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Abstract—Cloud radio access network (C-RAN) as a promising
and cost-efficient cellular architecture has been proposed to meet
the increasing demand of wireless data traffic. The main concept
of C-RAN is to decouple the baseband unit (BBU) and the remote
radio head (RRH), and place the BBUs in a data center for
centralized control and processing. In this paper, we study the
resource sharing problem in a fronthaul constrained C-RAN,
where multiple service providers lease radio resources from a
network operator to serve their subscribers. To provide isolation
among different service providers, we introduce a threshold-
based policy to control the interference among RRHs, and
define a new metric to provide minimum resource guarantee for
service providers. By leveraging a mobility prediction method,
the user locations are predicted for traffic demand estimation
and interference control. We propose a multi-timescale resource
sharing mechanism, which consists of a global resource allocation
process and multiple local resource allocation processes that are
performed at different time scales. Simulation results show that
the proposed mechanism achieves efficient resource sharing and
isolation among service providers.

Index Terms—C-RAN, resource sharing, virtualization, inter-
ference control, mobility prediction.

I. INTRODUCTION

Cloud radio access network (C-RAN) has recently been
proposed as a cost-efficient solution to meet the increasing
mobile data traffic demand [1], [2]. In general, a C-RAN
consists of a baseband unit (BBU) pool placed in a cloud-
based data center, and a large number of low-cost remote
radio heads (RRHs) each deployed in a small cell [3]. The
BBUs and RRHs are connected through high-speed optical
fronthaul links. By leveraging the cloud computing technique,
the BBU pool performs centralized signal processing and
provides coordinated radio resource and interference man-
agement. The advantages of C-RANs include reducing the
capital expenses (CAPEX) and operational expenses (OPEX)
for system upgrade and maintenance [4], and improving the
spectral efficiency via centralized interference control and
coordinated multi-point transmission (CoMP) [5], [6].

Despite these advantages, a practical fronthaul is always
capacity and delay constrained, which can significantly re-
duce the spectrum efficiency gain achieved by C-RAN [7].

Manuscript received on May 22, 2015; revised on Jan. 26, 2016 and Jul. 22
2016; accepted on Sept. 16, 2016. This work was supported by the Natural
Sciences and Engineering Research Council (NSERC) of Canada. The review
of this paper was coordinated by Prof. Sunghyun Choi.

B. Niu is with Arista Networks, Burnaby, BC, V5J 5J8, Canada (e-
mail: bniu@ece.ubc.ca). Y. Zhou, H. Shah-Mansouri, and V.W.S. Wong
are with the Department of Electrical and Computer Engineering, The
University of British Columbia, Vancouver, BC, V6T 1Z4, Canada (e-
mail:{zhou, hshahmansour, vincentw}@ece.ubc.ca).

The authors in [8] propose a joint precoding and fronthaul
compression strategy for downlink transmission, in which the
BBUs jointly compress precoded signals for different users to
restrict the impact of quantization noise on the aggregate trans-
mission rate. The fronthaul capacity and delay constraints can
also be alleviated by flexibly splitting the baseband processing
between the BBUs and RRHs (e.g., moving parts of baseband
processing functionalities from the BBUs to the RRHs) [9].
Another efficient method is to design advanced resource allo-
cation and optimization mechanisms while taking into account
the fronthaul capacity constraint [10], [11]. To maximize
the energy efficiency under the fronthaul capacity and queue
stability constraints, a dynamic resource optimization problem
is formulated in [10]. Based on both the channel and queue
states, the authors in [11] devise a fronthaul allocation policy
for uplink transmission to minimize the average delay by
formulating a stochastic optimization problem.

Supporting radio access network sharing among multiple
service providers is an important use case of C-RANs [12],
[13]. Multiple service providers lease radio resources from
a network operator to serve their subscribed users, which re-
duces the CAPEX and OPEX of deploying the network infras-
tructure for each service provider. To enable network sharing, a
network operator needs to dynamically allocate radio resources
among service providers, which can be achieved by creating
multiple virtual radio access networks (vRANs) overlaying the
physical infrastructure and ensuring service isolation across
the vRANs [14]. Specifically, each vRAN shares a certain
amount of radio resources and the operation in one vRAN
should not affect other vRANs. To offer flexible customization
capability and to efficiently utilize radio resources, several
principles for designing virtualization mechanisms have been
proposed [15].

Resource sharing in cellular networks has recently been
studied. Kokku et al. in [16] propose a network virtualization
substrate, where a slice scheduler is integrated into the base
station’s scheduling component for managing the resource
slicing and sharing among different service providers. This
approach provides flow level isolation and customization by
partitioning available channels into non-overlapping slices.
Since this approach focuses on resource virtualization in a
single base station, it cannot be directly extended to a C-
RAN with densely deployed RRHs. To mitigate the inter-
tier interference between the base station and the RRHs,
the authors in [17] propose a contract-based interference
coordination framework, which exploits the time domain by
introducing an interference-free transmission interval for the
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RRHs. To reduce the coordination overhead, the size of a C-
RAN cluster should be limited, which introduces the intra-tier
interference among the RRHs [18]. Such interference should
be considered when designing resource sharing mechanisms.
Another category of network sharing mechanisms is devel-
oped based on the dynamic allocation of spectrum resources
[19]–[21]. In these approaches, the physical infrastructure
is shared by all service providers, and the service isolation
is achieved by allocating non-overlapping spectrum to each
service provider. Fu et al. in [19] map the wireless spectrum
resources into a rate region, and propose a sequential auction
game framework to allocate the resources to several competing
service providers. An opportunistic resource sharing scheme
is proposed in [20], which explores the varying traffic patterns
and allows different traffic flows to access the same channel
opportunistically. In [21], Hou et al. formulate the spectrum
sharing problem for multi-hop software defined radio networks
as a mixed integer non-linear programming (MINLP) problem,
and design an algorithm to find the near optimal solution.
Although these approaches guarantee service isolation, they
exclude the possibility of spectrum reuse among service
providers. Resource sharing in cloud-based networks has also
been studied [22], [23]. A number of sharing policies, such as
network proportionality, have been proposed and evaluated in
[22]. An efficient bandwidth reservation scheme with varying
traffic demands is studied in [23] for resource sharing in data
centers. However, these works do not consider the sharing of
radio resources, which cannot be directly applied to C-RANs.

Different from existing works, in this paper, we design an
efficient resource sharing mechanism to support multiple ser-
vice providers in a C-RAN with capacity constrained fronthaul
links. Designing such a mechanism is challenging due to the
following reasons. First, to improve the spectral efficiency of a
C-RAN with densely deployed RRHs, interference coordina-
tion can limit the co-channel interference by imposing restric-
tions to the resource sharing mechanism. Hence, interference
coordination plays an important role in determining the per-
formance of resource sharing. On the other hand, scheduling
decisions for users subscribed to different service providers are
coupled since concurrent transmissions can cause co-channel
interference. Although interference coordination is an effective
method to limit the co-channel interference, it can affect the
scheduling decisions of one service provider, which in turn af-
fect the scheduling decisions of other service providers. Such a
coupling of scheduling decisions is not desirable for providing
service isolation among different service providers. As a result,
an efficient resource sharing mechanism should take into
account both aspects of interference coordination (i.e., efficient
utilization of radio resources and service isolation among
service providers). Second, in C-RANs, user mobility triggers
frequent handoff across small cells, which further complicates
the coordination of the intra-tier interference among RRHs
and the isolation among service providers. Moreover, due
to the variation of users’ traffic demand and locations, the
amount of resources required at a small cell by each service
provider changes, which requires dynamic update of vRANs.
Hence, we are motivated to develop an efficient resource
sharing mechanism to dynamically allocate radio resources

while providing service isolation among service providers and
taking into account fronthaul capacity constraint, intra-tier
interference, user mobility, and traffic variation. The major
contributions are summarized as follows:

• We propose a user-centric resource sharing scheme for
a C-RAN with capacity constrained fronthaul links, in
which the network operator jointly determines the re-
source allocation as well as user admission and asso-
ciation. To guarantee service isolation, we introduce an
interference threshold to limit the maximum interference
at each user. We define a novel metric to determine
the minimum aggregate data rate to be allocated to
each service provider based on users’ QoS requirements
and their maximum achievable data rates. The proposed
scheme also employs a mobility prediction approach to
estimate the locations of users in a short period and
uses this information for traffic demand estimation and
interference control.

