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Abstract—One of the applications of energy storage systems
(ESSs) is to support frequency regulation in power systems. In
this paper, we consider such an application and address the chal-
lenges of uncertain frequency changes, limited energy storage,
as well as distribution network constraints. We formulate a bi-
level optimization problem that includes the operation objectives
of the system operator and the ESSs, using chance constraints
to account for uncertain frequency changes. The frequency
regulation decision of the system operator depends on the ESSs
decision to participate in the regulation service as well as the
distribution network constraints. Due to the interdependencies
between the ESSs demand fluctuations and the distribution
network power flow changes, the system operator requires the
ESSs’ operation information for frequency regulation decisions,
which may not be available from the ESSs. Therefore, we
propose a decentralized algorithm such that the system operator
and the ESSs can pursue their own operation objectives, while
ensuring the distribution network constraints are satisfied. We
evaluate the performance of our method on IEEE 37-bus and
123-bus test feeders by considering combinations of ESSs with
different sizes. Simulation results demonstrate that our approach
can successfully coordinate the ESSs to regulate the frequency
deviations.

Index Terms—Frequency regulation, energy storage systems,
distribution network, chance constraint, bi-level optimization.

I. INTRODUCTION

The fast proliferation of the intermittent renewable gen-
eration increases the amount of disturbances in power sys-
tems that affect the system frequency. Frequency regulation
maintains the power system frequency around the nominal
value by compensating generation-load mismatch [1]. Tra-
ditionally, regulation capacity has been largely provided by
conventional generators. However, the ramping capabilities of
conventional generators limit their participation in frequency
regulation. The recent advancement of new technologies such
as energy storage systems (ESSs) presents new opportunities
for frequency regulation service [2], [3]. The wide range
of battery power rating and response speed makes ESSs an
attractive alternative to provide regulation service [4]. The
United States (U.S.) Federal Energy Regulatory Commission
(FERC) recently issued Order 841 to remove barriers for the
ESSs to participate in the ancillary services market [5]. With
the steep decline in the cost of ESSs, the FERC Order 841
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will foster the adoption and deployment of ESSs to provide
frequency regulation service [5].

There has been a rich body of literature on exploiting the
ESSs for frequency regulation service. These works address
various issues on the market economics, system integration,
as well as the technical and operational challenge of using
the ESSs in standard practice. The regulatory policy changes
to facilitate the ESSs participation in the marketplace have
been discussed in [6], [7]. Different market schemes for the
ESSs to participate in frequency regulation have been studied
in [8]. The control and coordination schemes of the ESSs with
other resources (e.g., conventional generators, wind turbines)
for regulation service at the grid-level have been investigated
in [9]–[15]. Various battery technologies and control strategies
for efficient ESSs operation to provide frequency regulation
have been proposed in [16]–[20]. The aforementioned works
focus on the ESSs’ decision to maximize their participation in
regulation service by leveraging the market structure and tack-
ling the operation challenges to provide frequency regulation.

In this paper, we focus on the system operator’s decision-
making when using the ESSs for frequency regulation, which
takes into account the ESSs’ operation economics. We adopt
a hierarchical decision-making structure based on bi-level
optimization, such that the system operator and the ESSs can
pursue their own objective, subject to the operation constraints.
Bi-level programming has been applied in decision-making
when using the ESSs for various aspects in power systems
planning and operation [21]–[24]. The ESS investment deci-
sions under different market operation scenarios are studied
in [21]. The bidding strategy of an electric vehicle (EV)
aggregator to participate in the day-ahead market is proposed
in [22]. The strategic behavior of a player with ESSs in the
wholesale electricity market is investigated in [23]. A market-
based approach to minimize the cost of distribution system
operation that accommodates customers’ reliability preference
is proposed in [24]. Our paper is different from [21]–[24] as
we address the specific technical challenge for the application
of ESSs for frequency regulation.

A major challenge for the system operator to use ESSs
for frequency regulation arises from the uncertain frequency
changes and the limited storage capacity. The ESSs’ regu-
lation performance can be largely affected by their physical
operation constraints and the uncertain frequency changes in
the power systems, e.g., the future participation of the ESSs
in the regulation service when needed will be limited if their
capacity is saturated. One common approach to mitigate the
aforementioned issues is using chance constraints to handle



the uncertainties. Chance-constrained optimization has been
applied to design risk-averse strategy for the ESSs in various
contexts [25]–[29]. A chance-constrained optimal power flow
model is proposed in [25] to minimize the cost for the
system operator’s redispacth to correct energy imbalance. A
risk-averse capacity offering strategy for an aggregator that
operates distributed energy resources (DERs) is proposed in
[26] based on chance-constrained programming. An optimal
bidding strategy for an EV aggregator to participate in the day-
ahead market is proposed in [27], which incorporates a chance
constraint to capture the EV uncertainty. An online optimal
controller for microgrids is designed in [28] based on stochas-
tic chance-constrained optimization. A chance-constrained co-
optimization framework that takes into account the ESSs’
recharging strategy for primary frequency control service is
presented in [29]. Following similar approach, we alleviate the
challenge associated with limited ESSs storage for frequency
regulation by introducing a chance constraint to address the
uncertain frequency changes.

Besides addressing the operation economics and technical
challenges for the system operator to use the ESSs for fre-
quency regulation, another major focus in this paper is on the
prospect of leveraging the ESSs in the distribution network
to participate in and contribute to regulation service. With
the increased penetration of DERs and behind-of-the-meter
ESSs installed by industrial customers, the system operator
can benefit from exploiting these ESSs in the distribution
network [30]. New opportunity opens up for the system
operator to perform frequency regulation by using the services
provided from the distribution network. Therefore, we aim
to advance the research efforts by addressing the operation
constraints in the distribution network when using the ESSs for
the regulation service, as the distribution line limits may affect
the ESSs’ participation to regulate the system frequency devi-
ations. This differentiates our work from the aforementioned
works [10]–[29], as prior research efforts of using the ESSs
to provide frequency regulation do not consider the operation
constraints imposed by the distribution network.

Incorporating the distribution network constraints when
exploiting the ESSs for frequency regulation is nontrivial,
mainly due to the interdependencies between the ESSs demand
fluctuations and the power flow changes in the distribution
network. The ESSs need to adjust their demand to provide
regulation service. The change in the ESSs demand will
affect the power flow changes in the distribution network. The
change in the power flow needs to be feasible, as the power
flow limit of the distribution lines cannot be violated when
performing frequency regulation. This is further complicated
by the interdependencies of the ESS scheduling decisions,
i.e., current ESS scheduling decisions affect the availability of
stored energy and the participation in the regulation service
in the future. Considering the uncertain system frequency
changes and the limited energy storage capacity, addressing
the distribution network constraints for the ESSs frequency
regulation problem becomes very challenging.

In our previous work [31], we have considered the distribu-
tion network constraints for the system operator to schedule
the ESSs to provide regulation service and proposed a risk-

averse solution to minimize the risk of frequency deviation
after performing frequency regulation. In this paper, we extend
our previous work by considering the operation objective of
ESSs for frequency regulation. Our aim is to enlarge the scope
of our work given the context that ESSs may be self-interested
in providing regulation service, and to render the solution
more applicable for the system operator to achieve frequency
regulation by exploiting the ESSs in the distribution network.
Our main contributions are summarized as follows:

• We propose a bi-level optimization problem for frequency
regulation which enables the system operator and the
ESSs to pursue their own operation objectives, subject
to the operation constraints. In our problem formulation,
we incorporate the distribution network constraints to
account for their impact on the ESSs’ participation in
the frequency regulation service.

• We introduce a chance constraint to alleviate the chal-
lenge with the ESSs availability for regulation service,
considering the uncertain frequency changes. We apply
scenario approximation technique to address the noncon-
vex chance constraint. We derive a tight bound on the
number of frequency samples to approximate the chance
constraint with a high confidence level.

• We decouple the decision making between the system op-
erator and the ESSs by designing appropriate price signals
based on Lagrangian relaxation. We propose a decentral-
ized algorithm based on dual decomposition that can be
executed by the ESSs in a distributed and parallel fashion.
The proposed algorithm allows the system operator to
align with the ESSs on the frequency regulation decisions
without knowing the ESSs’ operation information, while
ensuring the distribution network constraints are satisfied.

