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Abstract— Fair allocation of resources is an important con-
sideration in the design of wireless networks. In this paper, we
consider the setting of multihop wireless networks with multiple
routing paths and develop an online flow control and scheduling
algorithm for packet admission and link activation that achieves
high aggregate throughput while providing different data flows
with a fair share of network capacity. For fairness provisioning,
we seek to maximize the minimum throughput provided to
flows in the network. To cope with different degrees of data
reliability among the different links in the network, we use
different channel code rates as appropriate. While we expect
performance improvement using channel coding and multipath
routing, the main contribution of our work is a joint treatme nt of
network stability, multipath routing and link-level relia bility in
meeting the overarching goal of maxmin fairness. We develop
a decentralized, and hence practical, scheduling policy that
addresses various concerns and demonstrate, via simulations,
that it is competitive with respect to an optimal centralized
rate allocator. We also evaluate the fairness provisioningunder
the proposed algorithm and show that channel coding improves
the performance of the network significantly. Finally, we show
through simulations that the proposed algorithm outperforms a
class of existing approaches on fairness provisioning, which are
developed based on utility maximization.

Index terms: Scheduling, decentralized resource allocation, fair-
ness, multipath routing, channel coding, Lyapunov stability
theory.

I. I NTRODUCTION

Wireless multihop networks can provide good geographic
coverage at low cost. However, wireless links have limited
capacity and may interfere with each other. The variation of
the link capacity and network traffic can have an impact on
the stability of the network. The network is said to bestable
if every node only has a finite number of packets queued
for transmission. Stability is subject to the condition that the
data transmission rates lie within the network capacity region,
i.e., it is feasible to transmit all packets with bounded delay.
Another aspect is that wireless links are not as reliable as
wired connections, and data packets may be corrupted during
transmission. Moreover, without careful resource allocation
strategy, certain users may be starved for network access
whereas others may receive an unfairly large share of the
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available network bandwidth (e.g., see [1]). This latter aspect
relates to fairness. We propose to address such problems
through a stable and decentralized scheduling mechanism that
allocates resources such that wireless links do not interfere
with each other and fairness is provided while maintaining a
high network throughput. We shall begin with a discussion of
the key ideas and highlight our main contributions.

Most resource allocation problems can be formulated as
network utility maximization (NUM) problems. The utility
function represents an objective that is to be maximized and
the constraints model the different underlying network char-
acteristics. The NUM approach has been applied in different
problems, including energy minimization [2], congestion con-
trol [3], and cross-layer optimization [4]. Other rate allocation
approaches are also considered. In [5], a rate control protocol
has been proposed and a control theoretic analysis of the
system has been provided. However, these approaches do not
provide the scheduling policy in a slotted notion of time.

Using a slotted notion of time, we consider link scheduling
to determine the active links in each time slot. Lyapunov
techniques have been used to construct stable and optimal
decentralized scheduling policies [6]. They are also applicable
to throughput maximization [7] and energy minimization in
single hop [8] and multihop [9] networks. A utility optimal
algorithm with delay consideration using the shortest paths
is also developed in [10]. Throughput optimal scheduling in
ad hoc networks, which is an NP-hard problem [11], has
often been reduced to a rate allocation problem, which only
provides an upper bound on the rates that a network can
support. Near optimal scheduling algorithms for mobile ad
hoc networks have been proposed in [12]. However, fairness
is not considered in the above mentioned work.

Fairness provisioning in wireless networks has been con-
sidered [13]–[19]. The impact of imperfect scheduling on
network performance is studied in [13]. Proportional fairness is
provided in single hop wireless networks using token counter
mechanisms [14]. Fairness provisioning is also studied using
back-pressure combined with random access algorithms [15].
In [16], fairness is provided in the cellular networks, where
there is only one transmitter and all transmissions are one hop.
In [17], fairness is provided with maximizing the summation
of utility functions corresponding to the individual flows.
Our work is different from all of the above in that the
minimum throughput of the network is directly maximized
to provide maxmin notion of fairness instead of considering
utility functions for different users. We achieve this by using
Lyapunov stability theory and constructing virtual queues.



In this paper, we take the advantage of two opportunities
offered by multihop networks. First, we employ multiple paths
for data flows from the source to the destination. Second,
we utilize different channel code rates at different links to
compensate for variations in link reliability. By distributing
the network load over multiple paths, the capacity of the
network is better utilized and less data needs to be transmitted
over links with lower reliability. Multipath routing has been
explored to improve network behavior. The impact of multi-
path routing on energy consumption is examined in [20]. The
effectiveness of multiple paths in meeting delay constraints is
also studied in [21].

Channel coding has been used to tolerate link-level errors
by adding redundant bits to the data bits in a codeword [22].
By increasing the number of redundant bits in a codeword, one
can increase the probability of decoding a codeword correctly
at the receiver; the tradeoff is that redundancy increases the
network load thereby reducing the effective data throughput.
The aspect of improving the reliability of data delivery through
channel coding in a wireless network has been considered.
Lee et al. have examined the rate-reliability tradeoff [23], but
they considered a single routing path between each source-
destination pair. In previous work, we improved the network
throughput with channel coding and multipath routing [24].
Maxmin fairness provisioning is also considered in that con-
text [25]. The impact of channel coding and multipath routing
on delay improvement is also studied in [26]. However, we
used a centralized NUM approach to determine the average
rates but not the exact scheduling policy.