• We design an efficient resource allocation algorithm to
assist the resource sharing process. We formulate the
resource allocation problem as an MINLP problem, and
transform it into a mixed-integer linear programming
(MILP) problem using a linearization technique. We
propose an increment-based greedy allocation algorithm
to obtain a suboptimal solution, which is more time-
efficient than the standard techniques.

• To address the issue of traffic variation and user mo-
bility, we propose a multi-timescale resource allocation
mechanism. This mechanism consists of global resource
allocation and local resource updates to deal with the
variation of the network status, which is more efficient
than performing network-wide optimization only.

• We discuss possible extensions of the proposed mecha-
nism for uplink transmission and revenue maximization.
We show that the optimization problem in the uplink can
be transformed into an MILP problem, and can be solved
using similar approaches as the downlink scenario. We
also show that by adjusting the weighting factors in the
objective function, we can achieve revenue maximization
under both fixed-rate pricing and tiered pricing schemes.

• Through extensive simulations, we show that our pro-
posed mechanism achieves efficient resource utilization
and the isolation among service providers under various
network situations with different traffic loads. It achieves
higher throughput than an existing proportional spectrum
sharing mechanism. When users are mobile, we also show
that the proposed mechanism is more robust than the
mechanisms without mobility prediction.

The rest of this paper is organized as follows. In Section II, we
describe the system model and user-centric network sharing
scheme, and formulate the resource allocation problem. In
Section III, we propose an efficient algorithm to solve the
resource allocation problem. Section IV describes the proposed
multi-timescale resource sharing mechanism. Further exten-
sions are discussed in Section V. Performance of the proposed
mechanism is evaluated in Section VI. Conclusions are drawn
in Section VII. A list of key notations is shown in Table I.
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TABLE I
LIST OF KEY NOTATIONS

Symbol Definition
au,j,τ Indicator that user u is served by RRH j at the τ th

predicted location
Aj,k,τ Possible user association profile at RRH j at the τ th

prediction in channel k
B Bandwidth of each orthogonal channel
Bfh
j Capacity of a fronthaul between RRH j and data center

Cj,k Indicator that channel k is allocated to RRH j
gu,j,τ Channel gain between user u and RRH j at the τ th

predicted location
Mu,τ Set of RRHs to be associated for user u at the τ th

predicted location
np Pre-determined number of locations used for estimation
N Set of orthogonal channels
PRRH Transmission power of the RRH
Pmax
u Maximum transmission power of user u
Rref Reference data rate for a user
Rmin
s Minimum aggregate data rate guaranteed for service

provider s
Rref
s Reference minimum aggregate data rate for service

provider s
Ru Data rate for user u
R̃u,j,τ Unit data rate from RRH j to user u at the τ th

predicted location
S Set of service providers
TG Number of time slots of a global resource allocation

process
TL Number of time slots of a local resource allocation

process
Ũj,τ Set of users associated with RRH j at the τ th predicted

location
Us Set of subscribed users for service provider s
wu,j,τ Proportion of time that user u can access a channel at

RRH j at the τ th predicted location
zu Indicator that user u is admitted by the corresponding

service provider
βu Weighting factor for user u
∆t Number of time slots within one prediction location
ε Interference threshold

II. SYSTEM MODEL

We consider a C-RAN as shown in Fig. 1, which consists of
a radio access network (RAN) and a cloud-based data center.
The RAN consists of a set of small cell RRHs (i.e., microcell
or picocell RRHs), which is denoted as M. All RRHs are
connected to the data center via high-speed optical fiber. The
data center performs centralized resource management and
control operation for the RAN. The available spectrum for
this system is divided into N orthogonal channels with equal
bandwidth B. Let N = {1, . . . , N} denote the set of channels.
We consider path loss and shadowing effect of the wireless
channel, and the average channel gain between a user and
an RRH is distance-dependent. The system is time-slotted,
where only one user can access a particular channel from
an RRH during one time slot. However, different users may
share the same channel via time division multiple access. The
same channel can be reused by multiple RRHs to improve
the system throughput under certain interference constraints
specified by the network operator.
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Fig. 1. Illustration of a cloud radio access network. Multiple service providers
lease the infrastructure and radio resource from a network operator. The
network operator creates a vRAN for each service provider by assigning a
number of RRHs and the corresponding channels. Each RRH can serve users
belonging to different service providers.

We consider a number of service providers share the C-
RAN. The network operator owns the infrastructure and the
spectrum, and can lease these resources to a set of service
providers, denoted as S . Each service provider s ∈ S provides
data services with certain quality-of-service (QoS) require-
ments, such as video streaming and sports TV broadcasting,
to a set of subscribed users, which is denoted as Us. To
enable resource sharing among service providers, the network
operator employs virtualization techniques to create vRANs
and allocate corresponding resources periodically. Specifically,
at the beginning of the virtualization process, each service
provider sends a reservation request for certain traffic demand
(or aggregate data rate required from the users) to the network
operator. The network operator creates a vRAN for each
service provider, which consists of a number of virtual RRHs
(vRRHs) and BBUs in the data center as shown in Fig. 1. Each
vRRH can be mapped to a real RRH in the RAN. Multiple
vRRHs from different service providers can be mapped to
the same RRH and they share the resources available at that
RRH. The network operator also determines the amount of
channel resources allocated to each vRRH. After that, each
service provider performs scheduling and data transmission in
its corresponding vRAN. The vRAN created for each service
provider remains unchanged until the next resource allocation
is performed at the network operator.

The resource allocation process is performed every T time
slots, and we refer T time slots as a resource sharing period.
We consider the resource allocation at the beginning of a T
time slot period [t, t + T ), and define Cj,k ∈ {0, 1} as the
channel allocation variable, where Cj,k = 1 indicates channel
k ∈ N is allocated to RRH j ∈M, and Cj,k = 0 otherwise.

A. User-Centric Resource Sharing Scheme

In conventional resource sharing schemes, the service
providers need to estimate their users’ resource demand be-
fore sending the reservation requests. Performing such an
estimation usually requires the knowledge of user association
decision to estimate the channel gain for each user and the
available channel information at each base station to estimate
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the corresponding interference. Most of the existing estima-
tion approaches assume simple resource allocation and user
association decisions, i.e., the channels available at each base
station are either orthogonally allocated or follow a fixed reuse
pattern. This may lead to unbalanced resource reservation
in the network and competition among the service providers
when the users are not uniformly distributed. In this paper,
taking advantages of the cloud computing capability in C-
RANs, we shift the resource demand estimation task from
the service providers to the network operator, and propose a
user-centric resource sharing mechanism1. The basic idea is to
let the service providers send the QoS requirements for their
subscribed users to the network operator. Based on the users’
information, the network operator performs joint admission
control, user association, and resource allocation to create the
vRANs with guaranteed QoS for admitted users. Different
from the existing resource sharing schemes, we introduce the
following metrics and approaches during the network-wide
sharing process:

1) Interference threshold: Due to channel reuse among
the RRHs, different scheduling and transmission decisions
at one service provider may affect the level of interference
experienced in other vRANs, which in turn affect other service
providers’ decisions. To decouple the transmission decisions
in service providers, we limit the interference among vRANs
within a controllable range. Specifically, we introduce an
interference threshold ε to assist the service isolation process.
During resource allocation, we require that the interference
experienced at each user in a vRAN should not exceed this
threshold. Otherwise, transmission scheduling in one vRAN
may affect the transmission scheduling and decisions in other
vRANs and the network provider cannot benefit from the
advantages of virtualization. By introducing the interference
threshold, a service provider can make scheduling decisions
based on the threshold instead of the actual interference
originated from other vRANs. The value of the threshold can
be selected as the one that maximizes the average system
throughput, which can be obtained via computer simulations.

