
Resource Slicing for eMBB and URLLC Services
in Radio Access Network Using

Hierarchical Deep Learning
Mehdi Setayesh, Graduate Student Member, IEEE, Shahab Bahrami, Member, IEEE,

and Vincent W.S. Wong, Fellow, IEEE

Abstract—Network slicing is a promising technique for wireless
service providers to support enhanced mobile broadband (eMBB)
and ultra-reliable low-latency communication (URLLC) services
in a shared radio access network (RAN) infrastructure. In this
paper, we apply numerology, mini-slot based transmission, and
punctured scheduling techniques to support eMBB and URLLC
network slices. For efficient allocation of radio resources (e.g.,
physical resource blocks, transmit power) to the users, we formu-
late RAN slicing problem as a multi-timescale problem. To solve
this problem and address the dynamics of the traffic, we propose
a hierarchical deep learning framework. Specifically, in each long
time slot, the service provider employs a deep reinforcement
learning (DRL) algorithm to determine the slice configuration
parameters. The eMBB and URLLC schedulers use their own
attention-based deep neural network (DNN) algorithm to allocate
radio resources to their corresponding users in each short and
mini time slot, respectively. Simulation results show that the
proposed framework can achieve a higher aggregate throughput
and a higher service level agreement (SLA) satisfaction ratio
compared to some other RAN slicing approaches, including the
resource proportional placement algorithm, decomposition and
relaxation based resource allocation algorithm, and distributed
bandwidth optimization algorithm.

Index Terms—Attention mechanism, deep reinforcement learn-
ing (DRL), enhanced mobile broadband (eMBB), network slicing,
radio access network (RAN), ultra-reliable low-latency commu-
nication (URLLC).

I. INTRODUCTION

THE fifth generation (5G) New Radio (NR) wireless
systems are envisioned to accommodate a wide range of

services with diverse quality of service (QoS) requirements
in terms of data rate, latency, reliability, and security [1].
The 5G NR supports three major use cases; namely, (a)
enhanced mobile broadband (eMBB) with high transmission
data rate for human-type communications, (b) ultra-reliable
low-latency communication (URLLC), which targets mission-
critical communications with stringent latency requirement,
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and (c) massive machine-type communication (mMTC) to
support a large number of Internet of things (IoT) devices
within a geographical area [2]. Network slicing is a promis-
ing technique to support eMBB, URLLC, and mMTC use
cases over a shared physical infrastructure by partitioning the
physical network into multiple virtual and isolated network
slices [3].

Recently, the coexistence of eMBB and URLLC traffic in a
shared radio access network (RAN) has received considerable
attention [4]–[13]. Given the limited radio resources (e.g.,
physical resource blocks (PRBs), transmit power) in a RAN,
an efficient resource allocation among eMBB and URLLC
slices is crucial to satisfy the QoS requirements of the users.
To facilitate the support of eMBB and URLLC network slices,
5G NR standardized the techniques of numerology [14], mini-
slot based transmission [15], and punctured scheduling [16]
to be used for service multiplexing in a RAN. The numerol-
ogy provides multiple frequency domain subcarrier spacings
(SCSs) and time domain symbol lengths in the 5G NR
time-frequency orthogonal frequency division multiplexing
(OFDM) grid [14]. The flexibility in the numerology enables
efficient scheduling of eMBB and URLLC users by selecting
SCS and OFDM symbol length which satisfy the service
requirements. Meanwhile, the mini-slot based transmission in
5G NR enables packet transmission over a short period of
time (referred to as mini-slot in [15]) for URLLC users with
stringent delay requirements. Thus, different transmission time
intervals (TTIs) can be supported by using the numerology
and mini-slot based transmission. Moreover, the punctured
scheduling enables non-orthogonal slicing of radio resources
and facilitates the URLLC traffic to preempt resources which
have already been allocated to the eMBB users [16]. Taking
into account these three techniques, the RAN slicing becomes
a multi-timescale problem.

Both model-based and model-free approaches have been
proposed in the literature to address the RAN slicing problem
for the eMBB and URLLC services. In the model-based
approach, the users’ traffic demand and channel gain distribu-
tions are known a priori. Hence, the RAN slicing problem can
be formulated as an optimization problem with the objective of
maximizing the system utility subject to the QoS constraints.
Bairagi et al. [4] considered the network slicing problem
in a downlink orthogonal frequency division multiple access
(OFDMA) system by maximizing the spectral efficiency, while
guaranteeing the required data rate for the eMBB users and



latency for the URLLC users. Yang et al. in [5] proposed
an algorithm based on sample average approximation and
alternating direction method of multipliers (ADMM) tech-
niques for a two-timescale RAN slicing problem to support
multicast eMBB and bursty URLLC services. Anand et al.
in [6] considered a joint eMBB/URLLC scheduling problem
for various eMBB rate loss models while the URLLC traffic is
dynamically multiplexed with the eMBB traffic through punc-
tured scheduling. Alsenwi et al. in [7] proposed a risk-sensitive
punctured scheduling approach, where the radio resources used
by the eMBB users can be reallocated to the URLLC users.
In our previous work [8], we proposed an algorithm based on
penalized successive convex approximation to determine the
allocation of radio resources for eMBB and URLLC users.

Obtaining a global optimal solution for a RAN slicing
problem using exact analytical approaches can sometimes be
mathematically intractable. Therefore, different assumptions
such as known traffic distribution for the URLLC users have
been used in the model-based approach to simplify the prob-
lem formulation. However, these assumptions may degrade
the performance of the obtained solution in practical sys-
tems. To relax these assumptions, deep reinforcement learning
(DRL) [17], which is a model-free approach, has been applied
to learn a policy without prior information about the dynamics
of URLLC traffic and channel gain variations. Wu et al. in [9]
proposed a DRL algorithm to solve a RAN slicing problem for
vehicular networks. Hua et al. [10] applied DRL to design an
online RAN slicing algorithm in a single timescale framework,
in which the same TTI is considered for the eMBB and
URLLC users. Alsenwi et al. in [11] proposed an optimization-
aided DRL algorithm for radio resource slicing with punc-
tured scheduling for eMBB and URLLC services. Huang et
al. in [12] applied the punctured scheduling technique and
proposed a DRL algorithm to minimize the loss of eMBB
users’ data rate due to the URLLC packet transmissions. Liu
et al. in [13] applied DRL augmented with ADMM to allocate
radio resources to the network slices.

The aforementioned related works fall into two main
threads. The first line of research pertains to the orthogonal
slicing approach, where the wireless service provider reserves
a portion of bandwidth for the eMBB users, and another
portion of bandwidth for the URLLC users. In this approach,
which is considered in [5], [8]–[10], [13], service isolation
among network slices is provided. However, the allocated
resources to URLLC slice may be underutilized due to the
URLLC traffic dynamics. The second line of research uses the
non-orthogonal slicing approach with punctured scheduling.
This approach, which is used in [4], [6], [7], [11], [12], can
provide an efficient use of radio resources for URLLC users.
However, punctured scheduling may degrade the performance
of eMBB slice due to potential reduction of the eMBB users’
data rate. Moreover, the proposed RAN slicing schemes in
the aforementioned works consider the same numerology for
both eMBB and URLLC slices, which remains unchanged over
time. Thus, those algorithms do not consider the impact of
numerology selection on the system performance.

To address the aforementioned issues, in this paper, we
study the radio resource slicing problem for serving eMBB and

URLLC users in a downlink OFDMA-based RAN by lever-
aging the techniques of numerology, mini-slot based transmis-
sion, and punctured scheduling. In our RAN slicing problem
formulation, a combination of orthogonal and non-orthogonal
slicing approaches can be used. To tackle this multi-timescale
problem, we propose a hierarchical deep learning framework,
which is modular and contains three different algorithms for
the service provider, eMBB scheduler, and URLLC scheduler.
The main contributions of this paper are as follows:
• Selection of the Slice Configuration Parameters: To en-

sure service isolation among the network slices, we
consider the numerology, bandwidth, and transmit power
used by each network slice as its configuration param-
eters. The service provider determines the configuration
parameters for the network slices in the long time slots
[18]. We model the selection of slice configuration pa-
rameters in each long time slot as a partially observ-
able Markov decision process (POMDP) and propose
a DRL algorithm to efficiently determine configuration
parameters for the slices. We use a long short-term
memory (LSTM) layer in the deep neural network (DNN)
architecture to capture the temporal correlation. The DRL
algorithm guarantees that the inter-slice constraints (e.g.,
limits on the total network bandwidth and the total
available transmit power) are satisfied.

• Hybrid RAN Slicing Approach: We use a combination
of orthogonal and non-orthogonal slicing approaches.
In particular, portions of the bandwidth are reserved
exclusively for the eMBB and URLLC users. Another
portion of the bandwidth is shared between the eMBB
and URLLC users. Punctured scheduling is used in the
shared bandwidth part.

• Resource Allocation in Schedulers: Given the slice con-
figuration parameters, the eMBB and URLLC schedulers
allocate the radio resources (i.e., PRBs, transmit power)
to the eMBB and URLLC users in the short and mini
time slots, respectively [6]. We formulate the radio re-
source allocation performed by the schedulers as mixed-
integer nonlinear optimization problems. We propose two
algorithms based on DNNs with attention mechanism
[19] to learn the stochastic policy for obtaining a near-
optimal PRB allocation to eMBB and URLLC users.
The two proposed algorithms interact with each other
to efficiently utilize the PRBs in the shared bandwidth
part. The attention-based DNN algorithms guarantee that
the intra-slice constraints (e.g., data rate requirement for
the eMBB users and latency requirement for the URLLC
users) are satisfied. The learning environment of the
DRL algorithm depends on the schedulers’ functionality.
Hence, we propose a hierarchical deep learning frame-
work that takes into account the coordination among the
DRL algorithm for the service provider and the attention-
based DNN algorithms for the schedulers.