Our work differs from the previous work in the literature in
several aspects. While most of the NUM problems determine
the average sending rates [3], [4] at which the objective
function is maximized, in this paper we propose an efficient
scheduling and link activation policy. Our work is also novel
because in the related work on fair scheduling (e.g., [13]–
[17], [27]), fairness is improved by maximizing the utility
function while we directly maximize the minimum throughput
in the network. We will show how this improves the network
performance. Maxmin fair scheduling is considered in one
hop networks with multi-radio receivers [19]. Optimal maxmin
transmission and forwarding rates for sensor networks are
studied in [28]. A maxmin fair scheduling policy for one hop
wireless networks is also considered [29]. Our work is dif-
ferent from the above as we propose a distributed scheduling
policy and consider multihop networks with single radio and
therefore interference effects are incorporated. In addition, the
optimality is analytically proved. While some papers consid-
ered channel coding to improve the network throughput [23],
no previous work has considered both multipath routing and
channel coding in the joint problem of code rate assignment,
flow control and decentralized scheduling to achieve maxmin
fairness in wireless networks.

The main contributions of this paper are as follows:
• We propose a decentralized online scheduling and flow

control algorithm, which we call DisF, that aims to pro-
vide fairness for each flow by maximizing the minimum
throughput in a multihop wireless network. We integrate
the use of multipath routing and link-dependent channel

code rates in our solution approach to utilize resources
better and improve reliability. While we do improve
link reliability by using appropriate channel coding, we
also assume the use of link-level acknowledgments and
retransmissions when a node is unable to decode a packet.
We demonstrate stability of the proposed algorithm by
applying the Lyapunov stability theory.

• We develop an optimal centralized rate allocation method
using geometric programming, which provides an upper
bound on the performance of any decentralized schedul-
ing policy.

• We study the performance of DisF and optimal central-
ized algorithms through simulations over multiple random
topologies. We show that the DisF algorithm ensures
stability, whenever feasible, and that its performance is
comparable to that of the centralized optimal solution.
We also compare DisF with Lyapunov stability-based
algorithms, which do not consider fairness in their design.
Next, we show that the use of different channel code rates
can improve the performance of the network. We also
compare DisF with a class of existing approaches which
use utility functions to provide maxmin fairness through
simulations [17].

This paper is organized as follows. The system model is
described in Section II. The decentralized stable algorithm is
developed in Section III. The centralized approach is formu-
lated as a geometric programming problem and it is solved in
Section IV. In Section V, the algorithm is evaluated through
simulations and the paper is concluded in Section VI.

II. SYSTEM MODEL

We model the wireless network with a graphG(N , E),
whereN represents the set ofN = |N | wireless nodes andE
denotes the set of directed wireless links. Linke = (m,n) ∈ E
connects two nodesm, n ∈ N if and only if noden is in
the transmission range of nodem. We use the notationse and
(m,n) interchangeably. The set of data flows is denoted byF
and the number of data flows is denoted byF = |F|. The set
of source nodes is denoted byS. Data transmission between
a sourcesf ∈ S and the destinationdf of flow f ∈ F can be
relayed through multiple hops.

We use multipath routing for data transmission. The setKf

containsKf = |Kf | routing paths for flowf ∈ F . For each
link e ∈ E , pathk ∈ Kf , and flowf ∈ F , we defineafke = 1 if
link e belongs to thekth routing path for flowf , andafke = 0,
otherwise. For any noden ∈ N , each data flowf ∈ F , and
any pathk ∈ Kf , let ifkn andofkn ∈ E be the input and output
links to and from noden on pathk of flow f , respectively.
Whenever the context is clear, we remove the indicesn, f, k
and denote the input and output links withi ando, respectively
(see Fig. 1).

A slotted notion of time is used with time slotst ∈
{1, 2, . . .}. We denote the value of time-varying parameters
at the beginning of each time slott with the indext. We use
the same parameter without the indext to denote its average
value over all time slots. At each intermediate noden ∈ N ,
we assume a separate queue for any pathk ∈ Kf of flow



Fig. 1. (a) Pathk of flow f from nodesf to nodedf which uses noden
as a relay node is shown. It is shown that solid link 1 is active(µfk

1 (t) = 1)
while dotted links 2 and 3 are not active (µ

fk
2 (t) = µ

fk
3 (t) = 0) in that

particular time slott. Note that links 1 and 2 belong to the mentioned path
(afk1 = a

fk
2 = 1) but link 3 does not (afk3 = 0). (b) A relay noden is

shown with its input linki and its output linko corresponding to thekth path
of flow f . The corresponding packets are stored inQ

fk
n before they are sent.

f ∈ F . The number of data bits corresponding to pathk for
flow f , stored in noden is denoted asQfk

n (t). We assume
Qfk

df
(t) = 0, ∀ t, k ∈ Kf , f ∈ F since the received bits

are transfered to the upper layers at the destination nodedf .
We incorporate all the queue backlogs in the vectorQ(t) =
(Qfk

n (t), ∀ n ∈ N , k ∈ Kf , f ∈ F).
We use link-dependent channel code rates to counter chan-

nel variations and improve network reliability. Each source
node or intermediate noden ∈ N for any flow encodes data
bits by adding redundant bits and transmitting the resultant
codeword of lengthg. Hereafter, we assume each packet
consists of one codeword and we use the terms packet and
codeword interchangeably. We define the code rateRe(t) as
the ratio of the data bits to the total transmitted bits (dataplus
redundant bits) on linke ∈ E . We concatenate code rates for
all links e ∈ E in vectorR(t) = (Re(t), ∀ e ∈ E). The smaller
the code rateRe(t), the greater number of redundant bits is
added, and the higher the reliability is. The reliability isgained
at the cost of increased network traffic. WhenRe(t) is equal
to one, channel coding is not used on linke.

We useR0e ≤ 1 to denote thecut-off rate of wireless link
e ∈ E . The cut-off rate is a channel parameter to which the
rate of the adopted coding scheme is always limited [22]. In
general,R0e depends on the particular modulation scheme
which is being used and also the signal-to-noise ratio (SNR)in
the receiver node. For example, for a binary phase shift keying
(BPSK) waveform [22], we haveR0e = 1 − log2(1 + e−γe),
whereγe denotes the SNR at the receiver node of wireless
link e ∈ E . When γe is relatively large,R0e is close to1.