2) Rate estimation with mobility prediction: The resource
demand estimation is performed by the network operator at the
beginning of a resource sharing period, i.e., at time slot t in
period [t, t+ T ). When a user is mobile, the results obtained
based on the information (e.g., channel gain) at time slot t
may not be sufficient to guarantee its QoS during the entire
period [t, t + T ). To address this issue, we exploit the users’
mobility information when estimating their achievable data
rates. Specifically, at time slot t, we consider the network
operator can predict the locations of the user at future time
slots t + ∆t, t + 2∆t, . . . , t + T −∆t according to a certain
mobility prediction mechanism [26], where ∆t = T/np is
the number of time slots in each prediction period and is
assumed to be integer. Furthermore, np is a pre-determined

1In this paper, we focus on developing an efficient resource sharing
mechanism for an already deployed C-RAN, where the network operator
knows the locations of all RRHs. Such a network setting is different from
that of stochastic geometry based analytical frameworks [24], [25], in which
the network performance is analyzed to provide useful insights on network
deployments by modeling the spatial locations of the RRHs as a Poisson point
process.

positive integer that represents the number of locations we
used for estimation. We denote the predicted location at time
slot t + τ∆t as the τ th predicated location, where τ takes
values from set T = {0, 1, . . . , np − 1}.

To determine the resource allocation, we defineMu,τ ,∀ τ ∈
T as the possible set of RRHs to be associated for user u ∈ Us
at the τ th predicted location. We denote au,j,τ ∈ {0, 1} as the
corresponding association variable where au,j,τ = 1 indicates
user u is served by RRH j ∈ Mu,τ at the τ th predicted
location, and au,j,τ = 0 otherwise. We further denote discrete
variable wu,j,τ ∈ {0, 1

T , . . . ,
∆t
T },∀ j ∈ Mu,τ , τ ∈ T , u ∈

Us, s ∈ S as the resource sharing variable, which indicates
the proportion of time that user u can access a channel at
RRH j during τ th period. Note that wu,j,τ = 1

T means user u
is allocated a channel at RRH j in only one time slot, whereas
the user is allocated all ∆t time slots during τ th period when
wu,j,τ = ∆t

T = 1
np

. The variables au,j,τ and wu,j,τ remain
unchanged within ∆t time slots. Since the minimum resource
unit is one time slot and the maximum number of time slots
available for each user in [t + τ∆t, t + (τ + 1)∆t) is ∆t =
T/np, we have 1/T ≤ wu,j,τ ≤ ∆t/T = 1/np for user u if
it is served by RRH j ∈Mu,τ . Thus,
au,j,τ
T
≤wu,j,τ ≤

au,j,τ
np

,∀ j∈Mu,τ , τ ∈T ,u∈Us,s ∈ S. (1)

Equivalently, if user u is not associated with any RRH during
τ th period (e.g., au,j,τ = 0), resource sharing variable wu,j,τ
has to be zero. To ensure that each user can only access one
channel at a time, we require∑

j∈Mu,τ ,τ∈T
wu,j,τ ≤ 1, ∀ u ∈ Us, s ∈ S. (2)

Note that the maximum number of time slots in a resource
sharing period is T . In addition, the resource sharing scheme
should ensure that the total resources allocated to users from
each RRH does not exceed its available resources. During
each time slot, a channel at each RRH can be allocated to
at most one user2. Thus, during any period [t+ τ∆t, t+ (τ +
1)∆t),∀τ ∈ T ,∑

u∈Ũj,τ

wu,j,τ ≤
1

np

∑
k∈N

Cj,k, ∀ j ∈M, τ ∈ T , (3)

where Ũj,τ , {u | j ∈ Mu,τ , u ∈ Us, s ∈ S} is the set
of users associated with RRH j at the τ th predicted location.
Note that Cj,k = 1 indicates that channel k is allocated to
RRH j. Therefore, the right hand side of constraint (3) is the
total resources available at RRH j during τ th period.

We now determine the estimated data rate for user u ∈ Us
during one resource sharing period as follows.

Ru =
∑

j∈Mu,τ ,τ∈T
wu,j,τB log2

(
1 +

PRRH gu,j,τ
σ2 + ε

)
,

where gu,j,τ is the channel gain between user u and RRH j at
the τ th predicted location, PRRH is the transmission power of

2By utilizing techniques such as beamforming, users from different service
providers may be able to concurrently access the same channel of an RRH.
However, for the sake of tractability of the analysis, we assume that at most
one user can access a channel of an RRH during each time slot.
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the RRH, and σ2 is the noise power. Let zu ∈ {0, 1} denote the
admission control variable for user u, where zu = 1 indicates
that user u is admitted by the corresponding service provider.
Each user u is admitted if there exists at least one period
τ ∈ T in an RRH such that wu,j,τ > 0. Equivalently,

zu ≤
∑

j∈Mu,τ ,τ∈T
au,j,τ , ∀ u ∈ Us, s ∈ S. (4)

If user u is not allocated a channel in any time slot, the right
hand side of constraint (4) will be zero. The QoS requirement
of each admitted user u is satisfied when its achievable data
rate is within a certain range denoted as [Rmin

u , Rmax
u ]. The

following constraint ensures that the QoS requirements of all
users are achieved.

zuR
min
u ≤ Ru ≤ zuRmax

u , ∀ u ∈ Us, s ∈ S. (5)

The estimated data rate Ru is obtained based on the interfer-
ence threshold policy to take the advantages of virtualizaton.
Therefore, for any user u associated with RRH j, the aggregate
interference induced by other RRHs at any allocated channel
should not exceed the threshold value ε. Mathematically,

au,j,τCj,k
∑
l∈M\{j} Cl,kPRRHgu,l,τ ≤ ε,
∀ k ∈ N , j ∈M, τ ∈ T , u ∈ Us, s ∈ S. (6)

3) Dynamic rate guarantee: The network operator should
reserve some resources for each service provider to guarantee
the minimum aggregate data rate of users. However, since
users are mobile, the amount of radio resources consumed
for guaranteeing a fixed aggregate data rate for a service
provider varies, which may result in unbalanced resource
allocation and low system throughput. For example, a service
provider may consume a large amount of wireless resources
when the subscribed users experience poor channel conditions.
Thus, the minimum aggregate data rate guaranteed for each
service provider should be dynamically adjusted in order to
improve the system throughput. In this paper, we propose the
following metric to determine the minimum aggregate data
rate guaranteed for each service provider. We define Rref

s as
the reference minimum aggregate data rate for service provider
s ∈ S, and Rref as the data rate that a user can achieve at a
reference distance to an RRH with a given bandwidth, which
is used as a reference to facilitate problem formulation. Rref

s

is the upper bound of the minimum rate guaranteed by the
network operator, which is specified in the service agreement.
Rref is calculated as the data rate of a user at a reference
distance (i.e., 20 m) to an RRH. We denote the maximum
achievable data rate of user u ∈ Us as

R∗u =
1

np

∑
τ∈T

B log2(1 + (PRRHgu,j∗,τ )/(σ2 + ε)),

where gu,j∗,τ is the channel gain between user u and its
closest RRH j∗ at the τ th predicted location. Moreover,
1
np

is the maximum value of wu,j,τ as all the time slots
in τ th period are allocated to user u. Then, the minimum
aggregate data rate guaranteed for service provider s, denoted
as Rmin

s , is determined according to the following rules: (i)
Rmin
s should be no larger than the reference value Rref

s . (ii)

Rmin
s should be no larger than the maximum traffic demand

from the subscribed users, which is
∑
u∈Us R

max
u . (iii) When

the average value of users’ maximum achievable data rates,
(1/|Us|)

∑
u∈Us R

∗
u, is smaller than the reference data rate

Rref, it implies that on average the users are relatively far
from their closest RRH and guaranteeing Rref

s consumes more
resources than expected. In this case, the network operator
only guarantees a lower data rate (down scale Rref

s by a factor
of (1/|Us|

∑
u∈Us R

∗
u)/Rref) for the service provider to save

some resources. In summary, we have

Rmin
s = min

{
Rref
s ,

∑
u∈Us

Rmax
u ,

∑
u∈Us R

∗
u

|Us|Rref
Rref
s

}
.