We validate our approach by simulations on IEEE 37-bus
and 123-bus test feeders using combinations of ESSs with
different sizes. Results show that by using our decentralized
algorithm, the system operator can successfully regulate the
frequency without knowledge about the ESSs’ operation in-
formation, given the uncertain frequency changes. We demon-
strate that the distribution network constraints will affect the
flexibility of the ESSs to provide frequency regulation. By
using small size ESSs that are scattered in the distribution
network, the impact of the power flow constraints on frequency
regulation can be reduced.

The rest of the paper is organized as follows. Our sys-
tem model is introduced in Section II. The bi-level chance-
constrained optimization problem and the decentralized algo-
rithm design for the ESSs participation in regulation service
are discussed in Section III. Simulation results and perfor-
mance evaluation of our proposed method are presented in
Section IV. Section V concludes the paper.

II. SYSTEM MODEL

Consider a distribution network with a set of buses N and
branches L ⊆ N × N . The distribution network consists of
some generators, loads, and ESSs. It is connected to the trans-
mission network through a substation bus. The transmission
network is modeled by an equivalent virtual generator that



can inject (absorb) active and reactive power into (from) the
distribution network. The generator models the power flow
between the distribution and transmission networks. A system
operator is responsible for monitoring the real-time system
operation including frequency changes and power flow. It aims
to leverage the ESSs in the distribution network for frequency
regulation service if necessary. Let N s ⊆ N denote the set
of buses with ESSs that participate in regulation service. We
divide the operation cycle into a set T = {1, . . . , T} of T
time slots. Each time slot corresponds to a frequency control
interval (e.g., 15 minutes). We denote the control interval
between two consecutive slots by ∆t.

In the following subsections, we discuss how frequency
deviation can be regulated by using the ESSs, and present
the ESSs and distribution network models.

A. Secondary Frequency Regulation Model

At the beginning of time slot t ∈ T , if the system encounters
a disturbance (e.g., generator failure), the system operator will
observe a frequency deviation in the transmission network.
Primary frequency control is activated, and the participating
generators will respond within few seconds (e.g., 10 seconds)
through the governor action [32]. Although the primary fre-
quency control can maintain the frequency within a certain
range, it may not be able to restore the system frequency to
its nominal value [32]. Let ∆ω(t) denote the system frequency
deviation from the nominal value after primary frequency
control in time slot t. The system operator then leverages the
ESSs to perform secondary frequency regulation. Let ∆ωreg(t)
denote the system frequency change after secondary frequency
regulation in time slot t. By coordinating the ESSs’ power
demand change in each time slot t, the system operator aims to
restore the frequency, i.e., ∆ω(t) +∆ωreg(t) = 0. In practice,
however, due to the operation constraints of the ESSs and the
distribution network, the system operator allows the regulated
frequency at steady state to be within some prescribed limits
after performing regulation [33]. Let ϵ denote the maximum
acceptable steady state frequency deviation. We have

|∆ω(t) + ∆ωreg(t)| ≤ ϵ, t ∈ T , (1)

where | · | denotes the absolute value.
a) Regulation Signal Design: To achieve the frequency

change ∆ωreg(t) in time slot t, the system operator computes
the area control error (ACE) signal [34]. The ACE signal
determines the amount of active power change for each bus
with an ESS. Let ∆ps

n(t) denote the ACE signal for the ESS at
bus n ∈ N s. The ESS adjusts the power demand ps

n(t) that it
can absorb from or inject into the power grid from a scheduled
value ps

n(t) to provide frequency regulation. We have

ps
n(t) = ps

n(t) + ∆ps
n(t). (2)

Due to the fluctuations in the ESSs power demand, the power
flow in the distribution lines will change. Let ∆pinj

n (t) denote
the change in the injected active power pinj

n (t) at bus n in time
slot t ∈ T from the scheduled value pinj

n (t). That is,

pinj
n (t) = pinj

n (t) + ∆pinj
n (t), n ∈ N . (3)

We have

βn∆ω
reg(t) =

{
∆pinj

n (t)−∆ps
n(t), if n ∈ N s,

∆pinj
n (t), if n ∈ N \ N s,

(4)

where βn is the frequency bias factor of bus n ∈ N . It depends
on the frequency characteristics of the generator and the load
connected to bus n [34]. In particular, the generator at bus n
can be modeled by its speed-droop characteristic ϕn. The load
at bus n can be modeled by its damping coefficient ψn. The
frequency bias factor of bus n is βn = 1/ϕn + ψn.

b) ESS’s Operation Model: The power demand of the
ESS at bus n ∈ N s in time slot t ∈ T has limits ps, min

n < 0
and ps, max

n > 0. We have

ps, min
n ≤ ps

n(t) ≤ ps, max
n . (5)

Note that ps
n(t) < 0 (or > 0) indicates that the ESS is dis-

charging (or charging). The change in the charging/discharging
power of the ESS at bus n ∈ N s is subject to the ramp up and
down rating limits ∆ps, min

n < 0 and ∆ps, max
n > 0, respectively.

For t ∈ T \ {1}, we have

∆ps, min
n ≤ ps

n(t)− ps
n(t− 1) ≤ ∆ps, max

n . (6)

Let 10% ≤ SOC init
n ≤ 90% and Es, max

n ≥ 0 denote the
initial state of charge (SOC) and the maximum capacity of
the ESS at bus n ∈ N s, respectively. Let 0 < es, c

n ≤ 1 and
0 < es, d

n ≤ 1 denote the energy transfer efficiency for charging
and discharging the ESS at bus n ∈ N s, respectively. We
introduce slack variables ps, c

n (t) and ps, d
n (t) to indicate the

charging and discharging power of the ESSs at bus n ∈ N s

in time slot t ∈ T , respectively, as given by

ps
n(t) = ps, c

n (t)− ps, d
n (t), (7a)

0 ≤ ps, c
n (t) ≤ ps, max

n , (7b)

0 ≤ ps, d
n (t) ≤ ps, max

n . (7c)

Denote the SOC of the ESS at bus n ∈ N s in time slot t ∈ T
by SOCn(t), the ESS’s system dynamics can be updated by

SOCn(t) = SOCn(t− 1) +

1

Es, max
n

(
ps, c
n (t)es, c

n − ps, d
n (t)

es, d
n

)
∆t× 100%, (8)

where SOCn(0) = SOC init
n . The SOC level of the ESS at bus

n ∈ N s in time slot t ∈ T is bounded by the lower and upper
SOC limit, denoted by SOCmin

n and SOCmax
n , respectively. We

have

SOCmin
n ≤ SOCn(t) ≤ SOCmax

n . (9)

Constraints (5)−(9) guarantee that the ESSs operate within
their physical range when providing frequency regulation.

B. Distribution Network Model

We consider the nonconvex AC power flow model and
apply linear approximation to solve it in a timely fashion.
Let pinj(t) = (pinj

n (t), n ∈ N ) and qinj(t) = (qinj
n (t), n ∈ N )

denote the vectors of injected active power pinj
n (t) and reactive

power qinj
n (t) into bus n ∈ N in time slot t ∈ T , respectively.

Let v(t) = (|vn(t)|, n ∈ N ) and θ(t) = (θn(t), n ∈ N )



denote the vectors of voltage magnitude |vn(t)| and phase
angle θn(t) of bus n ∈ N in time slot t ∈ T , respectively.
Let Gnm and Bnm denote the real and reactive parts of the
entry (nm) in bus admittance matrix Y , respectively. Let bnn
and gnn denote the shunt susceptance and conductance at bus
n, respectively. The linearized AC power flow model in time
slot t is given by [35][

pinj(t)
qinj(t)

]
=

[
−B′ G′

−G −B

] [
θ(t)
v(t)

]
, (10)

where the nth diagonal element of matrices B and B′ is Bnn

and Bnn − bnn, respectively. The non-diagonal entry (nm)
of B and B′ is Bnm. Similarly, the nth diagonal element of
matrices G and G′ is Gnn and Gnn − gnn, respectively, and
the non-diagonal entry (nm) of G and G′ is Gnm.