GivenRe(t) ≤ R0e for e ∈ E , we have

Pe(t) ≥ 1− 2−g(R0e−Re(t)), (1)

wherePe(t) is the probability that a codeword of lengthg
is received correctly on linke with rateRe(t) [22, pp. 392-
397]. The vectorP (t) = (Pe(t), ∀ e ∈ E) represents the
successful probabilities on all linkse ∈ E . For the rest of this
paper, we consider the worst case in which inequality (1) is
satisfied with equality. For each transmission on linke ∈ E , we
defineρe(t) = 1 if the packet is transmitted successfully and
ρe(t) = 0 otherwise. We haveρe(t) = 1 with the probability
of Pe(t). We defineρ(t) = (ρe(t), e ∈ E) as thechannel state
at time slott.

As mentioned above, a codeword may be corrupted with
probability 1 − Pe(t) through a transmission on linke ∈ E .
The receiver at linke sends a link-level acknowledgement
(ACK) to the transmitter if the packet is received correctly. The
transmitter retransmits the packet if no ACK is received within
a predefined time period. Retransmissions ensure that packets
admitted to the network will be received at their corresponding
destination nodes. This is at the cost of increased network load.

We denote the number of data bits which are admitted to the
pathk ∈ Kf of flow f ∈ F at the beginning of time slott as
αk
f (t). The vectorα(t) = (αk

f (t), ∀ k ∈ Kf , f ∈ F). Suppose
all admissions are upper bounded (i.e.,αk

f (t) ≤ αmax). We
assume that all source nodes are backlogged (i.e., each source
node has at leastαmax data bits available to send over each
of its routing paths at any time slot). We define the capacity
regionΛ as the closure of the set of all sending rate vectors
α (considering all possible routing and scheduling policies),
for which the network is stable, that is

Λ =















α | α � 0, lim
t→∞

sup
1

t

t−1
∑

τ=0

∑

k∈Kf ,f∈F ,
n∈N

E{Qfk
n (τ)} < M















,

(2)
whereM is a finite number. Note thatα = lim

t→∞

1
t

∑t−1
τ=0 α(τ)

is the time average value ofα(t).
Two links e1, e2 ∈ E mutually interfere with each other

if and only if the receiver of one link is in the transmission
range of the sender of the other. At each time slott, only
one wireless link may be active among those wireless links
which are in mutual interference with each other. We define
µfk
e (t) = 1 if link e is active in data transmission for thekth

routing path of flowf at time slott, andµfk
e (t) = 0 otherwise.

We definece as the number of bits that can be transmitted by
link e ∈ E in each time slott. ce containsdata bits as well
as redundant bits due to channel coding. An example of the
modeled network is depicted in Fig. 1.

III. D ECENTRALIZED AND STABLE SCHEDULING

In this section, we tackle the problem of online flow control
and scheduling for wireless links. Consider the following
maxmin fair optimization problem.

maximize min
f∈F

αf

subject to α ∈ Λ.
(3)



The goal in problem (3) is to admit new packets and
schedule the transmissions such that the minimum sending
rateαf =

∑

k∈Kf α
k
f over all flowsf ∈ F is maximized and

all queues in the network remain stable, that is the number of
bits stored in any queue is bounded. Note that data bits are
removed from the queue of the sender node only after it has
received an ACK from the receiver. Therefore, if the queues
are stable, the sending rate of each flow is the same as its
throughput at the corresponding destination.

To enhance the minimum throughput of the network, we
need to introduce a decision parameterλ(t) and a set ofvirtual
queues Zf (t), ∀ f ∈ F . We denoteZ(t) = (Zf (t), ∀ f ∈ F).
For each virtual queueZf(t) for flow f at each time slott,
we set

∑

k∈Kf
αk
f (t) as the service rate andλ(t) as the input

rate. Then, we have the following update equation:

Zf (t+ 1) ≤ max



Zf (t)−
∑

k∈Kf

αk
f (t), 0



+ λ(t). (4)

Supposeλ(t) is upper bounded (i.e.,λ(t) ≤ λmax for any time

slot t) and its time averageλ = limt→∞

∑t−1

τ=0
E{λ(τ)}
t

exists.
We will show later that burstiness in the network increases
whenλmax increases. The stability of each virtual queueZf

implies that the time average of its input rate is less than or
equal to that of its service rate. That is

λ ≤
∑

k∈Kf
αk
f , (5)

where αk
f = limt→∞

∑t−1

τ=0
E{αk

f (τ)}

t
is the time average

value of αk
f (t). Therefore, if all virtual queues are stable,

maximizing the time average value ofλ(t) is equivalent to
maximizing the minimum throughput among all data flows in
the network. The goal is to maximize the time average value
of λ(t) such that both real queues (which store the data bits)
and virtual queues remain stable.

We now present some aspects of Lyapunov stability theory
[6] that are useful for developing our scheduling algorithm. Let
Lyapunov function L(Θ(t)) be a non-negative function of any
queue vectorΘ(t). We define theLyapunov drift △(Θ(t)) ,
E{L(Θ(t+ 1))− L(Θ(t)) | Θ(t)}.

Proposition 1: (Lyapunov Optimization [6]) Letu(t) be a
utility function andB>0, ǫ>0, andV >0 be constants such
that for all time slotst and queue vectorΘ(t) = (Θq(t) | q ∈
∐ = {1, 2, . . . , |∐|}), we have

△(Θ(t))−V E{u(t) | Θ(t)} ≤ B− ǫ
∑

q∈∐

Θq(t)−V u
∗, (6)

whereu∗ is a target value for utility functionu(t), then we
have

uinf ≥ u∗ −B/V,

lim
t→∞

sup
1

t

t−1
∑

τ=0

∑

q∈∐

E{Θq(τ)} ≤
B + V (usup − u∗)

ǫ
,

where uinf = limt→∞ inf 1
t

∑t−1
τ=0E{u(τ)} and usup =

limt→∞ sup 1
t

∑t−1
τ=0E{u(τ)}.