• Performance Evaluation: We evaluate the performance
of our proposed hierarchical deep learning framework
by comparing the average aggregate throughput for the
eMBB users, and the average service level agreement
(SLA) satisfaction ratio for the eMBB and URLLC slices



with other RAN slicing approaches. Simulation results
show that our proposed framework can achieve an aver-
age aggregate throughput for the eMBB users, which is on
average 9.03%, 29.29%, and 75.21% higher than that of
the resource proportional (RP) placement algorithm [6],
decomposition and relaxation based resource allocation
(DRRA) algorithm [11], and distributed bandwidth opti-
mization based on ADMM (DBO-ADMM) algorithm [5],
respectively. Our case study demonstrates that our pro-
posed framework can well adapt to the network dynamics.
It can maintain the SLA satisfaction ratio for the eMBB
and URLLC slices above 95% and 99%, respectively, as
the URLLC traffic load is increased.

This paper is organized as follows. Section II introduces
the POMDP model for the selection of slice configuration
parameters. The resource allocation problems for downlink
packet scheduling of eMBB and URLLC users are presented
in Section III. In Section IV, we propose a hierarchical
deep learning framework to solve the formulated problem.
In Section V, we evaluate the performance of the proposed
framework via simulations. Conclusion is given in Section VI.

II. POMDP MODEL FOR SLICE CONFIGURATION
PARAMETERS SELECTION

Consider a downlink OFDMA system shown in Fig. 1(a)
with a base station serving multiple eMBB and URLLC
users. Let U eMBB and UURLLC denote, respectively, the set
of U eMBB users in the eMBB slice and the set of UURLLC

users in the URLLC slice. The wireless service provider serves
both the eMBB and URLLC users using a RAN intelligent
controller (RIC) that selects the slice configuration parameters
(i.e., numerology, transmit power, reserved bandwidth for
each slice, shared bandwidth among the slices). The slice
configuration parameters are updated by the RIC in each long
time slot. Let T long = {1, 2, . . . } denote the set of indices
corresponding to long time slots. Each long time slot has a
duration of ∆T long (e.g., 1 sec) [18], [20]. On the other hand,
the radio resources (i.e., PRBs, transmit power) are allocated
to the eMBB and URLLC users in the order of milliseconds
(ms) and microseconds (µs), respectively [6]. Hence, the
eMBB scheduler divides each long time slot t ∈ T long into
T short short time slots with equal duration ∆T short (e.g., 1
ms). Let T short = {1, . . . , T short} denote the set of indices
corresponding to short time slots within each long time slot
t ∈ T long. The URLLC scheduler divides each long time slot
t ∈ T long into Tmini mini time slots, each with equal duration
∆Tmini (e.g., 143 µs1). Let T mini = {1, . . . , Tmini} denote the
set of indices corresponding to mini time slots within each
long time slot t ∈ T long. Fig. 1(b) shows the relation between
the long, short, and mini time slots. The key notations used in
this work are listed in Table I. Next, we model the selection
of slice configuration parameters as a POMDP.

1) Observation: The RIC’s observation in the current long
time slot t ∈ T long is obtained according to the system
performance in the previous time slot t − 1 ∈ T long. This

1Details about the selection of this value for mini time slot duration is
provided in Section III-B.

(a)

(b)

Fig. 1: (a) A downlink OFDMA system with a wireless service provider that
uses a RIC to update the slice configuration parameters for the eMBB and
URLLC schedulers; (b) The time horizon is divided into long time slots,
where each long time slot is divided into T short short time slots and Tmini

mini time slots.

observation is obtained based on the functionality of the eMBB
and URLLC schedulers during the previous long time slot t−1.
However, the obtained observation may be unreliable for the
RIC due to the uncertainty about the users’ traffic demand
and channel gain. Thus, the RIC has no access to the true
system state in the current long time slot t. Instead, it obtains
a partial observation of the underlying system state. We use the
average aggregate throughput of the eMBB users, the average
aggregate traffic demand of the URLLC users, and the average
SLA satisfaction ratio (SSR) [21] for the eMBB and URLLC
slices in the previous time slot t− 1 as the RIC’s observation
in time slot t. Next, we describe the RIC’s observation vector
in long time slot t.

Let f eMBB
τ,t denote the aggregate throughput of the eMBB

users in short time slot τ ∈ T short within long time slot t.
The average aggregate throughput of the eMBB users f

eMBB
t

is initialized as zero at t = 1, and is obtained at the beginning
of each long time slot t > 1 as follows:

f
eMBB
t =

1

T short

∑
τ∈T short

f eMBB
τ, t−1, t ∈ T long\{1}. (1)

Let qu,m, t denote the traffic demand of user u ∈ UURLLC

in mini time slot m ∈ T mini within long time slot t, i.e., the
amount of data at the base station waiting for transmission to
URLLC user u in mini time slot m. The average aggregate
traffic demand of URLLC users qURLLC

t is initialized as zero
at t = 1, and is obtained at the beginning of each long time
slot t > 1 as follows:

qURLLC
t =

1

Tmini

∑
m∈T mini

∑
u∈UURLLC

qu,m, t−1, t ∈ T long\{1}.

(2)



Table I: Summary of key notations

Notation Definition
U eMBB, UURLLC Set of eMBB and URLLC users, respectively
T long, T short, T mini Set of long, short, and mini time slot indices, respectively
∆T long, ∆T short, ∆Tmini Long, short, and mini time slot duration, respectively
ot RIC’s observation vector in long time slot t
st Sequence of actions and observations up to long time slot t
a(st) RIC’s action vector given sequence st
ieMBB(st), iURLLC(st) Selected numerologies for the eMBB and URLLC slices
neMBB(st), nshared(st), nURLLC(st) Number of PRBs with the largest bandwidth allocated to each bandwidth part
ξ(st) Portion of power which is allocated to the eMBB slice
I Set of available choices for the numerologies ieMBB(st), iURLLC(st)
N Set of available choices for tuple

(
neMBB(st), nshared(st), nURLLC(st)

)
Ξ Set of possible values for ξ(st)
f eMBB
τ (st) Aggregate throughput of the eMBB users in short time slot τ within long time slot t
ϑeMBB
τ (st) SSR for the eMBB slice in short time slot τ within long time slot t
ϑURLLC
m (st) SSR for the URLLC slice in mini time slot m within long time slot t
KeMBB(st), KURLLC(st) Set of PRB indices for the eMBB and URLLC schedulers given sequence st, respectively
J eMBB(st) Set of TTI indices within each short time slot for the eMBB scheduler given sequence st
αu,k,τ (st) PRB allocation variable for u ∈ U eMBB, k ∈ KeMBB(st), and τ ∈ T short

pu,k,τ (st) Power allocation variable for u ∈ U eMBB, k ∈ KeMBB(st), and τ ∈ T short

ζk,j,τ (st) Fraction of PRB k ∈ KeMBB(st), which is not punctured in TTI j in short time slot τ
Rmin
u Minimum data rate requirement for user u ∈ U eMBB

βu,k,m(st) PRB allocation variable for u ∈ UURLLC, k ∈ KURLLC(st), and m ∈ T mini

ηk,m(st) Indication of puncturing for PRB k ∈ KURLLC(st) in mini time slot m upon reallocation
fURLLC
m (st) System power consumption in mini time slot m for the URLLC slice
f

punc
m (st) Number of punctured PRBs in the shared bandwidth part in mini time slot m
K̃eMBB(st), K̃URLLC(st) Set of eMBB and URLLC user-PRB pairs, respectively

Let ϑeMBB
τ,t and ϑURLLC

m,t , respectively, denote the SSR for
the eMBB and URLLC slices in short time slot τ and mini
time slot m within long time slot t. The SSR for each slice
is obtained as the ratio of the number of users, whose QoS
requirements are satisfied, to the total number of users in that
slice. The average SSRs for the eMBB and URLLC slices are
initialized as zero at t = 1, and are obtained at the beginning
of each long time slot t > 1 as follows:

ϑ
eMBB
t =

1

T short

∑
τ∈T short

ϑeMBB
τ, t−1, t ∈ T long\{1}, (3a)

ϑ
URLLC
t =

1

Tmini

∑
m∈T mini

ϑURLLC
m, t−1, t ∈ T long\{1}. (3b)

From (1)−(3), the RIC’s observation vector is defined as
ot =

(
f

eMBB
t , qURLLC

t , ϑ
eMBB
t , ϑ

URLLC
t

)
in time slot t ∈ T long.

Since the RIC cannot obtain the system state with complete
reliability in the current time slot t only from the observation
vector ot, we adopt a POMDP approach. A POMDP model
is characterized by the observation space, state space, action
space, reward function, state-transition probability function,
and observation probability function. By using a history of
actions and observations, the RIC can be provided with the
sufficient statistic for decision making under uncertainty [17].
Let at denote the action taken by the RIC in long time slot
t. We denote the sequence of actions and observations up to
time slot t by st = (o1,a1,o2, . . . ,at−1,ot). Let S denote
the set of all sequences of actions and observations.

2) Action: Given the sequence st ∈ S, the action vector of
the RIC in long time slot t ∈ T long includes the numerology,
transmit power, and the reserved bandwidth for the eMBB
and URLLC slices, as well as the shared bandwidth among
the slices. By selecting a numerology, the RIC determines
the SCS and symbol length of OFDM frames used for data

transmission between the base station and users in each slice
[22]. The OFDM frame structure in the frequency domain can
take values of 15, 30, 60, 120, 240, and 480 kHz, which are
the SCSs of different 5G numerologies. For each numerology,
a PRB is defined as twelve consecutive SCSs. In the time
domain, the duration of each OFDM frame is 10 ms. Each
frame has 10 subframes, each with duration of 1 ms. The
number of time slots within a subframe is different for each
numerology. Hence, each numerology has different OFDM
symbol length due to different time slot duration [23]. Table II
summarizes the parameters of the 5G NR numerologies. There
are two frequency ranges (i.e., FR1 and FR2) for the NR base
stations. The numerologies supported by 5G depend on the
operating frequency band. Without loss of generality, in this
paper, we assume that the base station is operating in the lower
frequency range FR1.