In time slot t, the linearized active and reactive power flow
through line (n,m) ∈ L with resistance Rnm and reactance
Xnm can be obtained as [35]

pnm(t)=
Rnm (|vn(t)|−|vm(t)|)+Xnm(θn(t)−θm(t))

R2
nm +X2

nm

,

(11a)

qnm(t)=
Xnm (|vn(t)|−|vm(t)|)−Rnm(θn(t)−θm(t))

R2
nm +X2

nm

.

(11b)

The apparent power flow snm(t)=
√
p2nm(t)+q2nm(t) is upper

bounded by smax
nm. Its circular boundary can be linearized by a

piecewise approximation using a regular polygon with central
angle α. We have

pnm(t) cos(hα) + qnm(t) sin(hα)≤smax
nm, (n,m) ∈ L, (12)

where h =
{
0, 1, . . . , 2π/α

}
. The voltage magnitude at bus n

in time slot t is bounded by the limits vmin
n and vmax

n . We have

vmin
n ≤ |vn(t)| ≤ vmax

n , n ∈ N . (13)

Constraints (10)–(13) determine the feasible power flow in
time slot t and should be satisfied during frequency regulation.

III. PROBLEM FORMULATION AND ALGORITHM DESIGN

In this section, we discuss how the system operator can
regulate the frequency deviation at the transmission level by
using the ESSs in the distribution network. On one hand,
the system operator needs to restore the frequency when
necessary, considering the uncertain frequency changes and
the distribution network constraints. On the other hand, the
ESSs seek to optimize their operation objective from frequency
regulation, subject to their own operation constraints. The
realized outcome of the system operator’s frequency regulation
decision depends on the ESSs’ decision to participate in
the regulation service. Therefore, we formulate a bi-level
optimization problem with a chance constraint to account for
uncertain frequency changes. Since the system operator may
have limited knowledge about the ESSs’ operation information
(e.g., the ESS cost function), we propose a decentralized
algorithm which allows the system operator to achieve consen-
sus with the ESSs on frequency regulation decisions without
knowing the ESSs’ operation information. We prove that the
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Fig. 1. The bi-level decision making and the information exchange between
the system operator and the ESSs.

optimal solution of the decentralized algorithm converges to
the solution of the centralized optimization problem.

The bi-level decision making and the information exchange
between the system operator and the ESSs are illustrated
in Fig. 1. The system operator and the ESSs are the decision
makers at the upper and lower level, respectively. At the upper
level, the system operator observes the frequency deviation,
selects the price signal and sends it to the ESSs, and then
makes sure the distribution network constraints are satisfied
when performing frequency regulation. At the lower level,
each ESS makes a decision on its participation based on
the price signal, and informs the system operator about its
decision on the demand change for the regulation service.
This enables the system operator at the upper level and the
ESSs at the lower level to pursue their own objectives, while
taking into account the operation constraints and aligning on
the frequency regulation decisions.

A. ESS’s Local Problem

At the beginning of every control time slot, each ESS can
make a decision on whether to participate in the regulation
service or not. A cost will incur for any ESSs that decide
to participate, as they need to adjust their power demand to
provide the regulation service. The cost can be compensated
by the revenue that the ESSs receive from the system operator
for providing frequency regulation. Given the assumption that
ESSs are rational and self-interested, they aim to maximize
the profit from participating in the regulation service.

The revenue of the ESSs is defined as the reward from the
system operator for their participation in the regulation service.
At the beginning of time slot t ∈ T , the system operator issues
a price signal ϱs

n(t) ∈ R to indicate whether it needs regulation
down or up service from the ESS at bus n ∈ N s, depending on
the current frequency deviation. If the system operator needs
regulation down capacity from the ESS at bus n ∈ N s, it sends
a positive price signal ϱs

n(t) > 0 to the ESS at bus n. If the
ESS decides to participate, it will respond by either increasing
its charging rate or decreasing its discharging rate to provide
a power demand change ∆ps

n(t) > 0 for regulation down
service. Similarly, if the system operator needs regulation up
capacity from the ESS at bus n ∈ N s, it sends a negative
price signal ϱs

n(t) < 0 to the ESS at bus n. If the ESS decides
to participate, the ESS will respond by either decreasing its
charging rate or increasing its discharging rate to provide a
power demand change ∆ps

n(t) < 0 for regulation up service.



The revenue of the ESS at bus n from providing frequency
regulation in time slot t can be given as

f s,rev
n (∆ps

n(t)) = ϱs
n(t)∆p

s
n(t). (14)

The cost of the ESSs consists of two components, i.e., the
ESSs schedule change as well as the associated energy loss
from changing their power demand to provide frequency
regulation. To define the cost for the ESSs schedule change,
we note that the ESSs expect to have diminishing returns by
disrupting their own demand schedule to provide the regulation
service. In other words, the marginal cost of the ESSs to
provide frequency regulation will increase with their power
demand change. For the ESS at bus n ∈ N s, we define its cost
Cdis

n (∆ps
n(t)) from schedule change for frequency regulation

in time slot t ∈ T as follows

Cdis
n (∆ps

n(t)) = an∥∆ps
n(t)∥22, (15)

where ∥ · ∥2 is the l2-norm and an is a positive coefficient.
Note that the coefficient an captures the different responses of
the ESSs to the scheduled demand change for providing the
regulation service. It represents the level of dissatisfaction of
the ESS at bus n as a function of its power demand change.
The quadratic cost function (15) is an empirical approximation
of the ESS operation in practice, which is also commonly used
in the literature for modelling load utility and user comfort
levels [36]–[38]. It captures the disruption level of the ESS
schedule at bus n ∈ N s. Note that if the ESS at bus n ∈ N s

follows the scheduled demand in time slot t ∈ T , there is no
cost incurred, i.e., Cn(∆p

s
n(t)) = 0 when ∆ps

n(t) = 0.
Remark 1: The cost function (15) is nonnegative, differen-

tiable, and strictly convex in ∆ps
n(t).

The energy loss of the ESSs from changing their power
demand to provide frequency regulation is given by

C loss
n (∆ps

n(t))=(1− es,c
n )ps,c

n (t) +

(
1

es,d
n

− 1

)
ps,d
n (t)− Csch

n .

(16)
Note that the first and second terms in the energy loss
function (16) capture the energy loss from charging and
discharging the ESS at bus n ∈ N s in time slot t ∈ T ,
respectively. The last term in the energy loss function (16)
captures the energy loss from the scheduled power demand
of the ESS at bus n in time slot t ∈ T , such that we have
C loss

n (∆ps
n(t)) = 0 if the ESS at bus n ∈ N s follows the

scheduled demand in time slot t ∈ T . Therefore, the total cost
of the ESS at bus n ∈ N s in time slot t ∈ T for frequency
regulation is given by

Cn(∆p
s
n(t)) = Cdis

n (∆ps
n(t)) + C loss

n (∆ps
n(t)). (17)

Each ESS aims to maximize its total profit from participat-
ing in the regulation service during the current time slot t and
the upcoming time slots τ ∈ T (t + 1) = {t+ 1, . . . , T}. Let
∆ps

n(t) = (∆ps
n(t), . . . ,∆p

s
n(T )) denote the decision variable

vector of the ESS at bus n ∈ N s in time slot t ∈ T , its
objective function is given by

f s,obj
n (∆ps

n(t)) =
∑

τ∈T (t)

(
f s,rev
n (∆ps

n(τ))− Cn(∆p
s
n(τ))

)
.