The minimum resource guarantee for each service provider is
specified as follows.∑

u∈Us

Ru ≥ Rmin
s , ∀ s ∈ S. (7)

4) Fronthaul constraints: We consider a fronthaul-
constrained C-RAN. Fronthaul links generally suffer from
capacity constraint and latency3 for collecting the users’ infor-
mation (e.g., user locations and channel gains). The mobility
prediction scheme employed in this paper can mitigate the
effect of delay in fronthaul as we update the users’ information
less frequently. During each resource sharing period, the user
locations will be predicted, from which the channel gains can
be determined. However, the limited capacity of fronthaul links
affects the resource allocation. We denote the capacity of an
optical fronthaul link which connects RRH j ∈M to the data
center as Bfh

j . The aggregate data rate transmitted over the
fronthaul link of RRHs should satisfy the following constraint.∑
u∈Ũj,τ

npwu,j,τBlog2

(
1+

gu,j,τPRRH

σ2 + ε

)
≤Bfh

j , j∈M,τ ∈T . (8)

Note that npwu,j,τ in the left hand side of constraint (8) is the
number of time slots allocated to user u during τ th period.

5) Optimization objective: The network operator maxi-
mizes the system throughput under different traffic load situa-
tions, which can be characterized using the following objective
function

f =
∑

u∈Us,s∈S
βuRu, (9)

where βu is a time-dependent and user-dependent weighting
factor. The objective function characterizes the weighted sum
rate of the system, which is equivalent to the system through-
put when βu = 1,∀ u ∈ Us, s ∈ S . The weighting factor βu
is used to characterize the importance of the users and can be
interpreted as the importance of admission control for different
users.

Based on the previous discussion, in the proposed scheme,
the network operator determines the number of channels

3Two types of delay in the fronthaul can affect the resource allocation
in C-RANs. First, delay in the fronthaul uplink for transmission of users’
control information may affect the resource allocation problem and degrade
the system throughput. Second, delay may occur in the fronthaul downlink
for transmission of baseband signals. In this paper, we assume that the latter
delay is negligible. The same assumption is used in [6] and [17].
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allocated to each RRH, the amount of resources shared by
each service provider, as well as the admission control and
resource sharing variables.

B. Resource Allocation Problem at the Operator

To formulate the resource allocation problem, we define
C = (Cj,k, j ∈M, k ∈ N ) and zs = (zu, u ∈ Us) as channel
allocation and admission control variables. We further denote
the user association variables and resource sharing variables
for service provider s ∈ S as as = (au,j,τ , u ∈ Us, j ∈
Mu,τ , τ ∈ T ) and ws = (wu,j,τ , u ∈ Us, j ∈ Mu,τ , τ ∈ T ),
respectively. Then, the resource allocation problem is to deter-
mine the decision variables zs, as, ws, ∀ s ∈ S, and C, which
can be formulated as the following optimization problem.

maximize
zs,as,ws,s∈S,C

f =
∑

u∈Us,s∈S
βuRu (10a)

subject to constraints (1)–(8), (10b)
Cj,k ∈ {0, 1}, j ∈M, k ∈ N , (10c)
zu ∈ {0, 1}, u ∈ Us, s ∈ S, (10d)
au,j,τ∈{0, 1}, u∈Us, s∈S, j∈Mu,τ , τ∈T , (10e)

wu,j,τ ∈
{

0,
1

T
, . . . ,

∆t

T

}
,

u ∈ Us, s ∈ S, j ∈Mu,τ , τ ∈ T . (10f)

Constraint (6) is non-convex and problem (10) is an MINLP
problem with non-convex constraints, which is difficult to
solve in practice. In the following sections, we design an
efficient algorithm to find a suboptimal solution.

III. EFFICIENT RESOURCE ALLOCATION ALGORITHM

In this section, we first transform problem (10) into an MILP
problem, and then design an efficient algorithm to find its
solution. Specifically, we convert the non-convex constraint
(6) into the following linear constraint∑

l∈M\{j}

Cl,kPRRHgu,l,τ ≤
(au,j,τ + Cj,k)ε

2

+(2− au,j,τ − Cj,k)D,

∀ k ∈ N , j ∈M, τ ∈ T , u ∈ Us, s ∈ S, (11)

where D is a large constant. Regarding this linearization, we
have the following theorem.

Theorem 1: Constraint (11) is equivalent to constraint (6)
if D and ε satisfy

D ≥ max

{
Γ− ε

2
,

Γ

2

}
, (12)

where

Γ = (|M| − 1)PRRH max
u∈Us,s∈S,j∈M,τ∈T

{gu,j,τ}. (13)

Proof: We show constraints (6) and (11) are equivalent
under condition (12) when au,j,τ and Cj,k take any feasi-
ble values from {0, 1}. First, when au,j,τCj,k = 1 (i.e.,
au,j,τ = 1 and Cj,k = 1), constraints (6) and (11) are the
same. Second, when au,j,τCj,k = 0, (6) is always satisfied.
Thus, we only need to show that (11) is always satisfied

when au,j,τCj,k = 0. We consider the following cases for
au,j,τCj,k = 0: When au,j,τ = 0 and Cj,k = 0, constraint (11)
becomes

∑
l∈M\{j} Cl,kPRRHgu,l,τ ≤ 2D. When au,j,τ = 1

and Cj,k = 0 or au,j,τ = 0 and Cj,k = 1, constraint (11)
becomes

∑
l∈M\{j} Cl,kPRRHgu,l,τ ≤ ε/2+D. Based on (13),

we have Γ ≥
∑
l∈M\{j} Cl,kPRRHgu,l,τ . Thus, according to

condition (12), it can be verified that (11) is always satisfied
in all three cases. This completes the proof.

With the linear constraint (11), problem (10) becomes

maximize
zs,ws,as,s∈S,C

f (14a)

subject to constraints (1)–(5), (7)–(8), (11), (10c)–(10f).
(14b)

Problem (14) is an MILP, which can be solved by applying
standard techniques such as the branch and bound method.
However, the computational complexity of these techniques
increases significantly as the size of the problem increases.
Therefore, in a system with many users, finding the optimal
solution to problem (14) by applying the standard techniques
may consume a large amount of time, which may not be
practical for real-time processing. To address this issue, in
the following, we propose a fast algorithm to find an efficient
suboptimal solution.

To jointly determine the channel allocation, resource shar-
ing, and user admission and association decisions, we propose
an increment-based greedy allocation (IBGA) algorithm. The
basic idea of the proposed algorithm is to allocate the available
channels to the RRHs one by one. For each channel, we
allocate it to the RRHs iteratively, where in each iteration
we select the RRH that has the largest increment of the
objective value while satisfying the interference constraint
(11). The allocation of a channel terminates when no more
RRH can use this channel under the interference constraint.
Once the channel allocation is fixed, the user admission and
association are also determined accordingly. To characterize
the increment of the objective value, we first relax the binary
variable zu to be a continuous variable z̃u ∈ [0, 1], where
z̃u = min{Ru/Rmin

u , 1}. We denote ∆Ru as the increment of
data rate when user u is allocated additional resources, and
further denote ∆Rmin

u = Rmin
u −Ru. Then, we have

∆z̃u =
min{∆Ru,∆Rmin

u }
Rmin
u

. (15)

We further define R̃u,j,τ , B log2(1 + (PRRHgu,j,τ )/(σ2 +
ε)) as the unit data rate from RRH j to user u at the τ th
predicted location, and denote ∆wu,j,τ as the corresponding
additional resources allocated from RRH j to user u at the
τ th predicted location. Then, for user u associated with RRH
j, the increment of data rate at the τ th predicted location is

∆Ru,j,τ (∆wu,j,τ ) = ∆wu,j,τB log2(1 +
PRRHgu,j,τ
σ2 + ε

)

= ∆wu,j,τ R̃u,j,τ . (16)

We define ∆fj,k ,
∑
τ∈T ∆fj,k,τ as the increment of the

objective value when channel k is allocated to RRH j, where
∆fj,k,τ denotes the maximum increment of objective value
when RRH j allocates ∆t time slots for its associated users at
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the τ th predicted locations. The objective value is the weighted
sum of data rate increment for the users associated with RRH j
at the τ th prediction in channel k. Thus, ∆fj,k,τ is the optimal
value of the following problem

maximize
∆wu,j,τ ,u∈Aj,k,τ

∑
u∈Aj,k,τ

βu∆Ru,j,τ (∆wu,j,τ ) (17a)

subject to
∑

u∈Aj,k,τ

(wu,j,τ + ∆wu,j,τ ) ≤ ∆t

T
, (17b)

