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Abstract— Fair allocation of resources is an important con-
sideration in the design of wireless networks. In this paperwe
consider the setting of multihop wireless networks with mutiple
routing paths and develop an online flow control and schedutig
algorithm for packet admission and link activation that achieves
high aggregate throughput while providing different data flows
with a fair share of network capacity. For fairness provisioning,
we seek to maximize the minimum throughput provided to
flows in the network. To cope with different degrees of data
reliability among the different links in the network, we use
different channel code rates as appropriate. While we expéc
performance improvement using channel coding and multipat
routing, the main contribution of our work is a joint treatme nt of
network stability, multipath routing and link-level relia bility in
meeting the overarching goal of maxmin fairness. We develop
a decentralized, and hence practical, scheduling policy tt
addresses various concerns and demonstrate, via simulatis,
that it is competitive with respect to an optimal centralized
rate allocator. We also evaluate the fairness provisioninginder
the proposed algorithm and show that channel coding improve
the performance of the network significantly. Finally, we slow
through simulations that the proposed algorithm outperforms a
class of existing approaches on fairness provisioning, wtth are
developed based on utility maximization.

Index terms. Scheduling, decentralized resource allocation, fair-
ness, multipath routing, channel coding, Lyapunov stabiliy
theory.

|. INTRODUCTION

available network bandwidth (e.g., see [1]). This lattqueas
relates tofairness. We propose to address such problems
through a stable and decentralized scheduling mechanim th
allocates resources such that wireless links do not irreerfe
with each other and fairness is provided while maintaining a
high network throughput. We shall begin with a discussion of
the key ideas and highlight our main contributions.

Most resource allocation problems can be formulated as
network utility maximization (NUM) problems. The utility
function represents an objective that is to be maximized and
the constraints model the different underlying networkreha
acteristics. The NUM approach has been applied in different
problems, including energy minimization [2], congestiame¢
trol [3], and cross-layer optimization [4]. Other rate abbion
approaches are also considered. In [5], a rate control obto
has been proposed and a control theoretic analysis of the
system has been provided. However, these approaches do not
provide the scheduling policy in a slotted notion of time.

Using a slotted notion of time, we consider link scheduling
to determine the active links in each time slot. Lyapunov
techniques have been used to construct stable and optimal
decentralized scheduling policies [6]. They are also applie
to throughput maximization [7] and energy minimization in
single hop [8] and multihop [9] networks. A utility optimal
algorithm with delay consideration using the shortest path
is also developed in [10]. Throughput optimal scheduling in

Wireless multihop networks can provide good geograph@él hoc networks, which is an NP-hard problem [11], has

coverage at low cost. However, wireless links have limite®ften been reduced to a rate allocation problem, which only
capacity and may interfere with each other. The variation 8fovides an upper bound on the rates that a network can
the link capacity and network traffic can have an impact o¥Pport. Near optimal scheduling algorithms for mobile ad
the stability of the network. The network is said to &igble hoc networks have been proposed in [12]. However, fairness
if every node only has a finite number of packets queud®not considered in the above mentioned work.

for transmission. Stability is subject to the conditiontttize ~ Fairness provisioning in wireless networks has been con-
data transmission rates lie within the network capacityoreg Sidered [13]-[19]. The impact of imperfect scheduling on
i.e., it is feasible to transmit all packets with boundedagtel network performance is studied in [13]. Proportional fagais
Another aspect is that wireless links are not as reliable BEOVided in single hop wireless networks using token caunte
wired connections, and data packets may be corrupted durfA§chanisms [14]. Fairness provisioning is also studiedgusi
transmission. Moreover, without careful resource allorat Pack-pressure combined with random access algorithms [15]
strategy, certain users may be starved for network accédd16], fairness is provided in the cellular networks, wher

whereas others may receive an unfairly large share of tHtere is only one transmitter and all transmissions are ope h
In [17], fairness is provided with maximizing the summation

of utility functions corresponding to the individual flows.
Our work is different from all of the above in that the
minimum throughput of the network is directly maximized
to provide maxmin notion of fairness instead of considering
utility functions for different users. We achieve this bying
Lyapunov stability theory and constructing virtual queues
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In this paper, we take the advantage of two opportunities

offered by multihop networks. First, we employ multiple fpat

for data flows from the source to the destination. Second,

we utilize different channel code rates at different links t
compensate for variations in link reliability. By distriting

the network load over multiple paths, the capacity of the

network is better utilized and less data needs to be tratesiit

code rates in our solution approach to utilize resources
better and improve reliability. While we do improve
link reliability by using appropriate channel coding, we
also assume the use of link-level acknowledgments and
retransmissions when a node is unable to decode a packet.
We demonstrate stability of the proposed algorithm by
applying the Lyapunov stability theory.