Let I = {0, 1, 2} denote the set of choices for the nu-
merologies of each network slice. Given the sequence st ∈ S,
let ieMBB(st) and iURLLC(st) ∈ I, respectively, denote the
selected numerologies for the eMBB and URLLC slices.
According to the 3rd Generation Partnership Project (3GPP)
standard [16], the selected SCS for the eMBB users cannot be
greater than the selected SCS for the URLLC users in practical
systems. Hence, we have

ieMBB(st) ≤ iURLLC(st), st ∈ S, (4a)

ieMBB(st), i
URLLC(st) ∈ I, st ∈ S. (4b)

Numerology selection enables the corresponding scheduler
in each slice to obtain the bandwidth and time duration
of the PRBs. Given the sequence st ∈ S , let beMBB(st)
and ∆τ eMBB(st) denote the bandwidth and time duration of
each PRB in the eMBB slice, respectively. Also, we denote
the bandwidth and time duration of each PRB used in the
URLLC slice, by bURLLC(st) and ∆τURLLC(st), respectively.



Table II: Parameters of different 5G NR numerologies

Numerology 0 1 2 3 4 5
Subcarrier spacing (SCS) 15 kHz 30 kHz 60 kHz 120 kHz 240 kHz 480 kHz

PRB bandwidth 180 kHz 360 kHz 720 kHz 1.44 MHz 2.88 MHz 5.76 MHz
Number of slots per subframe 1 2 4 8 16 32

Time slot duration 1 ms 0.5 ms 0.25 ms 0.125 ms 0.0625 ms 0.03125 ms
OFDM symbol duration 66.67 µs 33.33 µs 16.67 µs 8.33 µs 4.17 µs 2.08 µs
Frequency range (FR) FR1 FR1 FR1 FR2 FR2 FR2

By selecting the numerologies ieMBB(st) and iURLLC(st) in
time slot t ∈ T long, the parameters beMBB(st) and ∆τ eMBB(st)
for the eMBB slice, as well as the parameters bURLLC(st)
and ∆τURLLC(st) for the URLLC slice can be determined
according to Table II. For example, if the service provider
selects numerology ieMBB(st) = 1 for the eMBB users, then
we have beMBB(st) = 360 kHz and ∆τ eMBB(st) = 0.5 ms.

Using the orthogonal slicing approach, the service provider
allocates a portion of the total available bandwidth to each
slice. The service provider can also reserve a portion of
bandwidth to be shared among the network slices. Since the
URLLC traffic has a strict latency requirement, it should
be scheduled immediately upon arrival at the base station.
Considering the transmission priority of the URLLC traffic in
the shared bandwidth part, they can puncture (i.e., override)
some of the ongoing eMBB transmissions [24]. That is, a non-
orthogonal slicing approach is used in the shared bandwidth
part. Since the largest PRB bandwidth is divisible by the
PRB bandwidth of all other numerologies, we assume that the
granularity of the bandwidth parts is equal to the largest PRB
bandwidth among all possible numerologies. Hence, based
on the selected numerology, we can obtain the number of
PRBs for each bandwidth part. Let bmax denote the largest
PRB bandwidth (i.e., 720 kHz for numerology 2 in Table
II). Given the sequence st ∈ S, let neMBB(st), nshared(st),
and nURLLC(st) denote the number of PRBs with the largest
bandwidth allocated to the eMBB, shared, and URLLC band-
width parts, respectively. Considering Btot as the total available
bandwidth in the base station, for st ∈ S, we have(

neMBB(st) + nshared(st) + nURLLC(st)
)
bmax ≤ Btot, (5a)(

neMBB(st), n
shared(st), n

URLLC(st)
)
∈ N , (5b)

where N is the set of tuples such that each tuple shows
the number of PRBs that can be selected for eMBB, shared,
and URLLC bandwidth parts. Fig. 2 shows a time-frequency
OFDM grid after the selection of numerologies and bandwidth
parts by the RIC for the network slices.

Next, we determine the maximum transmit power which
can be used for data transmission to the users in each slice.
Let Pmax denote the maximum transmit power of the base
station. The RIC determines the transmit power peMBB(st) and
pURLLC(st) that are reserved for the eMBB and URLLC slices,
respectively. Given the sequence st ∈ S, let ξ(st), where
0 ≤ ξ(st) ≤ 1, denote the portion of power which is allocated
to the eMBB slice. Hence, we have

peMBB(st) = ξ(st)P
max, st ∈ S, (6a)

pURLLC(st) = (1− ξ(st))Pmax, st ∈ S. (6b)

Fig. 2: Time-frequency OFDM grid when numerology 1 is selected for the
eMBB slice and numerology 2 is selected for the URLLC slice. A portion of
the total available bandwidth has been allocated to each bandwidth part.

We use Ξ to denote the set of possible values for ξ(st)
selection. Given the sequence st ∈ S, the action vector
is defined as a(st) = (ieMBB(st), i

URLLC(st), n
eMBB(st),

nshared(st), n
URLLC(st), ξ(st)). The feasible action space A

is defined by constraints (4a)−(6b), and ξ(st) ∈ Ξ.
3) Reward: By performing action a(st) ∈ A in time slot

t ∈ T long, based on the eMBB scheduler functionality, the
eMBB slice can obtain the aggregate throughput f eMBB

τ (st),
and SSR ϑeMBB

τ (st) in short time slot τ ∈ T short within
long time slot t. Similarly, based on the URLLC scheduler
functionality, the URLLC slice can obtain the SSR ϑURLLC

m (st)
in mini time slot m ∈ T mini within long time slot t. Thus, the
service provider obtains the following reward R(st,a(st)) at
the end of long time slot t ∈ T long:

R(st,a(st)) =

λsp

T short

∑
τ∈T short

f eMBB
τ (st)

− λeMBB

[
υeMBB − 1

T short

∑
τ∈T short

ϑeMBB
τ (st)

]+

− λURLLC

[
υURLLC − 1

Tmini

∑
m∈T mini

ϑURLLC
m (st)

]+

, (7)

where [z]+ = max{0, z}. υeMBB and υURLLC ∈ [0, 1] are
thresholds for the average SSR of the eMBB and URLLC
slices, respectively. The last two terms in (7) are the penalties
that may incur due to the violation of the data rate requirement
for the eMBB users, or the reliability and latency requirements
for the URLLC users. All three terms in the reward function
are affected by the traffic demand of the URLLC users. λsp is
a weighting coefficient for the average aggregate throughput
of the eMBB users. λeMBB and λURLLC are the weighting



coefficients for the penalty terms in the reward function. To
guarantee the average SSR threshold for the slices over long
time slots, λeMBB and λURLLC should take a large value relative
to other values in (7).

4) Stationary policy and value function: Given the se-
quence st = s for any s ∈ S, a policy is defined as a prob-
ability distribution π(s) = (π(a | s), a ∈ A), where π(a | s)
denotes the probability of choosing action a(st) = a ∈ A
given the sequence st = s ∈ S. We define π = (π(s), s ∈ S)
as the stationary randomized policy. Given the discount factor
γ ∈ [0, 1], the value function Vπ : S → R for sequence
s returns the expected discounted reward when starting from
st = s in time slot t and following policy π in the upcoming
time slots. We have

Vπ(s) = Eπ
{ ∞∑
t′=t

γt
′−tR(st′ ,a(st′))

∣∣∣ st = s
}
, (8)

where Eπ {·} is the expectation over choosing feasible actions
with policy π. The service provider aims to obtain policy π∗

such that the value function is maximized for all sequences
s ∈ S . This is equivalent to solving the following Bellman
optimality equations [25]:

P sp : Vπ∗(s) = maximize
a∈A

R(s,a)

+ γ
∑
s′∈S

Pr(s′ | s,a)Vπ∗(s′), ∀s ∈ S, (9)

where Pr(s′ | s,a) denotes the probability that the sequence
in the next long time slot be s′, given the current sequence
s and the chosen action a. Problem P sp is a recursive opti-
mization problem, which is difficult to be solved. Moreover,
the transition probabilities are not available to the service
provider. To address this issue, in Section IV-A, we develop a
DRL algorithm based on the actor-critic method to gradually
update the value function and policy without any knowledge
of the transition probabilities. The RIC obtains the reward
at the end of each time slot t ∈ T long, when the required
system performance values are provided based on the eMBB
and URLLC schedulers’ functionality. In the next section, we
present the problem formulation for the resource allocation
performed by the schedulers.

III. RESOURCE ALLOCATION PROBLEM FORMULATION

Given the sequence st, when the RIC selects action a(st),
the eMBB and URLLC schedulers get informed about the
amount of radio resources that can be allocated to their
corresponding users. The eMBB and URLLC schedulers pro-
vide the RIC with the values of 1

T short

∑
τ∈T short f eMBB

τ (st),
1

T short

∑
τ∈T short ϑeMBB

τ (st), and 1
Tmini

∑
m∈T mini ϑURLLC

m (st) at
the end of each long time slot. Then, the service provider
computes the reward R(st,a(st)) in (7). In this section, we
present the resource allocation problems for the schedulers.

