10). Next,
we investigate how the price values can be set carefully by the
utility company such that the system performance becomes
optimal at the aforementioned Nash equilibrium.

III. A PPLYING THE V ICKREY-CLARKE-GROVES

MECHANISM

In the previous section, we considered a method (mecha-
nism) which uses only a single price in each time slot for all
users to allocate the provided power. Despite its simplicity, the
introduced mechanism suffers from a loss in efficiency if users
are indeed price anticipator, and evaluate the effect of their
actions on the price function. As mentioned before, the main
obstacle in solving problem (10) is the lack of information
about the utility functions of the users and their feasible set
of power consumptions. However, if we remove the restriction
that the mechanism only chooses a single price, we can elicit
the local information of the users. One possible approach to
convince users to declare their utility functions and constraint
parameters truthfully is the VCG mechanism [37].

A. VCG Mechanism

In the VCG class of mechanisms, each user is asked to
specify its feasible set of power consumption and its utility
function, which in case of the utility functions in (7) reduces
to revealing a utility parameterωn. For each usern, we use
Un(

∑

k∈K
xk
n) , U(

∑

k∈K
xk
n, ωn) and Ûn(

∑

k∈K
xk
n) ,

U(
∑

k∈K
xk
n, ω̂n) to denote the true and declared utility func-

tion andXn and X̂n to denote the true and declared feasible
set of power consumptions, respectively. We define

In , {ωn,Mn,mn, En} (15)

and
În , {ω̂n, M̂n, m̂n, Ên} (16)
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to denote the true and declared demand parameters, respec-
tively, whereω̂n, M̂n, m̂n, andÊn are the declared values for
ωn, Mn, mn, andEn, respectively. For notational simplicity,
we also define

I , {ω,M,m,E} (17)

and
Î , {ω̂, M̂, m̂, Ê}, (18)

where ω̂, M̂, m̂, and Ê are the declared values for vectors
ω, M, m, andE, respectively. If usern has a consumption
vectorxn, but has to paytn, then the payoff function of user
n is

Un

(

∑

k∈K

xk
n

)

− tn. (19)

On the other hand, the social objective is in the form of

Un

(

∑

k∈K

xk
n

)

+
∑

m∈N−n

Um

(

∑

k∈K

xk
m

)

−
∑

k∈K

Ck

(

∑

m∈N

xk
m

)

,

(20)
where N−n is the set of all users except usern. For a
given vector of declared demand informationÎ, the VCG
mechanism chooses the energy consumption allocationx(̂I)
as an optimal solution to problem (10) and calculates optimal
energy consumption vectors as

x(̂I) = argmax
xn∈X̂n, n∈N

{

∑

n∈N

Ûn

(

∑

k∈K

xk
n

)

−
∑

k∈K

Ck

(

∑

n∈N

xk
n

)}

,

(21)
and the payments are structured such that

tn(̂I) = −





∑

m∈N−n

Ûm

(

∑

k∈K

xk
m

)

−
∑

k∈K

Ck

(

∑

m∈N

xk
m

)



+ hn(Î−n),

(22)
wherehn is an arbitrary function of̂I−n, i.e., the declared
demand information of the users with usern excluded from
the system. The true demand information of the users other
thann is denoted byI−n. The definition of the payments in
(22) aligns user objectives with the social planner’s objective.

Remark 1:We note that the information in (15) is similar
to the type of information submitted by large purchasers of
electricity in a wholesale electricity market. Each purchaser in
a wholesale electricity market makes a day-ahead bid based
on its demand curve. However, in contrast to (21) and (22),
the power share of each purchaser and the price of electricity
in day-ahead markets are determined by clearing the demand
against the supply offers. The dispatch of the power is then
balanced in real-time on the day of dispatch [30], [31]. As a
result, the proposed schemes in this paper can find interesting
applications also in the wholesale electricity market.

The cost termCk(·) in (20) couples the consumption power
variables of all usersx. This term makes the whole problem
not only a utility maximization but also a cost minimization
problem, and thus, thesystem objectiveis different from
the normal objective of VCG mechanisms studied in other
contexts [21], [38], [39]. These changes in our problem
formulation require the verification of some desired properties

of the proposed VCG mechanism for the new scenario. To this
end, we make the following proposition.