over links with lower reliability. Multipath routing has ba « We develop an optimal centralized rate allocation method
explored to improve network behavior. The impact of multi-  using geometric programming, which provides an upper
path routing on energy consumption is examined in [20]. The bound on the performance of any decentralized schedul-
effectiveness of multiple paths in meeting delay constsais ing policy.
also studied in [21]. o We study the performance of DisF and optimal central-
Channel coding has been used to tolerate link-level errors ized algorithms through simulations over multiple random
by adding redundant bits to the data bits in a codeword [22]. topologies. We show that the DisF algorithm ensures
By increasing the number of redundant bits in a codeword, one stability, whenever feasible, and that its performance is
can increase the probability of decoding a codeword cdyrect  comparable to that of the centralized optimal solution.
at the receiver; the tradeoff is that redundancy incredses t We also compare DisF with Lyapunov stability-based
network load thereby reducing the effective data throughpu  algorithms, which do not consider fairness in their design.
The aspect of improving the reliability of data deliveryahgh Next, we show that the use of different channel code rates
channel coding in a wireless network has been considered. can improve the performance of the network. We also
Leeet al. have examined the rate-reliability tradeoff [23], but  compare DisF with a class of existing approaches which
they considered a single routing path between each source- use utility functions to provide maxmin fairness through
destination pair. In previous work, we improved the network  simulations [17].
throughput with channel coding and multipath routing [24]. Thjs paper is organized as follows. The system model is
Maxmin fairness provisioning is also considered in that-cogjescribed in Section II. The decentralized stable algurith
text [25]. The impact of channel coding and multipath rogtingeveloped in Section Iil. The centralized approach is formu
on delay improvement is also studied in [26]. However, Wated as a geometric programming problem and it is solved in
used a centralized NUM approach to determine the averaggction IV. In Section V, the algorithm is evaluated through

rates but not the exact scheduling policy. _ _simulations and the paper is concluded in Section VI.
Our work differs from the previous work in the literature in

several aspects. While most of the NUM problems determine
the average sending rates [3], [4] at which the objective
function is maximized, in this paper we propose an efficient We model the wireless network with a gragh(\V, &),
scheduling and link activation policy. Our work is also nbvevhere N represents the set &f = |N| wireless nodes ané
because in the related work on fair scheduling (e.g., [13tenotes the set of directed wireless links. Link (m,n) € £
[17], [27]), fairness is improved by maximizing the utilityconnects two nodes:, n € A if and only if noden is in
function while we directly maximize the minimum throughputhe transmission range of node We use the notationsand
in the network. We will show how this improves the networkm, n) interchangeably. The set of data flows is denotedrby
performance. Maxmin fair scheduling is considered in orend the number of data flows is denoted By= | 7|. The set
hop networks with multi-radio receivers [19]. Optimal marm of source nodes is denoted Iy Data transmission between
transmission and forwarding rates for sensor networks aesourcesy € S and the destinatiod; of flow f € F can be
studied in [28]. A maxmin fair scheduling policy for one hopelayed through multiple hops.
wireless networks is also considered [29]. Our work is dif- We use multipath routing for data transmission. Theksgt
ferent from the above as we propose a distributed scheduliegntainsKy = |K| routing paths for flowf € F. For each
policy and consider multihop networks with single radio anlink e € £, pathk € K, and flowf € F, we definez/* = 1 if
therefore interference effects are incorporated. In &idithe link e belongs to thé™ routing path for flowf, anda/* = 0,
optimality is analytically proved. While some papers cdnsi otherwise. For any node € A/, each data flowf € F, and
ered channel coding to improve the network throughput [23iny pathk € K, leti/* ando/* € £ be the input and output
no previous work has considered both multipath routing aridks to and from node: on pathk of flow f, respectively.
channel coding in the joint problem of code rate assignmenYhenever the context is clear, we remove the indices k
flow control and decentralized scheduling to achieve maxmaémd denote the input and output links witando, respectively
fairness in wireless networks. (see Fig. 1).
The main contributions of this paper are as follows: A slotted notion of time is used with time slots €
« We propose a decentralized online scheduling and floj#, 2,...}. We denote the value of time-varying parameters
control algorithm, which we call DisF, that aims to proat the beginning of each time slotwith the indext. We use
vide fairness for each flow by maximizing the minimunthe same parameter without the indeto denote its average
throughput in a multihop wireless network. We integratealue over all time slots. At each intermediate node N/,
the use of multipath routing and link-dependent channele assume a separate queue for any pgath IC; of flow

Il. SYSTEM MODEL



Given R.(t) < Ry for e € £, we have
d"5=0 / Link 3 Py(t) 2 1 — 279oemRe(®), (1)
ki) —
H 3(’)_0/ " where P.(t) is the probability that a codeword of length
a* =1 / a =l is received correctly on link with rate R.(t) [22, pp. 392-

,uﬂ‘ =1 ﬂ/kz(f)zo 397]. The vectorP(t) = (P.(t), ¥ e € &) represents the
)= ——__ successful probabilities on all linkse £. For the rest of this
@ Link 1 / Link 2 paper, we consider the worst case in which inequality (1) is