A. eMBB Scheduler Model

The eMBB scheduler determines the joint PRB and power
allocation for the eMBB users in each short time slot
τ ∈ T short. We assume that the channel coherence time

is larger than the short time slot duration ∆T short. Hence,
the channel gain between the base station and the eMBB
users can be assumed to be unchanged for each PRB
over short time slot τ . Considering the selected numerol-
ogy, ieMBB(st), and the allocated bandwidth, BeMBB(st) =(
neMBB(st) + nshared(st)

)
bmax, for the eMBB slice, the eMBB

scheduler can allocate at most KeMBB(st) =
⌊
BeMBB(st)
beMBB(st)

⌋
PRBs

to the eMBB users. We denote the set of PRB indices by
KeMBB(st) =

{
1, . . . ,KeMBB(st)

}
. Since each PRB has a

time duration of ∆τ eMBB(st), there are at most J eMBB(st) =⌊
∆T short

∆τ eMBB(st)

⌋
TTIs within each short time slot. We denote the

set of TTI indices by J eMBB(st) =
{

1, . . . , J eMBB(st)
}

.
Given st, let binary decision variable αu,k,τ (st) denote

whether PRB k ∈ KeMBB(st) is allocated to user u ∈ U eMBB

in time slot τ ∈ T short (i.e., αu,k,τ (st) = 1) or not (i.e.,
αu,k,τ (st) = 0). If αu,k,τ (st) = 1, then PRB k ∈ KeMBB(st)
should be allocated to user u ∈ U eMBB for all the TTI
indices j ∈ J eMBB(st) within short time slot τ . Each PRB
k ∈ KeMBB(st) can be allocated to at most one eMBB user.
Hence, we have∑
u∈U eMBB

αu,k,τ (st) ≤ 1, k ∈ KeMBB(st), τ ∈ T short, st ∈ S.

(10)

Given st, let pu,k,τ (st) denote the allocated transmission
power to user u ∈ U eMBB using PRB k ∈ KeMBB(st) in time
slot τ ∈ T short. Considering the allocated power peMBB(st) to
the eMBB slice by the RIC in long time slot t, we have∑
u∈U eMBB

∑
k∈KeMBB(st)

αu,k,τ (st) pu,k,τ (st) ≤ peMBB(st),

τ ∈ T short, st ∈ S. (11)

Let Γu,k,τ (st) =
pu,k,τ (st)|gu,k,τ (st)|2

σ2 denote the received
signal-to-noise ratio (SNR) for user u ∈ U eMBB using PRB
k ∈ KeMBB(st) in time slot τ ∈ T short, where gu,k,τ (st) ∈ C
denotes the channel gain between the base station and user
u on PRB k, and σ2 is the variance of the additive white
Gaussian noise. Given the sequence st, we denote the data
rate for eMBB user u using PRB k in short time slot τ by
Ru,k,τ (st) = beMBB(st) log2 (1 + Γu,k,τ (st)).

In the shared bandwidth part, an arriving URLLC data
packet cannot be delayed due to its stringent low latency
requirement. Hence, a URLLC packet will be transmitted
immediately by puncturing the ongoing eMBB transmissions.
We use parameter ζk,j,τ (st) to denote the fraction of PRB
k ∈ KeMBB(st), which is not punctured by the URLLC
users in TTI j ∈ J eMBB(st) in time slot τ ∈ T short, where
0 ≤ ζk,j,τ (st) ≤ 1. Parameter ζk,j,τ (st) depends on the
allocation of the PRBs in the shared bandwidth part. For the
PRBs in the eMBB bandwidth part, we have ζk,j,τ (st) = 1.
Fig. 3 shows how the eMBB and URLLC schedulers al-
locate PRBs to their corresponding users. Considering the
punctured PRBs, the data rate for user u ∈ U eMBB in
TTI j ∈ J eMBB(st) in time slot τ ∈ T short is equal to
Ru,j,τ (st) =

∑
k∈KeMBB(st)

ζk,j,τ (st)αu,k,τ (st)Ru,k,τ (st).
Given the sequence st ∈ S , the following constraint

guarantees the minimum data rate Rmin
u for user u ∈ U eMBB



Fig. 3: The eMBB scheduler allocates PRBs in the eMBB and shared
bandwidth parts to the eMBB users in each short time slot. The URLLC
scheduler allocates PRBs in the URLLC and shared bandwidth parts to the
URLLC users in each mini time slot. The schedulers interact with each other
to efficiently utilize the PRBs in the shared bandwidth part.

in TTI j ∈ J eMBB(st) in time slot τ ∈ T short:

Ru,j,τ (st) ≥ Rmin
u , u ∈ U eMBB, j ∈ J eMBB(st),

τ ∈ T short, st ∈ S. (12)

To maximize the aggregate throughput of the eMBB users
in each short time slot τ , the objective function for the
eMBB scheduler is f eMBB

τ (st) = 1
JeMBB(st)

∑
j∈J eMBB(st)∑

u∈U eMBB Ru,j,τ (st).
Given constraints (10)−(12), the eMBB scheduler can find

a feasible PRB and power allocation for all the eMBB users in
each short time slot τ if the RIC provides the eMBB slice with
sufficient radio resources (i.e., BeMBB(st) and peMBB(st)), as
well as a proper choice of numerology ieMBB(st). We consider
the following penalized optimization problem:

PeMBB-Pen
τ (st) :

maximize
αu,k,τ (st),
pu,k,τ (st),∆u,j,τ (st),

u∈U eMBB, k∈KeMBB(st), j∈J eMBB(st)

f eMBB
τ (st)− λeMBB-Pen

∑
j∈J eMBB(st)

∑
u∈U eMBB

∆2
u,j,τ (st)

subject to constraints (10)−(11),

Ru,j,τ (st) + ∆u,j,τ (st) ≥ Rmin
u ,

u ∈ U eMBB, j ∈ J eMBB(st), (13)

where λeMBB-Pen � 1 is the penalizing coefficient and
∆u,j,τ (st) is a slack variable to penalize the objective function
due to the minimum data rate constraint (12) violation for
user u ∈ U eMBB in TTI j ∈ J eMBB(st) in time slot
τ ∈ T short, when the radio resources provided by the RIC
are not sufficient for the eMBB slice. At the end of long time
slot t, the eMBB scheduler computes 1

T short

∑
τ∈T short f eMBB

τ (st)
based on the joint PRB and power allocation obtained by
solving problem PeMBB-Pen

τ (st). Furthermore, the value of
1

T short

∑
τ∈T short ϑeMBB

τ (st) can be determined based on the
obtained solution for penalizing slack variables ∆u,j,τ (st):

ϑeMBB
τ (st) =

1

J eMBB(st)U eMBB

∑
j∈J eMBB(st)

∑
u∈U eMBB

1(∆u,j,τ (st) = 0),

τ ∈ T short, st ∈ S, (14)

where the indicator function 1(z ∈ Z) is equal to 1 if z ∈ Z ,
and is equal to zero otherwise. The eMBB scheduler informs
the URLLC scheduler about how the shared bandwidth part

Table III: 5G numerologies and the considered URLLC trans-
mission duration

Numerology URLLC transmission duration Blocklength per PRB
0 2 OFDM symbols 24 OFDM symbols
1 4 OFDM symbols 48 OFDM symbols
2 8 OFDM symbols 96 OFDM symbols

will be used by providing the obtained solution for αu,k,τ (st),
u ∈ U eMBB, k ∈ KeMBB(st).

B. URLLC Scheduler Model

Given the sequence st, the solution of problem
PeMBB-Pen
τ (st) in each short time slot τ ∈ T short depends

on the parameters ζk,j,τ (st) obtained based on the PRB
allocation for URLLC users in the shared bandwidth part. To
meet the latency requirement of URLLC users, the URLLC
scheduler uses mini time slots for scheduling. When data
arrives at the base station to be transmitted for a URLLC
user, the data will first be placed in a buffer corresponding to
that URLLC user. The URLLC scheduler aims to guarantee
that the waiting time for the URLLC traffic in the buffer does
not exceed ∆Tmini. To achieve this goal, first, the URLLC
scheduler sends all the arrived data in the buffer corresponding
to each URLLC user at the beginning of each mini time slot.
Second, the URLLC TTI is considered to be equal to the mini
time slot duration ∆Tmini. Based on [26], we can configure
the transmission start time and mini-slot length for different
numerologies such that URLLC transmissions start at the
beginning of each mini time slot with TTI of one mini time
slot duration. Table III shows the considered transmission
time for each possible numerology. From Tables II and III, we
have ∆Tmini = 143 µs, which is sufficient to meet the latency
constraint for URLLC traffic. Considering the allocated
bandwidth, BURLLC(st) =

(
nURLLC(st) + nshared(st)

)
bmax

and the selected numerology, iURLLC(st), the URLLC
scheduler can allocate at most KURLLC(st) =

⌊
BURLLC(st)
bURLLC(st)

⌋
PRBs to the URLLC users. We denote the set of PRB indices
by KURLLC(st) =

{
1, . . . ,KURLLC(st)

}
.

Given the sequence st, we use binary decision variable
βu,k,m(st) to indicate whether PRB k ∈ KURLLC(st) is
allocated to user u ∈ UURLLC in time slot m ∈ T mini (i.e.,
βu,k,m(st) = 1) or not (i.e., βu,k,m(st) = 0). Each PRB k
can be allocated to at most one URLLC user. We have∑

u∈UURLLC

βu,k,m(st) ≤ 1, k ∈ KURLLC(st),

m ∈ T mini, st ∈ S. (15)

Let Γu,k,m(st) =
pu,k,m(st)|gu,k,m(st)|2

σ2 denote the SNR for
user u ∈ UURLLC using PRB k ∈ KURLLC(st) in mini time
slot m ∈ T mini, where pu,k,m(st) is the allocated transmission
power to URLLC user u using PRB k in mini time slot m.
Given the sequence st, we denote the number of transmitted
bits for user u according to the PRB allocation in mini time
slot m by Ru,m(st). Due to the finite blocklength coding for
the URLLC traffic, the short-packet transmission regime is



used to approximate Ru,m(st) as follows [27]:

Ru,m(st) ≈

NB(st)
∑

k∈KURLLC(st)

βu,k,m(st) log2 (1 + Γu,k,m(st))

− log2 eQ
−1(εB)×√

NB(st)
∑
k∈KURLLC(st)

βu,k,m(st)Vu,k,m(st), (16)

where NB(st) is the blocklength and can be obtained accord-
ing to Table III based on the selected numerology for the
URLLC slice. εB is the decoding error probability, Q−1(·)
is the inverse of the Gaussian Q-function, and Vu,k,m(st) =
1− 1

(1+Γu,k,m(st))2
is the channel dispersion.