∑
u∈Aj,τ∪Aj,k,τ

(wu,j,τ+∆wu,j,τ )R̃u,j,τ ≤Bfh
j , (17c)

∆wu,j,τ ∈
{

0,
1

T
, . . . ,

∆t

T

}
, (17d)

where Aj,k,τ is the possible user association profile at RRH
j at the τ th prediction in channel k. Moreover, Aj,τ is the
set of users who have already allocated with other channels at
RRH j. We determine Aj,k,τ by checking constraints (6) and
(7). Specifically, we denote IRRH(j, k) as an indicator function
where IRRH(j, k) = 0 indicates that constraint (11) cannot be
satisfied if channel k is allocated to RRH j, and IRRH(j, k) = 1
otherwise. We denote Iuser(u, j, τ) as an indicator function to
show whether constraint (6) is satisfied at user u served by
RRH j at the τ th predicted location. We further define Isp as an
indicator function to show whether constraint (7) is satisfied,
and denote S ′ as the set of service providers which do not
satisfy constraint (7). Then, we have

Aj,k,τ =


{u | u ∈ Ũj,τ , Iuser(u, j, τ) = 1, s(u) ∈ S ′},

if IRRH(j, k) = 1 and Isp = 0,

{u | u ∈ Ũj,τ , Iuser(u, j, τ) = 1},
if IRRH(j, k) = 1 and Isp = 1,

∅, otherwise,
(18)

where s(u) is the service provider that user u subscribed
to. The set in (18) implies that when constraint (7) is not
satisfied, we only consider allocating resources to users sub-
scribed to the service providers which have not achieved
the minimum guaranteed resources. Otherwise, all users are
considered eligible for additional resources. It can be verified
that ∆z̃u(∆wu,j,τ ) is a piece-wise concave function with
respect to ∆wu,j,τ . Thus, problem (17) can be solved using
standard techniques such as branch and bound. Problem (17)
is a mixed integer programming problem. The size of this
problem (i.e., the number of variables), which is equal to
|Aj,k,τ |, is at most the number of users located in the coverage
area of RRH j. However, this is conservative as each RRH can
use multiple channels. Although the worst case complexity of
solving problem (17) is exponential in |Aj,k,τ |, we will show
in Section VI that the running time of our proposed resource
allocation algorithm varies linearly with the number of users.
Note that we have relaxed the admission control variable zu
when determining the increment of objective value. After the
resource allocation process, we convert z̃u back to binary
variable zu as

zu =

{
1, if z̃u = 1,
0, otherwise. (19)

Note that if z̃u = min{Ru/Rmin
u , 1} < 1, to guarantee

constraint (5), we need to set zu = 0. The post-processing
of zu does not affect the amount of resources each service
provider obtained from the network operator. With the above
definitions, the proposed IBGA algorithm is shown in Algo-
rithm 1.

In Algorithm 1, we allocate available channels to the RRHs.
For each channel k ∈ N , we first determine the possible set
of users to be associated with each RRH in Step 3. We then
allocate channel k iteratively to the RRHs. In each iteration,
we first calculate the increment of objective value, ∆fj,k,
according to (17). Then, we allocate channel k to the RRH
with the largest value of increment in Step 7. Next, we update
the user association variables and resource sharing variables
according to the solution of problem (17) in Step 9. Then,
we update the possible user association profile Aj,k,τ from
Steps 11 to 23. We remove the service provider s from set
S ′ which has achieved the minimum rate guarantee in Step
14, and update Aj,k,τ by removing corresponding users in
set Us in Step 15. Once all the service providers achieved
the minimum rate guarantee, we set Isp = 1 in Step 17.
By using Steps 11 to 18, we aim to allocate resources to
service providers which have not achieved the minimum rate
guarantee with a higher priority. Finally, we check whether this
channel can be allocated to other RRHs under the interference
constraints from Steps 19 to 23. If it still can be allocated to
RRH j, we update Aj,k,τ ,∀ τ ∈ T for RRH j considering the
interference constraints at the users in Step 18. Steps 7 to 23
will be repeated until channel k cannot be further allocated to
any RRH. Using this algorithm, we obtain the desired channel
allocation decision, user association decision, resource sharing
decision, and determine the admission control decision.

It can be seen that by using Algorithm 1, we can obtain a
solution to problem (14) within a small number of iterations,
i.e., N |M| iterations in total. Therefore, it is more efficient
compared to the standard techniques for large-scale networks.
However, since we use a greedy algorithm when allocating
each channel, and apply relaxation to the admission control
variables, the solution obtained using Algorithm 1 is subop-
timal. By using this algorithm, we can obtain the resources
allocated to each service provider s ∈ S at each RRH j ∈M
as Wj,s =

∑
u∈Us,τ∈T wu,j,τ . Then, the network operator can

create the vRAN for each service provider accordingly. We
will evaluate the performance of Algorithm 1 in Section VI.

IV. MULTI-TIMESCALE RESOURCE SHARING MECHANISM

In the previous section, we have designed an efficient
resource sharing algorithm to assist the virtualization process
at the network operator, where the decisions remain unchanged
for T time slots. A typical challenge in designing practical
virtualization mechanism is to adapt to changes of the net-
work status, such as the traffic variation and user mobility.
Intuitively, when the users’ locations and their traffic demand
do not vary, the network operator does not need to update
the vRAN for each service provider. In this scenario, we
can select a large value of T to reduce computation and
communication cost. On the contrary, when the network status
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Algorithm 1: Increment-based greedy allocation (IGBA)
algorithm.

1 Initialize variables zs, as, ws, s ∈ S, C, f , Isp to be all zeros,
S ′ := S, and Aj,τ = ∅, j ∈M, τ ∈ T

2 for each channel k ∈ N do
3 Determine Aj,k,τ , j ∈M, τ ∈ T according to (18).
4 Initialize set Mk :=M.
5 while Mk 6= ∅ do
6 Solve problem (17) for j ∈Mk and calculate the

value of ∆fj,k, j ∈Mk.
7 Find the RRH with the largest increment of objective

value: q = arg maxj∈Mk ∆fj,k.
8 Set Mk :=Mk \ {q} and f := f + ∆fq,k.
9 Set Cq,k := 1 and update

au,q,τ , wu,q,τ , u ∈ Aq,k,τ , τ ∈ T according to the
solution in Step 6.

10 Set Aj,τ := Aj,τ ∪ {u | wu,j,τ > 0}, j ∈M, τ ∈ T .
11 if Isp = 0 then
12 for s ∈ S ′ do
13 if

∑
u∈Us,s∈S′ Ru ≥ R

min
s then

14 Set S ′ := S ′ \ {s}.
15 Set Aj,k,τ :=Aj,k,τ\{u}, u ∈ Us, j∈Mk.
16 if S ′ = ∅ then
17 Set Isp := 1.
18 Update Aj,k,τ according to (18).
19 for RRH j ∈Mk do
20 if IRRH(j, k) = 0 or Aj,k,τ = ∅, τ ∈ T then
21 Set Mk :=Mk \ {j}.
22 else
23 Update Aj,k,τ according to (18).
24 Determine the admission control variable zu, u ∈ Us, s ∈ S

according to (19).

changes frequently, the amount of resources required at each
service provider may vary, which requires update of the vRAN
frequently in a small time scale, i.e., we need to choose a small
value of T , which results in high computation cost.

In this paper, we propose a multi-timescale resource sharing
mechanism as shown in Fig. 2 to address this issue. This
mechanism consists of a global resource allocation process
which is performed every TG time slots, and a number of local
resource allocation processes performed every TL = T time
slots (where TG = nLTL and nL is a positive integer) between
two consecutive global resource allocation. The allocated
resource for each service provider remains unchanged during
TL time slots. In the global resource allocation process, all
users in the system are involved in the optimization, and the
available resources include all the channels in set N , as shown
in problem (10). However, in the local resource allocation
process, only users whose locations and traffic demand have
changed are considered.