/ satisfied with equality. For each transmission on knk £, we

Link 4 / ?:k“zo definep.(t) = 1 if the packet is transmitted successfully and
L a(1)=0 pe(t) = 0 otherwise. We have.(t) = 1 with the probability
O of P.(t). We definep(t) = (p.(t), e € £) as thechannel state
at time slott.
(a) As mentioned above, a codeword may be corrupted with

probability 1 — P.(t) through a transmission on link € £.
The receiver at linke sends a link-level acknowledgement
(ACK) to the transmitter if the packet is received correcilye
- transmitter retransmits the packet if no ACK is receivecdinit
Q/kn(t) a predefined time period. Fleaetransmissions ensure that fsacke
Buffer admitted to the network will be received at their correspogd
(b) destination nodes. This is at the cost of increased netveaudk |
Fig. 1. (a) Pathk of flow f from nodes; to noded; which uses node: We denote the number of data bits which are admitted to the
as a relay node is shown. It is shown that solid link 1 is activf"(t) = 1) pathk € K¢ of flow f € F at the beginning of time slat as
while dotted links 2 and 3 are not actived( (1) = u{;k(t) = 0) in that ok (t). The vectora(t) = (o/}(t),v ke Ky, f € F). Suppose
?ﬁgcia;gne:si(;ttt')u';l?itr?ktgagggzsnitj}ﬁ zzbgl)‘?r‘(%)t(’A”r‘;ar;'en”;'c?:s?spaﬁélI admissions are upper bounded (i€}(f) < aynas)- We
shown with its input linki and its output link» corresponding to theth path  assume that all source nOdeS_ are b?-Ckl()gged (i.e., eactesour
of flow f. The corresponding packets are stored)ifi® before they are sent. node has at least,,,, data bits available to send over each
of its routing paths at any time slot). We define the capacity
region A as the closure of the set of all sending rate vectors
«a (considering all possible routing and scheduling poligies
for which the network is stable, that is

Input link 7, R,(¢) Output link o, R ()

f € F. The number of data bits corresponding to patfor
flow f, stored in node: is denoted ag){*(t). We assume
g}’f(t) =0Vt ke Ky, fe F since the received bits
are transfered to the upper layers at the destination dgde =
We incorporate all the queue backlogs in the veddt) = _ . L rk
(QIF(t),Y n e N,k € Ky. f € F). A=qole=0ln sup; 2:; %KES; (M} <M
We use link-dependent channel code rates to counter chan- nen
nel variations and improve network reliability. Each saurc _ - R R @)
node or intermediate node € A for any flow encodes dataWhereM is a finite number. Note that = }H?O? 2o e(7)
bits by adding redundant bits and transmitting the restiltd§ the time average value ef(t).
codeword of lengthg. Hereafter, we assume each packet TWO links e1, e> € & mutually interfere with each other
consists of one codeword and we use the terms packet éfnand Only if the receiver of one link is in the transmission
codeword interchangeably. We define the code fatg) as range of the sender of the other. At each time gloonly
the ratio of the data bits to the total transmitted bits (gdtes One wireless link may be active among those wireless links
redundant bits) on link € £. We concatenate code rates forvhich are in mutual interference with each other. We define
all links e € € invectorR(t) = (R.(t),V e € £). The smaller #£*(t) =1 if link e is active in data transmission for ti¢"
the code rateR. (¢), the greater number of redundant bits i§outing path of flowf at time slot, andu/"(t) = 0 otherwise.
added, and the higher the reliability is. The reliabilitgmined We definec. as the number of bits that can be transmitted by
at the cost of increased network traffic. WhB@(t) is equa' link e € £ in each time slot. Ce containsdata bits as well
to one, channel coding is not used on liak asredundant bits due to channel coding. An example of the
We useR,, < 1 to denote theut-off rate of wireless link Modeled network is depicted in Fig. 1.
e € €. The cut-off rate is a channel parameter to which the
rate of the adopted coding scheme is always limited [22]. In  Ill. DECENTRALIZED AND STABLE SCHEDULING
general, Ro. depends on the particular modulation scheme |n this section, we tackle the problem of online flow control
which is being used and also the signal-to-noise ratio (SNR)and scheduling for wireless links. Consider the following
the receiver node. For example, for a binary phase shifikgyimaxmin fair optimization problem.
(BPSK) waveform [22], we havéy. = 1 — log,(1 4+ e~ 7<),
where~, denotes the SNR at the receiver node of wireless
link e € £. When~, is relatively large,R. is close tol. subject to a € A.

maximize min ay
fer

®3)



The goal in problem (3) is to admit new packets anlote that the expectation is over random parameters such as
schedule the transmissions such that the minimum sendtitannel states and possibly randomized scheduling pslicie

rateoy = 3o o over all flows f € F is maximized and et u(t) = A(t). We concatenate the backlog queues and
all queues in the network remain stable, that is the numbergftyal queues in the vectd®(t) = (Q(t), Z(t)). Proposition
bits stored in any queue is bounded. Note that data bits areyates that if condition (6) holds under a scheduling algo-
removed from the queue of the sender node only after it hagym, then all the queues i®(t) are stable and will be at
received an ACK from the receiver. Theref(_)re, if the queuggost B/V away from the target valud*. Stability of virtual
are stable, the sending rate .of each. floyv is the same asgtfeuesZ ensures thah is always less than or equal to the
throughput at the corresponding destination. minimum throughput of the network. By increasikig we can

To enhance the minimum throughput of the network, wget closer to the target value at the cost of a linear incrzase
need to introduce a decision parametgr and a set ofirtual  the congestion in the network. Next, we obtair{©(t)) for
queues Z¢(t),V f € F. We denoteZ(t) = (Z¢(t),V f € F). any time slott. We define
For each virtual queu&s(t) for flow f at each time slot, Fhy2 224
we ety ., oi(t) as the service rate andt) as the input LO)) = 3 Q" (1) £y 7 ). e
rate. Then, we have the following update equation: nEN, heky, feF fer