Proposition 3: If the VCG mechanism defined in (21) and
(22) is used to select electricity payment values, then declaring
În = In is a dominant strategy for each usern, and following
this strategy results in an efficient allocation.

The proof of Proposition 3 is given in Appendix A. Propo-
sition 3 highlights two main features of the proposed VCG
mechanism. First, the payment of each user is structured
such that regardless of other users’ strategies, the intended
user cannot do better than truthfully declaring its demand
information. This feature significantly reduces the communi-
cation requirements of the method and eliminates the need
for interaction among users. Second, if all users declare their
demand truthfully, the proposed VCG system results in an
efficient system, i.e., the utilities of all users are maximized
and the cost imposed on the energy provider is minimized. For
the following, we need to determine functionhn introduced
in (22). Here, we will use a popular choice for this function
which is referred to as Clarke tax [37],

hn(̂I−n) =
∑

m∈N−n

Ûm

(

∑

k∈K

xk
m(̂I−n)

)

−
∑

k∈K

Ck

(

∑

m∈N−n

xk
m (̂I−n)

)

,

(23)
wherex(̂I

−n) is the VCG allocation choice in (21), but when
usern is excluded from the system. Thus, the payment of user
n is

tn(̂I) =−





∑

m∈N−n

Ûm

(

∑

k∈K

xk
m(̂I)

)

−
∑

k∈K

Ck

(

∑

m∈N

xk
m (̂I)

)





+





∑

m∈N−n

Ûm

(

∑

k∈K

xk
m(̂I−n)

)

−
∑

k∈K

Ck

(

∑

m∈N−n

xk
m(̂I−n)

)



.

(24)

The payment of usern is the difference in the social welfare
of the other users with and without the presence of usern.

B. VCG Mechanism and Nonnegative Transfer

In general, if users can serve as a source of electricity at
some time instances during the day, e.g., because they have
local generation capability or they can transfer the power
stored in their local batteries back to the grid, then such
users may receive payments from the grid. Such payments
can also be interpreted as negative payments made by the
users. However, in the problem formulation considered in this
paper, since users are only electricity consumers, this case
doesnot arise, and the users’ payments to the grid are always
nonnegative. We will refer to this property asnonnegative
transfer. In the following theorem, we show that for our
problem formulation the nonnegative transfer property holds.

Theorem 2:Suppose Properties 1-4 and Assumptions 1-3
hold. Then, the VCG mechanism in (21) and (24) has the
property of nonnegative transfer.

The proof of Theorem 2 is given in Appendix B.
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C. VCG Mechanism and Market Clearing Price

The following theorem shows that the electricity payment
of each user in the proposed VCG mechanism is less than its
payment in a system which has price taking users and uses
marginal cost pricing, i.e., theλ term in Proposition 1.

Theorem 3:Suppose Properties 1-4 and Assumptions 1-3
hold. For the VCG mechanism in (21) and (24), the payment
of each user istn ≤

∑

k∈K
λ∗
kx

k
n(I), whereλ∗=(λ∗

1, . . . , λ
∗
K)

is the vector of market clearing prices for problem (10).

The proof is based on the assumptions that the utility func-
tions are concave and the cost function is convex. Optimality
conditions of the VCG allocation (21) are adopted to relate
the VCG payment of each user to the market clearing price.
The proof of Theorem 3 can be found in Appendix C.

IV. PERFORMANCEEVALUATION

In this section, we present simulation results and assess the
performance of our proposed mechanism and the impact of
different system parameters. In our simulations, we assume
that all users have concave quadratic utility functions as
described in (7), where parameterα is chosen as 0.5. We set
the parameters of the cost function in (9) for each time slot
to a > 0, b = 0, andc = 0.