The proof of the proposition can be found in [6, pp. 82-84].

Note that the expectation is over random parameters such as
channel states and possibly randomized scheduling policies.

Let u(t) = λ(t). We concatenate the backlog queues and
virtual queues in the vectorΘ(t) = (Q(t),Z(t)). Proposition
1 states that if condition (6) holds under a scheduling algo-
rithm, then all the queues inΘ(t) are stable andλ will be at
mostB/V away from the target valueλ∗. Stability of virtual
queuesZ ensures thatλ is always less than or equal to the
minimum throughput of the network. By increasingV , we can
get closer to the target value at the cost of a linear increasein
the congestion in the network. Next, we obtain△(Θ(t)) for
any time slott. We define

L(Θ(t)) =
∑

n∈N , k∈Kf , f∈F

Qfk
n (t)

2

2
+
∑

f∈F

Z2
f (t)

2
. (7)

We assume that scheduled transmissions occur at the beginning
of each time slot. For an intermediate relay noden ∈ N ,
n 6= sf , any pathk ∈ Kf and flowf ∈ F , we have

Qfk
n (t+ 1)≤ Qfk

n (t)−min[Qfk
n (t), coRo(t)]µ

fk
o (t)ρo(t)

+ ciRi(t)µ
fk
i (t)ρi(t)

= max[Qfk
n (t)− coRo(t)µ

fk
o (t)ρo(t),

Qfk
n (t)(1 − µfk

o (t)ρo(t))]

+ ciRi(t)µ
fk
i (t)ρi(t).

(8)

For source nodesf ∈ S, f ∈ F andk ∈ Kf , we have

Qfk
sf
(t+ 1)≤ Qfk

sf
(t)−min[Qfk

sf
(t), coRo(t)]µ

fk
o (t)ρo(t)

+ αk
f (t)

= max[Qfk
sf
(t)− coRo(t)µ

fk
o (t)ρo(t),

Qfk
sf
(t)(1 − µfk

o (t)ρo(t))] + αk
f (t).

(9)

Lemma 1: For any ρ ∈ {0, 1}, U,R, and µ ∈ {0, 1} we
have

max[U−Rµρ, U(1−µρ)] ≤ max[U−Rµ, 0]+Rµ(1−ρ). (10)

Proof: Let µ = 1. We verify the inequality in both cases
whenU ≥ R and whenU < R separately. IfU ≥ R, then we
haveU(1− ρ) < U −Rρ and both sides of (10) are equal to
U −Rρ. On the other hand, if we haveU < R, the left hand
side of (10) isU(1−ρ) and the right hand side isR(1−ρ) and
the inequality is verified. In the case whereµ = 0, inequality
(10) states thatU ≤ max[U, 0], which is true.

From (8) and Lemma 1, for a relay noden ∈ N , n 6= sf ,
k ∈ Kf , andf ∈ F , we have

Qfk
n (t+ 1) ≤ max[Qfk

n (t)− coRo(t)µ
fk
o (t), 0]

+ coRo(t)µ
fk
o (t)(1 − ρo(t))

+ ciRi(t)µ
fk
i (t)ρi(t).

(11)

Considering (9) and Lemma 1, for any source nodesf ∈ S,
k ∈ Kf , f ∈ F , we have

Qfk
sf
(t+ 1) ≤ max[Qfk

sf
(t)− coRo(t)µ

fk
o (t), 0]

+ coRo(t)µ
fk
o (t)(1 − ρo(t)) + αk

f (t).
(12)

We now introduce two lemmas to simplify (11) and (12).

Lemma 2 ([6]): For any positiveU1, U2, η, and ν, if we



haveU1 ≤ max[U2 − η, 0] + ν, then

U2
1 ≤ U2

2 + η2 + ν2 − 2U2(η − ν). (13)
The proof of Lemma 2 can be found in [6].
Lemma 3: For positiveU1, U2, O, I, ρ, and ρ′ ≤ 1, if

U1 ≤ max[U2 −O, 0] +O(1 − ρ′) + Iρ, then

U2
1 ≤ U2

2 +B − 2U2(Oρ
′ − Iρ),

whereB = O2 + ρ2I2 +O2(1− ρ′)2 + 2ρ(1− ρ′)OI.
Proof: From Lemma 2, by substitutingη = O andν =

O(1 − ρ′) + Iρ, Lemma 3 is proven.
Using Lemma 3 and inequalities (11) and (12), for anyk ∈

Kf andf ∈ F , we have

Qfk
n (t+ 1)2 ≤ Qfk

n (t)2 +Bfk
n (t)

− 2Qfk
n (t)(coRo(t)µ

fk
o (t)ρo(t)

− ciRi(t)µ
fk
i (t)ρi(t)),

(14)

for any intermediate relay noden ∈ N (n 6= sf ) where

Bfk
n (t) = c2oRo(t)

2µfk
o (t)2 + ρi(t)

2c2iRi(t)
2µfk

i (t)2

+ c2oRo(t)
2µfk

o (t)2(1− ρo(t))
2

+ 2ρi(t)(1− ρo(t))coRo(t)µ
fk
o (t)ciRi(t)µ

fk
i (t).

Similarly, for source nodesf , we have

Qfk
sf
(t+ 1)2 ≤ Qfk

sf
(t)2 +Bfk

sf

− 2Qfk
sf
(t)(coRo(t)µ

fk
o (t)ρo(t)− αk

f (t)),
(15)

where

Bfk
sf

(t)= c2oRo(t)
2µfk

o (t)2 + c2oRo(t)
2µfk

o (t)2(1 − ρo(t))
2

+ 2(1− ρo(t))coRo(t)µ
fk
o (t)αk

f (t) + αk
f (t)

2.