The available resources for local allocation process only
include the remaining resources (e.g., channels which have
not been utilized) in the system. Without loss of generality,
we consider global resource allocation is performed at time
slot t0, and the local resource allocation is performed at time
slot t1 = t0+T . All through this section, we use superscript to
denote the time period when the decision is made. The remain-
ing resources in the system can be classified into three types.
The first type is the set of channels that can further be assigned
to RRHs without violating the interference constraints of the

(a)

(b)

… …

Global resource allocation performed at , , ,… 

Local resource allocation performed at ,…, ,… 

…

…

…

Mobility prediction at : predict the users’ locations at ,…, 

Fig. 2. (a) Multi-timescale resource sharing framework: Global resource
allocation performed every TG time slots, and local resource allocation per-
formed every TL time slots. (b) Mobility prediction: predicting the locations
of mobile users every ∆t time slots during the next TL time slots.

existing users, which is denoted as N t1 . The second type
of remaining resources is the amount of channel resources
that are assigned to some RRHs but not fully utilized by the
service providers. We denote this type of remaining resources
at RRH j ∈ M for the τ th prediction period as rt1j,τ . The
last type of remaining resources corresponds to the amount of
resources released from the service providers to the network
operator. This may happen when some of the users subscribed
to a service provider have finished their transmission or lower
their traffic demand, and the service provider has more than
enough resources to satisfy the maximum traffic demand of
all its subscribed users. In this case, the service provider can
decide to release the additional amount of resources back to the
network operator in order to reduce expenses. We denote the
amount of resources released from service provider s for RRH
j for the τ th prediction period as W̃ t1

s,j,τ . The optimization
variables at time slot t1 include Ct1j,k, ∀ k ∈ N t1 , j ∈ M,
zt1u , wt1u,j,τ , at1u,j,τ ,∀ j ∈ Mt1

u , τ ∈ T , u ∈ U t1s , s ∈ S , which
are defined similarly to those in the global optimization. The
optimization problem for local resource allocation is similar
to the global optimization problem except that the superscript
t is replaced by t1 and constraint (3) is changed to∑

u∈Utj

wu,j,τ ≤
1

np

∑
k∈N t1

Ct1j,k + rt1j,τ +
∑
s∈S

W̃ t1
s,j,τ ,

∀ τ ∈ T , j ∈M. (20)

Therefore, the local optimization problem at time slot t1 can
be formulated as

maximize
zt1s ,w

t1
s ,a

t1
s ,s∈S, Ct1

f t1 (21a)

subject to constraints (1)–(2), (4)–(5), (7)–(8),
(10c)–(10f), (11), with superscript t1,
and (20). (21b)

Problem (21) can be solved by applying Algorithm 1 with
proper adjustment. Specifically, when initializing values of the
decision variables and calculating the utility increment of the
RRHs, only the amount of remaining resources and users in
U t1s are considered. After obtaining the solution to problem
(21), the network operator updates the resources allocated to
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Algorithm 2: Multi-timescale dynamic resource allocation
algorithm during [t0, t0 + TG).

1 for t := t0 to TG do
2 if t = t0 then
3 Collect information from service providers, including

users’ locations and their QoS requirements.
4 Predict the locations of mobile users for time slot

t+ τ∆t, τ = 1, 2, . . . , np − 1
5 Find resource allocation decisions by solving problem

(14) using Algorithm 1.
6 Calculate the resources allocated to each service

provider s ∈ S, W t
s,j =

∑
u∈Uts,τ∈T

wtu,j,τ , j ∈M.

7 Create a vRAN for each service provider s ∈ S.
8 if t = t0 + τ∆t, τ = 1, 2, . . . then
9 Update the location of all users in the system.

10 if t = t0 +mT , m = 1, 2, . . . , nL − 1 then
11 Find the remaining channels that can further be

allocated, N t, using exhaustive search.
12 Set rtj,τ = 1/np

∑
k∈N t−T C

t−T
j,k −∑

s∈S
∑
u∈Ut−Ts

wt−Tu,j,τ , j ∈M.
13 Find the set of users for resource allocation,

U ts, ∀ s ∈ S.
14 Predict the locations of mobile users for time slot

t+ τ∆t, τ = 1, 2, . . . , np − 1.
15 Find resource allocation decisions by solving problem

(21).
16 Update the vRAN resources for each service provider

s ∈ S according to (22).

each service provider s ∈ S at RRH j ∈M at time slot t1 as

W t1
s,j = W t0

s,j −
∑
τ∈T

W̃ t1
s,j,τ +

∑
τ∈T ,u∈Ut1s

wt1u,j,τ . (22)

Based on the previous discussion, the procedures of the
proposed dynamic resource sharing mechanism during time
slot [t0, t0 + TG) are shown in Algorithm 2. In Algorithm
2, the parameters nL = TG/T and np = T/∆t are prede-
termined integers. Steps 3 to 7 in Algorithm 2 correspond
to the global resource allocation process, where the network
operator creates vRAN for each service provider based on their
reservation requests. Step 9 is to update the locations of users
in the system, which can be achieved via location monitoring
techniques such as global provisioning system (GPS). In Steps
11 to 16, the network operator performs local resource update
for service providers by solving problem (21) every T time
slots. In Steps 4 and 14, the network operator needs to predict
the next np−1 locations for each mobile user. Such prediction
can be achieved by applying any existing mobility prediction
algorithm such as the order-2 Markov predictor [26]. Note
that when there is no remaining resources in the system or
requests from the service providers, the network operator does
not perform local optimization.

V. FURTHER EXTENSION

In this section, we discuss possible extensions of the pro-
posed multi-timescale resource sharing mechanism to address
some related issues of resource sharing.

A. Dynamic Resource Sharing for Uplink

Although the dynamic resource sharing mechanism pro-
posed in Section IV is based on downlink communication,
it can also be applied to the uplink with proper adjustment. In
the uplink, users transmit data to the RRHs, and each RRH
may experience a different level of interference. Similar to the
downlink scenario, to provide service isolation among different
service providers, we restrict that the aggregate interference
experienced at each RRH j ∈M is no larger than a threshold
ε′. We also define the maximum transmission power allowed
at user u ∈ Us as Pmax

u , which depends on the device and
applications that the user is using. For simplicity, we reuse the
symbols for other variables defined in the downlink scenario.
Then, the interference constraints at the RRHs are represented
as

Cj,k
∑

l∈M\{j}

Cl,k max
u∈Ũl,τ∈T

{au,l,τPmax
u gu,j,τ} ≤ ε′,

∀ k ∈ N , j ∈M. (23)

It can be verified that (23) is a non-convex constraint. To
linearize (23), we introduce auxiliary variables xl,j and yl,j,k
for all j, l ∈M, k ∈ N , where

xl,j = max
u∈Ũl,τ∈T

{au,l,τPmax
u gu,j,τ}, (24)

yl,j,k = Cl,kxl,j . (25)

With the auxiliary variables, for any k ∈ N and j ∈M, con-
straint (23) can be transformed into the following constraints

∑
l∈M\{j}

yl,j,k ≤ ε′ + (1− Cj,k)D′, (26a)

xl,j ≥ au,l,τPmax
u gu,j,τ , u ∈ Ũl, τ ∈ T , l ∈M \ {j}, (26b)

yl,j,k≥xl,j−(1−Cl,k) max
u∈Ũl,τ∈T

{Pmax
u gu,j,τ}, l∈M\{j}, (26c)

0 ≤ yl,j,k ≤ xl,j , l ∈M \ {j}, (26d)
yl,j,k ≤ Cl,k max

u∈Ũl,τ∈T
{Pmax

u gu,j,τ}, l ∈M \ {j}, (26e)

where D′ is a large positive constant. We have the following
theorem.