A. Performance Gains from Real-time Interaction with Users

To have a baseline scheme to compare with, we consider
a peak load pricing(PLP) method in which the price value
for each time slot is calculated based on the average power
consumption of the users in each time slot to maximize the
payoff of the energy provider which is its revenue minus total
energy cost. For the PLP method, we assume that the energy
provider has some prior information about the distribution
of parameterω of the users. Here, we assume a uniform
distribution. We assume there areN=50 users. We consider
K=24 representing a 24-hour period. Parameterω of each
user is selected from the set{5, 6, . . . , 15}. However, random
events are modeled via a small perturbation in theω value
of each user. We set the parametera of the cost function
equal to0.02, 0.3, and0.5 for off-peak, mid-peak, and on-peak
hours, respectively. We assume that each user has a minimum
required energy in each operation period,En, which varies
from 9 kWh to 21 kWh. The minimum power requirements
of each user in each time slot,mk

n, are set on average to0.1
kW, 0.5 kW, and1 kW for off-peak, mid-peak, and on-peak
hours, respectively.

As illustrated in Fig. 3, the proposed VCG mechanism
improves the performance of the system not only by reducing
the power consumption of users but also by reducing thepeak-
to-average ratiofrom 1.51 to 1.21.

B. The Impact of Reflecting the Generating Cost

The proposed VCG mechanism is used to maximize the
social welfare. Maximizing the aggregate utility of all users
while minimizing the cost imposed on the energy provider is
beneficial for both users and energy provider. The opportunity
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Fig. 3. Power consumption for the proposed VCG method and a peak load
pricing (PLP) method.

of reflecting the fluctuations of the wholesale price into the
customer side is one of the main advantages of the proposed
VCG mechanism. This aspect becomes more important in
situations where the cost imposed on the energy provider is
high. To have a baseline scheme to compare with, we consider
a system which has price anticipating users and employs
marginal cost pricing. It has been shown that in a system with
price taking users, marginal cost pricing not only maximizes
the social welfare, but also maximizes the payoff of the energy
provider [20]. As an upper bound on the payoff of the energy
provider, we consider a system which has price taking users
and employs marginal cost pricing. We assume there are 50
users, and parameterω of each user is selected from the set
{15, 25, 30, 40}. We assume that for each usern, parameter
En varies from10 kWh to 15 kWh and for different time
slots, parametermk

n is set on average to0.1 kW, 0.5 kW, and
1 kW for off-peak, mid-peak, and on-peak hours, respectively.

Furthermore, we assume that parametera of the cost func-
tion is constant in all three time slots. The payoffs of the
energy provider for the proposed VCG system, the system
with price anticipating users, and the system with price taking
users for different values of parametera of the cost function
are presented in Fig. 4. We can see that, since the VCG
payment (24) is structured to consider the cost imposed on the
energy provider, the payoff of the energy provider is higher
compared to the system with price anticipating users. Note that
the proposed VCG system and the price taking system are both
efficient systems with the same power allocation. Hence, they
have the same total power consumption.

C. Communication Requirements of the VCG System

The communication requirements are among the main as-
pects considered for any pricing method. In this section, the
number of messages exchanged between users and also the
energy provider is considered as a measure to compare the pro-
posed VCG system with a system which has price anticipating
users. In the VCG system, each user is asked to declare its
parameterω and its feasible set of power consumption to the
energy provider, and in return, the energy provider determines
the payment and the allocated power of each user. In practice,
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Fig. 4. Payoff of the energy provider for the proposed VCG system, the
system with price anticipating users, and the system with price taking users.

TABLE I
AVERAGE NUMBER OF EXCHANGED MESSAGES INVCG SYSTEM AND

SYSTEM WITH PRICE ANTICIPATING USERS.

Number of UsersN Price Anticipating System VCG System
10 42767 20
20 79624 40
30 87808 60
40 135290 80
50 145718 100

it may be preferable for the users to communicate only with
a trusted entity such as the energy provider. However, when
users are price anticipator, they form a game and have to
exchange messages with each other. Communication require-
ments become an important feature specially in situations
where the cost imposed on the energy provider is low, and
most of the users can compete in the power consumption
game. In a system where users are price anticipator, we use
the myopic best-response algorithm [37, Ch. 6] to compute
the Nash equilibrium. In this system, each user informs other
users whenever it changes its power consumption. Each time
one of the users updates its power consumption information,
a messageis sent. We set the parametera of the cost function
equal to0.02, 0.3, and0.5 for off-peak, mid-peak, and on-peak
hours, respectively. We assume that for each usern, parameter
En varies from10 kWh to20 kWh and for different time slots,
parametermk

n is set on average to0.1 kW, 0.5 kW, and1 kW
for off-peak, mid-peak, and on-peak hours, respectively.