(18)

We denote the price information for the ESS at bus n ∈ N s

in current time slot t ∈ T and the upcoming time slots τ ∈
T (t + 1) by a price vector ϱs

n(t) =
(
ϱs
n(t), . . . , ϱ

s
n(T )

)
. If

ϱs
n(t) is given by the system operator at time slot t ∈ T , the

ESS at bus n ∈ N s can solve a local optimization problem to
maximize its profit, while satisfying its operation constraints.
Let Ps

n(t) denote the feasible space defined by constraints
(5)−(9) for operating the ESS at bus n ∈ N s in time slot
t ∈ T . The local problem for the ESS at bus n in time slot t
can be formulated as

maximize
∆ps

n(t)
f s,obj
n (∆ps

n(t)) (19a)

subject to ps
n(τ) ∈ P s

n(τ), τ ∈ T (t). (19b)

Note that problem (19) is strongly convex in the decision
variable vector ∆ps

n(t). The feasible space P s
n(t) defined by

constraints (5)−(9) is convex and compact. Thus, a unique
solution exists for problem (19) given the price vector ϱs

n(t).
We denote this unique solution by ∆ps∗

n (t) = Bs
n

(
ϱs
n(t)

)
,

which captures the optimal response of the ESS at bus n in
time slot t with respect to price vector ϱs

n(t).
We note that the ESS at bus n ∈ N s is guaranteed to

be either charging or discharging in time slot t to provide
frequency regulation, as well as to satisfy the ramp up or down
limits. At optimality, the cost function (16) guarantees that we
must have either ∆ps,c

n (τ) = 0 or ∆ps,c
n (τ) = 0, τ ∈ T (t).

Otherwise, we can reduce ∆ps,c
n (τ) and ∆ps,d

n (τ), τ ∈ T (t)
by the same amount δp(τ), τ ∈ T (t) to preserve feasibility.
However, the profit will increase by

∑
τ∈T (t)(1−es,c

n )δp(τ)+∑
τ∈T (t)(1/e

s,d
n −1)δp(τ), which contradicts with the optimal-

ity condition. This indicates that the ESS at bus n can only
be either charging or discharging in time slot t to provide
frequency regulation. Further with constraints (6) and (7a),
the ESS at bus n is also guaranteed to satisfy the ramp up or
down limits when providing the regulation service.

B. System Operator’s Centralized Problem

At the beginning of time slot t ∈ T , the system operator
observes the frequency deviation ∆ω(t) at the transmission
level and makes a decision for frequency regulation by using
the ESSs in the distribution network. The system operator
aims to regulate the frequency deviation in current time slot t.
However, the regulated frequency |∆ω(t)+∆ωreg(t)| depends
on the ESSs’ participation to provide the system frequency
change ∆ωreg(t), which is affected by the ESSs’ profits from
providing the regulation service. To align with the interests
of the ESSs, the system operator needs to address the ESSs’
profit along with its frequency regulation objective.

The system operator also needs to account for the future
risk of the frequency deviation when making the decision in
current time slot t, since the ESSs have limited energy storage.
However, the system operator is uncertain about the frequency
changes ∆ω(τ) in the upcoming time slots τ ∈ T (t + 1).
To tackle the uncertainty in system frequency changes, the
system operator can use a chance constraint to enforce a low
probability of frequency deviation after performing frequency



regulation using the ESSs. We have

P
(
|∆ω(τ) + ∆ωreg(τ)| ≤ ϵ, τ ∈ T (t+ 1)

)
≥1− σ, (20)

where P (A) denotes the probability of event A, and σ ∈ [0, 1)
is the maximum regulated frequency deviation probability the
system operator can tolerate. In practice, the system operator
can choose σ based on its tolerance for the regulated frequency
deviation in the upcoming time slots, considering the ESSs or
other available resources for frequency regulation.

Moreover, the system operator needs to ensure that the oper-
ation constraints imposed by the distribution network are satis-
fied when performing frequency regulation during current time
slot t and the upcoming time slots τ ∈ T (t+ 1). Let ψ(t) =(
∆ps

n(τ), n ∈ N s, ∆ωreg(τ), pinj(τ), qinj(τ), θ(τ), v(τ),
τ ∈ T (t)) denote the decision variable vector. The centralized
optimization problem for the system operator in time slot
t ∈ T can be formulated as

minimize
ψ(t), ϱs

n(τ),
n∈N s, τ∈T (t)

∑
τ∈T (t)

∑
n∈N s

Cn(∆p
s
n(τ)) + κ|∆ω(t) + ∆ωreg(t)|

(21a)
subject to |∆ω(t) + ∆ωreg(t)| ≤ ϵ, (21b)

constraint (20),
∆ps

n(τ) = Bs
n (ϱ

s
n(τ)) , n ∈ N s, τ ∈ T (t),

(21c)
constraints (3), (4), and (10)−(13)
for time slots {t, . . . , T}, (21d)

where κ is a positive weight coefficient parameter. The objec-
tive function (21a) captures the ESSs’ profit in the first term
as well as the system operator’s frequency regulation objective
in the second term. Note that the first term in (21a) only
includes the ESSs’ cost function, as the reward received by the
ESSs cancels out with the reward paid by the system operator.
The weight coefficient κ allows the system operator to trade-
off between the ESSs’ profit and its frequency regulation
objective. Constraint (21b) guarantees the regulated frequency
deviation in the current time slot t is within the acceptable
range required by the system operator. Constraints (20) and
(21d) ensure the uncertainty in the system frequency changes
and its impact on the system operation in the upcoming time
slots τ ∈ T (t+1) have been addressed by the system operator.

Problem (21) is a bi-level chance-constrained optimization
problem, where the system operator and the ESSs are the
decision maker at the upper and lower levels, respectively.
The optimal strategy of each ESS is included in problem (21)
through constraint (21c), i.e., the system operator takes into
account the responses from the ESSs toward any given price
vector ϱs

n(t) when making decisions. The system operator
solves problem (21) and sends the optimal price vector ϱs∗

n (t)
to the ESS at bus n ∈ N s. Subsequently, the ESS at bus
n responds with the power demand changes ∆ps∗

n (t) from
solving its local problem (19) based on the price vector from
the system operator.

It is difficult for the system operator to solve problem
(21), as the chance constraint (20) is nonconvex. The cou-
pling constraint (21c) is also nonconvex, even though it is

convex in variable ∆ps∗
n (t) and ϱs

n(t) separately. Moreover,
it may not be even practical for the system operator to solve
problem (21), as the coupling constraint (21c) requires the
ESSs to share all their operation information (e.g., ESSs’ cost
function) with the system operator for frequency regulation.
However, some ESSs may choose to keep some information
local for privacy concerns. In the following subsection, we
tackle these challenges in solving problem (21). First, we
address the nonconvex chance constraint (20) by using the
scenario approximation technique. Then, we tackle the cou-
pling constraint (21c) by designing appropriate price signals.
Finally, we propose a decentralized algorithm such that the
ESSs privacy preference can be accommodated, while the
frequency regulation objective is also achieved.

C. Convex Relaxation and Algorithm Design

We first address the nonconvex chance constraint (20).
Chance constraints can be handled by an approximation ap-
proach such as the Bernstein approximation [39]. Howev-
er, this requires the probability distribution function of the
frequency deviation, which may not be available. In this
paper, we adopt the scenario approximation approach that
does not require the explicit information about the frequency
deviation distribution to tackle the chance constraint [40],
[41]. In particular, we approximate the chance constraint
by using a set J , {1, . . . , J} of J frequency samples
∆ωj(t+1) =

(
∆ωj(t+ 1), . . . , ∆ωj(T )

)
of the random vari-

able ∆ω(t+1) = (∆ω(t+ 1), . . . , ∆ω(T )) in the upcoming
time slots τ ∈ T (t+ 1) = {t+ 1, . . . , T} , as given by∣∣∆ωj(τ) + ∆ωreg(τ)

∣∣ ≤ ϵ, τ ∈ T (t+ 1), j ∈ J . (22)

By replacing the chance constraint (20) with the convex
approximation (22), the system operator solves the following
optimization problem instead

minimize
ψ(t), ϱs

n(τ),
n∈N s, τ∈T (t)

∑
τ∈T (t)

∑
n∈N s

Cn(∆p
s
n(τ)) + κ|∆ω(t) + ∆ωreg(t)|

(23)
subject to constraints (21b)−(21d) and (22).