From Lemma 2 and inequality (4), for each virtual queueZf ,
f ∈ F , we have

Z2
f (t+ 1)≤ Z2

f(t) +
(

∑

k∈Kf
αk
f (t)

)2

+ λ2(t)

− 2Zf (t)
(

∑

k∈Kf
αk
f (t)− λ(t)

)

.
(16)

Now, we can write△Θ(t)− V E{λ(t) | Θ(t)} as

E{L(Θ(t+ 1))− L(Θ(t)) | Θ(t)} − V E{λ(t) | Θ(t)}

≤ B −
∑

k∈Kf ,f∈F

(

Qfk
sf
(t)E{coRo(t)µ

fk
o (t)ρo(t)− αk

f (t) | Θ(t)}

+
∑

n6=sf

Qfk
n (t)E{coRo(t)µ

fk
o (t)ρo(t)

− ciRi(t)µ
fk
i (t)ρi(t) | Θ(t)}

)

−
∑

f∈F

Zf (t)E







∑

k∈Kf

αk
f (t)− λ(t) | Θ(t)







− V E{λ(t) | Θ(t)},

(17)

where BQ = 5NF
2 (maxf∈F Kf )max[α2

max,maxe∈E c
2
e],

BZ =F ((αmax maxf∈F Kf )
2+λ2max)/2, andB=BQ+BZ .

Inequality (17) holds under any adopted scheduling algorithm.
Note that the expectated values are taken over the random
channel state probabilities.

Let λ∗ be the optimal value forλ which can be achieved
by an algorithm such that all backlog and virtual queues

remain stable. Since the corresponding sending rates are stably
supported by the network (they are inside the capacity region),
there exist link data rates for all wireless links that support data
transmission in the network. These data rates can be achieved
with a possibly randomizedchannel state-only algorithmX .
This is proved by projection of link data rates in different time-
varying channel states and then expressing each projectionas
the convex combination of corresponding independent sets.
Further details can be found in [7]. Assume that Algorithm
X determines the decision parameters (λ(t), Re(t), µ

fk
e (t),

and αk
f (t) for all e ∈ E , k ∈ Kf , and f ∈ F ) at the

beginning of each time slott such thatλ achieves the optimal
valueλ∗, virtual queues are stable (i.e.,λ <

∑

k∈Kf
αk
f for

any f ∈ F ) and backlog queues are also stable. Note that
Algorithm X is a channel state-only algorithm which makes
the decisions only based on the observed channel states at
each time slot. Therefore, it needsa priori knowledge on
channel states. The stability of backlog queues implies that
under AlgorithmX , for an intermediate relay noden ∈ N
and n 6= sf , we haveE{coRo(t) µ

fk
o (t)ρo(t) | Θ(t)} >

E{ciRi(t)µ
fk
i (t)ρi(t) | Θ(t)}. For any source nodesf , f ∈

F , we have

E{coRo(t)µ
fk
o (t)ρo(t) | Θ(t)} > E{αk

f (t) | Θ(t)}. (18)

The stability of virtual queues implies that

E{λ(t) | Θ(t)} < E
{

∑

k∈Kf
αk
f (t) | Θ(t)

}

, (19)

for all f ∈ F . Then, from (17), there existsǫ > 0 such that

△(Θ(t)) − V E{λ(t) | Θ(t)} ≤ B

− ǫ





∑

n∈N ,k∈Kf ,f∈F

Qfk
n (t) +

∑

f∈F

Zf (t)



− V λ∗,
(20)

under AlgorithmX . Note that here the expectation is taken
over different random channel states and different randomized
decisions.

We now present the distributed fair (DisF) algorithm for
maximizing the minimum throughput in a multihop network
with channel coding and multipath routing. The goal of the
algorithm is to select the decision parametersλ(t), Re(t),
αk
f (t) and µfk

e (t) for all e = (ne, n
′
e) ∈ E , k ∈ Kf , and

f ∈ F , such that

∑

f∈F

∑

k∈Kf

αk
f (t)

(

Zf(t)−Qfk
sf
(t)
)

+ λ(t)



V −
∑

f∈F

Zf (t)





+
∑

f∈F

∑

k∈Kf

∑

e∈E

afke ceRe(t)µ
fk
e (t)

(

Qfk
ne
(t)−Qfk

n
′

e

(t)
)

Pe(t)

(21)
is maximized over all available decision parameters at each
time slot t. Before we present the algorithm in detail, we
analyze the performance of the algorithm in Theorem 1.

Theorem 1: Let Algorithm DisF be an algorithm that max-
imizes (21) over all available decision parameters at each time
slot t. Then, it is throughput-optimal. That is, it stabilizes the
network if any other algorithm can do so and the minimum
throughput in the network is at mostB/V away from the
optimal value.



Proof: Algorithm DisF maximizes (21), which can be
rewritten as
∑

f∈F

∑

k∈Kf

(

Qfk
sf
(t)
(

coRo(t)µ
fk
o (t)Po(t)− αk

f (t)
)

+
∑

n6=sf

Qfk
n (t)

(

coRo(t)µ
fk
o (t)Po(t)− ciRi(t)µ

fk
i (t)Pi(t)

)





+
∑

f∈F Zf(t)
(

∑

k∈Kf
αk
f (t)− λ(t)

)

+ V λ(t).

(22)
Recall from Section II that for any noden ∈ N , each data
flow f ∈ F , and any pathk ∈ Kf , ifkn andofkn ∈ E denote the
input and output links to and from noden on pathk of flow
f , respectively. We remove the indicesn, f, k and denote the
input and output links withi ando in (22), respectively. Recall
that inequality (17) holds under any algorithm including the
DisF algorithm. By maximizing (22) at each time slott, we
minimize the upper bound on△(Θ(t)) − V E{λ(t) | Θ(t)}
(right hand side of (17)) over its value under any other
algorithm including AlgorithmX , that is on the right hand
side of (20). Then, under the DisF algorithm, we have

△(Θ(t))− V E{λ(t) | Θ(t)}

≤ B − ǫ
∑

n∈N , k∈Kf , f∈F

Qfk
n (t)− ǫ

∑

f∈F

Zf (t)− V λ∗. (23)

This is the condition of Proposition 1.