The average number of messages exchanged between the
various entities in the VCG system and the system with price
anticipating users forK = 24 is presented in Table I. As
illustrated in Table I, the method used in the system with price
anticipating users requires much more message exchanges to
converge than the VCG mechanism.

D. Effect of Parameterω

In this section, we explore the effect of parameterω on
different aspects of the power system forN = 50 users and
K = 3 time slots. In this regard, we mainly focus on the
power consumption of the system and the payments of the
users. To understand how changes in the parameterω of a
single user can affect others, we consider the sameω for all
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Fig. 5. Power consumption of the first user and aggregate power consumption
of other users whenω of the first user is increased.

the users and change it for the first user starting from 5 while
keeping this parameter fixed equal to 20 for the other users.
We set parametera of the cost function equal to0.02 for all
time slot. For each usern, parameterEn selected to be12,
and parametermk

n is set to zero for all time slots.
The simulation results for the power consumption of the

users are presented in Fig. 5. We notice that as we increase
the ω of the first user, the power consumption of the other
users decreases until they reach their minimum power re-
quirements. Intuitively, as the first user values energy more
by increasing itsω value, it has a negative impact on the
power consumption of its rivals in the system. For the VCG
mechanism, the payments of the users are closely related
to their power consumption, i.e., as the first user increases
its ω, the power consumption of the other users reduces as
well as their aggregate payment until they reach the point
where they consume their minimum power requirements. After
reaching this point, as they have a guaranteed amount of power
consumption, their aggregate payment increases.

E. Exploring the Truthfulness Property

Truthfulness in dominant strategy for the proposed VCG
mechanism means that regardless of other users’ strategy,
the intended user cannot do better than truthfully declare its
demand information. In this section, we consider a system
where there areN =10 users andK=3 time slots. We set
parametera of the cost function equal to0.02 for all time
slot. For each usern, parameterEn is equal to15 kWh and
for different time slots, parametermk

n is set to zero for all
time slots. We assume the trueω parameter of the users is
ω = [12, 6, 8, 8, 10, 10, 12, 12, 16, 20] andE1=15. We explore
the best response of the first user while other users declare
their demand information truthfully. As illustrated in Fig. 6,
the considered user (first user) withω1=12 andE1=15 cannot
do better than truthfully declarêω1=12 and Ê1=15.

V. CONCLUSIONS

In this paper, we proposed a VCG mechanism for DSM
in the future smart grid. The proposed mechanism aims to
maximize the aggregate utility of all users while minimizing
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the total cost of power generation. We investigated some of the
main properties of the proposed mechanism such as truthful-
ness, efficiency, and nonnegative transfer. Through simulation,
we showed that the proposed VCG mechanism improves the
performance of the system by encouraging users to reduce
their power consumption and shift their loads to off-peak
hours. The proposed VCG mechanism significantly reduces
the communication overhead. We also analyzed the impact
of some key parameters on our model through simulations.
The simulations confirmed that by using our proposed VCG
mechanism, in addition to maximizing the social welfare, the
energy provider will benefit as well. The ideas developed in
this paper can be extended in several directions. For example,
a system with multiple energy providers can be considered.
The effect of malicious users can be explored as well.

APPENDIX

A. Proof of Proposition 3

Given the payment in (22), since usern cannot affect the
term hn by changinĝIn, it declareŝIn only to maximize

Wn(xn(Î), tn(Î)) = Un

(

∑

k∈K

xk
n(Î)

)

+
∑

m∈N−n

Ûm

(

∑

k∈K

xk
m(Î)

)

−
∑

k∈K

Ck

(

∑

m∈N

xk
m(Î)

)

.