We assume that scheduled transmissions occur at the beginni

k

Zy(t+1) < max [Zf(t) - Z O‘f(t)’o} +AMB- ) 4t each time slot. For an intermediate relay nodes N,
eks n # s, any pathk € K; and flow f € F, we have

Suppose\(t) is upper bounded (i.e\(t) < A4, fOr any time QFF(t + 1) < QIF(t) — min[QI¥ (1), co Ro(£)]12* (£)po (1)
t)

slot t) and its time average = lim; w exists. 4 CiRi(t),ufk(t)Pi(
We will show later that burstiness in the network increases _ max[ka(t)l— coRo(H)dF (1) po(t)
when A, increases. The stability of each virtual quetie Q%(t)(l ° #(}k(t); (t))]o ’
implies that the time average of its input rate is less than or N c-R-?t) fk(t) .(ot) o
equal to that of its service rate. That is el (8)Patt): ®)
A< Zke,cf af;, (5) For source nodsy € S, f € F andk € K¢, we have
L plak(n)} . . TR+ 1)< QIF(t) — min[QI*(t), co Ro (1)l * () po (t
where o = lim; o o Pl (M)} Et{ 1) s the time average Qs )< Qe (O —min[Qu7 (1), coRo(t)] 112" (Dpo (1)

k

valu_e (_)f_a’;(t). T_herefore, if all virtual queues are stable, _ ;—ai[fcg?k(t) o R (D)l (£)po (1),
maximizing the time average value aft) is equivalent to v T ° &
maximizing the minimum throughput among all data flows in Qs (#) (L = 5" (£) po ()] + ay(t). 9
the network. The goal is to maximize the time average value ©)
of A(t) such that both real queues (which store the data bits)-émma 1: For anyp € {0,1},U, R, and p € {0,1} we
and virtual queues remain stable. have

We now present some aspects of Lyapunov stabil?ty theonhax[U—Rup, U(1—pp)] < max[U—Rpu, 0]+ Ru(1—p). (10)
[6] that are useful for developing our scheduling algorittet
Lyapunov function L(©(t)) be a non-negative function of any Proof: Let u = 1. We verify the inequality in both cases
queue vecto®(t). We define theLyapunov drift A(®(t)) £ whenU > R and whenU < R separately. IV > R, then we
E{L(®(t+1))—L(O()) | ©O()}. haveU (1 — p) < U — Rp and both sides of (10) are equal to
U — Rp. On the other hand, if we havé < R, the left hand
side of (10) isU (1 - p) and the right hand side B(1—p) and
the inequality is verified. In the case wheare= 0, inequality
(10) states that/ < max|[U, 0], which is true. [ |

From (8) and Lemma 1, for a relay nodec N, n # sy,
ANO()—VE{u(t) | ©()} < B—ez O4(t)—Vu*, (6) keKy, andf € F, we have

Proposition 1. (Lyapunov Optimization [6]) Let(t) be a
utility function andB>0, e>0, andV >0 be constants such
that for all time slots and queue vectd®(t) = (O4(t) | ¢ €
I={1,2,...,|}), we have

< QEF(t +1) < max[QIF(t) — ¢ Ro ()l (2). 0]
wherew* is a target value for utility function(¢), then we + coRo(H)pl* ()(1 — po(t)) (11)
have + ciRi(Opl" ()i (t).

WUinf > u* - B/Va . .
Considering (9) and Lemma 1, for any source noges S,

t—1 * '
tli)m SUP%ZZE{@q(T)}SB+V(usup_u), ICE’CJ‘, feF, we have
o0 € 4
=0 et QIR+ 1) < maxQUF(1) — o Ro(Duf (1,0 (o
[k _ k
where Uing = limy o inf % Zz;;lo E{U(T)} and Usup = + CoRo(t)Mo (t)(l po(t)) + Qg (t)
limy—, 0 SUp T Zt;:lo E{u(r)}. We now introduce two lemmas to simplify (11) and (12).

The proof of the proposition can be found in [6, pp. 82-84]. Lemma 2 ([6]): For any positivel;, Us, n, andv, if we



haveU; < max[Us — 1,0] + v, then remain stable. Since the corresponding sending ratesadoly st
supported by the network (they are inside the capacity rggio
Ui < Us +n° +v° —2Ua(n N v). (13) there exist link data rates for all wireless links that suppata
The proof of Lemmg 2 can be found in [6]. , . transmission in the network. These data rates can be achieve
Lemma 3: For positive Uy, U?’ O, I, p, andp" < 1, it yith a possibly randomizedhannel state-only algorithm X',
Ur < max[Us — O,0] + O(1 = p') + Ip, then This is proved by projection of link data rates in differeime-