Problem (23) approximates the chance constraint with a finite
number of convex constraints by using randomization over J
realizations of the uncertain vector ∆ω(t + 1). Note that the
solution to problem (23) should satisfy the chance constraint
(20) with a high probability, i.e., the solution to problem (23)
is a feasible solution to problem (21) with a high confidence
level. Thus, we are interested in the number of scenarios that
is considered to be large enough to approximate the chance
constraint. Reference [40] gives a bound on the number of
scenarios required for the approximation based on Chernoff’s
inequality. This bound is tight when σ = 1/2, but may not
work well for the extreme values of σ [42], such as the σ that
we need for the chance constraint to be satisfied with high
probability. By following the work in [42], we derive a better
bound that is tight at the extreme value of σ.
Lemma 1: Let M denote the number of variables in the chance
constraint. For any δ ∈ (0, 1), the solution of problem (23) will



satisfy the chance constraint (20) with a probability not less
than 1− δ, by selecting the number of scenarios as

J∗ =

⌈
M − 1

z

⌉
, (24)

where z is the solution of

z log z + (1− z) log(1− z)

=z

(
log σ−log(1−σ)− ln δ

M−1

)
+ log(1−σ). (25)

Note that the log function in the base 2, and ln is the natural
log function. The proof can be found in Appendix A.

Remark 2: The proposed scenario approximation approach
does not rely on any assumptions on the frequency sample
process and the frequency sample space. It is easy to be
implemented and integrated in standard operation practice, as
the system frequency measurements are already collected in
current practice to monitor the system operation.

Next, we address the coupling constraint (21c). We relax
constraint (21c) with a convex constraint in the problem
formulation. We prove the optimal solution of the relaxed
problem is also the optimal solution of the original problem,
i.e., the relaxation gap is zero.

Let ∆P s
n(τ), τ ∈T (t) denote the feasible space defined by

constraints (2) and (19b). By replacing constraint (21c) with
the convex constraint ∆ps

n(τ) ∈∆P s
n(τ), τ ∈T (t), we relax

problem (23) to the following optimization problem

minimize
ψ(t)

∑
τ∈T (t)

∑
n∈N s

Cn(∆p
s
n(τ)) + κ|∆ω(t) + ∆ωreg(t)|

(26a)
subject to ∆ps

n(τ) ∈ ∆P s
n(τ), τ ∈ T (t), n ∈ N s, (26b)

constraints (21b), (21d), and (22).

Problem (26) is a single-level convex optimization problem
and can be solved efficiently. Given the strict convexity of its
objective function, there exists a unique optimal solution for
the ESSs power demand change ∆ps∗

n (t), n ∈ N s that the
system operator needs to restore the system frequency.

Remark 3: The solution of problem (26) is also the optimal
solution of problem (23), under an appropriate price signal.
The details are discussed as follows.

Problem (26) obtains the optimal solution ∆ps∗
n (t) by

relaxing the feasible space of problem (23) and not including
the price vector as the decision variable. If the solution
of problem (26) is also in the feasible space of problem
(23), the system operator needs to determine an appropriate
price signal for problem (23) to obtain the same optimal
∆ps∗

n (t). That is, the system operator needs to find the optimal
price vector ϱs∗

n (t) such that the ESSs decide to provide
∆ps∗

n (t) = Bs
n (ϱ

s∗
n (t)) , n ∈ N s from solving their local

optimization problem. As discussed below, we can prove such
ϱs∗
n (t) exists for problem (23), and hence, the relaxation gap

between problems (26) and (23) is zero.
For the system operator to determine the price vector ϱs∗

n (t),
we first transform problem (26) into an equivalent problem by
introducing a nonnegative auxiliary variable γ(t) for the term

|∆ω(t) + ∆ωreg(t)|, as given by

minimize
ψ(t),γ(t)

∑
τ∈T (t)

∑
n∈N s

Cn(∆p
s
n(τ)) + κγ(t) (27a)

subject to − γ(t) ≤ ∆ω(t) + ∆ωreg(t) ≤ γ(t), (27b)
− ϵ ≤ ∆ω(t) + ∆ωreg(t) ≤ ϵ, (27c)

− ϵ ≤ ∆ωj(τ) + ∆ωreg(τ) ≤ ϵ,

τ ∈ T (t+ 1), j ∈ J , (27d)
constraints (21d) and (26b).

We introduce dual variables ηγ(t) and ηγ(t) for constraint
(27b), dual variables λ

ω
(t) and λω(t) for constraint (27c),

and dual variables ζ
j
(τ) and ζj(τ), τ ∈ T (t + 1), j ∈ J for

constraint (27d). Let superscript ∗ denote the value of the
associated dual variables at the optimal solution of problem
(27). We have the following theorem.

Theorem 1: The system operator can set a price vector ϱs∗
n (t)

such that the optimal solution of problem (27) is also the
optimal solution of problem (23). In particular, the price vector
is given by

ϱs∗
n (t) =

ηγ∗(t)− ηγ∗(t) + λω∗(t)− λ
ω∗
(t)

βN
, n ∈ N s, (28)

ϱs∗
n (τ) =

∑
j∈J

ζj∗(τ)− ζ
j∗
(τ)

βN
, n ∈ N s, τ ∈ T (t+ 1), (29)

where βN =
∑

n∈N βn, and the dual variables ηγ∗(t) and
ηγ∗(t) must satisfy

ηγ∗(t) + ηγ∗(t) = κ, if ∆ω(t) + ∆ωreg∗(t) = 0, (30a)

ηγ∗(t) = κ, ηγ∗(t) = 0, if 0<∆ω(t) + ∆ωreg∗(t)≤ ϵ,
(30b)

ηγ∗(t) = 0, ηγ∗(t) = κ, if − ϵ ≤ ∆ω(t) + ∆ωreg∗(t) < 0.
(30c)

The proof can be found in Appendix B. Based on Theorem 1,
the system operator can use a decentralized approach to
solve the problem in a distributed and iterative fashion.
The decentralized approach enables the system operator to
achieve consensus with the ESSs on the frequency regulation
decision, without any knowledge on the cost function and
operation constraints of the ESSs. In this paper, we design
a decentralized algorithm for the system operator based on
the projected subgradient method, as given in Algorithm 1.
In each control time slot t, Algorithm 1 is executed in an
iterative fashion to determine the amount of change in the
ESSs power demand to provide frequency regulation. Let
ϕ(t) =

(
λ
ω
(t), λω(t), λ

j
(τ), j ∈ J , τ ∈ T (t+ 1), λj(τ),

j ∈ J , τ ∈ T (t+ 1)) denote the dual variable vector. We

define Λ(t) =

((
∆ω(t)− 1

βN

∑
n∈N s ∆ps

n(t)− ϵ
)
,(

−∆ω(t) +
1

βN

∑
n∈N s ∆ps

n(t)− ϵ
)
,
(
∆ωj(τ) −

1

βN

∑
n∈N s ∆ps

n(τ)− ϵ
)
, j ∈ J , τ ∈ T (t+ 1),(

−∆ωj(τ)+
1

βN

∑
n∈N s ∆ps

n(τ)−ϵ
)
, j ∈ J , τ ∈ T (t+ 1)

)
.



Algorithm 1 Decentralized Algorithm of Using ESSs for
Frequency Regulation Executed in Time Slot t

1: Set k := 1.
2: The system operator initializes the power flow pinj

k (t),qinj
k (t),

θk(t),vk(t) in the distribution network. Each ESS initializes its
power demand ps

n,k(t), n ∈ N s, sets its upper and lower SOC
limit, and calculates its energy loss from the scheduled demand.

3: The system operator observes the current frequency deviation
∆ω(t), determines the number of samples needed based on (24)
and (25), and generates the set J of J samples ∆ωj(t+1),∀j ∈
J from the historical records. The system operator initializes the
dual variables ηγ

k
(t), ηγ

k(t), ϕk(t).
4: Repeat
5: Each ESS n ∈ N s sends the amount of change in its energy

demand ∆ps
n,k(t) to the system operator.

6: The system operator updates the dual variables using (30) and
(31), and sends the price vector ϱs

n,k(t) to the corresponding
ESS at bus n ∈ N s.