Note that while maximizing (21) over all possibilities leads
to an optimal solution, it is an NP-hard problem due to the
interference constraints [30]. In order to solve this problem in
a distributed manner and in reasonable time (compared to the
introduced delay and channel variation time due to channel
fluctuations), we use the greedy maximal scheduling (GMS)
policy. GMS is sub-optimal and may be implemented in a
distributed manner. It has been shown in [31] that its efficiency
ratio is at least1/2 in the 1-hop interference model. In
other words, GMS can achieve at least half of the throughput
achieved by the optimal policy. Algorithm 1 shows the DisF
algorithm which aims at maximizing (21) at any time slott
in a decentralized manner. This algorithm has several phases
that are performed at the beginning of each time slott.

1) Flow Control: Each source nodesf checks the backlog
queueQfk

sf
(t) for each pathk ∈ Kf of flow f . If Qfk

sf
(t) ≤

Zf (t), sf schedulesαmax new data bits for flowf to be
admitted to the corresponding path (i.e., setsαk

f (t) to be equal
to αmax) (Lines 2-9).

2) Scheduling: The candidate set is initialized with all links
that have data to send. Each linke = (n, n′) ∈ E , sets its
weightwe equal to the maximum value ofQfk

n (t) − Qfk
n′ (t)

over all pathsk ∈ Kf and flowsf ∈ F that use that link. Then
the link with the maximum weight is selected to transmit data
for the corresponding path and flow, it is removed from the
candidate set and all links which interfere with that link are
also removed from the set. This process continues until no link
remains in the candidate set (Lines 10-20). The scheduling
process (lines 15-20) can be implemented in a distributed
manner by making modifications to the medium access control
(MAC) parameters. This is done in [30] by varying contention

Algorithm 1 Distributed fair (DisF) algorithm for maximiz-
ing the minimum throughput among the entire users in the
network, executed at the beginning of each time slott. The
algorithm is initiated withZ(0) = 0 at t = 0.

1: Initialization: Assign values forαmax, λmax, V .
2: Setα(t) = 0.
3: for each sourcesf ∈ S , f ∈ F do
4: for eachk ∈ Kf do
5: if Qfk

sf
(t) ≤ Zf (t) then

6: sf setsαk
f (t) = αmax.

7: end if
8: end for
9: end for

10: Initiate candidate set C of all links that have data to send.
11: for each linke = (n, n′) ∈ C do
12: Setwe = max

f,k
(Qfk

n (t)−Q
fk

n′ (t)).

13: Set(f∗
e , k

∗
e) = argmax

f,k

(Qfk
n (t)−Q

fk

n′ (t))

14: end for
15: while C is not emptydo
16: Sete∗ = argmax

e∈C

we.

17: Setµ
f∗

e∗
k∗

e∗

e∗ (t) = 1.
18: Find Re∗(t) by solving2−g(R0e∗−Re∗ (t)) = 1

1+Re∗ (t)g ln 2
.

19: Remove e∗ and all links that interfere withe∗ from the
candidate setC.

20: end while
21: for each sourcesf ∈ S , f ∈ F do
22: if

∑

f∈F
Zf (t) ≤ V then

23: Setλ(t) = λmax.
24: else
25: Setλ(t) = 0.
26: end if
27: end for
28: for each sourcesf ∈ S , f ∈ F do
29: Zf (t+ 1) = max

[

Zf (t)−
∑

k∈Kf
αk
f (t), 0

]

+ λ(t).
30: Update the other sources withZf (t + 1) through control

messages.
31: end for

window parametersCWmin andCWmax for links to transmit
more or less aggressively according to their weightswe.

3) Code Rate Allocation: For each scheduled linke, the
optimal code rate that maximizesRe(t)(1 − 2−g(R0e−Re(t)))
is determined by solving2−g(R0e−Re(t)) = 1

1+Re(t)g ln 2 (Line
18). In case of any change in the wireless environment,Re(t)
is determined according to the new available updates forR0e.

4) Fairness Provisioning: The source node of each data
flow f ∈ F setsλ(t) = λmax if

∑

f∈F Zf (t) ≤ V , and
setsλ(t) = 0 otherwise (Lines 21-27). Virtual queues are
updated according to (4) (Line 28-31). The value of virtual
queues at each time slot is transmitted between the source
nodes through control messages. Next, the scheduled links
transmit their packets and new data bits are admitted in the
source node queues.

IV. GEOMETRIC PROGRAMMING (GP) FORMULATION

In this section, we provide a benchmark for performance
of the decentralized scheduling algorithm for evaluation pur-
poses. We formulate the problem of code rate and sending
rate allocation as a NUM problem and describe a centralized



solution approach. We allow multipath routing and channel
coding to improve the reliability and use retransmissions in
case of any data loss. We do not consider scheduling. The
slotted notion of time is not considered and the variables are
time average values.