U? < U} + B —2U,(0p' — Ip), varying channel states and then expressing each projeasion
the convex combination of corresponding independent sets.
where B = 0% + p°I? + O*(1 — p')* + 2p(1 — p/)OL. Further details can be found in [7]. Assume that Algorithm
Proof: From Lemma 2, by substituting= O andv = X determines the decision parametergt{, R.(t), ul*(t),
O(1 = p') + Ip, Lemma 3 is proven. B andok(t) for all e € £k € Ky, and f € F) at the
Using Lemma 3 and inequalities (11) and (12), for &ng  beginning of each time sldatsuch that\ achieves the optimal
K¢ and f € F, we have value \*, virtual queues are stable (i.e\,< Zke,c a for
th 9 P2 th any f € F) and backlog queues are also stable Note that
Quit+1)77 < CE" (t)fk+ B () Tk Algorithm X is a channel state-only algorithm which makes
2Qn"(Ocollo o™ Dpo(t) (A4 e e i ly based on the observed channel states at
RO D)D), cisions only based on the observed channel states a
¢ i each time slot. Therefore, it needspriori knowledge on
for any intermediate relay nodec N (n # sf) where channel states. The stability of backlog queues implies tha
under AlgorithmX’, for an intermediate relay node € A
BIH) = R @ gt (2 4 pi(O el (1) (1) andn £ sy, we have B{c R, (1) uf*(p(t) | O(0)) >
+ R (8201 (12 (1 = po(t))? . E{c;Ri(t)u* (t)ps(t) | ©(t)}. For any source nodey, f €
+ 2pi(t)(1 = po(t))coRo(t) " (t)CiRi(t)sz (t). F, we have
Similarly, for source nodey, we have E{coRo(O)1* (1) po(t) | ©(1)} > E{a?(t) | O(t)}. (18)

Qi (t+1)* < Qf’“() + B}
- 2Q F(t)(coRo(t)ud  (t)po(t) — afj(1)),

The stability of virtual queues implies that

rere (15) B | ©(1) < E{S e, o) | ©D)},  (19)
Bsff(t) = 2Ry(1)2uI* (1)? + ERo(£)2ul*(1)2(1 — polt))? for all f € F. Then, from (17), there exists> 0 such that
+ 2(1 = po(t))coRo () (£)adh () + i (t)2. A(O(t) - VE{AM) | ©(1)} < B
From Lemma 2 and inequality (4), for each virtual quefig . Z Q1% (1) + Z Zpt) | — var (20)
f € F, we have neEN kEK;, fEF feF
Z]%(t 1)< Z}(t) N (Zke;cf a]}(t))Q FA2(D) 16 under.AIgoritth. Note that here the expectation is tak(_en
B (16)  over different random channel states and different randechi
— 2Z4(t) (Zkech aj(t) — /\(t)) : decisions.
Now, we can writeA®(t) — VE{A(t) | ©(t)} as We now present the distributed fair (DisF) algorithm for

maximizing the minimum throughput in a multihop network

E{L(®(t+1)) - L(O()) | ©(t)} — VE{A(t) | ©(t)}  with channel coding and multipath routing. The goal of the
f L algorithm is to select the decision parametefs), R.(t),

<B-Y_ (Q DE{coRo()iro" (D)po(t) —agp(t) | ()} ok(r) and ufk(1) for all e = (n,nl) € € k € Ky, and

keks.fer i f e F, such that
+ > QIO E{coRo(t)d* (1)po(1)
n#sy
a - QL) V=Y Z(1)
— aRi(t)ul " ()pi(t) | Q(t)}) ];k;f i ( ) ( ];
+3° 3 Y alfeRaud* ) (QfF 0 - QIF®)) Pt
=Y ZsES > ki) - ) | ©) a7 fEF heK; ce€ on
F kek
_f;E{/\(t) | @(S}f is maximized over all available decision parameters at each
’ time slot ¢. Before we present the algorithm in detail, we
where By = 51\2’F (maXfe]: K¢)max[a2,,., maxece ¢2], analyze the performance of the algorithm in Theorem 1.

Bz=F((amaz maxser K¢)?>+22,..)/2, andB=Bg + Byz. Theorem 1. Let Algorithm DisF be an algorithm that max-
Inequality (17) holds under any adopted scheduling algorit imizes (21) over all available decision parameters at eiaoh t
Note that the expectated values are taken over the randslot¢. Then, it is throughput-optimal. That is, it stabilizes the
channel state probabilities. network if any other algorithm can do so and the minimum
Let \* be the optimal value foi which can be achieved throughput in the network is at mo$/V away from the

by an algorithm such that all backlog and virtual queuesptimal value.



Proof: A|gor|thm DisF maximizes (21)’ which can beAlgorlthm 1 Distributed fair (DlSF) algorithm for maximiz-

rewritten as ing the minimum throughput among the entire users in the
fh fh L network, executed at the beginning of each time slothe
SN (QSf (1) (coRo(t) ™ (t) Po(t) — (1)) algorithm is initiated withZ(0) = 0 att = 0.
feFkeks 1: Initialization: Assign values fotvmaz, Amaz, V.
" " i 2: Seta(t) = 0.
+Z QL (t) (CoRo(t)Mg (t)Po(t) — ciRi(t) (t)Pi(t)) 3: for each source; € S, f € F do
n#sy 4:  for ea(;hk € Ky do
, ko 5: if QIF(t) < Z;(t) then
+per Zi®) (Zke’cf o (®) )‘(t)) +VA®). 6: sy setsaf(t) = amas-
(22) 4 end if
Recall from Section Il that for any node € A/, each data 8  end for
flow f € F, and any patli: € K¢, if* ando/* € £ denote the 9: end for ,
' 10: Initiate candidate set C' of all links that have data to send.

input and output links to and from nodeon pathk of flow . ; ,
. L 11: for each linke = (n,n") € C do

f, respectively. We remove the indicesf, £ and denote the Setw. = max(QI* () — QT (1)).