7: The ESS at bus n ∈ N s updates its energy demand change
∆ps

n,k+1(t) by solving problem (19).
8: The system operator checks the feasibility of the power flow

in the distribution network based on (10)−(13).
9: k := k + 1.

10: Until the algorithm converges

Let k denote the iteration index. Let ϕk(t) denote the dual
variable vector at the kth iteration. The update can be
obtained by

ϕk+1(t) = [ϕk(t) + ξkΛ(t)]℘, (31)

where ξk is the step size, and [·]℘ is the projection onto the
feasible space defined by λ

ω
(t) ≥ 0, λω(t) ≥ 0, λ

j
(τ) ≥

0, j ∈ J , τ ∈ T (t+1), and λj(τ) ≥ 0, j ∈ J , τ ∈ T (t+1).

In Algorithm 1, the initialization phase is in Lines 1 and 2.
In each time slot t, the scheduled power demand and distri-
bution network power flow are used by the ESSs and system
operator to initialize their decision variables, respectively. Each
ESS also sets its upper and lower SOC limits, and calculates
the energy loss from their scheduled power demand. The
selection of the realized frequency samples from the historical
record is in Line 3. Lines 4 to 10 describe the frequency
regulation process, during which the system operator and ESSs
update their decisions in an iterative fashion. The information
change between the ESSs and system operator is in Line 5.
Each ESS decides the amount of demand change that it can
provide for frequency regulation and sends it to the system
operator. The dual variables and the price vector are updated
in Line 6. The system operator uses the ESSs’ demand change
to update the price vectors and then sends the new price signal
to the ESSs. The update of the corresponding power demand
change in the ESSs is in Line 7. Based on the new price
signal, each ESS updates its decision of the demand change
for regulation service. The distribution network constraints are
checked in Line 8. Given the updated ESSs demand change,
the system operator computes the power flow changes in
the distribution network and ensures that the constraints are
satisfied. Finally, the iteration index is updated in Line 9.

123

4

5

6 7

8

9

10

11

12

13

1415

16

17

1819

20

21

22

23

24

25

2627

28 29

30

31

32

33

34
35

36

37

Fig. 2. The IEEE 37-bus distribution test feeder.

IV. PERFORMANCE EVALUATION

We evaluate the performance of the proposed frequency
regulation approach on IEEE 37-bus and 123-bus distribution
test feeders [43]. For demonstration, we present the settings
of the IEEE 37-bus test feeder, as shown in Fig. 2. The
voltage magnitudes are in per-unit (pu) with a 4.8 kV base.
The base power of the system is 100 kVA. The slack bus
is the substation bus 37, i.e., its voltage magnitude is 1 pu
and its phase angle is zero. The substation bus is connected
to an equivalent virtual generator to model the transmission
network. We assume that there is no generator or frequency
sensitive load within the 37-bus distribution network. We
set the frequency bias factor of the substation bus to be an
equivalent frequency bias factor for the distribution network,
i.e., βn = 0, n = 1, . . . , 36, and β37 = 3.483 [34, p. 24]. The
equivalent frequency bias factor at the substation bus repre-
sents the frequency response characteristic of the 37-bus test
feeder in responses to the frequency regulation for the system
operator at the transmission level. It captures the capability of
the ESSs within the distribution network to provide or absorb
energy when a disturbance happens and frequency deviates.
Similarly, the settings of IEEE 123-bus test feeder can be
determined by following the specifications in [43]. The energy
transfer efficiency for charging and discharging the ESSs is set
to be 0.95 [44]. The lower and upper SOC limits of the ESSs
are set to be 10% and 90%, respectively. We consider a six-
hour operation period, and divide it into 24 frequency control
time slots with equal length of 15 minutes. We obtain the
load profile from [45], and scale the load demand to make the
average demand at each bus over the operation cycle equal
to its corresponding spot load specified in [43]. We set the
confidence level δ to be 0.1, and calculate the number of
required frequency realizations J = 70. We obtain the samples
of frequency deviation from [46]. The maximum acceptable
steady-state frequency deviation ϵ is set to 0.05 for the current
time slot, and 0.1 for the upcoming time slots. Unless stated
otherwise, the weight coefficient an, n ∈ N s for the ESSs’
cost function and κ for the frequency regulation objective is
set to be 3 and 1, respectively.

We first present the performance of our proposed decentral-
ized algorithm for frequency regulation using three ESSs locat-
ed at buses 13, 23, and 31, as shown in Fig. 3. We consider the
case when the system operator has complete knowledge about
the ESSs’ operation information and the system frequency
changes as the benchmark solution. As illustrated, the system
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Fig. 3. Frequency regulation using three ESSs located at buses 13, 23, and
31, with sizes Emax

13 = 200 kWh, Emax
23 = 150 kWh, and Emax

31 = 100 kWh,
respectively.
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Fig. 4. Frequency regulation using an equivalent ESS located at bus 13 with
Emax

13 = 450 kWh.

operator can achieve similar frequency regulation outcome
without knowledge about the ESSs’ operation information and
about the frequency changes, except in a few time slots such
as 2 and 9, when the system encounters some severe frequency
changes and the ESSs may need to reverse their charging or
discharging process to provide the regulation services. We then
replace these three ESSs with a single ESS of equivalent total
storage size located at bus 13 to provide frequency regulation.
The frequency regulation outcome is illustrated in Fig. 4. It
can be observed that the frequency regulation performance
deteriorates in most of the time slots during the operation
cycle, e.g. during time slots 4 to 15 and 22 to 23, with
respect to the scenario of using three ESSs for frequency
regulation. The limiting factor in this case arises from the
power flow constraints in the distribution network, which
limits the ESSs’ participation in the regulation service. Note
that we observe similar frequency regulation outcomes of our
algorithm compared to the benchmark solution in this case.

To further study how the distribution network constraints
affect the flexibility of using ESSs to achieve frequency regu-
lation, we consider the same set of ESSs located at bus 13, 23,
and 31, but with different sizes. We compare the total regulated
frequency deviation after performing frequency regulation, as
illustrated in Fig. 5. On the 37-bus test feeder, the regulated
frequency deviation decreases by 23% when doubling the size
of the ESSs. When tripling the size of the ESSs, the regulated
frequency deviation decreases by 25%. The outcome of further
reducing the regulated frequency deviation on 37-bus test
feeder from increasing the ESSs storage are limited, due to the
power flow limits of the distribution lines. For comparison, we
also evaluate the frequency regulation performance when the
same set of ESSs with different sizes are located at a larger test
feeder, i.e., at bus 57, 83, and 149 on the 123-bus test feeder
system. As illustrated in Fig. 5, we observe similar outcomes
with respect to the 37-bus test feeder case. Therefore, we
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Fig. 6. Frequency regulation on 37-bus test feeder and 123-bus test feeder
with different weight coefficients κ (a) using three ESSs, and (b) using a
single ESS.

conclude that the distribution network constraints will affect
the performance when using the ESSs to provide frequency
regulation. It is more effective for the system operator to
make use of smaller ESSs that are scattered in the distribution
network to regulate the frequency deviation than relying on a
single larger ESS.

As shown in Fig. 6, we also study the impact of the weight
coefficient κ on the frequency regulation performance on both
37-bus and 123-bus test feeders. The results are obtained using
the same set of ESSs in Fig. 3 and an equivalent ESS in Fig. 4,
respectively. In both cases, it can be observed that the regulated
system frequency deviation decreases as the weight coefficient
κ increases, as the system operator increases the weight on its
frequency regulation objective and tries to exploit the ESSs
storage to a full extent to regulate the frequency deviation.
We note that using three smaller size ESSs for frequency
regulation always outperforms using one large equivalent ESS,
as observed earlier in Figs. 3 and 4. This observation holds
for both 37-bus and 123-bus test feeder cases. Moreover, it
can be observed that using three ESSs on the 37-bus test
feeder for frequency regulation constantly outperforms the
same set of ESSs on the 123-bus test feeder. However, when
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Fig. 8. Frequency regulation by using 3 ESSs on 37-bus test feeder with
different weight coefficients κ based on linearized and nonlinear AC models.

a single equivalent ESS is used for frequency regulation,
the performance on the 37-bus and 123-bus test feeders is
similar. We reiterate that the distribution network constraints
affect the ESSs’ participation in frequency regulation. It is of
practical value for the system operator to address the power
flow constraints when performing frequency regulation.