To guarantee 1 − εB reliability for transmission of specific
Ru,m(st) bits per mini time slot, it is required to assign
sufficient PRBs with a large SNR to user u ∈ UURLLC. We use
a binary SNR model for the URLLC users [28]. We consider
that PRB k ∈ KURLLC(st) is active for user u if Γu,k,m(st)
is not less than the SNR threshold ΓTHR. The allocated power
for transmission from the base station to URLLC user u on
active PRB k is given by

pu,k,m(st) =
ΓTHRσ2

|gu,k,m(st)|2
, u ∈ UURLLC, k ∈ KURLLC(st),

m ∈ T mini, st ∈ S. (17)

Given the allocated power pURLLC(st) to URLLC slice by
the RIC in long time slot t ∈ T long, we have the following
power allocation constraint:∑

u∈UURLLC

∑
k∈KURLLC(st)

βu,k,m(st) pu,k,m(st) ≤ pURLLC(st),

m ∈ T mini, st ∈ S. (18)

Given the sequence st, all the data arrived at the base station
for user u ∈ UURLLC before mini time slot m ∈ T mini, i.e.,
qu,m(st), should be transmitted during the current mini time
slot. Hence, the latency constraint for user u will be satisfied.
We have

Ru,m(st) ≥ qu,m(st), u ∈ UURLLC, m ∈ T mini, st ∈ S.
(19)

The URLLC scheduler aims to minimize the system
power consumption in each mini time slot m ∈ T mini.
Hence, we have fURLLC

m (st) =
∑
u∈UURLLC

∑
k∈KURLLC(st)

βu,k,m(st) pu,k,m(st). In addition, the URLLC scheduler aims
to reduce the number of punctured PRBs in the shared
bandwidth part, which can be modeled as f punc

m (st) =∑
k∈KURLLC(st)

1
(
ηk,m(st)

∑
u∈UURLLC βu,k,m(st) > 0

)
, where

the parameter ηk,m(st) ∈ {0, 1} denotes whether PRB k ∈
KURLLC(st) has already been used by the eMBB users in
time slot m ∈ T mini (i.e., ηk,m(st) = 1) or not (i.e.,
ηk,m(st) = 0). For the PRBs in the URLLC bandwidth part,
we have ηk,m(st) = 0.

Given constraints (15)−(19), the URLLC scheduler can find
a feasible PRB allocation for all the URLLC users in each
mini time slot m ∈ T mini if the RIC provides the URLLC
slice with sufficient radio resources (i.e., BURLLC(st) and

pURLLC(st)) and a proper numerology iURLLC(st). We consider
the following penalized optimization problem:

PURLLC-Pen
m (st) :

minimize
βu,k,m(st),∆u,m(st),

u∈UURLLC, k∈KURLLC(st)

fURLLC
m (st) + λpuncf punc

m (st)

+ λURLLC-Pen
∑

u∈UURLLC

1(∆u,m(st) 6= 0)

subject to constraints (15)−(18),

Ru,m(st) + ∆u,m(st) ≥ qu,m(st), u ∈ UURLLC,
(20)

where λpunc > 0 is a weighting coefficient to obtain a tradeoff
between minimizing the system power consumption and min-
imizing the number of punctured PRBs, λURLLC-Pen � 1 is the
penalty weighting coefficient, and ∆u,m(st) is a slack variable
for penalizing the objective function due to the violation from
constraint (19) for URLLC user u in mini time slot m. Based
on the obtained solution for the slack variables ∆u,m(st), the
URLLC scheduler computes 1

Tmini

∑
m∈T mini ϑURLLC

m (st) at the
end of each long time slot t ∈ T long. We have

ϑURLLC
m (st) =

1

UURLLC

∑
u∈UURLLC

1(∆u,m(st) = 0),

m ∈ T mini, st ∈ S. (21)

Problems PeMBB-Pen
τ (st) and PURLLC-Pen

m (st) are mixed-integer
nonlinear optimization problems, which are NP-hard and dif-
ficult to solve. In the next section, we propose a hierarchical
framework to solve these two resource allocation problems as
well as the RIC optimization problem P sp.

IV. ALGORITHM DESIGN

In this section, we develop a hierarchical deep learning
framework to support eMBB and URLLC services in a 5G
RAN. First, we propose a DRL algorithm that enables the
RIC to determine the slice configuration parameters at the
beginning of each long time slot. Next, we propose two
attention-based DNN algorithms for the eMBB and URLLC
schedulers to allocate radio resources to their users at the
beginning of each short and mini time slot, respectively.

A. Slice Configuration Parameters Selection Algorithm for the
RIC

We develop a DRL-based algorithm for the selection of
slice configuration parameters using the actor-critic method
[25, Ch. 13]. It enables the RIC to determine the optimal
policy and value function. Let θt and ψt denote the neural
network parameters for the policy and value function in long
time slot t, respectively. As shown in Fig. 4, an LSTM layer
is used in the DNN structure of the actor and critic networks.
By using an LSTM layer, the history sequence of actions and
observations, which is required to tackle POMDP problems
can be formed implicitly for the actor and critic DNNs due to
the internal memory mechanism of the LSTM layer [29], [30].
Thus, the DNN for the policy (i.e., the actor) takes only the
previous action a(st−1) and the current observation vector
ot to return a probability distribution over the action space



Fig. 4: Illustration of the DNNs structure of the actor-critic networks. The
RIC interacts with the eMBB and URLLC schedulers as its environment.

Algorithm 1: Slice Configuration Parameters Selection
Algorithm

1: Initialize the actor learning rate νactor, the critic learning rate
νcritic, t := 1, and ε: = 10−6.

2: Initialize randomly the learnable parameters θactor
1 and ψcritic

1

for the actor and critic networks, respectively.
3: Initialize the observation o1.
4: Repeat
5: Obtain the slice configuration parameters a(st) by

sampling from the probability distribution πθactor
t

(· | st).
6: Update the slice configuration parameters for the eMBB

and URLLC network slices.
7: Obtain 1

T short

∑
τ∈T short f

eMBB
τ (st) and

1
T short

∑
τ∈T short ϑ

eMBB
τ (st) from the eMBB slice, and

1
Tmini

∑
m∈T mini

∑
u∈UURLLC qu,m(st) and

1
Tmini

∑
m∈T mini ϑ

URLLC
m (st) from the URLLC slice.

8: Receive reward R(st,a(st)).
9: Obtain the new observation vector ot+1.

10: Obtain the TD error δ(ψcritic
t ) corresponding to long

time slot t.
11: Update the learnable parameters θactor

t+1 and ψcritic
t+1

according to (22) and (23), respectively.
12: t := t+ 1.
13: Until ||θactor

t−1 − θactor
t−2|| < ε and ||ψcritic

t−1 −ψcritic
t−2 || < ε.

14: Outputs are the learned parameters for the actor network.

A. Also, the DNN for the value function (i.e., the critic) takes
{a(st−1),ot} to return the value function for the sequence st.
In addition, Fig. 4 illustrates how the actor and critic networks
interact with each other and with the environment, i.e., the
eMBB and URLLC schedulers.

Algorithm 1 describes our proposed algorithm to obtain the
slice configuration parameters by the RIC. Line 1 describes
the initialization for νactor and νcritic as the learning rates for
the actor and critic networks, respectively. In Line 2, the
neural network parameters θactor

t and ψcritic
t are initialized.

In Line 3, we set the initial observation vector ot in long
time slot t = 1. The loop within Lines 4 to 13 involves
the RIC’s learning process. At the beginning of each long
time slot t, the RIC selects an action based on the output
of the actor network in Line 5. Then, it updates the config-
uration parameters of the eMBB and URLLC network slices
by providing the corresponding schedulers with the selected

action a(st) in Line 6. Using the pre-trained DNNs for the
eMBB scheduler, f eMBB

τ (st) and ϑeMBB
τ (st) are determined in

each short time slot τ ∈ T short within long time slot t. Using
the pre-trained DNNs for the URLLC scheduler, ϑURLLC

m (st),
and

∑
u∈UURLLC qu,m(st) are computed in each mini time slot

m ∈ T mini within long time slot t. In Line 7, the average
values for the aggregate throughput of the eMBB users and
SSR for the eMBB slice are computed. The aggregate traffic
demand of the URLLC users and average SSR for the URLLC
slice are obtained. The RIC receives the reward R(st,a(st))
and obtains the next observation ot+1 at the end of long
time slot t, in Lines 8 and 9, respectively. In Line 10, the
RIC computes the temporal difference (TD) error δ(ψcritic

t ) =
R(st,a(st)) + γVπθactor

t
(st+1,ψ

critic
t ) − Vπθactor

t
(st,ψ

critic
t ). In

Line 11, using the stochastic gradient descent (SGD) approach,
the updated neural network parameters in the actor DNN are
obtained as follows:

θactor
t+1 = θactor

t + νactor δ(ψcritic
t )

×∇θactor ln (πθactor(a(st) | st))
∣∣
θactor=θactor

t
, (22)

and the neural network parameters in the critic DNN are
updated as follows:

ψcritic
t+1 = ψcritic

t − νcriticδ(ψcritic
t )∇ψcriticδ(ψcritic)

∣∣
ψcritic=ψcritic

t
.