input and output links withi ando in (22), respectively. Recall Lk " f:’ e

that inequality (17) holds under any algorithm including th13:  Set(fe ke) = arngaX(Qn (t) = Q. (1)

DisF algorithm. By maximizing (22) at each time slgtwe 14: end for ’

minimize the upper bound oA\ (©(t)) — VE{A(t) | ©(t)} 15: while C'is not emptydo

(right hand side of (17)) over its value under any othef®  Sete” - argliax e
algorithm including Algorithm’, that is on the right hand ;7. ge,/o-*e- (t) = 1.
side of (20). Then, under the DisF algorithm, we have 18:  Find ;{e* (t) by solving2~9(Foex —Fex (1) — m
) . - . L f* gln
AO(t) — VE{AE) | ©(t)} 19: E:rzgic:jvaetg se?f?d all links that interfere withe® from the
_ T4y — (1) — * (23) . )
<B-e¢ ZQn (t) —€ Z Zyp(t) = VA" 20: end while
neN, keKy, feF feFr 21: for each source; € S, f € F do
. . . 22: if 37, Z4(t) <V then
This is the condition of Proposition 1. [P SEtA(t) = Amax.
Note that while maximizing (21) over all possibilities lead gg elsget)\(t) —o.

to an optimal solution, it is an NP-hard problem due to thgs: end if

interference constraints [30]. In order to solve this peoblin  27: end for

a distributed manner and in reasonable time (compared to &8 for each source; € S, f € F do

introduced delay and channel variation time due to chan®®  Z;(t + 1) = max [Zf(t) — 2 kex; Oé]}(t)ﬁ} + A(2).
fluctuations), we use the greedy maximal scheduling (GMS9: Update the other sources with;(¢ 4 1) through control
policy. GMS is sub-optimal and may be implemented in a  Messages.

distributed manner. It has been shown in [31] that its efficye 31: end for

ratio is at leastl/2 in the 1-hop interference model. In

other words, GMS can achieve at least half of the throughput ) )
achieved by the optimal policy. Algorithm 1 shows the DisiVindow parametere’Wy,,;,, andC'Wiy, for links to transmit
algorithm which aims at maximizing (21) at any time stot MOre or less aggressively according to their weights

in a decentralized manner. This algorithm has several ghase3) Code Rate Allocation: For each scheduled link, the
that are performed at the beginning of each time slot optimal code rate that maximizefg, (t)(1 — 27 9(fo-~ (1))

i i ing—9(Roe—Re(t)) — 1 (]
1) Flow Control: Each source node; checks the backlog > determined by solving™9 = e (Line
queueQ!’(t) for each pathk € Ky of flow f. If QIF(t) <

18). In case of any change in the wireless environm&np(t)
Z;(t), s; schedulesa new data bits for flowf to be is determined according to the new available updates:fpr

admitted to the corresponding path (i.e., sef$t) to be equal 4) Fairness Provisioning: The source node of each data
10 Gmas) (Lines 2-9). flow / € F SetsA(t) = Auas if 3 rcrZ;(1) < V, and

. . C . . sets\(t) = 0 otherwise (Lines 21-27). Virtual queues are
2) Scheduling: The candidate set is initialized with all links . . ) .
that have data to send. Each lisk= (n,n') € &, sets its updated according to (4) (Line 28-31). The value of virtual

iaht o th . | Th(p TE g gueues at each time slot is transmitted between the source
welg ”uze t?ﬁd:la Ig ed”fllax'mum]\_fi#i a2y, t(h)t_l' CI2<n/T(h) nodes through control messages. Next, the scheduled links
over af pa € Ayan OWS:f € - thatuse Matink. 1NeN yansmit their packets and new data bits are admitted in the
the link with the maximum weight is selected to transmit datélOurce node queues

for the corresponding path and flow, it is removed from the
candidate set and all links which interfere with that linle ar
also removed from the set. This process continues untilnto li
remains in the candidate set (Lines 10-20). The schedulingn this section, we provide a benchmark for performance
process (lines 15-20) can be implemented in a distributeflthe decentralized scheduling algorithm for evaluatiomp
manner by making modifications to the medium access contpmses. We formulate the problem of code rate and sending
(MAC) parameters. This is done in [30] by varying contentiorate allocation as a NUM problem and describe a centralized

IV. GEOMETRIC PROGRAMMING (GP) FORMULATION



solution approach. We allow multipath routing and chann#is problem. In this regard, we need to approximate thetrigh
coding to improve the reliability and use retransmissiams hand side of the first set of constraints with a monomial adoun
case of any data loss. We do not consider scheduling. Tée initial pointa. For a parametel > 1 very close tol, we
slotted notion of time is not considered and the variables dnave

time average values.

ok ayhs
Recall that the sending rate for th&' path of flow f € F § : o ~ ATl H V a € [a/b,bd]
. k . . . =~ f ’ ) )
is o’j. Channel coding is performed on linke & at a rate Kex s Kek s
of R.. Thus, linke must transmit packets for path € Ky (27)

of flow f € F with a rate ofo/; /R, if all transmissions are whereA ! = Drex; a;. Finally, we tackle the third set of

successful. Since the probability of a successful transioris constramts in (26). We' can approximate the exponentiah ter
is P, each transmission is completed withii P. attempts using theTaylor series expansion and rewrite the constraint as
on average wher@, = 1 — 2-9(Fo-—Fe) in the worst case.