Moreover, we note that our proposed decentralized algo-
rithm can successfully converge to the centralized optimization
problem of the system operator. We demonstrate the con-
vergence of the regulated system frequency by illustrating
the iterative process, when the same set of ESSs in Fig. 3
participate in the regulation service and make the decision in
time slot t = 1. As shown in Fig. 7, the regulated system
frequency converges after 90 iterations by using Algorithm 1
for both 37-bus and 123-bus test feeders. We thus note that
our proposed decentralized algorithm can scale well from a
smaller 37-bus test feeder to a larger 123-bus test feeder.

Finally, we compare the performance using the same set
of ESSs in Fig. 3 for frequency regulation with the nonlinear
AC power flow model when different weight coefficients κ
are selected, as illustrated in Fig. 8. The nonlinear AC power
flow model for the 37-bus test feeder is set up by using
the MatPower toolbox [47], [48]. It can be observed that
the performance deteriorates due to the power losses with
the nonlinear AC model. With κ increases, the gap between
the regulation performances with linearized and nonlinear
power flow model shrinks. This indicates that the frequency
regulation performance of our proposed method based on
the linearized AC power flow model will be affected by the
power loss in the actual distribution network. We note that
the system operator can partially offset the power loss impact
when implementing our proposed method in practical settings
by increasing the weight on frequency regulation objective.

V. CONCLUSION

In this paper, we examined how the ESSs in the distribution
network can participate in and contribute to the frequency
regulation for the system operator at the transmission level. We
addressed the operation objective of the ESSs when optimizing
the frequency regulation decision for the system operator.
We considered the uncertainty in the frequency changes, the
availability of the ESSs, as well as the operation constraints
imposed by the distribution network for frequency regula-
tion service. In particular, we formulated a bi-level chance-
constrained program for the system operator to align with
the ESSs on frequency regulation decisions, using a chance
constraint to account for the uncertain frequency changes.
We proposed a decentralized algorithm such that the ESSs
and system operator can pursue their own objectives, while
ensuring frequency deviation is regulated and the distribution
network constraints are satisfied. Simulation results validated
our approach and demonstrated its effectiveness in assisting
the system operator to achieve frequency regulation without
knowledge about the ESSs’ operation information, considering
the uncertain frequency changes as well as the distribution net-
work constraints. However, we note that the selected frequency
bias factor may not be the actual representation of distribution
network. The performance of our method will be affected by
the power loss in the actual distribution networks.

There can be several directions for future work. First, it
is worth further investigating how to measure the frequency
bias factor and how to offset the power losses of the actual
distribution network. Second, it is an interesting extension to
understand how the system operator can interact with mul-
tiple distribution networks with different frequency response
strategies. Third, another direction is to consider the bidding
strategy of the self-interested ESSs to participate in electricity
market, where the system operator takes into account the
distribution network constraints for frequency regulation.

APPENDIX

A. Deriving the Bound on the Sample Generation

Problem (23) can be considered as a finite instance of
the original problem (21), which approximates the noncon-
vex chance constraint with a set of J convex constraints.
Let ∆ωreg

J (t + 1) =
(
∆ωreg

J (t + 1), . . . ,∆ωreg
J (T )

)
de-

note an optimal solution to problem (23). By definition, if
P
(∣∣∆ω(t+ 1) + ∆ωreg

J (t+ 1)
∣∣ ≤ ϵ

)
≥ 1 − σ, ∆ωreg

J (t + 1)
satisfies the chance constraint (20) and is a solution of the
original problem (21). For notation simplicity, we define

Θ
(
∆ωreg

J (t+ 1)
)

= P
(∣∣∆ω(t+ 1) + ∆ωreg

J (t+ 1)
∣∣ ≤ ϵ

)
, t ∈ T . (32)

Note that Θ
(
∆ωreg

J (t+1)
)

is a random variable, as ∆ωreg
J (t+

1) depends on the number of J samples randomly chosen from
the realizations of the random variable ∆ω(t+1) =

(
∆ω(t+

1), . . . ,∆ω(T )
)
. The larger J is, the higher the probability

that ∆ωreg
J (t + 1) will satisfy the chance constraint (20) and

the likelihood of Θ
(
∆ωreg

J (t+1)
)
≥ 1−σ is higher. We thus

aim to find the lower bound of the frequency sample number



J that is considered large enough as a significant measure of
the random variable ∆ω(t+1), such that a given observation
of ∆ω(t+1) is also in the set of the J selected samples most
of the times. In this case, if ∆ωreg

J (t + 1) satisfies constraint
(22), it should satisfy the chance constraint (20) with high
probability.

By using the results in [40], we can quantify the likelihood
of Θ

(
∆ωreg

J (t+1)
)
≥ 1−σ, given the number of J frequency

samples used to solve problem (23). We have

P
(
Θ
(
∆ωreg

J (t+ 1)
)
≥ 1− σ

)
≥ 1−

M−1∑
i=0

(
J
i

)
σi(1−σ)J−i,

(33)

where
(
J
i

)
=

J !

i!(J − i)!
. Equation (33) can be interpreted

that the solution of problem (23) is also feasible for the original
problem (21), i.e., satisfies the chance constraint (20) with a

probability not less than 1−
∑M−1

i=0

(
J
i

)
σi(1−σ)J−i. Thus,

given a confidence parameter δ ∈ (0, 1), we can compute
the minimum number J∗ of the frequency realizations to be
sampled such that P

(
Θ
(
∆ωreg

J (t+ 1)
)
≥ 1− σ

)
≥ 1 − δ if

J ≥ J∗, by using equation (33). The lower bound on the
number of samples J can be derived as follows:
Lemma 1 For any σ ∈ (0, 1) and d ≤ σJ , we have [41]

M−1∑
i=0

(
J
i

)
σi(1− σ)J−i ≤ exp

(
−JD

(
d

J
∥ σ

))
, (34)

where D (A ∥ B) denote the relative entropy between two
Bernoulli distributions A and B. It is given by

D

(
d

J
∥ σ

)
=
d

J
log

(
d

σJ

)
+

(
1− d

J

)
log

1− d

J
1− σ

.
(35)

Note that (34) gives a better bound at the extreme value σ that
we need to consider for the chance constraint to be satisfied
with high probability. According to (33), we have that if

exp
(
−JD

(
M − 1

J
∥ σ

))
≤ δ, (36)

P
(
Θ
(
∆ωreg

J (t+ 1)
)
≥ 1− σ

)
≥ 1 − δ holds. Note that we

cannot directly solve (36) to obtain J∗. We thus further
simplify (36) to express the relationship between the samples
J∗ needed and the confidence level 1 − δ. By taking natural
logarithm on both sides and considering the case when equality
is achieved, we have

−JD
(
M − 1

J
∥ σ

)
= ln δ. (37)

By defining z =
M − 1

J
, we can rewrite (37) as

−M − 1

z

(
z log

( z
σ

)
+ (1− z) log

(
1− z

1− σ

))
= ln δ.