However, the above expression is bounded above by

maximize
xn∈Xn, xm∈X̂m,

m∈N−n

Un

(

∑

k∈K

xk
n

)

+
∑

m∈N−n

Ûm

(

∑

k∈K

xk
m

)

−
∑

k∈K

Ck

(

∑

m∈N

xk
m

)

.

Note that x(̂I) satisfies (21), and usern can achieve the
maximum payoff by truthfully declarinĝIn = In for solving
(21). Since this optimal strategy does not depend on the
demand information declared by other users, it confirms the
result that for VCG mechanisms, truthful declaration is a
dominant strategy. �

B. Proof of Theorem 2

In the equilibrium, all users declare their demand informa-
tion truthfully. Then, we can write the payment of usern as

tn(I) =−





∑

m∈N−n

Um

(

∑

k∈K

xk
m(I)

)

−
∑

k∈K

Ck

(

∑

m∈N

xk
m(I)

)





+





∑

m∈N−n

Um

(

∑

k∈K

xk
m(I−n)

)

−
∑

k∈K

Ck

(

∑

m∈N−n

xk
m(I−n)

)



,

wherex(I
−n) is the optimal solution for the social objective

when usern is excluded from the system. So, we have

∑

m∈N−n

Um

(

∑

k∈K

xk
m(I−n)

)

−
∑

k∈K

Ck

(

∑

m∈N−n

xk
m(I−n)

)

≥
∑

m∈N−n

Um

(

∑

k∈K

xk
m(I)

)

−
∑

k∈K

Ck

(

∑

m∈N−n

xk
m(I)

)

.

(25)

Furthermore, from Assumption 1,Ck(·) is an increasing
function. Therefore, we have
∑

m∈N−n

Um

(

∑

k∈K

xk
m(I−n)

)

−
∑

k∈K

Ck

(

∑

m∈N−n

xk
m(I−n)

)

≥
∑

m∈N−n

Um

(

∑

k∈K

xk
m(I)

)

−
∑

k∈K

Ck

(

∑

m∈N

xk
m(I)

)

, (26)

and thus (24) is nonnegative. �

C. Proof of Theorem 3

In the equilibrium, all users declare their demand informa-
tion truthfully. So, the payment of usern is

tn(I) =−





∑

m∈N−n

Um

(

∑

k∈K

xk
m(I)

)

−
∑

k∈K

Ck

(

∑

m∈N

xk
m(I)

)





+





∑

m∈N−n

Um

(

∑

k∈K

xk
m(I−n)

)

−
∑

k∈K

Ck

(

∑

m∈N−n

xk
m(I−n)

)



.

Since x(I) is the optimal solution for the social objective
problem, the optimality conditions of (21) imply that

λ∗
k = pk

(
∑

n∈N
xk
n(I)

)

,

U
′

n

(

∑

k∈K

xk
n(I)

)

= λ∗
k, if xk

n(I) > mk
n and

∑

k∈K

xk
n(I) > En,

U
′

n

(

∑

k∈K

xk
n(I)

)

≤ λ∗
k, if xk

n(I) = mk
n or

∑

k∈K

xk
n(I) = En,

(27)
wherepk(·) has been introduced in (8), andλ∗

k is the market
clearing price for the problem (10).

By concavity ofUn we have

Un(x) ≥ U
′

n(x)x,

Un(x)−Un(y)

U
′
n
(x)

≤ x− y,

(28)
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and by convexity ofCk, we have

Ck(q1) ≤ C
′

k(q1)q1,

Ck(q1)−Ck(q2)

C
′

k
(q1)

≥ q1 − q2.
(29)

Then, from (27)-(29), we have

tn ≤
∑

m∈N−n

λ∗
k

[

Um

(

∑

k∈K

xk
m(I)

)

− Um

(

∑

k∈K

xk
m(I−n)

)

]

U
′

m

(

∑

k∈K

xk
m(I)

)

−
∑

k∈K

λ∗
k

[

Ck

(

∑

m∈N−n

xk
m(I−n)

)

− Ck

(

∑

m∈N

xk
m(I)

)]

pk

(

∑

m∈N

xk
m(I)

)

≤
∑

k∈K

λ∗
kx

k
n(I),

which completes the proof. �
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