Recall that the sending rate for thekth path of flowf ∈ F
is αk

f . Channel coding is performed on linke ∈ E at a rate
of Re. Thus, link e must transmit packets for pathk ∈ Kf

of flow f ∈ F with a rate ofαk
f/Re if all transmissions are

successful. Since the probability of a successful transmission
is Pe, each transmission is completed within1/Pe attempts
on average wherePe = 1 − 2−g(R0e−Re) in the worst case.
We have

ufke = afke
αk
f

RePe

, (24)

whereufke is the data rate at which linke is being used to
transmit data for thekth path of flowf ∈ F . We can express
the usage of wireless linke ∈ E as

ue =
∑

f∈F

∑

k∈Kf

afke
αk
f

RePe

. (25)

To model the interference, we use a contention graph
GC(NC , EC). The set of verticesNC represents the set of
wireless links in graphG. There is a link between each two
vertices if and only if the corresponding links in graphG
interfere with each other. Eachcomplete subgraph in graph
GC is called a clique and a maximal cliqueω is one that
is not a subset of a larger clique. We defineΩ as the set
of all maximal cliques in the network. It isnecessary for
successful transmissions that the summation of link usages
over all links in each maximal clique be less than the capacity
of the cliqueζω, which leads to anupper bound on the network
performance.

Now, we can formulate the problem of fair sending rate and
code rate allocation in a multihop wireless network as

maximize
α,R,σ

σ

subject to σ ≤
∑

k∈Kf
αk
f , ∀ f ∈ F ,

∑

e∈ω

∑

f∈F

∑

k∈Kf

afke
αk
f

RePe

≤ ζω , ∀ ω ∈ Ω,

Pe ≤ 1− 2−g(R0e−Re), ∀ e ∈ E ,
α ≻ 0, 0 ≺ R ≺ R0.

(26)
In problem (26), the objective is to maximize the throughputof
the flow with the minimum value. The second set of constraints
satisfies thenecessary condition for successful transmissions
and leads to an upper bound on the performance. Since
retransmissions due to packet loss are taken into account inthe
second set of constraints, the total number of admitted packets
will be received at the destination. Therefore, by maximizing
the sending rate of any flow, the received throughput is also
maximized.

The objective function in problem (26) and the left hand side
of the second set of constraints are posynomials. The first set
of constraints hassignomials on the left hand side. Therefore,
we can applysignomial programming techniques [32] to solve

this problem. In this regard, we need to approximate the right
hand side of the first set of constraints with a monomial around
an initial point α̂. For a parameterb > 1 very close to1, we
have

∑

k∈Kf

αk
f ≈ Λ̂−1

f

∏

k∈Kf

(

αk
f

α̂k
f

)α̂k
f Λ̂f

, ∀ α ∈ [α̂/b, bα̂] ,

(27)
whereΛ̂−1

f =
∑

k∈Kf
α̂k
f . Finally, we tackle the third set of

constraints in (26). We can approximate the exponential term
using theTaylor series expansion and rewrite the constraint as

Pe ≤ 1−X1e

∞
∑

n=0

(X2Re)
n

n!
, (28)

whereX1e = 2−gR0e andX2 = g ln 2. For largeMe, we have

Pe ≤ 1−X1e

Me−1
∑

n=0

(X2Re)
n

n!
. (29)

Me must be large enough such that(X2Re)
Me ≪Me! and can

be found through simulations. Now, we can rewrite problem
(26) in the standard form of geometric programming (GP)
problem as

minimize
σ,α,R,P

σ−1

subject to Λ̂fσ
∏

k∈Kf

(α̂k
fα

k
f

−1
)α̂

k
f Λ̂f ≤ 1, ∀ f ∈ F ,

∑

e∈ω

∑

f∈F

∑

k∈Kf

afke αk
fRe

−1Pe
−1 ≤ ζω, ∀ ω ∈ Ω,

Pe

1−X1e
+

X1e

1−X1e

Me−1
∑

n=1

(X2Re)
n

n!
≤ 1, ∀ e ∈ E ,

α̂/b � α � bα̂,
σ > 0, 0 ≺ R ≺ R0, P ≻ 0.

(30)
The above problem is a geometric programming problem that
can be solved iteratively using the interior-point method [32].
In each iteration, we use the solution obtained in the previous
iteration as the new initial point̂α and use the approximation
in (27) around that point. We use the solution of this problem
as a benchmark for evaluating the DisF algorithm.

V. PERFORMANCEEVALUATION

In this section, we evaluate our proposed algorithm through
Matlab simulations. First, we compare the performance of the
DisF algorithm with the centralized approach obtained through
solving geometric programming problem. Then, we study fair-
ness provisioning in the network. We quantitatively measure
fairness under the DisF algorithm in several random topologies
and compare it with a Lyapunov-based algorithm in which
the fairness is not considered. Here, we call that algorithmas
DisA algorithm. The goal in DisA algorithm is to maximize
the aggregate throughput of the network (i.e.,

∑

f,k α
k
f ) while

DisF algorithm maximizes the minimum throughput in the
network (i.e.,minf

∑

k α
k
f ). We also show how fairness is

provided at the cost of degrading the aggregate throughput
in the network. We show the effect of channel coding on
the network performance by comparing with the case when
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Fig. 2. The performance of the DisF algorithm is compared with the solution
of centralized geometric programming problem. Each point represents the
average performance obtained over50 random topologies. The DisF algorithm
follows the centralized approach as the number of flows increases.

channel coding is not used. Moreover, we study the effect of
algorithm parameterV on the obtained performance of the
DisF algorithm. Finally, we compare the proposed approach
with the distributed utility-based approach presented in [17].

We compare the minimum throughput under the DisF
algorithm with the minimum throughput obtained through
solving the geometric programming problem (26). We run the
simulations for both approaches in topologies with30 nodes.
The number of flows varies between2 and10. In this set of
simulations, we setαmax=2, λmax=10, V = 50, andce=10
bits for all links e ∈ E . This is because the MOSEK software
[33] that we used to solve the geometric programming problem
cannot solve the problem whence and consequentlyMe (see
(29)) grows. We run the simulations on50 random topologies.
The DisF algorithm follows the optimal solution as the number
of flows in the network grows (Fig. 2). Increasing the number
of flows leads to higher load on the network and causes a
degradation in the minimum throughput in the network for
both approaches.