(23)

The gradients in (22) and (23) are computed using the back-
propagation algorithm [31, Ch. 6]. The next long time slot
begins in Line 12. In Line 13, the stopping criteria are given.
After reaching the stopping criteria, the RIC employs the
output of the trained actor DNN to obtain a near-optimal action
for the selection of the network slice configuration parameters.

B. Resource Allocation Algorithm for the eMBB and URLLC
Schedulers

The PRB allocation in problems PeMBB-Pen
τ (st) and

PURLLC-Pen
m (st) for the eMBB and URLLC users in their

corresponding network slices are equivalent to solving combi-
natorial optimization problems, where a subset of user-PRB
pairs should be selected as the optimal solution to prob-
lems PeMBB-Pen

τ (st) and PURLLC-Pen
m (st), respectively. Recently,

DNN with attention mechanism [19] has shown as a promise
technique to obtain a near-optimal solution for combinatorial
optimization problems. Inspired by the work in [32], we
develop an encoder-decoder DNN architecture shown in Fig.
5 to obtain a near-optimal solution for PRB allocation to
the eMBB and URLLC users in their corresponding network
slices. As an input, the encoder receives a sequence of feature
vectors for all possible user-PRB pairs. Let K̃ denote the set
of user-PRB pairs. We denote the feature vector for user-
PRB pair k̃ ∈ K̃ by φk̃. Let Φ =

{
φk̃ | k̃ ∈ K̃

}
denote

the input sequence of the encoder. As shown in Fig. 5(a),
the input sequence passes through linear projection layers, an
attention layer, and feedforward layers to generate the encoder
embedding sequence henc = {henc

k̃
, k̃ ∈ K̃}, which is a high-

dimensional representation of the input sequence Φ.
The decoder is invoked D times to produce output sequence

Ω = {ω1, . . . , ωD} ⊆ K̃ as the selected user-PRB pairs. Let D



(a) (b)

Fig. 5: Illustration of the DNN structure for (a) the encoder module and (b) the decoder module.

denote the set of decoding timesteps. The decoder at decoding
timestep d ∈ D is responsible for selecting a user-PRB pair
ωd from set K̃. Fig. 5(b) shows the architecture of the decoder.
The input of the decoder at decoding timestep d consists of
three parts. The first part is the context embedding hcontext

d ,
which depends on the selected user-PRB pairs ω1, . . . , ωd−1

in decoding timesteps 1, . . . , d − 1. We will provide details
about the elements of the context embedding hcontext

d for
the URLLC and eMBB schedulers in Sections IV-B1 and
IV-B2, respectively. The second part is the encoder embedding
sequence henc. The third part is sequence δ̃d = {δ̃k̃,d, k̃ ∈ K̃},
where δ̃k̃,d denotes the remaining traffic demand of the user
specified by the user-PRB pair k̃ at decoding timestep d.
As shown in Fig. 5(b), the input of the decoder passes
through attention layers and a softmax layer to generate a con-
ditional probability distribution πθ(ωd |Φ, ω1, . . . , ωd−1) =(
πθ(ωd = k̃ |Φ, ω1, . . . , ωd−1), k̃ ∈ K̃

)
, where θ denotes the

neural network parameters for the underlying encoder-decoder
DNN architecture.

1) Algorithm Design for the URLLC Scheduler: The
URLLC scheduler aims to solve problem PURLLC-Pen

m (st). We
develop a resource allocation algorithm using an encoder-
decoder DNN with attention mechanism. Given the se-
quence st, the set of user-PRB pairs is obtained as
K̃URLLC(st) = UURLLC × KURLLC(st). For the encoder, φk̃ =(
|gu,k,m(st)|2, qu,m(st), ηk,m(st)

)
is considered as the fea-

ture vector of user-PRB pair k̃ ∈ K̃URLLC(st) in mini time slot
m ∈ T mini.

For the decoder, the maximum number of decoding
timesteps is set to be the number of available PRBs for the
URLLC slice, i.e., D = |KURLLC(st)|. At decoding timestep
d ∈ D, the context embedding is defined as hcontext

d =[
hmean, henc

ωd−1
, Cd

]
, where hmean is the mean of the encoder

embedding sequence henc, henc
ωd−1

is the encoder embedding of
the selected user-PRB pair at the previous decoding timestep,
and Cd denotes the available resources at decoding timestep
d. At decoding timestep d = 1, we set henc

ωd−1
= 0 and

initialize Cd =
(
pURLLC(st), K

URLLC(st)
)
, where the first

component shows the available transmission power and the
second component shows the available number of PRBs for
the URLLC users. Given the output of the previous decoding
timestep d − 1, we set βu,k,m(st) = 1 for u ∈ UURLLC and
k ∈ KURLLC(st), which are related to the selected user-PRB

pair ωd−1 ∈ K̃URLLC(st). By assigning PRB k to user u, the
allocated transmit power pu,k,m(st) for user u on PRB k is
obtained based on (17). Hence, Cd at decoding timestep d > 1
is updated as Cd = Cd−1 − (pu,k,m(st), 1).

Parameter δ̂k̃,d is the remaining traffic demand, which is
initialized by δ̂k̃,d = qu,m(st) for each user-PRB pair k̃ ∈
K̃URLLC(st) at decoding timestep d = 1. We update δ̂k̃,d for
d > 1 as follows:

δ̂k̃,d =

{
max(0, qu,m(st)−Ru,m(st)), if k̃ ∈ K̃ωd−1

,

δ̂k̃,d−1, if k̃ /∈ K̃ωd−1
,
(24)

where K̃ωd−1
= {(u, k) | (u, k′) = ωd−1, k ∈ KURLLC(st)\

{k′}} denotes the set of (u, k) pairs that u is specified by
the selected user-PRB pair ωd−1, and k is specified by the
PRB indices. Since the remaining traffic demand δ̂k̃,d depends
on the total number of transmitted bits for user u (i.e.,
Ru,m(st)), after each selection of ωd−1, we should update
δ̂k̃,d for the selected user and all the remaining PRBs. At
decoding timestep d, to satisfy constraint (15), we mask the
user-PRB pairs corresponding to the previously selected user-
PRB pairs ω1, . . . , ωd−1. To satisfy constraint (18), we mask
all the user-PRB pairs in set K̃URLLC(st) that require more
transmission power than the remaining transmission power,
i.e., first component of Cd. Finally, given constraint (20),
we mask all the user-PRB pairs with zero remaining traffic
demand, i.e., δ̂k̃,d = 0, k̃ ∈ K̃URLLC(st).

Algorithm 2 describes our proposed training algorithm
for the URLLC scheduler. In Line 1, we set the number
of training epochs EURLLC, and the batch size κURLLC for
each epoch. In Line 2, the learnable parameters θURLLC are
initialized. The loop within Lines 3 to 12 encompasses the
learning process of the URLLC scheduler. In Line 4, at each
training epoch, we consider κURLLC input sequences as training
samples for that epoch. To generate each training sample,
we uniformly select the numerology iURLLC(st), the tuple(
neMBB(st), n

shared(st), n
URLLC(st)

)
, and the power alloca-

tion factor ξ(st) from the sets I, N , and Ξ, respectively.
Then, using different channel gain realizations for user-PRB
pairs and different traffic load realizations for the URLLC
users, the feature vectors of URLLC user-PRB pairs are
determined. In the loop within Lines 5 to 9, for each input
sequence, we compute the gradient of the loss function, which
is required to update the learnable parameters θURLLC. In



Algorithm 2: Training Algorithm for the URLLC Sched-
uler

1: Set the number of epochs EURLLC and batch size κURLLC.
2: Initialize randomly the learnable parameters θURLLC.
3: for each epoch do
4: Consider κURLLC different input sequences ΦκURLLC for

the URLLC scheduler.
5: for each Φ ∈ ΦκURLLC do
6: Feed the sequence Φ into the encoder-decoder DNN

modules and obtain Ω using πθURLLC (Ω |Φ).
7: Determine f(Ω) based on the objective value of

problem PURLLC-Pen
m (st).

8: Determine ∇L(θURLLC |Φ).
9: end for

10: Determine the aggregate gradient over the batch as
∇L(θURLLC |ΦκURLLC ) :=

∑
Φ∈Φ

κURLLC
∇L(θURLLC |Φ).

11: Update θURLLC using Adam optimizer [33].
12: end for
13: Outputs are the learned parameters θURLLC.

Line 6, we obtain a probability distribution πθURLLC(Ω |Φ) =∏D
d=1 πθURLLC(ωd |Φ, ω1, . . . , ωd−1), from which we can sam-

ple to determine the allocation of PRBs to URLLC users,
i.e., where βu,k,m(st), u ∈ UURLLC, k ∈ KURLLC(st)
should be equal to one. Considering problem PURLLC-Pen

m (st),
we define L(θURLLC |Φ) = EπθURLLC (Ω |Φ)[f(Ω)] as the loss
function for training our model, where f(Ω) is the objec-
tive function value for problem PURLLC-Pen

m (st) while all the
optimization variables βu,k,m(st), ∆u,m(st), u ∈ UURLLC,
k ∈ KURLLC(st) have been determined by the output sequence
Ω. In Line 7, we obtain f(Ω). We minimize L(θURLLC |Φ)
using Adam optimizer [33]. Hence, in Line 8, we use the
REINFORCE gradient estimator to obtain ∇L(θURLLC |Φ) =
EπθURLLC (Ω |Φ) [f(Ω)∇ lnπθURLLC(Ω |Φ)]. At the end of each
training epoch, we compute the aggregate gradient over the
batch in Line 10, and update θURLLC using Adam optimizer in
Line 11. The computational complexity of the encoder-decoder
DNN architecture with attention mechanism is dominated by
the computational complexity of the encoder attention layer
[32]. Thus, after training, the computational complexity of the
online PRB allocation using the pre-trained DNNs obtained by
Algorithm 2 is O

(
|K̃URLLC(st)|d2

henc + |K̃URLLC(st)|2dhenc

)
,

where dhenc is the dimension of vector henc.