We have o P.<1— Xy Z %, (28)
wlt = al* (24) E

where X, = 279% and X, = ¢gIn 2. For largeM., we have
whereu/* is the data rate at which link is being used to M1
transmit data for th&™ path of flow f € F. We can express P<1-X, Z (XoRe)" (29)

the usage of wireless link € £ as = n!

" — Z ol O‘.’; (25) M, must be large enough such thiaf; R, )< < M.!and can

‘ Ge R.P.’ be found through simulations. Now, we can rewrite problem

feFkeks (26) in the standard form of geometric programming (GP)

To model the interference, we use a contention graphoblem as
Gc(Ne,Ec). The set of vertices\o represents the set of

m|n|m|ze o
wireless links in graplG. There is a link between each two ¢.o.R,P

-1

vertices if and only if the corresponding links in gragh  subject to Afo' H (@’Jﬁa’;_l)d’ﬁf\f <1, V feF,
interfere with each other. Eaatomplete subgraph in graph kek

G is called a cligue and a maximal clique is one that feokp —1p —1 <

is not a subset of a larger clique. We defiftleas the set eezw;rk;f Ge ojfe Fe " < oy VW el
of all maximal cliques in the network. It isecessary for M.—1 "

successful transmissions that the summation of link usages Pe + Xie Z(XQRE) <l,Veecg,
over all links in each maximal clique be less than the capacit =X 1-Xei n! -

of the clique(,,, which leads to ampper bound on the network a/b = a 2 ba,

performance_ g > O, 0<R~< Ro, P = 0.

(30)
nﬂwe above problem is a geometric programming problem that
can be solved iteratively using the interior-point methdd][

Now, we can formulate the problem of fair sending rate a
code rate allocation in a multihop wireless network as

mgx}{nlize o In each iteration, we use the solution obtained in the previo
sub7je7ct 0 0 <S,x a’;, Y feF, ?teration as the new injtial point and use the appro_ximation
s in (27) around that point. We use the solution of this problem
SN aé‘kR o < (o, Ywe, as a benchmark for evaluating the DisF algorithm.
ecw fEF keK s
P, <1 — 2 9(Roe—Re) Veek, V. PERFORMANCEEVALUATION
a>0, 0< R < Ryp. In this section, we evaluate our proposed algorithm through

(26) Matlab simulations. First, we compare the performance ef th

In problem (26), the objective is to maximize the throughgfut DisF algorithm with the centralized approach obtainedulgio
the flow with the minimum value. The second set of constraingglving geometric programming problem. Then, we study: fair
satisfies thenecessary condition for successful transmissionsess provisioning in the network. We quantitatively measur
and leads to an upper bound on the performance. Sirfaress under the DisF algorithm in several random topiekg
retransmissions due to packet loss are taken into accotim:inand compare it with a Lyapunov-based algorithm in which
second set of constraints, the total number of admittedgiackthe fairness is not considered. Here, we call that algoridsm
will be received at the destination. Therefore, by maximizi DisA algorithm. The goal in DisA algorithm is to maximize
the sending rate of any flow, the received throughput is algife aggregate throughput of the network (i & af) while
maximized. DisF algorithm maximizes the minimum throughput in the

The objective function in problem (26) and the left hand sideetwork (i.e.,miny >, af). We also show how fairness is
of the second set of constraints are posynomials. The fitst peovided at the cost of degrading the aggregate throughput
of constraints hasignomials on the left hand side. Therefore,in the network. We show the effect of channel coding on
we can applsignomial programming techniques [32] to solve the network performance by comparing with the case when



TN TN TN S TN

. (1 )w[\z 3 o4 s )
' -5 -Centralized GP Approath T ; ;\ o T
——DisF Algorithm NN

(6 » 7 )138) (9)

oL y U "/ \7
; ] 1 1

[
¢

(14 >wj':15\% (16 17 )

o

-

) N Y N
[ 18 ) [ 19 > 20
NS N /J

[bits per slot]

[
T

Minimum Throughput in the Network
o
[}

i Fig. 3. A sample random topology is shown in this figure. Thare five
9 10 flows between nodes — 16,3 — 13,2 — 8, 14 — 17, and6 — 20. There
are 4, 2, 2, 1, and 3 routing paths available for these flovepeatively.

4 5 6 7 8
Number of Flows in the Network

Fig. 2. The performance of the DisF algorithm is comparedh Wit solution
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average performance obtained ogérrandom topologies. The DisF algorithm
follows the centralized approach as the number of flows as@s.
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channel coding is not used. Moreover, we study the effect c
algorithm parameted” on the obtained performance of the
DisF algorithm. Finally, we compare the proposed approac
with the distributed utility-based approach presentedLin].
We compare the minimum throughput under the DisFg
algorithm with the minimum throughput obtained through g & 200
solving the geometric programming problem (26). We run the= <,

35

o

30

hput in the Network
o

its per slot]
&
o

simulations for both approaches in topologies withnodes. 3

The number of flows varies betweénand 10. In this set of =~ %
simulations, we sat,,q: =2, Anae =10, V = 50, ande, =10 500
bits for all linkse € £. This is because the MOSEK software 0