Hereafter, we set parametersαmax = 1000, λmax = 5000,
V = 250000, andce=5000 bits for all links e ∈ E . Next, we
study the max-min fair (DisF) algorithm in regards of fairness
provisioning. We run both DisF and DisA algorithms in a
sample network topology (Fig. 3) with20 nodes and5 data
flows. We observe that the achieved throughput, for the sample
topology, is distributed fairly under the DisF algorithm while
this is not the case for the DisA algorithm (see Fig. 4).

We also study the fairness provisioning quantitatively on
several random topologies. We use the Jain’s fairness index
[34], to measure the fairness among network users. The fair-

ness indexψ =
(
∑

f∈F
αf )

2

|F|
∑

f∈F
α2

f

, whereαf =
∑

k∈Kf
αk
f denotes

the throughput of flowf ∈ F . Using the DisF algorithm in
several random topologies, the fairness index is always higher
than0.95 while that of DisA algorithm degrades to0.55 when
the number of flows is equal to10 (see Fig. 5).

Improving the minimum throughput in the network is at the
cost of degrading the aggregate throughput which is achievable
with the entire users in the network. Fig. 6 shows the tradeoff
between the minimum throughput and aggregate throughput

Fig. 3. A sample random topology is shown in this figure. Thereare five
flows between nodes1 → 16, 3 → 13, 2 → 8, 14 → 17, and6 → 20. There
are 4, 2, 2, 1, and 3 routing paths available for these flows, respectively.
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Fig. 4. In a sample topology, fairness is provided under the DisF algorithm
while some flows starve under the DisA algorithm that does notconsider
fairness.

of the network. It is shown that the minimum throughput (and
also the fairness) is improved via DisF algorithm (Fig. 6 (a)).
However, that is gained at the cost of degrading the aggregate
throughput of the network (Fig. 6 (b)).

Fig. 7 shows the effect of channel coding on the perfor-
mance of the DisF algorithm. Each point in Fig. 7 represents
the average value over50 random topologies. Here, we assume
the probability at which a packet is transmitted successfully
over a wireless link to be0.8 if channel coding is not used.
We observe that the minimum throughput increases by28%
when the number of flows is10.

In Fig. 8, we study the effect of varying parameterV on both
the minimum throughput and the delay in the network under
the DisF algorithm. We used the total backlog in the network
as a measure of the delay. We varyV from 0 to 50000 and it is
shown that the minimum throughput in the network increases
with increasingV at the expense of a linear increase of delay
in the network.

Finally, we compare our approach with the one introduced
in [17] as an example of a class of approaches that use
utility functions to provide different notions of fairnessin-
cluding maxmin fairness. This is comparing to our proposed
method which directly pushes the minimum throughput up
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Fig. 5. The performance of DisF and DisA algorithms in regardof fairness
provisioning. Each point represents the average value of the fairness index
over 50 random topologies.
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Fig. 6. The tradeoff between minimum throughput in the network (a) and
aggregate throughput in the network (b) is shown under both DisF and DisA
algorithms.

instead of using utility functions. In [17], the problem of
maximizing the aggregate network utility for all flows in the
network was considered as maximizing

∑

f u
β
f (αf ) subject to

α ∈ Λ, whereuβf (x) is the utility function (i.e.,uβf (x) =

x1−β/(1 − β), β 6= 1, and uβf (x) = log x, β = 1). It was
shown that by increasingβ in the above utility functions, the
performance of the network converges to maxmin fairness
provisioning. The two algorithms are compared in Figs. 9
and 10 regarding the minimum throughput they provide for
network users and fairness provisioning. Each point represents
the average of simulation results in50 random topologies.
To make the comparison fair, we assume wireless links are
completely reliable. We do not employ multipath routing and
channel coding in the network. Parameterβ for the utility
function is chosen to be0, 1, and100 which is for aggregate
throughput maximization, proportional fairness, and maxmin
fairness, respectively. It is verified (Fig. 9) that the fairness
index is improved under DisF algorithm compared with the
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Fig. 7. Performance of the network with channel coding is compared with
the case in which channel coding is not being used.
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Fig. 8. The effect of increasing parameterV is shown on the minimum
throughput (a). This is at the expense of increasing the congestion in the
network (b).

utility-based algorithm whenβ = 0 and1. The fairness index
of the utility-based algorithm improves whenβ increases but
at the cost of the dramatic decrease in the minimum achieved
throughput (Fig. 10).

VI. CONCLUSION

In this paper, we studied fairness provisioning in multihop
wireless networks. We developed an online decentralized al-
gorithm to schedule new data packet admission and packet
transmissions such that the minimum throughput of the net-
work is maximized. We considered networks with multipath
routing and channel coding. We proved the convergence of
the algorithm analytically. Through simulations, we showed
that the proposed algorithm followed the optimal centralized
approach with under control degree of sub-optimality. We also
showed that the proposed algorithm improves the performance
of the network regarding fairness comparing to the other
approaches which ignore fairness provisioning. Moreover,we
showed the effectiveness of channel coding on the performance
of the network. Finally, we showed through simulations that
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Fig. 9. DisF algorithm is compared with the utility-based approach in terms
of fairness provisioning using Jain’s fairness index. It isshown that for large
values ofβ, the utility-based approach has a better performance comparing
with DisF algorithm. This is at the cost of a decrease in the minimum
throughput. (Fig. 10)
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Fig. 10. DisF algorithm is compared with the utility-based approach when
different number of flows are using the network. It is shown that increasing
β is at the cost of decreasing the minimum throughput.

our proposed approach has a better performance in terms
of fairness provisioning comparing to the class of utility-
based approaches. Since the proposed algorithm determines
the scheduling at each time slot, it can adapt to the dynamic
changes of the wireless environment. In the future, we will use
Lyapunov stability theory to determine the scheduling policy
in wireless networks with network coding with the goal of
fairness provisioning.
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