2) Algorithm Design for the eMBB Scheduler: The eMBB
scheduler aims to solve problem PeMBB-Pen

τ (st). The PRB
and power allocation is performed at the beginning of each
short time slot τ ∈ T short, when the eMBB scheduler has
no information about the PRBs that will be punctured by
the URLLC traffic in the shared bandwidth part. Hence, the
eMBB scheduler considers ζk,j,τ (st) = 1, k ∈ KeMBB(st),
j ∈ J eMBB(st) at the beginning of short time slot τ , and solves
problem PeMBB-Pen

τ (st). For solving problem PeMBB-Pen
τ (st),

the eMBB scheduler determines the PRB allocation, which is
a combinatorial problem, using an encoder-decoder DNN with
attention mechanism, and obtains αu,k,τ (st), u ∈ U eMBB, k ∈
KeMBB(st) based on the output of the decoder module. Given
the determined αu,k,τ (st), the eMBB scheduler solves the
following convex optimization problem to obtain the power

allocation for the users:

PeMBB-Power
τ (st) :

maximize
pu,k,τ (st),
∆u,j,τ (st),

u∈U eMBB, k∈KeMBB(st), j∈J eMBB(st)

f eMBB
τ (st)− λeMBB-Pen

∑
j∈J eMBB(st)

∑
u∈U eMBB

∆2
u,j,τ (st)

subject to constraints (11) and (13).

At the end of short time slot τ , the true value of the parameters
ζk,j,τ (st), k ∈ KeMBB(st), j ∈ J eMBB(st) is revealed to
the eMBB scheduler through its interaction with the URLLC
scheduler to be used for training the encoder and decoder
DNNs of the eMBB scheduler.

Given the sequence st, K̃eMBB(st) = U eMBB × KeMBB(st)
denotes the set of user-PRB pairs for the eMBB scheduler. For
the input sequence of the encoder, based on the available infor-
mation at the eMBB scheduler, φk̃ =

(
|gu,k,τ (st)|2, η̃k,τ (st)

)
is considered as the feature vector of user-PRB pair k̃ ∈
K̃eMBB(st) in short time slot τ ∈ T short, where η̃k,τ (st) ∈
{0, 1} is a parameter that indicates whether PRB k ∈
KeMBB(st) is in the shared bandwidth part or not.

For the decoder, the number of decoding timesteps is set
to the number of available PRBs for the eMBB slice, i.e.,
D = |KeMBB(st)|. At decoding timestep d ∈ D, the con-
text embedding is defined as hcontext

d =
[
hmean, henc

ωd−1
, Cd

]
,

where Cd denotes the available number of PRBs at decod-
ing timestep d. At decoding timestep d = 1, we initialize
Cd = KeMBB(st), and at decoding timestep d > 1, we update
Cd = KeMBB(st)−d+1. To satisfy constraint (10) in problem
PeMBB-Pen
τ (st), at decoding timestep d, we mask the user-

PRB pairs corresponding to the previously selected user-PRB
pairs ω1, . . . , ωd−1. We should also mask all the user-PRB
pairs k̃ ∈ K̃eMBB(st), which correspond to the selected PRBs
during the previous decoding timesteps and the other eMBB
users. Given the output sequence of the decoder module, other
constraints of problem PeMBB-Pen

τ (st) are satisfied by solving
the convex optimization problem PeMBB-Power

τ (st).
Algorithm 3 describes our proposed training algorithm

for the eMBB scheduler. To generate each training sample
for Algorithm 3, we uniformly select ieMBB(st), iURLLC(st),
(neMBB(st), n

shared(st), n
URLLC(st)), and ξ(st) from the

corresponding sets. Then, by using different channel gain
realizations for the eMBB user-PRB pairs, the feature vector
of each pair is generated. Moreover, for each input sequence of
the eMBB scheduler, we generate the input sequences of the
URLLC scheduler for the mini time slots within one short time
slot according to the procedure described in Section IV-B1.
Hence, using the pre-trained DNNs for the URLLC scheduler,
we can obtain puncturing variables ζk,j,τ (st) to be used for
training the DNNs of the eMBB scheduler.

To train the DNN modules for the eMBB scheduler, using
the objective function of problem PeMBB-Pen

τ (st), we define
the loss function L(θeMBB |Φ) = EπθeMBB (Ω |Φ)[−f(Ω)]. In
the loop within Lines 5 to 12, at the beginning of each
short time slot, we feed the input sequence Φ to the encoder
module and obtain the probability distribution πθeMBB(Ω |Φ)
as the decoder output to determine the allocation of PRBs
to eMBB users, i.e., where αu,k,τ (st) should be equal to



Algorithm 3: Training Algorithm for the eMBB Scheduler
1: Set the number of epochs EeMBB and batch size κeMBB.
2: Initialize randomly the learnable parameters θeMBB.
3: for each epoch do
4: Consider κeMBB different input sequences ΦκeMBB for the

eMBB scheduler.
5: for each Φ ∈ ΦκeMBB do
6: Feed the sequence Φ into the encoder-decoder DNN

modules and obtain Ω using πθeMBB (Ω |Φ).
7: Obtain αu,k,τ (st), u ∈ U eMBB, k ∈ KeMBB(st) based

on the selected user-PRB pairs Ω.
8: Set ζk,j,τ (st) = 1, k ∈ KeMBB(st), j ∈ J eMBB(st) at

the beginning of short time slot τ .
9: Obtain pu,k,τ (st), u ∈ U eMBB, k ∈ KeMBB(st) by

solving problem PeMBB-Power
τ (st).

10: Obtain true value of ζk,j,τ (st), k ∈ KeMBB(st),
j ∈ J eMBB(st) at the end of short time slot τ .

11: Determine f(Ω) based on the objective function of
problem PeMBB-Pen

τ (st), and compute ∇L(θeMBB |Φ).
12: end for
13: Determine the aggregate gradient over the batch as

∇L(θeMBB |ΦκeMBB ) :=
∑

Φ∈Φ
κeMBB

∇L(θeMBB |Φ).
14: Update θeMBB using Adam optimizer [33].
15: end for
16: Outputs are the learned parameters θeMBB.

one. To obtain the power allocation variables pu,k,τ (st), we
set ζk,j,τ (st) = 1 and solve problem PeMBB-Power

τ (st) when
variables αu,k,τ (st) are considered to be known. At the end
of each short time slot, the eMBB scheduler obtains the
true value of ζk,j,τ (st). Given the determined αu,k,τ (st),
pu,k,τ (st), and ζk,j,τ (st), we recompute the penalizing vari-
ables ∆u,j,τ (st) and substitute them into the objective function
of problem PeMBB-Pen

τ (st) to obtain f(Ω) in the loss function.
After training, the computational complexity of performing
online PRB allocation based on the pre-trained DNNs obtained
by Algorithm 3 is O

(
|K̃eMBB(st)|d2

henc + |K̃eMBB(st)|2dhenc

)
,

and solving the convex optimization problem PeMBB-Power
τ (st)

has a polynomial computational complexity.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our proposed
hierarchical framework. We consider a single-cell RAN, where
the base station is located at the center of the cell and its
maximum transmit power Pmax is set to 1 W. The cell is
modeled as a circle of radius 500 m. Unless stated otherwise,
we consider six eMBB users and four URLLC users. The
eMBB and URLLC users are distributed randomly within the
cell. We consider small-scale Rayleigh fading as well as log-
normal shadowing path loss model to simulate the wireless
channels between the base station and users. Specifically, the
path loss exponent is set to 3.76. The path loss at 1 km refer-
ence distance is set to 128.1 dB. The log-normal shadowing
standard deviation is set to 10 dB. The total system bandwidth
is set to 10 MHz. We consider that the RIC selects ξ(st) from
set Ξ = {0.25, 0.5, 0.75}. The values in set Ξ indicate that
three discrete power levels are used by the RIC for power
allocation to the slices. In addition, we consider that the RIC
selects tuple

(
neMBB(st), n

shared(st), n
URLLC(st)

)
from set

N = {(0, 12, 0), (6, 0, 6), (4, 4, 4), (8, 4, 0), (8, 0, 4), (4, 0, 8),

Table IV: Simulation Parameters

Parameter Value Parameter Value Parameter Value

∆Tmini 143 µs ∆T short 1 ms ∆T long 1 s
εB 10−6 σ2 −110 dBm λeMBB 5

ΓTHR 5 dB γ 0.99 υeMBB 0.9

λpunc 2 λsp 0.01 λURLLC 5

λURLLC-Pen 10 λeMBB-Pen 100 υURLLC 0.99

EURLLC 100 EeMBB 100 νactor 10−5

κURLLC 1280000 κeMBB 12800 νcritic 10−4

(4, 8, 0), (0, 8, 4), (0, 4, 8), (8, 2, 2), (2, 8, 2), (2, 2, 8)}. The
elements in set N correspond to different slicing scenarios.
The RIC can perform orthogonal slicing by selecting tuples
(6, 0, 6), (8, 0, 4), or (4, 0, 8) from set N . The RIC can per-
form non-orthogonal slicing by selecting (0, 12, 0). Moreover,
the RIC can use the hybrid slicing approach by selecting
other available tuples from set N . Note that one can include
other combinations in set N , or consider finer granularity for
the discretized power levels. However, a larger number of
iterations is required for Algorithm 1 to converge. We consider
that the arrival rate of URLLC packets follows the Poisson
distribution and the URLLC packet size is set to 32 bytes. We
also consider that the eMBB buffers at the base station always
have data to send (i.e., full buffer model). Other simulation
parameters are summarized in Table IV. For both the actor and
critic networks, we consider the neural networks comprising
of one LSTM layer with 256 hidden units and one fully
connected layer with 512 neurons. We perform simulations
using PyTorch library [34] in Python 3.7, and MOSEK solver
[35]. Simulation results are obtained by averaging over 50
different simulation trials. We use the following state-of-the-
art RAN slicing approaches as the benchmark schemes for
performance comparison:

• Resource proportional (RP) placement algorithm pro-
posed in [6]: In this algorithm, the system bandwidth
is shared among the eMBB and URLLC users. We use
our proposed resource allocation algorithm for the eMBB
users. The PRB allocation for URLLC traffic is based
on the RP placement algorithm. For URLLC traffic, the
PRBs preempted from each eMBB user by this algorithm
are proportional to the allocated PRBs to that user.