(38)
By rearranging (38), we have

z log z + (1− z) log(1− z)

=z

(
log σ−log(1−σ)− ln δ

M−1

)
+ log(1−σ). (39)

After selecting σ and δ, we can solve (39) to obtain z and J∗

can given as

J∗ =

⌈
M − 1

z

⌉
. (40)

B. Lagrangian Relaxation and Optimality Condition

We first tackle the coupling between variables ∆ωreg(t) and
∆ps

n(t) in problem (27) by summing equation (4), where we
leverage the relationship between them in each time slot t ∈ T .
Consider a lossless system, i.e.,

∑
n∈N ∆pinj

n (t) = 0, we have

∆ωreg(t) = −
∑

n∈N s ∆ps
n(t)

βN
, (41)

where βN =
∑

n∈N βn. Substituting ∆ωreg(t) by equation
(41) and denoting the decision variables vector by ψLD(t) =(
∆ps

n(τ), n ∈ N s, pinj(τ), qinj(τ), θ(τ), v(τ), τ ∈ T (t)
)
,

we can rewrite problem (27) as

minimize
ψLD(t),γ(t)

∑
τ∈T (t)

∑
n∈N s

Cn(∆p
s
n(τ)) + κγ(t) (42a)

subject to −γ(t)≤∆ω(t)−
∑

n∈N s ∆ps
n(t)

βN
≤γ(t),

(42b)

−ϵ ≤ ∆ω(t)−
∑

n∈N s ∆ps
n(t)

βN
≤ϵ, (42c)

−ϵ ≤ ∆ωj(τ)−
∑

n∈N s ∆ps
n(τ)

βN
≤ϵ,

τ ∈ T (t+ 1), j ∈ J , (42d)
constraints (21d) and (26b).

Next we derive the partial Lagrangian function by using the
defined dual variables, as given by

L(γ(t),∆ps
n(t)) (43)

=
∑

τ∈T (t)

∑
n∈N s

Cn

(
∆ps

n(τ)
)
+κγ(t)

+ ηγ(t)

(
∆ω(t)−

∑
n∈N s ∆ps

n(t)

βN
−γ(t)

)
+ ηγ(t)

(
−∆ω(t)+

∑
n∈N s ∆ps

n(t)

βN
−γ(t)

)
+ λω(t)

(
∆ω(t)−

∑
n∈N s ∆ps

n(t)

βN
− ϵ

)
+ λ

ω
(t)

(
−∆ω(t) +

∑
n∈N s ∆ps

n(t)

βN
− ϵ

)
+

∑
τ∈T (t+1)

∑
j∈J

ζj(τ)

(
∆ωj(τ)−

∑
n∈N s ∆ps

n(τ)

βN
−ϵ

)

+
∑

τ∈T (t+1)

∑
j∈J

ζ
j
(τ)

(
−∆ωj(τ)+

∑
n∈N s ∆ps

n(τ)

βN
−ϵ

)
.

The dual function, denoted by f dual(γ(t),∆ps
n(t)), is

f dual(γ(t),∆ps
n(t))



= inf
γ(t),∆ps

n(t)
{L(γ(t),∆ps

n(t)) | constraints (21d) and (26b)}.

(44)

The dual problem is given by

maximize
ηγ(t), ηγ(t), λω(t), λ

ω
(t),

ζj(τ), ζ
j
(τ), j∈J , τ∈T (t+1)

f dual(γ(t),∆ps
n(t)) (45a)

subject to ηγ(t), ηγ(t), λω(t), λ
ω
(t) ≥ 0, (45b)

ζj(τ), ζ
j
(τ) ≥ 0, j ∈ J , τ ∈ T (t+ 1).

(45c)

Given the strict convexity and Slater’s condition holds, the
optimal solution of the Lagrange dual problem is equal
to the primal problem. Note that in the primal problem,
the decision variable γ(t) is the ancillary variable for the

term |∆ω(t) + ∆ωreg(t)| =
∣∣∣∣∆ω(t)− ∑

n∈N s ∆ps
n(t)

βN

∣∣∣∣. The

constraints (21d) and (26b) are only imposed on variable
∆ps

n(t), n ∈ N s. We first evaluate the optimality conditions of
the variable γ(t). At optimality, we can have either γ∗(t) = 0
or γ∗(t) ̸= 0. When γ∗(t) is equal to zero, we have

ηγ∗(t) + ηγ∗(t) = κ,

if ∆ω(t) + ∆ωreg∗(t) = 0. (46)

When γ∗(t) is not equal to zero at optimality, we must have
either γ∗(t) = ∆ω(t) + ∆ωreg∗(t) or γ∗(t) = −(∆ω(t) +
∆ωreg∗(t)). Otherwise, we can reduce γ∗(t) by an amount
∆γ > 0 but still preserve feasibility. The value of the
objective function will be reduced by κ∆γ, which contradicts
the optimality condition. Therefore, we have either

ηγ∗(t) = κ, ηγ∗(t) = 0,

if 0 < ∆ω(t) + ∆ωreg∗(t) ≤ ϵ, (47)

or

ηγ∗(t) = 0, ηγ∗(t) = κ,

if − ϵ ≤ ∆ω(t) + ∆ωreg∗(t) < 0. (48)

Next, we discuss the optimality condition of ∆ps
n(t), n ∈ N s.

Note that γ∗(t) =
∣∣∣∣∆ω∗(t)−

∑
n∈N s ∆ps

n(t)

βN

∣∣∣∣ always holds

at optimality. By leveraging the aforementioned relationship,
we can rewrite the partial Lagrangian function only with
respect to the variable ∆ps

n(t), n ∈ N s. We have

L(∆ps
n(t)) (49)

=
∑

τ∈T (t)

∑
n∈N s

Cn

(
∆ps

n(τ)
)

+ ηγ(t)

(
∆ω(t)−

∑
n∈N s ∆ps

n(t)

βN

)
+ ηγ(t)

(
−∆ω(t)+

∑
n∈N s ∆ps

n(t)

βN

)
+ λω(t)

(
∆ω(t)−

∑
n∈N s ∆ps

n(t)

βN
− ϵ

)
+ λ

ω
(t)

(
−∆ω(t) +

∑
n∈N s ∆ps

n(t)

βN
− ϵ

)

+
∑

τ∈T (t+1)

∑
j∈J

ζj(τ)

(
∆ωj(τ)−

∑
n∈N s ∆ps

n(τ)

βN
−ϵ

)

+
∑

τ∈T (t+1)

∑
j∈J

ζ
j
(τ)

(
−∆ωj(τ)+

∑
n∈N s ∆ps

n(τ)

βN
−ϵ

)
.

Similarly, we rewrite the dual function

f dual(∆ps
n(t))

= inf
∆ps

n(t)
{L(∆ps

n(t)) | constraints (21d) and (26b)}, (50)

and the dual problem is given by

maximize
ηγ(t), ηγ(t), λω(t), λ

ω
(t),

ζj(τ), ζ
j
(τ), j∈J , τ∈T (t+1)

f dual(∆ps
n(t)) (51)

subject to constraints (45b), (45c),
and (46)−(48).

Note that the system operator needs to achieve consensus
on the amount of demand change ∆ps

n(t) with the ESS at
bus n ∈ N s. This can be accomplished if and only if the
optimality condition for the ESS local problem is the same as
the optimality condition for the Lagrange dual problem. Thus,

∂L (∆ps
n(t))

∂ps
n(t)

= −∂f
s,obj
n (∆ps

n(t))

∂ps
n(t)

, (52)

∂L (∆ps
n(t))

∂ps
n(τ)

= −∂f
s,obj
n (∆ps

n(t))

∂ps
n(τ)

, τ ∈T (t+ 1). (53)

That is,

−ηγ∗(t)+ηγ∗(t)−λω∗(t)+λ
ω∗
(t)

βN
= −ϱs∗

n (t), (54)

−
∑
j∈J

ζj∗(τ)−ζj∗(τ)
βN

= −ϱs∗
n (τ), τ ∈ T (t+ 1). (55)

By rearranging the above equations, we obtain the price signal

ϱs∗
n (t) =

ηγ∗(t)−ηγ∗(t)+λω∗(t)−λω∗
(t)

βN
, (56)

ϱs∗
n (τ) =

∑
j∈J

ζj∗(τ)−ζj∗(τ)
βN

, τ ∈ T (t+ 1), (57)

along with the conditions obtained earlier for the dual variables
η∗(t) and η∗(t)

ηγ∗(t) + ηγ∗(t) = κ, if ∆ω(t) + ∆ωreg∗(t) = 0, (58)

ηγ∗(t) = κ, ηγ∗(t) = 0, if 0 < ∆ω(t) + ∆ωreg∗(t) ≤ ϵ,
(59)

ηγ∗(t) = 0, ηγ∗(t) = κ, if − ϵ ≤ ∆ω(t) + ∆ωreg∗(t) < 0.
(60)

This completes the proof.
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