Theorem 2: For any j ∈ M and k ∈ N , constraint (23) is
equivalent to constraint (26) if D′ and ε satisfy

D′ ≥ (|M| − 1) max
u∈Us,s∈S,τ∈T

{Pmax
u gu,j,τ} − ε′. (27)

Proof: First, we show that constraint (23) is equivalent to
constraints (24)–(26a). It can be verified that when Cj,k = 1,
constraint (23) is equivalent to constraint (26a) by substituting
(24) and (25). When Cj,k = 0, constraint (23) is always
satisfied. In this scenario, constraint (26a) becomes∑

l∈M\{j}

yl,j,k ≤ ε′ +D′, (28)

which is also always satisfied when D′ ≥ (|M| −
1) maxu∈Us,s∈S,τ∈T {Pmax

u gu,j,τ} − ε′. Thus, constraint (23)
is equivalent to constraints (24)–(26a). Next, it can be seen
that (24) is equivalent to (26b). Finally, we show that (25) is
equivalent to (26c)–(26e). When Cl,k = 0, we have yl,j,k = 0
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from (25). From (26d) and (26e), we also have yl,j,k = 0,
which implies that (25) is equivalent to (26d) and (26e) in
this scenario. When Cl.k = 1, we have yl,j,k = xl,j from (25).
Meanwhile, from (26c) and (26d), we also have yl,j,k = xl,j .
Therefore, (25) is equivalent to (26c)–(26e) under any value of
Cl,k. In summary, constraint (23) is equivalent to constraints
(26a)–(26e). This completes the proof.

According to Theorem 2, we have transformed the non-
convex constraint (23) into a set of linear constraints (26).
Note that the objective function and all other constraints in the
uplink resource allocation problem is the same as those in the
downlink scenario. Therefore, the global resource allocation
problem for the uplink can be formulated as

maximize
zs,ws, as,s∈S, C

f (29a)

subject to constraints (1)–(5), (7)–(8), (10c)–(10f)
with ε = ε′, PRRH = Pmax

u , and (26). (29b)

Similar to the downlink scenario, we define ĨRRH(j, k) as an
indicator function to show whether channel k can be allocated
to RRH j without violating constraints in (26). We further
define Ĩuser(u, j, τ) as the indicator function whether user u
can be associated with RRH j in the τ prediction period
without violating the interference constraints. Then, the global
resource allocation problem can be solved using Algorithm
1 by replacing ε, PRRH, IRRH(j, k), and Iuser(u, j, τ) with
ε′, Pmax

u , ĨRRH(j, k), and Ĩuser(u, j, τ), respectively. Similarly,
we can obtain the local resource allocation decisions for the
uplink using Algorithm 1 with the aforementioned changes.
Therefore, the proposed mechanism in Algorithm 2 can also
be applied for uplink resource allocation.

B. Revenue Maximization for On-Demand Service

In the proposed resource sharing mechanism, we optimize
an objective function that characterizes the weighted sum rate
of the system. In this subsection, we show that the objective
function (9) can be extended to solve revenue maximization
problem for on-demand resource sharing, where the service
providers pay for the amount of resources they reserved for
a certain period. We consider two different pricing schemes,
fixed-rate pricing scheme and tiered pricing scheme, respec-
tively. For fixed-rate pricing scheme, we assume the price for
reserving data rate R0 is ρ0. Then, the revenue maximization
objective is

f0 = ρ0

∑
u∈Us,s∈S

Ru
R0

. (30)

It can be seen that (30) can be obtained by setting βu =
ρ0/R0,∀ u ∈ Us, s ∈ S from (9). With the fixed-rate pricing
scheme, the network operator only concerns the throughput of
the system, which may result in unbalanced resource allocation
among the service providers and users, e.g. users with better
channel condition obtain more resources, while users with poor
channel condition may not be admitted for service.

We address this issue by adopting a tiered pricing scheme.
In this scheme, the price ρu for reserving data rate Ru for

each user is a piece-wise function

ρu=


0, if Ru < Rmin

u ,
ρ1R

min
u

R0
+
ρ2(Ru−Rmin

u )
R0

, ifRmin
u ≤Ru≤Rmax

u ,
ρ1R

min
u

R0
+
ρ2(Rmax

u −Rmin
u )

R0
, otherwise,

(31)

where ρ1, ρ2 are constant unit prices that satisfy ρ1 > ρ2.
(31) implies that payment is only made when the reserved
data rate satisfies the user’s QoS requirement. When the data
rate is greater than the upper bound Rmax

u , no more payment is
made for additional data rate reserved for this user. With this
pricing scheme, the revenue maximization objective becomes

f1 =
∑

u∈Us,s∈S

(
ρ1zuR

min
u

R0
+
ρ2zu(Ru −Rmin

u )

R0

)
. (32)

Note that we have constraint (5) to restrict the data rate for an
admitted user to be within the [Rmin

u , Rmax
u ]. With constraint

(5), (32) is equivalent to

f1 =
∑

u∈Us,s∈S

(
(ρ1 − ρ2)zuR

min
u

R0
+
ρ2Ru
R0

)
, (33)

where we omit the zu in the second term within the bracket
due to (5). Notice that if zu = 0, constraint (5) forces Ru
to be zero as well. Therefore, by using (33) as the objective
function, we can formulate the revenue maximization problem
under tiered pricing scheme.

VI. PERFORMANCE EVALUATION

We evaluate the performance of the proposed dynamic re-
source sharing mechanism via simulations. We consider three
service providers sharing a C-RAN to serve their subscribed
users in a residential area. The system consists of 16 cells,
where 16 RRHs are placed in a 4 × 4 grid. The distance
between two adjacent RRHs is 30 m. There are 25 channels
available, each with a bandwidth of 180 kHz. The wireless
channel model follows [27]. The path loss exponent is 4.
The RRH’s transmission power and noise power are 250 mW
and −90 dBm, respectively. Each time slot is 100 ms. Unless
specified, we set βu = 1, Rref

s = 25 Mbps, u ∈ Us, s ∈ S ,
Rref = 800 kbps, ε = −75 dBm, T = 100, ∆t = 20,
Bfh
j = 100 Mbps, and D = 1. We further set np = 5 as

inspired by [2] and nL = 10. The value of nL is determined
by the network operator, where smaller values of nL can track
the changes in the network more quickly with the cost of a
higher computational complexity. The results in this section
are obtained by averaging the outcome of 50 simulation runs
with different user topologies.

We evaluate the efficiency of the proposed IBGA algorithm
and compare its performance with that of a standard branch
and bound algorithm solved by the MATLAB MILP solver. As
the complexity of the branch and bound algorithm increases
significantly with respect to the network size, in this evalua-
tion, we consider part of the simulation model, i.e., a 3 × 3
grid with 9 RRHs and 9 channels. We vary the number of users
subscribed to each service provider from 1 to 10. All users
are stationary and randomly distributed within the 100×100
m2 area that covers the 3×3 grid. The QoS requirement of
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Fig. 3. System throughput versus number of users per service provider.

20 30 40 50 60 70
50

60

70

80

90

100

110

120

130

140

150

160

Number of users per service provider

S
y

st
em

 t
h

ro
u

g
h

p
u

t 
(M

b
p

s)

 

 

Bfh
j = 100 Mbps

Bfh
j = 50 Mbps

Bfh
j = 10 Mbps

Bfh
j = 7.5 Mbps

Bfh
j = 5 Mbps

Fig. 4. System throughput with different fronthaul capacity versus number
of users per service provider.

each user is set to be {800, 1000} kbps. The average system
throughput and the running time for both algorithms are shown
in Fig. 3 and Table II, respectively. As shown in Fig. 3, the
system throughput of both algorithms are almost the same
when the number of users per service provider is less than
5. When the number of users is greater than 5, the proposed
IBGA algorithm achieves no less than 90% of the performance
achieved by the branch and bound algorithm. However, as
shown in Table II, the running time of the proposed IBGA
algorithm is significantly lower than that of the MILP solver
when the number of users is greater than 7.

We now evaluate the performance of the proposed algorithm
for different values of fronthaul capacity Bfh

j . The system
throughput of the proposed algorithm is shown in Fig. 4, where
we vary the number of users per service provider from 20 to 70
and set Rref

s = 40 Mbps. It is shown that the system throughput
increases with the number of users as the traffic load increases.
However, when the fronthaul capacity is small, the number of
users associated with each RRH is limited, which restricts the
system throughput. It is observed that the system throughput
increases with the fronthaul capacity. When the fronthaul
capacity is large enough to satisfy the QoS requirements of
all users, the system throughput does not increase further with
the fronthaul capacity.