• Decomposition and relaxation based resource allocation
(DRRA) algorithm proposed in [11]: In this algorithm,
the system bandwidth is shared among the users. The
problem is decomposed into three subproblems: PRB
allocation for eMBB users, power allocation for eMBB
users, and PRB allocation for URLLC traffic. Integer
variables are relaxed to continuous ones. Then, the
subproblems are solved iteratively until the algorithm
converges.

• Distributed bandwidth optimization based on ADMM
(DBO-ADMM) algorithm proposed in [5]: This algorithm
employs sample average approximation and ADMM tech-
niques for bandwidth allocation to eMBB and URLLC
users. The allocated bandwidth remains the same during
the long time slot. Given the allocated bandwidth, a power
allocation problem is solved for the eMBB users during
each short time slot.
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Fig. 6: (a) Average aggregate throughput and (b) average SSR for eMBB slice
versus the average packet arrival rate of URLLC traffic. We set Rmin

u = 4
Mbps, u ∈ U eMBB.

Fig. 6(a) shows the evolution of the average aggregate
throughput of eMBB users versus the average packet arrival
rate of URLLC traffic. The proposed algorithm achieves
an average aggregate throughput, which is 9.03%, 29.29%,
and 75.21% higher than that of the RP placement, DRRA,
and DBO-ADMM algorithms, respectively. We observe that
increasing the average packet arrival rate leads to the average
aggregate throughput degradation for eMBB users. However,
this degradation is much lower in our proposed algorithm due
to the selected slice configuration parameters. Results in Fig.
6(b) show that when the average packet arrival rate for URLLC
traffic increases, our proposed algorithm can maintain the SSR
for the eMBB slice above 95%. Moreover, as the packet
arrival rate increases, our proposed algorithm achieves the
SSR, which is on average 1.34%, 8.26%, and 15.64% higher
than that of the RP placement, DRRA, and DBO-ADMM
algorithms, respectively. Results in Fig. 6 show that using our
proposed algorithm, the RIC can provide the schedulers with
proper slice configuration parameters based on the network
dynamics including the packet arrival rate of URLLC traffic
and the channel gain variations.

In Fig. 7(a), we compare the average aggregate throughput
of the eMBB users for different algorithms while changing the
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Fig. 7: (a) Average aggregate throughput and (b) average SSR for eMBB slice
versus the minimum rate requirement per eMBB user. We set the average
packet arrival rate of each URLLC user to 1.5 packets per ms.

minimum rate requirement of the eMBB users. The proposed
algorithm can achieve an average aggregate throughput that
is 9.03%, 18.57%, and 34.6% higher than that of the RP
placement, DRRA, and DBO-ADMM algorithms, respectively,
when Rmin

u = 10 Mbps. Fig. 7(b) shows the impact of
the minimum rate requirement of the eMBB users on the
average SSR for the eMBB slice. All algorithms suffer from
a performance degradation as Rmin

u , u ∈ U eMBB increases.
However, in the proposed algorithm, the RIC can dedicate
a portion of the bandwidth to be used exclusively by the
eMBB users. Thus, when the minimum rate requirement of
the eMBB users is large, a higher average SSR for the eMBB
slice can be achieved under the proposed algorithm compared
to the other benchmarks. Hence, the eMBB rate loss due to
the punctured scheduling decreases in our proposed algorithm
by reserving a portion of the bandwidth for the eMBB users.
In fact, the proposed algorithm can achieve an average SSR
for the eMBB slice that is 17.38%, 10.81%, and 33% higher
than that of the RP placement, DRRA, and DBO-ADMM
algorithms, respectively, when Rmin

u = 10 Mbps.

In Fig. 8, we study the impact of the numerology selection
on the performance of the eMBB and URLLC schedulers.
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Fig. 8: (a) CCDF of the aggregate throughput for the eMBB users and (b)
average SSR for eMBB and URLLC slices for different numerologies. We
set Rmin

u = 4 Mbps, u ∈ U eMBB. The slice configuration parameters are
ξ(st) = 0.75, neMBB(st) = 8, nURLLC(st) = 4, and nshared(st) = 0. The
average packet arrival rate of each URLLC user is set to 2.5 packets per ms.

Fig. 8(a) shows the complementary cumulative distribution
function (CCDF) of the aggregate throughput for the eMBB
users with different numerologies. A higher CCDF indicates
a higher probability for obtaining the aggregate throughput
above a given threshold value. Results in Fig. 8(a) show that
by selecting numerology 1 for the eMBB slice, the aggregate
throughput of the eMBB users can be above a threshold value
from 31 Mbps to 91 Mbps with a higher probability. Fig. 8(b)
shows the average SSR for the eMBB and URLLC slices
with different numerologies. The numerology 1 leads to higher
average SSR for the eMBB slice. Furthermore, URLLC slice
obtains a higher average SSR with numerology 2. Hence, the
RIC can improve the system performance by appropriately
choosing the numerology.

Fig. 9 shows the evolution of the average aggregate through-
put and average SSR for the eMBB slice over long time slots.
As shown in Fig. 9, our proposed algorithm converges within
100 long time slots. Fig. 9 also shows the convergence region
of our proposed algorithm for 50 different trials. We have
obtained the convergence region based on the trials with the
best and worst performance in each long time slot. Results
show that compared to the other benchmarks, our proposed

(a)

(b)

Fig. 9: Convergence of the (a) average aggregate throughput and (b) average
SSR for eMBB slice over long time slots. We set Rmin

u = 4 Mbps, u ∈
U eMBB, and the average packet arrival rate of each URLLC user to 1.5 packets
per ms.

algorithm provides a higher average aggregate throughput and
average SSR.

In Fig. 10, we compare the Jain’s fairness index and average
SSR for the users in the eMBB slice among the considered
algorithms, while the number of URLLC users varies from 2
to 12. As Fig. 10(a) illustrates, our proposed algorithm can
maintain the fairness index above 0.9. Although our proposed
algorithm does not provide the highest fairness index, the
fairness index obtained by our proposed algorithm is within
the range of the other benchmarks. As shown in Fig. 10(b), our
proposed algorithm can obtain a higher average SSR for the
eMBB slice compared to the RP placement, DRRA, and DBO-
ADMM algorithms. Note that the reward function in (7) and
the considered objective function for problem PeMBB-Pen

τ (st)
are based on maximizing the aggregate throughput for the
eMBB users. However, one can replace it with the fairness
index to maximize the fairness for the eMBB users.

In Fig. 11, we evaluate the effect of choosing the weighting
coefficients λeMBB and λURLLC used in (7) for penalizing the
reward function due to the violation from the SSR threshold
values for the eMBB and URLLC slices on the system
performance. By choosing small values for λeMBB and λURLLC

relative to other terms in the reward function, the RIC aims
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Fig. 10: (a) Jain’s fairness index and (b) average SSR of the users in the
eMBB slice for different number of URLLC users. We set Rmin

u = 6 Mbps,
u ∈ U eMBB, and the average packet arrival rate of each URLLC user to 1.5
packets per ms.

to only optimize the average aggregate throughput of the
eMBB users. If we choose a sufficiently large value for λeMBB,
but not for λURLLC, the RIC aims to optimize the average
aggregate throughput for the eMBB users and average SSR
for the eMBB slice. Hence, it may violate the SSR threshold
value for the URLLC slice. However, as Fig. 11 shows, by
choosing sufficiently large values for λeMBB and λURLLC, the
SSR threshold can be guaranteed for both the eMBB and
URLLC slices.

VI. CONCLUSION

In this paper, we proposed a hierarchical deep learning
framework for resource slicing in an OFDMA-based RAN.
To facilitate joint scheduling of eMBB and URLLC traf-
fic in a shared RAN infrastructure, numerology, mini-slot
based transmission, and a combination of orthogonal and
punctured scheduling approaches are exploited in our RAN
slicing problem formulation. We modeled the selection of slice
configuration parameters, which are determined by the RIC
at the beginning of each long time slot, as a POMDP. We
applied a DRL algorithm based on the actor-critic method to
determine the optimal slice configuration parameters. Given
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Fig. 11: (a) Average SSR for eMBB slice and (b) average SSR for URLLC
slice versus the weighting coefficient λURLLC. We set Rmin

u = 6 Mbps, u ∈
U eMBB, and the average packet arrival rate of each URLLC user to 1.5 packets
per ms. We consider six eMBB users and eight URLLC users in the network.

the slice configuration parameters, we applied DNNs with
attention mechanism to develop resource allocation algorithms
for the eMBB and URLLC schedulers. Through simulations,
we showed that our proposed hierarchical framework can adapt
to the network dynamics. When compared with some existing
algorithms in the literature, our proposed hierarchical deep
learning framework can achieve a higher average aggregate
throughput for the eMBB users, and a higher average SSR
for the eMBB and URLLC slices. For future work, we plan
to study the impact of inter-cell interference in a multi-
cell system, as well as the inter-numerology interference,
which can arise in a mixed numerologies system [36] on the
performance of RAN slicing schemes.
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