3
Data Flowf

[33] that we used to solve the geometric programming probler

cannot solve the problem whep and consequently/. (see

(29)) grows. We run the simulations &6 random topologies. Fig. 4. In a sample topology, fairess is provided under tre=Rigorithm

The DisF algorithm follows the optimal solution as the numbévl_'ule some flows starve under the DisA algorithm that does auotsider
alrness.

of flows in the network grows (Fig. 2). Increasing the number

of flows leads to higher load on the network and CaUSESyRihe network. It is shown that the minimum throughput (and

degradation in the minimum throughput in the network foélso the fairness) is improved via DisF algorithm (Fig. 6).(a)

both approaches. However, that is gained at the cost of degrading the aggeegat
Hereafter, we set paramgteat@m :.1000, Amaz = 5000, throughput of the network (Fig. 6 (b)).

V' = 250000, and_ce:_5000_ bits for qll I|nl_<Se € £. Next, we Fig. 7 shows the effect of channel coding on the perfor-

study fche_ max-min fair (DisF) _algorlthm n regards_ of farspe mance of the DisF algorithm. Each point in Fig. 7 represents

provisioning. We run both DisF and DisA algorithms in dhe average value ové0 random topologies. Here, we assume

sample network topology (Fig: 3) with) nodes and; data the probability at which a packet is transmitted succebsful
flows. We observe that the achieved throughput, for the SmmBL/er a wireless link to b®.8 if channel coding is not used.

topology, is distributed fairly under the DisF algorithm ieh We observe that the minimum throughput increase<&s;
this is not the case for the DisA algorithm (see Fig. 4). when the number of flows 50

We also study the fairness provisioning quantitatively on In Fig. 8, we study the effect of varying parameteon both

several random topologles. We use the Jain’s fairness |nqﬁ>é minimum throughput and the delay in the network under
[34], t_o measur?zthe fzur)r;ess among network users. The falH'e DisF algorithm. We used the total backlog in the network
ness index) = % wherea; =37, . af denotes as a measure of the delay. We vafyfrom 0 to 50000 and it is
the throughput of flowf € F. Using the DisF algorithm in shown that the minimum throughput in the network increases
several random topologies, the fairness index is alwaylsdnig with increasingV” at the expense of a linear increase of delay
than0.95 while that of DisA algorithm degrades 55 when in the network.
the number of flows is equal t) (see Fig. 5). Finally, we compare our approach with the one introduced
Improving the minimum throughput in the network is at thén [17] as an example of a class of approaches that use
cost of degrading the aggregate throughput which is achbievautility functions to provide different notions of fairness-
with the entire users in the network. Fig. 6 shows the tradealuding maxmin fairness. This is comparing to our proposed
between the minimum throughput and aggregate throughpo¢thod which directly pushes the minimum throughput up
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Fig. 6. The tradeoff between minimum throughput in the nektw@) and
aggregate throughput in the network (b) is shown under basfr @Gnd DisA

algorithms. utility-based algorithm whes = 0 and 1. The fairness index
of the utility-based algorithm improves whehincreases but

. . . . t the cost of the dramatic decrease in the minimum achieved
instead of using utility functions. In [17], the problem Of?hroughput (Fig. 10).

maximizing the aggregate network utility for all flows in the
network was considered as maximizihg, U?(Oéf) subject to

o € A, whereu{(z) is the utility function (i.e.,u(z) = VI. CONCLUSION

2'=P/(1 - pB), B # 1, and u?(x) = logz, f = 1). It was In this paper, we studied fairness provisioning in multihop
shown that by increasing in the above utility functions, the wireless networks. We developed an online decentralized al
performance of the network converges to maxmin fairnegsrithm to schedule new data packet admission and packet
provisioning. The two algorithms are compared in Figs. ®ansmissions such that the minimum throughput of the net-
and 10 regarding the minimum throughput they provide favork is maximized. We considered networks with multipath
network users and fairness provisioning. Each point remtss routing and channel coding. We proved the convergence of
the average of simulation results B random topologies. the algorithm analytically. Through simulations, we shdwe
To make the comparison fair, we assume wireless links atet the proposed algorithm followed the optimal centediz
completely reliable. We do not employ multipath routing andpproach with under control degree of sub-optimality. Vié® al
channel coding in the network. Parameterfor the utility showed that the proposed algorithm improves the performanc
function is chosen to be, 1, and100 which is for aggregate of the network regarding fairness comparing to the other
throughput maximization, proportional fairness, and maxmapproaches which ignore fairness provisioning. Moreower,
fairness, respectively. It is verified (Fig. 9) that the rfi@iss showed the effectiveness of channel coding on the perfacenan
index is improved under DisF algorithm compared with thef the network. Finally, we showed through simulations that



Fairness Index v
o o o o
© ® 2 © ©
@ © B £
/
’
p
/
,
/
1’
&
v
/
L i

o

@

£
|

{| —— DisF Algorithm : NI
- = - Utility—based Algorithm
3

o
o
N

9 10

o
R

4 5 6 7 8
Number of Flows in the Network

Fig. 9. DisF algorithm is compared with the utility-basegayach in terms
of fairness provisioning using Jain’s fairness index. Isli®wn that for large

values of 3, the utility-based approach has a better performance cangpa 12]

with DisF algorithm. This is at the cost of a decrease in theimmim
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