We further evaluate the performance of the proposed mech-
anism with different values of interference threshold ε and
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Fig. 5. System throughput versus interference threshold ε for different
fronthaul link capacity.
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Fig. 6. System throughput of proposed and fixed rate resource sharing
mechanisms.

fronthaul capacity Bfh
j . We fix the number of users for each

service provider to be 30. Fig. 5 shows that the system
throughput first increases with ε and then decreases when ε
is larger than −75 dBm. The reason is as follows. When ε is
small, few channels can be reused among different RRHs since
the interference constraint cannot be satisfied. Some users
cannot be admitted due to the limited amount of resources
available. As ε increases, channel reuse among RRHs becomes
possible and more users can be admitted, which increases the
system throughput. However, the transmission rate Ru from
a service provider to a user becomes smaller as ε increases.
Thus, the system throughput decreases when ε exceeds a
certain value. Similarly, the system throughput increases with
the fronthaul capacity when ε is smaller than −60 dBm. In
practice, ε can be selected based on the simulation results
under different network settings.

We compare the proposed mechanism (with IGBA algo-
rithm) with a mechanism where each service provider is
guaranteed a fixed aggregate data rate of 40 Mbps. We set
Rref
s = 40 Mbps. We restrict users subscribed to service

provider 3 be located in the boundary area (within 30 m to the
area boundary). Fig. 6 shows the system throughput increases
as the number of users per service provider increases. It can
be seen that both mechanisms achieve similar performance
when the number of users per service provider is under 45.
This is because in these scenarios, the resources in the system
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TABLE II
AVERAGE RUNNING TIME FOR DIFFERENT ALGORITHMS.

Number of users per
service provider

1 2 3 4 5 6 7 8 9 10

Running time for
IBGA (s)

0.032 0.057 0.108 0.136 0.16 0.226 0.255 0.358 0.404 0.446

Running time for
branch and bound (s)

0.073 0.116 0.178 0.221 0.409 0.708 2.753 42.655 865.83 6758.2

are sufficient to satisfy the QoS requirements of almost all
users, and the total minimum rate demand for each service
provider is no larger than the minimum rate guarantee (40
Mbps). Thus, using fixed or dynamic rate guarantee does not
affect the system throughput. However, as the number of users
increases further, the proposed mechanism with dynamic rate
guarantee achieves higher throughput. The reason is that as
the number of users increases, the resources become stringent
and may not be sufficient to satisfy users’ QoS requirement,
especially for those subscribed to service provider 3. The
proposed mechanism reduces the minimum resource guarantee
for service provider 3 accordingly to save some resources
for other users who are close to the RRHs. On the contrary,
using fixed guarantee requires much more resources for service
provider 3, which results in inefficient utilization and reduces
the system throughput.

We compare the proposed mechanism (with IGBA algo-
rithm) with the proportional spectrum sharing mechanism. In
the proportional spectrum sharing mechanism, each RRH is al-
located one channel, and this channel is shared by three service
providers proportionally according to their traffic demand. The
traffic demand is estimated by assuming users are associated
with their closest RRHs. The allocated resources remain
unchanged until the next allocation process is performed. The
simulation setting is the same as that in Fig. 6. Fig. 7 shows the
system throughput with respect to different number of users
per service provider. It can be seen that the proposed resource
sharing mechanism achieves higher system throughput than
the proportional resource sharing mechanism. This is because
the proportional resource sharing mechanism does not explore
dynamic channel reuse and user association, which is less
efficient than the proposed mechanism.

We let each service provider serve 30 stationary users. Each
user has a QoS requirement of {800, 1000} kbps at the begin-
ning. Then, every 100 time slots from time slot 100 to time slot
500, we increase the QoS requirement of service provider 1’s
users by 45 kbps one at a time. Next, from time slot 600 to
1000, we decrease the QoS requirement of service provider
2’s users by 45 kbps one at a time every 100 time slots.
We compare the proposed multi-timescale mechanism with a
single-timescale mechanism. The single-timescale mechanism
performs global optimization every 400 time slots, while the
multi-timescale mechanism also performs local optimization
every 100 time slots. Fig. 8 shows the achievable throughput
over each time period with respect to the traffic variation,
which is calculated according to the allocated resources. It can
be seen that as the resource demand from the users varies,
the system throughput of the proposed mechanism changes
accordingly every 100 time slots. This is because the proposed
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Fig. 7. System throughput of proposed resource sharing and proportional
spectrum sharing mechanisms.
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Fig. 8. System throughput of multi-timescale and single-timescale algo-
rithms versus time slot.

mechanism has a local resource allocation procedure which
updates the resources allocated to each service provider every
T = 100 time slots. However, the system throughput of
the single-timescale mechanism is updated every 400 time
slots due to the global resource allocation, and users’ varying
resource demand between two global resource allocation pro-
cesses may not be satisfied. As shown in Fig. 8, the system
throughput of the proposed algorithm is lower than that of
the single-timescale algorithm between time slots 700 and
1000. This is because the proposed algorithm responds faster
to traffic variation and achieves higher system throughput in
the first 600 time slots, which reduces the remaining backlog
traffic required to be transmitted between time slots 700 and
1000. This demonstrates that the proposed multi-timescale
mechanism with local resource update can adapt to frequent
traffic variation and can provide on-demand services.

We consider each service provider serves 15 stationary users
and 15 mobile users each with QoS requirement {600, 800}
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Fig. 9. System throughput versus average speed of mobile users.
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Fig. 10. System throughput versus the prediction error.

kbps. We adopt the 2D Gauss-Markov movement model [28],
where the velocity of a mobile user is correlated in time. User
u’s velocity in each dimension vtu at time t is given by vtu =
γvv

t−1
u + (1−γv)µv +

√
1− γ2

vx
t−1, where γv ∈ [0, 1] is the

velocity memory factor, µv is the asymptotic mean of vtu and
x is an independent and stationary Gaussian random variable
with zero mean and standard deviation σv . We set γv = 0.9,
µv = 1 m/s, and σv = 1. The initial speed of each user is
selected as 0.25 m/s at a random direction and is updated every
four seconds. For location prediction, we implement an order-
2 Markov predictor [26], which predicts the next movement in
one direction based on the most recent two movements in the
same direction. Each movement is measured by a speed change
in horizontal direction and vertical direction, respectively, with
step size selected from [−2.5,−2.25, . . . , 2.25, 2.5] m/s. The
parameter of the Markov predictor is obtained via simulation
for 105 time slots. We predict four future positions for each
user during the optimization process.

Fig. 9 shows the system throughput with respect to differ-
ent average speeds of mobile users. The system throughput
decreases for both mechanisms with or without mobility
prediction. This is because as the users move faster, the amount
of resources required at each service provider from different
RRHs varies more quickly. However, the amount of resources
allocated to each service provider remain unchanged for a
certain period, which may not be sufficient to satisfy the QoS
requirements of all mobile users. Thus, the system throughput

decreases since some mobile users are not admitted for ser-
vices. Nevertheless, with the mobility prediction, the proposed
mechanism achieves around 5% throughput improvement as
the users moves faster than 3.5 m/s.

We also evaluate the effect of prediction error on the
proposed mechanism, where we manually add prediction error
to the actual locations of users during each prediction period.
Fig. 10 shows the system throughput with respect to different
prediction errors with users’ average speed of 2 m/s. It can
be seen that as the error increases, the system throughput
decreases. However, the decrease is within 1% as long as the
prediction error is within 10 m.

VII. CONCLUSION

In this paper, we proposed a multi-timescale dynamic re-
source sharing mechanism. The network operator performs
a global resource allocation at a relatively large time scale,
and performs local resource allocation based on the changes
of network status such as traffic variation and user mobility.
We have introduced a threshold-based policy to limit the
aggregate interference observed at each user and provide
isolation among service providers. We have also employed
a mobility prediction approach to facilitate the estimation
of traffic demand. We have formulated a resource allocation
problem that jointly optimizes the channel allocation, user
association, and admission control decisions and developed
an efficient algorithm to solve it. We have discussed possible
extensions of the proposed mechanism for uplink transmission
and revenue maximization. Through simulations, we have
shown that the proposed mechanism achieves service isolation
and efficient resource sharing among service providers. It can
adapt to traffic variation, and achieves robust performance
under user mobility. In future, we aim to utilize transmission
power control to further alleviate the intra-tier interference.
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